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Abstract

Language models that use additional latent

structures (e.g., syntax trees, coreference

chains, and knowledge graph links) provide

several advantages over traditional language

models. However, likelihood-based evaluation

of these models is often intractable as it re-

quires marginalizing over the latent space. Ex-

isting methods avoid this issue by using im-

portance sampling. Although this approach

has asymptotic guarantees, analysis is rarely

conducted on the effect of decisions such as

sample size, granularity of sample aggregation,

and the proposal distribution on the reported

estimates. In this paper, we measure the effect

these factors have on perplexity estimates for

three different latent language models. In addi-

tion, we elucidate subtle differences in how im-

portance sampling is applied, which can have

substantial effects on the final estimates, as

well as provide theoretical results that rein-

force the validity of importance sampling for

evaluating latent language models.

1 Introduction

Latent language models are generative models of

text that jointly represent the text and the latent

structure underlying it, such as: the syntactic parse,

coreference chains between entity mentions, or

links of entities and relations mentioned in the

text to an external knowledge graph. The benefits

of modeling such structure include interpretabil-

ity (Hayashi et al., 2020), better performance on

tasks requiring structure (Dyer et al., 2016; Ji et al.,

2017), and improved ability to generate consistent

mentions of entities (Clark et al., 2018) and fac-

tually accurate text (Logan et al., 2019). Unfor-

tunately, demonstrating that these models provide

better performance than traditional language mod-

els by evaluating their likelihood on benchmark

data can be difficult, as exact computation requires

marginalizing over all possible latent structures.

Existing approaches evaluate their models by es-

timating likelihoods using importance sampling, i.e.

a weighted average over latent states sampled from

a proposal distribution. Although convergence of

importance sampled estimates is asymptotically

guaranteed, results are typically produced using a

small number of samples for which this guaran-

tee does not necessarily apply. Furthermore, these

works employ a variety of heuristics—such as sam-

pling from proposal distributions that are condi-

tioned on future gold tokens the model is being

evaluated on, and changing the temperature of the

proposal distribution—without providing measure-

ments of the effect these decisions have on esti-

mated perplexity, and often omitting details crucial

to replicating their results.

In this paper, we seek to fill in this missing

knowledge, and put this practice on more rigorous

footing. First, we review the theory of importance

sampling, providing proof that importance sampled

perplexity estimates are stochastic upper bounds of

the true perplexity—a previously unnoted justifica-

tion for this evaluation technique. In addition, we

compile a list of common practices used in three

previous works—RNNG (Dyer et al., 2016), Enti-

tyNLM (Ji et al., 2017) and KGLM (Logan et al.,

2019)—and uncover a difference in the granular-

ity at which importance samples are aggregated in

these works that has a substantial effect on the final

estimates. We also investigate a direct marginal-

ization alternative to importance sampling based

on beam search that produces strict bounds, and

in some cases, has similar performance. Last, we

perform experiments to measure the effect of vary-

ing sample size, aggregation method, and choice of

proposal distribution for these models, an analysis

that is missing from previous work. From these

results we conclude a set of best practices to be

used in future work.
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x Kawhi to join L.A. Clippers . He . . .

EntityNLM t 1 0 0 1 1 0 1 . . .

e 1 ∅ ∅ 2 2 ∅ 1 . . .

l 1 1 1 2 1 1 1 . . .

KGLM t new ∅ ∅ related ∅ related . . .

s ∅ ∅ ∅ kawhi_leonard ∅ kawhi_leonard . . .

r ∅ ∅ ∅ playerFor ∅ reflexive . . .

o kawhi_leonard ∅ ∅ la_clippers ∅ kawhi_leonard . . .

Figure 1: EntityNLM and KGLM latent states. For EntityNLM, z = (t, e, l), where t denotes whether the token

is part of a mention, e denotes the coreference cluster, and l denotes the remaining mention length. For KGLM,

z = (t, s, r,o), where t has the same meaning, and s, r and o associate tokens to edges in a knowledge graph.

2 Inference in Latent LMs

In this section, we provide an overview of impor-

tance sampling-based inference in latent language

models, as well as some key theoretical results.

Latent LMs A latent language model is a gener-

ative model which estimates the joint distribution

p(x, z) of a sequence of text x = (x1, . . . , xT ) and

its underlying latent structure z.

In this paper, we focus on three models:

• RNNG (Dyer et al., 2016) which models syn-

tactic structure,

• EntityNLM (Ji et al., 2017) which models

coreference chains, and

• KGLM (Logan et al., 2019) which models

links to an external knowledge graph.

Example latent states for EntityNLM and

KGLM are depicted in Figure 1, showing la-

tent coreference chains and links to the knowl-

edge graph. Other notable latent language mod-

els include the NKLM (Ahn et al., 2016) and

LRLM (Hayashi et al., 2020); we do not study them

since they use alternatives to importance sampling

(e.g., the forward-backward algorithm).

Perplexity The standard evaluation metric for

language models is perplexity:

PPL = exp
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where p(xt|x<t) is the marginal likelihood of

the token xt conditioned on the previous tokens

x<t. By the chain rule of probabilities p(x) =
∏T

t=1 p(xt|x<t). Perplexity can be intractable to

compute for latent language models since it re-

quires marginalizing out the latent variable (e.g.,

p(x) =
∑

z p(x, z)) whose state space is often ex-

ponential in the length of the text.

Importance Sampling Existing approaches in-

stead use importance sampling (Kahn, 1950) to

estimate an approximate marginal probability:

p̂(x) =
1

K

K
∑

k=1

p(x, zk)

q(zk)
, (2)

where q(z) is an arbitrary proposal distribution and

z1, . . . ,zK ∼ q(z). It is well known that p̂(x) is an

unbiased estimator:

Ezk∼q(z)

[

p̂(x)
]

= p(x), (3)

provided that q(z) > 0 whenever p(z) > 0. For

proof and further details on importance sampling,

we refer the reader to Owen (2013).

Stochastic Upper Bound A consequence of

Eqn (3) is that, due to Jensen’s inequality:

Ezk∼q(z)

[

log p̂(x)
]

≤ log p(x). (4)

In other words, importance sampled estimates of

a model’s perplexity are stochastic upper bounds

of the true perplexity. This property has not been

stated in prior work on latent language modeling,

yet is an important consideration since it implies

that importance sampled perplexities can be reli-

ably used to compare against existing baselines.

Limiting Behavior Another important observa-

tion is that importance sampled estimates of per-

plexity are consistent, e.g., will converge as the

number of samples approaches infinity. To prove

this, we first observe that p̂(x) is consistent, which

is a well-known consequence of the strong law

of large numbers (Geweke, 1989). Accordingly,

log p̂(x) is also consistent due to the continuous

mapping theorem (Van der Vaart, 2000).
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trained model weights. For EntityNLM we train

the model from scratch following the procedure

described by Ji et al. (2017); results may not be di-

rectly comparable due to differences in data prepro-

cessing and hyperparameters. We evaluate models

on the datasets used in their original papers: RNNG

is evaluated on the Penn Treebank corpus (Marcus

et al., 1993), EntityNLM is evaluated on English

data from the CoNLL 2012 shared task (Pradhan

et al., 2014), and KGLM is evaluated on the Linked

WikiText-2 corpus (Logan et al., 2019).

Experiments For EntityNLM and KGLM, we

experiment with two kinds of proposal distribu-

tions: (1) the standard peeking proposal distribu-

tion that conditions on future evaluation data, and

(2) a non-peeking variant that is conditioned only

on the data observed by the model (this is akin to

estimating perplexity by ancestral sampling). For

RNNG we only experiment with peeking propos-

als, since a non-peeking variant generates invalid

parse trees. For the peeking proposal distribu-

tion, we experiment with applying temperatures

τ ∈ [0.5, 0.9, 1.0, 1.1, 2.0, 5.0]. We report both

corpus-level and instance-level estimates, as well

as bounds produced using a direct, beam marginal-

ization method we describe later.

Sample Size We plot instance-level perplexity

estimates as sample size is varied in Figures 2

and 3. We observe that the curves are monoton-

ically decreasing in all settings. Consistent with

our observation that importance sampled estimates

of perplexity are a stochastic upper bound, this

demonstrates that the bound is improved as sample

size increases. Furthermore, none of the curves ex-

hibit any signs of convergence even after drawing

orders of magnitude more samples (Figure 3); the

estimated model perplexities continue to improve.

Thus, the performance of these models is likely

better than the originally reported estimates.

Aggregation Final estimates of perplexity com-

puted using both corpus- and instance-level es-

timates are provided in Table 1. We note that

instance-level estimates are uniformly lower by a

wide margin. For example, using a temperature of

τ = 1.1 the estimated KGLM perplexity is approxi-

mately 10 nats lower using instance-level estimates.

This is substantially better than the perplexity of

43 nats reported by Logan et al. (2019).

Proposal Distribution These results also appear

to indicate that choice of proposal distribution has a

substantial effect on estimated perplexity. However,

RNNG Ent KGLM

Corpus-level

τ = 0.5 94.4 122.6 101.9

τ = 0.9 96.0 122.7 59.3

τ = 1.0 96.7 120.8 48.2

τ = 1.1 97.9 120.7 41.7

τ = 2.0 121.6 120.5 170.0

τ = 5.0 734.0 152.5 7,468.7

No Peeking - 131.7 86.8

Instance-level

τ = 0.5 85.3 113.5 99.3

τ = 0.9 84.4 110.6 48.1

τ = 1.0 84.2 110.0 36.6

τ = 1.1 84.0 109.9 29.6

τ = 2.0 83.8 109.0 90.7

τ = 5.0 97.2 129.6 3,756.1

No Peeking - 113.9 71.9

Table 1: Final perplexity estimates using different pro-

posal distributions, estimated at both the instance and

corpus level. τ is temperature, and No Peeking refers to

proposal distributions that are not conditioned on future

outputs.

RNNG Ent KGLM

k = 1 96.3 150.2 153.7

k = 10 87.0 147.1 152.6

k = 100 84.3 144.5 -

Table 2: Strict perplexity upper bounds obtained by

marginalizing over the top-k states predicted by q(z|x)

using beam search.

it could also be the case that the observed differ-

ences in performance across proposal distributions

are due to random chance. We investigate whether

this is the case for EntityNLM by examining the

approximate density of perplexity estimates after

drawing 100 importance samples (shown in Fig-

ure 4).5 Our results illustrate that the estimates are

relatively stable; although there is some overlap

between the better performing temperature values,

the order of the modes matches the order reported

in Table 1, and there is clear separation from the

estimates produced when τ = 0.5 or by the non-

peeking proposal distribution. Due to the relative

cost of sampling we did not replicate this experi-

ment for RNNG and KGLM.6

5Obtained by Monte Carlo sampling 100 times.
6 Figs 3 & 4 took 1 week on a cluster of 15 NVidia 1080Tis.
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