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Variable-order fractional operators were conceived
and mathematically formalized only in recent
years. The possibility of formulating evolutionary
governing equations has led to the successful
application of these operators to the modelling
of complex real-world problems ranging from
mechanics, to transport processes, to control theory,
to biology. Variable-order fractional calculus (VO-
FC) is a relatively less known branch of calculus
that offers remarkable opportunities to simulate
interdisciplinary processes. Recognizing this
untapped potential, the scientific community has
been intensively exploring applications of VO-FC to
the modelling of engineering and physical systems.
This review is intended to serve as a starting point for
the reader interested in approaching this fascinating
field. We provide a concise and comprehensive
summary of the progress made in the development
of VO-FC analytical and computational methods
with application to the simulation of complex
physical systems. More specifically, following a
short introduction of the fundamental mathematical
concepts, we present the topic of VO-FC from the
point of view of practical applications in the context
of scientific modelling.

1. Introduction
Fractional calculus refers to the study of differential
and integral operators of either real or complex order.
The first documented discussion on fractional-order
differentials are letters exchanged between Leibniz and
de l’Hôpital in 1695, in which they discussed the meaning
and the interpretation of dα f (t)/dtα when α is a non-
integer. Many great mathematicians later contributed
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to the development of fractional calculus, including Liouville, Riemann, Abel, Riesz, Weyl
and Caputo.

Although the branch of fractional calculus started almost simultaneously to its integer-order
counterpart, the mathematics and especially its applications are considerably less developed.
Many factors have contributed to this result, including the lack of methodologies to link both
the geometrical and physical properties of a system to the corresponding order of the fractional
operator. An intriguing aspect of these operators is their intrinsic multiscale nature. As a result,
time-fractional operators enable memory effects (i.e. the response of a system is a function of its
past history) while space-fractional operators enable non-local and scale effects.

The many characteristics of fractional operators have sparked, in recent years, much interest
in fractional calculus and produced a plethora of applications with particular attention to the
simulation of physical problems. Areas that have seen the largest number of applications include
the formulation of constitutive equations for viscoelastic materials [1–4], transport processes in
complex media [4–11], mechanics [12–15], non-local elasticity [16–19], plasticity [20–22], model-
order reduction of lumped parameter systems [23] and biomedical engineering [24–26]. These
studies have typically used constant-order (CO) fractional operators. Machado et al. [27] provided
a historical perspective on the major developments in fractional calculus since the 1970s. Detailed
reviews covering the fundamentals of CO fractional calculus (CO-FC) can be found in [27,28].

Although the CO-FC formalism is capable of addressing some very relevant physical
problems, it cannot capture important classes of physical phenomena where the order itself
is a function of either dependent or independent variables. For example, the reaction kinetics
of proteins has been found to exhibit relaxation mechanisms that are properly described by
a temperature-dependent fractional order [29]. Thus, the underlying physics of the reaction
kinetics (captured by the order of the relaxation mechanism) changes with temperature. Hence,
it is reasonable to think that a differential equation with operators that update their order as a
function of temperature will better describe the protein kinetics. This simple example suggests
that there exist classes of physical problems that would be better described by variable-order
(VO) operators.

VO operators can be seen as a natural analytical extension of CO operators. In VO operators,
the order can vary continuously as a function of either dependent or independent variables of
integration (or differentiation), such as time, space or even of an independent external variable
(e.g. temperature or applied loads). Although the extension from CO operators to VO operators
may seem somewhat natural, the first definitions of these operators were given by Samko &
Ross [30] in 1993. Recently, Lorenzo & Hartley [31,32] and Coimbra [33] put the mathematics
of VO fractional calculus (VO-FC) in perspective by discussing possible applications of VO-FC in
mechanics. These works marked the starting point for applications of VO operators to the analysis
of different complex physical problems. The first few examples focused on modelling anomalous
diffusion in complex structures [34,35] and mechanics [33], hence extending much of the previous
work based on CO operators. All the studies on VO-FC recognized and took advantage of the
potential of VO operators, and how they could be used to describe more accurately behaviour
of systems with time and spatially varying properties. During the last decade, VO-FC has seen a
surge in interest and in the number of applications to the modelling of scientific and engineering
systems. The most direct result was a drastic increase in the number of technical publications, as
summarized in figure 1. During the last decade, an average of 12 papers per year were published.
This measure is comparable to the one for FC since 1974, as reported in [27].

The main goal of this paper is to provide a detailed review, to date, of the available applications
of VO-FC in the general area of scientific and engineering modelling. While a few excellent
review papers on VO-FC have already been presented by other authors [36–39], these works
were mostly tailored towards the mathematics community and focused on the main mathematical
properties of both VO operators and VO equations. On the contrary, this paper will present a
perspective of VO-FC from the point of view of applications to scientific modelling; this paper
is aimed at the broader scientific and engineering community with the intention of attracting
the attention of this community towards this specific area of calculus. It should be pointed out
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Figure 1. Overview of the historical development of the VO-FC field presented in terms of the number of publications.
(a) Bar chart showing the number of publications per year since 1993. (b) Percentage distribution of VO-FC in different fields
of application. (Online version in colour.)

that, while [39] did include a section of applications of VO-FC, the chief focus of the survey was
still on presenting the relevant aspects of the mathematics and of the corresponding numerical
methods. On the contrary, the present review will focus on the physical relevance and the
practical applications of VO-FC, including additional fields not fully examined in [39]. Engineers,
physicists, biologists and financial analysts are only some of the communities that will find
several points of interest and material for further considerations in this work. More specifically,
this review will serve a twofold objective: (i) it will help to disseminate to the broader scientific
community a relatively less known mathematical tool that offers remarkable opportunities for
interdisciplinary applications and (ii) it will provide a concise and comprehensive summary of
VO-FC for modelling and simulation, hence serving as a starting point for the reader interested
in approaching this fascinating field.

The remainder of this paper is structured as follows: the opening section will provide a
description of the basic definitions and properties of VO operators. The main intent is to define
the basic nomenclature and mathematics of VO-FC. Then, a brief discussion on the relevance
and needs of VO operators for scientific modelling will be presented. The following sections of
the paper will present a summary of the many applications of VO-FC, starting with applications
to mechanics. The review will continue by considering applications of VO-FC to viscoelasticity,
which is arguably the engineering field where fractional calculus has garnered the most attention.
Then, we discuss applications to the modelling of different transport processes and to control
theory. Finally, we conclude our review with a section on miscellaneous applications.

2. Review of fundamental concepts
We briefly review the main properties required for a proper definition of a fractional differ-
integral derivative. In the following, f (t) is a continuous function of the generalized variable t
on the interval [a, t]. Ross [40] established a minimal set of properties to define a differ-integral
operator aDα

t (·) of order α on the interval [a, t] as a fractional derivative. These are:

(i) Analyticity: aDα
z f (z) is an analytic function of α and z if f (z) is analytic.

(ii) Identity: zero-order operation of a function returns the function itself, i.e. aD0
t f (t) = f (t).

(iii) Linearity: the operator must be linear, i.e. aDα
t (Af (t) + Bg(t)) = AaDα

t f (t) + BaDα
t g(t).

(iv) Backward compatibility: when the order of the operator is an integer, the fractional operator
must return the same result as the corresponding integer-order operator.

(v) Law of exponents: index law must be satisfied, i.e. aDα
t aDβ

t f (t) = aDα+β
t f (t). This leads to the

existence of the left inverse of the operator, i.e. aDα
t aD−α

t f (t) = f (t).
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Note that the operator aDα
t (·) is a fractional integral operator when α < 0 and a fractional

differential operator otherwise. Analyticity is not considered by most authors [31,38,41] as the
majority of the formulations are based on real functions and real orders. As discussed in [42], CO
fractional derivatives do not satisfy the classical Leibniz rule, hence a generalized Leibniz rule is
derived in [38,41–43]. A fractional operator is required to satisfy such a generalized rule in order to
qualify as a fractional derivative. We emphasize that several authors [31,38,40–44] have discussed
the fundamental set of properties that a fractional operator should satisfy in order to be defined as
a fractional derivative. As discussed in [41], this search for a criterion, especially the satisfaction of
the law of exponents, is ‘philosophically controversial’ and amounts to a discussion on whether
these properties should be defined for the operator or for the functions which are operated upon.

The above five properties were initially formulated for CO operators and were later evaluated
for VO operators in [30,38]. Depending on the definitions (discussed in detail in §2a), different VO
operators violate different above-stated properties. In this review, we refer to VO differ-integral
operators as VO differential (or integral) operators, and not as VO derivatives (or integrals).

(a) Definitions of variable-order differ-integral operators
In this section, we review the definitions for VO operators proposed to date and, for the sake
of brevity, we present only their left-handed version (the right-handed operators are a straight-
forward extension of the left-handed version). The notation �

a Dα(t)
t (·) indicates an operator having

order α(t) and operating on the interval [a, t]. Further α(t) is a continuous function on the interval
[a, t]. In 1993, Samko & Ross [30] first proposed the differentiation of functions to a VO using two
separate approaches: (i) a direct approach and (ii) a Fourier transform-based approach. The key
difference between the two methods lies in the ability to satisfy the law of exponents. In the direct
approach, Samko & Ross [30] extended the CO Riemann–Liouville (CO-RL) integration to VO as

aIα(t)
t f (t) = 1

Γ [α(t)]

∫ t

a
(t − τ )α(t)−1f (τ ) dτ , (2.1)

where Γ (·) is the Gamma function and τ is a dummy variable. The VO integral was then used to
define the VO Riemann–Liouville (VO-RL) differential operator of VO α(t) ∈ (0, 1) as

RL
a Dα(t)

t f (t) = 1
Γ [1 − α(t)]

d
dt

∫ t

a
(t − τ )−α(t)f (τ ) dτ . (2.2)

One of the most important findings in [30,44] was the proof of the violation of the law of
exponents by the VO operators defined above, i.e. aIα(t)

t aIβ(t)
t f (t) �= aIα(t)+β(t)

t f (t). This leads to the
fact that the VO-RL differential and integral operators are not inverse to each other, which is in
contrast to the case of CO operators. Further it was shown in [30] that the symmetry on power
functions still holds for the VO integral operator, but it is violated for the VO-RL differential
operator.

In the Fourier transforms approach [30], the VO integral operator is defined as

Iα(t)f (t) = F−1 1
(−iτ )α(τ )

F[f (t)], (2.3)

where F is the Fourier transform operator and F−1 is its inverse. The VO integral operator in
equation (2.3) satisfies the law of exponents. These first steps to the definition of VO differ-
integral operators, as Samko [44] notes, ‘was out of mathematical curiosity as well as the fact
that the spaces of functions with variable smoothness, for example, the spaces of Lα(x)

p -type, can
be characterized using these VO operators’.

In 1998, Hartley & Lorenzo [31] first presented the physical motivation towards VO operators.
They presented the following definition for the initialized VO integral operator on the interval
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[c, t]:

cIα(t)
t f (t) =

∫ t

c

(t − τ )α(t,τ )−1

Γ [α(t, τ )]
f (τ ) dτ +

∫ c

a

(t − τ )α(t,τ )−1

Γ [α(t, τ )]
f (τ ) dτ , (2.4)

where the second integral is the initialization function denoted as ψ(f , α(t, τ ), a, c, t). The VO
operator is initialized at a ≤ c ≤ t such that f (t) = 0 ∀ t ≤ a. The most general case for the VO is
α(t, τ ) � α(At + Bτ ) [32]. In [32], three cases are discussed—case 1: α(t, τ ) � α(t), case 2: α(t, τ ) �
α(τ ), and case 3: α(t, τ ) � α(t − τ ). Properties such as linearity, time invariance, memory, Laplace
transforms and physical realization using switches were presented for these cases. Using the VO
integral operator, the VO-RL differential operator is defined in [31,32] as

RL
c Dα(t)

t f (t) = RL
c D�α(t)�

t cI�α(t)�−α(t)
t f (t), (2.5)

where �α(t)� is the upper integer bound on α(t). In general, the use of RL operators in fractional
differential equations (FDEs) requires fractional-order boundary conditions whose physical
interpretation is more elusive than their integer-order counterparts [28]. The function ψ(t) shifts
(from c to a) the initial time instant of the interval over which the fractional operator is defined. As
f (t) = 0 ∀ t ≤ a ≤ c, all the fractional-order derivatives of f (t) at a are zero. Thus, we do not require
fractional boundary conditions while solving FDEs with the initialized RL operator. Details on
the initialization procedure and its importance in RL operators can be found in [31,45].

In 2003, Coimbra [33] proposed the following VO Caputo differential operator for 0 < α(t) ≤ 1:

C
a Dα(t)

t f (t) = 1
Γ [1 − α(t)]

∫ t

a
(t − τ )−α(t)D(1)f (τ ) dτ + (f (a+) − f (a−))t−α(t)

Γ [1 − α(t)]
, (2.6)

where D(k) is the kth integer-order derivative and f (a+) and f (a−) are the right-hand and left-
hand limits of f (t) at t = a, respectively. The non-differ-integral term on the r.h.s. accounts for a
discontinuous function behaviour at t = a. Later, VO definitions for Caputo operators based on the
general-order variation α(t, τ ) were introduced in [36,46–48], where the VO α(t) in equation (2.6)
is replaced by α(t, τ ). In [49], the relations between the CO-RL and Caputo derivatives have also
been used to propose variations to the definition in equation (2.6) as well as to propose new
definitions.

Several authors [36,47,48,50–55] have defined the VO Grünwald–Letnikov (VO-GL) operator
corresponding to the general-order variation α(t, τ ) as

GL
a Dα(t)

t f (t) = lim
h→0

n∑
r=0

(−1)r

hα(t,rh)

(
α(t, rh)

r

)
f (t − rh), (2.7)

where h > 0 is a time step and n = 	(t − a)/h
 is the lower integer bound on (t − a)/h. Further, a
recursive relation has been used in [51–53,56] to define the following type of VO-GL operator:

GL
a Dα(t)

t f (t) = lim
h→0

[
f (t)
hα(t)

−
n∑

r=0

(−1)r
(−α(t)

r

)
GL
a Dα(t)

t−rh f (t)

]
. (2.8)

The above recursive definition for the VO-GL operator results in a difference equation and its
equivalent matrix form has been derived in [51–53]. Further, it is shown in [38] that setting the
upper limit of the summation in equation (2.7) to ∞ preserves an important property of the CO
Grünwald–Letnikov derivative, that is,

GL
a Dα(t)

t est = sα(t) est ∀ �(s) > 0. (2.9)

This is used in [38] to analyse VO linear systems and derive corresponding Mittag–Leffler
functions.

Note that the above definitions for VO fractional operators can be readily extended to VO
partial differential operators. Several works reviewed in the following sections make use of
VO partial differential operators to model physical processes in a multi-dimensional space.
Hence, for the sake of brevity, we do not provide their definitions here. We emphasize that the
above-reviewed VO operators fail to satisfy the law of exponents property for the most general
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Figure 2. Variable-order (a) integration and (b) differentiation of f (t)= t2. We have also plotted f (t) (indicated by ◦), and
(a) I1f (t) and (b) D1f (t) (indicated by♦) for reference.H(·) denotes the Heaviside operator. Note that the VOα(t, τ )� α(t)
has no order memory, whileα(t, τ )� α(t − τ ) has a strongmemory andα(t, τ )� α(τ ) has a weakmemory of the order
history. (Online version in colour.)

definitions of f (t) and α(t), except for the Fourier transform-based approach given in [30,44]. A
critical analysis of VO operators based on their dimensional inconsistency is presented in [57].

(b) Memory characteristics of variable-order operators
It is well known that the integral nature of the fractional operators is associated with the ability
to account for the history (i.e. not only the instantaneous value) of the dependent variable. When
time is chosen as the independent variable, this property is referred to as memory. When space
is chosen as the independent variable, non-local properties (effectively a spatial memory) are
obtained [28]. This memory is associated with both the CO and VO operators, and is sometimes
called the fading memory [32]. Additionally, VO operators also enable memory of their order,
which is sometimes called the order memory [32,58]. Lorenzo & Hartley [32] defined measures
for the fading memory (m1(t)) and order memory (m2(t)) of the operator 0Iα(t)

t (·) as

m1(t) � 1
t

∫ t

0

(t − τ )α(t,τ )−1

Γ [α(t, τ )]
dτ , m2(t) �

∫τ1
τ1

(((t − τ )α0−1)/(Γ [α0])) dτ∫t
0(((t − τ )α(t,τ )−1)/(Γ [α(t, τ )])) dτ

, (2.10)

where a non-constant step-function-type order variation α(t) is assumed in the definition of m2(t).
m2(t) measures the memory retentiveness of the order α0 by the VO operator, and τ1 and τ2 are
the lower and upper bounds of the interval for which the VO α(t) = α0. It is shown in [32,58] that
the response rate of the VO operator to changes in order is inversely related to its order memory.
Evaluation of m2(t) for the three possible cases of order variation show that: case 1: α(t, τ ) � α(t)
has no memory of its past order, case 2: α(t, τ ) � α(τ ) has a weak memory of its past order, and case
3: α(t, τ ) � α(t − τ ) strongly remembers its order history [32,58]. Figure 2 depicts this behaviour
of different VO operators for a step-function-type order variation.

(c) Solution methods for variable-order fractional differential equations
The theory of generalized VO operators and the corresponding VO equations has been addressed
in [59–61]. It is shown in [62] that the solutions to VO fractional differential equations (VO-
FDEs) are defined in fractional Besov spaces of VO on R

n. Since the kernel of VO operators has a
variable exponent, it is difficult to obtain closed-form solutions to VO-FDEs. Various authors have
attempted to prove the existence and uniqueness of the solutions to VO-FDEs. Malesza et al. [63]
presented an approach based on switching schemes that realize different types of VO operators to
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obtain closed-form solutions to specific VO-FDEs. The existence and uniqueness of the solution of
a generalized VO-FDE has been addressed in [64–67] using standard techniques in analysis and,
particularly, the Arzela–Ascoli theorem. Since closed-form solutions to VO-FDEs are even more
difficult to obtain in real applications, numerical solutions have become the key to solving VO-
FDEs. Alikhanov [68] obtained a priori estimates for the solutions of boundary value problems
using the method of energy inequalities. Many of the numerical methods developed for CO-FC
have been extended to VO-FC including finite difference (FD), spectral and meshless methods.

Finite difference methods have been widely used to approximate CO operators and find solutions
to CO fractional differential equations (CO-FDEs), and hence are fairly well developed. A detailed
review of numerical methods for CO-FC can be found in [69]. Here, we discuss the numerical
schemes developed for solving VO-FDEs. We start by first reviewing first-order accurate FD
schemes, and then move to higher-order accurate FD schemes as well as meshless, and spectral
methods, before finally reviewing perturbation solutions to VO-FDEs. We emphasize that, in all
the following sections, we have used x and t to denote the space and time variables, respectively,
for a given process.

In 2009, Lin et al. [70] presented a conditionally stable explicit FD scheme for a one-dimensional
VO diffusion equation. In the same year, Zhuang et al. [71] constructed both a conditionally stable
explicit scheme and an unconditionally stable implicit scheme for a VO fractional advection–
diffusion equation (VO-FADE). Both these works used space-fractional Riesz operators with
VO α(t, x) ∈ (1, 2] and approximated them using shifted GL expressions. Following these works,
several researchers developed explicit, implicit and Crank–Nicolson schemes to simulate a variety
of VO-FDEs in [72–77], and analysed the stability and convergence of the methods. Chen et al.
[78] constructed a stable alternating directions implicit scheme for the two-dimensional VO
percolation equation. The Adams–Bashforth–Moulton predictor–corrector (ABM-PC) scheme was
used in [79,80] to simulate VO-FDEs with time delays. All the above-discussed schemes are
convergent to first order, i.e. O(�t + �x).

Chen et al. [81] first proposed a highly accurate unconditionally stable FD scheme based on GL
expansions, which is convergent to O(�t2 + �x4), for the solution of VO sub-diffusion equations
(VO-SDEs). Following the work in [81], several researchers [82–84] have proposed second-order
spatially accurate schemes to study transport processes. Sun et al. [85] constructed explicit,
implicit and Crank–Nicolson schemes for VO-SDEs, which are convergent to O(�t + �x2), and
established the conditions of convergence and stability. An implicit scheme was presented in
[86] to solve two-dimensional VO-SDEs, convergent to O(�t + �x2 + �y2). Cao & Qiu [87] used
shifted GL approximations to construct a second-order accurate scheme for a VO-FDE of the type
RL−∞Dα(t)

t y(t) = f (t). Ma et al. [88] proposed a second-order accurate ABM-PC method to investigate
the stable and unstable equilibrium points of a three-dimensional VO financial system.

Second-order accurate schemes have been developed in [89] to study VO anomalous diffusion
and wave propagation. The scheme presented in [89] used Lagrange second-degree interpolation
polynomials for VO operators with order α(t) ∈ (0, 1] and cubic interpolation polynomials in
Hermite form for VO operators with α(t) ∈ (1, 2]. Moghaddam & Machado [90] developed an
explicit B-spline approximation for VO Caputo operators to obtain numerical solutions for
nonlinear time-fractional VO-FDEs. The scheme presented in [90] is convergent with O(�t2 +
�x2 + ((�t)/(�x))2). Lagrange polynomial interpolation-based approximations were also used in
[91], while the Adam’s method along with standard FD schemes were used in [92] for solving
VO-FDEs.

Highly accurate FD schemes based on spline interpolations were proposed in [90,93]. A
piecewise integro-quadratic cubic spline interpolation was used in [90], with convergence at least
to O(�t4), to simulate the VO Bagley–Torvik and Basset equations. An explicit predictor–corrector
scheme based on cubic spline interpolation, with convergence to O(�t4), was developed in [93]
to study VO-FDEs with delays. Further, highly accurate meshless methods based on Bernstein
polynomials were constructed in [94,95] to solve VO-FDEs. Operational matrices were derived
for the VO operators and used to transform the VO-FDEs into a system of algebraic equations.
Similarly, a non-standard FD scheme was developed in [96] to solve VO optimal control problems
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by reducing the VO-FDEs into a set of linear equations. A meshless method based on a moving
least squares algorithm was developed in [97] to solve a two-dimensional VO-FADE, while the
method of approximate particular solutions was used in [98] to solve VO diffusion equations.

Spectral methods have also been applied to VO-FDEs which have smooth exact solutions
and the classical Jacobi polynomials (typically Legendre or Chebyshev polynomials) were used
as approximation bases [99–107]. Weighted Jacobi polynomials of the form (1 ± x)μPa,b

j (x) and

(1 + x)μ1 (1 − x)μ2 Pa,b
j (x) with (a, b, μ, μ1, μ2 > −1) were used to construct collocation methods to

solve VO boundary value problems with endpoint singularities in [108–110]. It is shown that the
singular basis greatly enhances the accuracy of the numerical solution through proper tuning of
the parameter μ. In a series of works, Bhrawy et al. [111–116] used spectral collocation methods
based on shifted Jacobi polynomials to study a variety of VO-FDEs. Numerical VO differentiation
of noisy signals by wavelet denoising was presented in [117]. Recently, Chebyshev wavelets were
used in [118,119] to solve VO-FDEs. The VO equation was reduced to a set of algebraic equations
using collocation methods. The proposed scheme had the advantage of working with different
kinds of initial and Dirichlet boundary conditions. All these works showed that spectral methods
are highly accurate when compared with standard FD schemes.

Very recently, Patnaik & Semperlotti [120] proposed a perturbation solution to study the
dynamics of a nonlinear oscillator system with VO damping. Using the method of averaging,
the expressions for the amplitude and phase of the oscillator were derived, and a close match
between the derived perturbation solutions and the numerical solution of the oscillator equation
was demonstrated.

3. Relevance and need of variable-order operators
Many physical processes can often be mathematically described by differential or integral models.
The order of the model is typically indicative of the underlying physics dominating the process.
As an example, it was mentioned in the introduction that, in the reaction kinetics of proteins,
the order is indicative of the nature of the relaxation mechanism [29]. Similarly, different types of
frictional damping are modelled using different-order derivatives of displacement with respect
to time. For example, viscoelastic damping is typically accounted for by using a half-order
derivative in time, while viscous damping is modelled using a first-order derivative. In real-world
applications, such as in shock absorbers for automotive systems or in dampers used in structural
elements for seismic energy dissipation [121,122], the nature of the damping may depend on the
instantaneous position of the damper or on other variables characteristic of the process, such as
temperature. When this situation occurs, the underlying physical process and, subsequently, the
order of the differential model changes as a function of either external or internal variables. This
is precisely where the use of VO-FC can be advantageous.

Other examples of such an evolutionary nature of certain physical problems include the
transition in the behaviour of materials from a linear to nonlinear response [123–126], the
transition from sub-diffusive to super-diffusive flows [34,127,128], and the development of VO
controllers and filters in control systems [129–133]. Currently available modelling approaches to
these problems typically rely on nonlinear CO differential equations (CO-DEs) whose coefficients
are functions of the process variables. Although CO models are invaluable tools for the analysis
of complex engineering systems, they are unable to evolve between different governing equations
and their corresponding physical behaviours. The modelling of these transitions using CO
derivatives would require a continuous update of the underlying governing equations. Further,
the ability of CO-DEs to account for nonlinearities must be integrated in the model a priori,
often requiring somewhat arbitrary assumptions on what elements will experience nonlinear
behaviour. Several applications in biology, field transport theory and other complex dynamical
processes support this observation since their responses and behaviour are not well captured by
CO (either integer or fractional) models. Examples include, but are not limited to, the modelling of
changing climate patterns; ocean surface temperatures and salinity, which affect marine life and
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economies; the spread of pollutants and disease-causing pathogens through air; and the growth
of bone tumours and cancerous tissues [134–143].

The definitions of VO operators and their ability to update the system’s order depending on
its instantaneous or, even, its historical response allow VO-FC-based models to describe widely
dissimilar dynamics without the need for changing the underlying governing equations. This
remarkable property of VO-FC has led to the development of evolutionary models capable of
describing numerous complex physical processes. Most of the work to date has concentrated on
mechanics, viscoelasticity, transport processes and control, as well as the biological interactions
seen in nature. In the following, we report the different applications of VO-FC to the simulation
of several physical processes in the above-mentioned fields.

4. Application of VO-FC to mechanics
As discussed above, real-world applications in mechanics involve transitions across widely
dissimilar nonlinear physical phenomena. These transitions have been modelled by exploiting
the evolutionary nature of VO-FC-based physical models, thus leading to several applications of
VO-FC in mechanics and, particularly, nonlinear dynamics. The theoretical foundation was laid
by Atanackovic & Pilipović [144], who derived FDEs from a variational dynamics perspective.
A generalized Hamilton’s principle was formulated by introducing VO operators into the
Lagrangian. The functional was minimized with respect to the generalized coordinates as well
as the order of the VO operators. The minimization of the Lagrangian-based functional is

I =
∫T

0
L(t, y(t), Dα(t)y(t), α(t)) dt, (4.1)

where L is the Lagrangian. Equation (4.1) was applied to the following four cases:

(i) The function for the order α(t) is known.
(ii) The function for the order α(t) is unknown, but is constant.

(iii) The function for the VO α(t) is unknown.
(iv) The function for the order α(t) is given in terms of an additional differential equation.

Minimization of the functional in case (i) yielded a generalization of the Euler–Lagrange
equations for VO, and in cases (ii) and (iii) led to the determination of the order of the FDEs
describing various processes. Lastly, case (iv) was solved in the form of an optimization problem
where the VO α(t) was treated as an internal variable of the system and the minimization of
the Lagrangian was achieved using Lagrange multipliers imposing a differential-type constraint
for the order. The concept of the order being an internal system variable is particularly striking
because the order can now evolve according to an appropriate physical law (in [144] that
law being the differential equation for the order) driving the system response through widely
dissimilar dynamics. We now review various applications where this evolution in the system
order has been exploited to understand and model complex time-varying problems in mechanics.

Experiments have shown that the nature of the viscous drag force experienced by a particle
due to the oscillatory flow of a viscous fluid is dependent on the value of the Reynolds number
(Re) and the Reynolds–Strouhal number (SlRe). The motion of the particle in the viscous flow in
the limit of infinitesimal Re is given by Tchen’s equation,

mp
dV
dt

= (mp − mf )g − 6πμaV − mf

2
dV
dt

− 6πμa2

(πν)(1/2)

∫ t

−∞
(t − τ )−(1/2) dV

dτ
, (4.2)

where V, mp and a are the velocity, mass and effective radius of the particle respectively. Also,
ν is the kinematic viscosity of the fluid, and mf = ((4πa3)/3)ρ, where ρ is the fluid density. In
equation (4.2) the second term on the right-hand side is the quasi-steady linear Stokes drag, and
the fourth term is the history of the drag force which takes into account the weighted history of
the local acceleration acting on the particle [145]. It is observed that, for particles at small but finite
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Re, the decay of the history force changes to t−2 at long times. This evolution in the order of decay
of the drag force has been modelled using VO-FC in [145,146]. In [146], the two drag force terms
in equation (4.2) have been combined and the drag force on the particle is modelled using a VO
Caputo operator (equation (2.6)) as

fD = F(SlRe, Re)C
0 Dα(SlRe,Re,|w|)

t w, (4.3)

where F is a dimensionless function, 0 < α < 1 is the VO and w is the displacement field of
the particle. Ramirez & Coimbra [145] isolated the order behaviour of the drag history not by
combining the viscous drag terms of equation (4.2) as in [146], but instead by modelling the drag
history term as

fh = F(Re(t), Reτ , β)6πμa
(

a2

ν

)α(Re(t),Reτ )
C
0 Dα(Re(t),Reτ )

t V, (4.4)

where Reτ is the Reynolds number based on the terminal velocity and β is the ratio of particle-to-
fluid density. The values of F and α in equations (4.3) and (4.4) were obtained using a least squares
method against numerically obtained data of flow past a sphere. As shown in [145,146], the VO
drag force models could accurately and robustly reflect complicated fluid flow, particularly for
several ranges of Re when the local perturbations produced an asymmetric flow field where
memory of the wake influenced the flow. It was established that the VO captures the transition
of the order of the decay of drag history over the entire time of the motion of the particle. Thus
VO-FC models are an effective way to examine the effects of the wake on the drag forces acting
on the particle.

The dynamics of complex non-local media evolve across viscoelastic and viscoinertial regimes
depending on the forcing frequencies. In [147], Orosco & Coimbra developed a framework to
model these complex transitions in the spectral dynamics of non-local media. First, a Laplace
transform was used to convert a CO-DE to either the frequency or wavenumber domain
depending on whether the independent variable is time or space, respectively. This generalized
CO-DE is given as

N∑
n=0

γnDμn x(t) = F(t), (4.5)

where F is the forcing, γn is a generalized coefficient and μn is the CO. Note that the case N = 2,
where μn ∈Z, corresponds to the classical mass–spring–damper problem where γ0 and γ1 are the
elastic and damping coefficients respectively, and γ2 is the mass. The region where μ ∈ (0, 1) is
viscoelastic, while μ ∈ (1, 2) is viscoinertial. The transformed version of equation (4.5) is

X(s)
F(s)

= G−1(s) =
N∑

n=0

γnsμn , (4.6)

where G(s) is the transfer function and s is the transformed variable; s = iν, where i =√−1 and ν

is frequency. A matching procedure, similar to the methodologies in [8,23], was then performed
in the transformed domain between a VO framework and the CO system. The VO framework
replaces the CO parameters γn and μn with a VO qm and a generalized coefficient ζm. Consider a
frequency domain set of M data points (such as experimental data of a non-local medium). Using
the VO model to describe the data rather than CO model reduces the linear system of 2N + 2
unknowns in two equations (real and imaginary parts of transfer function) at each of M different
frequency data points into a nonlinear system of two equations in two unknowns at each of M
data points [147]. This is a model order reduction technique similar to the fractional model order
reduction technique in [23]. The VO parameters at each frequency datum point m are then given
as

qm = π

2
tan−1(Zm), ζm = 1

νqm
|Zm|, (4.7)

where Zm(= 1/G(sm)) is the set of frequency domain data.
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Figure 3. (a) Frequency contour plot from [147] for amorphous quartz silica depicting the process to obtain the VO parameters
qm and ζm. Note that in this figure χ (s)= G(s). (Reprinted with permission from [147]. Copyright c© 2018 by the American
Physical Society.) (b) The VO-FC model in [120,148] allows simulation of the coupled oscillator system through an evolutionary
VO-FDE (equation (4.9)) irrespective of the status of contact between the masses. The nonlinearity in the contact problem is
captured in the VO of the terms Kα and Cα . The schematic (b) is adapted from [148]. (Online version in colour.)

Perhaps this VO framework can best be understood from the contour plot of the real and
imaginary parts of the system response in the frequency domain as shown in figure 3a (the
contour for amorphous quartz silica given in [147]). It is evident from figure 3a that, when the
transfer function of the dynamics of a complex medium is plotted as a contour in a frequency
domain, the VO parameters can be easily calculated as a function of frequency, similar to what
has been presented in [8,23]. Noteworthy is the ability of the VO operator in capturing the
evolution of the system dynamics across the very different viscoelastic and viscoinertial regimes.
Thus the authors conclude that the VO is a homogenized differential order of the system that
interpolates the conservative and dissipative dynamics directly rather than by the superposition
performed using only integer-order operators [147]. Further, the authors used the VO parameters
in equation (4.7) to analyse a set of spectroscopic data for the high-frequency dielectric response
of a nanofluidic graphene dispersion and the mid-infrared optical response of amorphous quartz
silica. The results, when compared against other integer-order models whose parameters were
derived through optimization, indicated that the VO model accurately reflected non-locality that
could not be well represented using integer-order models.

Similar to the work presented above, VO-FC has also been used to model the evolution
of material properties with time or external loads. Experiments have shown that properties
of polymers, ductile metals and rocks evolve across strain hardening and softening regimes
depending on their internal microstructure and applied strain rates. In a series of papers, Meng
et al. [123–125] have shown that VO models can accurately capture these transitions in the
response of polymers and metals. The VO in [123–125] is obtained by fitting the VO model against
experimental data. VO-FC has also been used in the modelling of creep in rocks [126] and the
dynamics of shape-memory polymers [149]. In all these works, it is shown that VO-FC models
admit fewer parameters than the existing models, and the evolution of the mechanical property
is well captured by the VO.

Patnaik & Semperlotti [120,148] have also modelled these transitions in material response
using a specific simulation strategy that leverages the peculiar properties of the VO-RL operation
of a constant. The VO-RL operation over a constant (A0) was shown to rapidly change its value
between 0 and A0 for the VO α(t) = exp(−κ0κ(t)) for an appropriate choice of κ0. Mathematically,
RL
0 Dα(t)

t A0 = 0 for κ(t) ≤ 0, and RL
0 Dα(t)

t A0 = A0 for κ(t) > 0. This switch-type behaviour allows the
governing equations to describe systems whose dynamics evolve from linear to nonlinear without
requiring a modification of the fundamental governing equations. The VO is crafted such that
the VO-RL term captures the evolution of a system’s stiffness from linear to nonlinear either
for reversible or irreversible (e.g. hysteresis) problems depending on the total elongation in the
system.
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The VO-RL framework was further used in [120,148] to model contact dynamics in a system
of coupled masses (figure 3b). The transition in the status of contact between the two masses
was modelled using VO-RL terms Kα and Cα , which are the VO-RL operations over the contact
stiffness and damping, K0 and C0, to the VO α(t) = exp(−κ0(X1(t) − X2(t) − �0)). They simplify as

φα = RL
0 Dα(t)

t φ0 =
{

0 X1 − X2 ≤ �0
φ0 X1 − X2 > �0,

(4.8)

where φ is either K or C. Now, Kα and Cα evolve according to equation (4.8) and the nonlinearity
associated with the contact between the two masses is fully captured in α(t). By using Kα and Cα ,
the equation of motion of the coupled masses was given by the single system of equations,[

M1 0
0 M2

] {
Ẍ1
Ẍ2

}
+

[
Cα + C1 −Cα

−Cα Cα + C2

] {
Ẋ1
Ẋ2

}
+

[
Kα + K1 −Kα

−Kα Kα + K2

] {
X1
X2

}
=

{
F1
F2

}
. (4.9)

The above equation of motion of the coupled masses can evolve from linear to nonlinear
behaviour based on the system response. This again highlights the very unique feature of VO-FC
for the simulation of dynamical systems with time-varying properties.

5. Application of VO-FC to viscoelasticity
Time-varying properties are a characteristic feature of viscoelastic media. This reason led to the
development of several applications of VO-FC to viscoelasticity. Here, we review in detail the
progress in the modelling of viscoelastic media and their dynamics. In viscoelastic applications of
fractional calculus, the fractional derivative of a quantity such as displacement or strain is taken
with respect to time. The intrinsic damping of a fractional operator [7,23] grants time-fractional
derivatives the ability to accurately model dissipation in viscoelastic or lossy materials.

Many authors have applied CO fractional derivatives to viscoelastic models [1–4]. From a
physical perspective, the use of fractional derivatives to describe the viscoelastic behaviour is
fairly logical since the overall response of such systems is simultaneously elastic and viscous.
Recall that the generalized one-dimensional relationship between stress σ and strain ε of a purely
elastic solid is given by Hooke’s law σ = Eε, where E is Young’s modulus. On the other hand, the
stress–strain relationship of a viscous medium is given by Newton’s law σ = η((dε)/(dt)), where
η is the damping coefficient. Note that in Hooke’s law the order of the derivative of strain with
respect to time is zero, while in Newton’s law the order of the derivative of strain with respect
to time is 1. Thus, from an empirical standpoint, the stress–strain relationship of a viscoelastic
material would be σ = c((dαε)/(dtα)), where (dαε)/(dtα) is the fractional derivative of the strain
and c is a generalized coefficient (whose units have the proper corresponding dimensionality).
The value of the fractional derivative α is between 0 and 1 (corresponding to the purely elastic
and viscous limit cases). In this context, we note that VO differential operators have been used
mostly to model systems with time-dependent variations of the elastic and viscous behaviour.

(a) Variable-order constitutive relationship
Ingman et al. [150] were the first to introduce a VO stress–strain constitutive relationship, and
used it to study nonlinear contact phenomena. Owing to the state-dependent dynamics and the
inability of previously developed models to accurately represent wide ranges of stresses and
strains over a loading history of an indentor test, Ingman et al. [150] developed a stress–strain
model of the form

σ (t) = dα(S(t))ε(t)
dtα(S(t))

, (5.1)

where α(S(t)) is the VO that is dependent on the continuous variation of the state S(t). In [150],
the VO operator was defined according to the RL definition. Ingman et al. [150] implemented
equation (5.1) to model both the viscoelastic and the elastoplastic deformation of a material
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induced by a spherical indentor. For the viscoelastic deformation, the order varies from 0 to 1
as the process changes from elastic to viscous. For the elastoplastic deformation, Ingman et al.
[150] developed a fractional model using the well-known Hertz contact formulae to model the
deformation as evolving from elastic to semi-plastic to totally plastic. By using experimental
data from a spherical indentation test, they were able to calculate the VO as a function of load.
The order function served to better understand the evolving dynamics of the nonlinear contact
processes.

The development of equation (5.1) in [150] paved the way for other authors [151,152] to
use the VO stress–strain relationship. In [151], Ingman & Suzdalnitsky used a slight variation
of equation (5.1) to model the response of a viscoelastic plate to impact. A VO operator was
necessary ‘due to the intrinsic dynamic nature of the phenomenon, reflecting the dominance of
elasticity or viscosity in the course of the same loading history’ [151]. In the models, as stress
increased, the contact dynamics shifted from an elastic to a viscous behaviour. The fractional
operator reflected the rate of the damping process that immediately takes place following the
termination of contact interaction.

Ramirez & Coimbra [152] further analysed the advantages of using a VO stress–strain
relationship. It is well known that the stress in viscoelastic materials is dependent on the strain
history of the material, with strains in the recent past contributing a larger influence than the strain
in the more distant past. Ramirez & Coimbra [152] recalled the Maxwell and Voigt models, the
two most common ways to model viscoelasticity. The Maxwell model consists of a spring and a
dashpot connected in series, while in the Voigt model the same elements are connected in parallel.
Although being well known and widely used, these models are mere approximations of the actual
phenomenon and yield a limited accuracy. In order to improve the accuracy of the model, more
spring and dashpot elements should be added, hence leading to a constitutive relationship of the
form

N∑
n=1

an
dnσ

dtn =
M∑

m=1

bm
dmε

dtm , (5.2)

where an and bm are constants related to material properties or parameters [152]. Even with the
increased accuracy of equation (5.2), its usefulness is still limited to various ranges of stress or
strain before requiring further tuning (i.e. adjustments in the number of springs and dashpots,
values of parameters, etc). To contrast the trend of these models, Ramirez & Coimbra [152]
examined the constitutive relation

σ = E C
0 Dα(t)

t ε(t), (5.3)

where E is a material property with units of stress. Equation (5.3) is the same as equation (5.1)
except for the fact that, in equation (5.3), the VO Caputo operator in equation (2.6) is used. This
definition is used for physical modelling since, as argued in [33], the operator satisfies backward
compatibility. Ramirez & Coimbra [152] asserted that the two main advantages of equation (5.3)
were that it required fewer terms and material constants and that the VO model is still accurate
over a wide range of strain rates. In practical terms, this means that it is not necessary to add
more elements in series or parallel since the variation of α(t) can accurately capture the varying
dynamics.

(b) The viscoelastic oscillator
Strictly related to the VO viscoelastic stress–strain constitutive relationship is the viscoelastic
oscillator model. This model was first introduced by Coimbra [33] and has been studied in a
multitude of papers ever since [151,153–157]. In [33], Coimbra considered a mass–spring model
that oscillates over a surface guide with non-uniform frictional forces. In this model, as depicted
in figure 4a, the order of damping varies continuously according to the position of the mass. For
example, when the mass translates from the viscous to viscoelastic region of the guide, the order
smoothly changes from a value of 1 to 1/2. Coimbra [33] termed the model ‘viscoelastic–viscous’
when the friction behaviour is purely viscoelastic at the centre of the guide while it is viscous at
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Figure 4. (a) Schematic of the mass–spring system described in [33,155,156] moving along a variable friction guide. In the
‘viscoelastic–viscous’ model, the guide is viscoelastic at x = 0 while it is viscous at |x| = L. The opposite behaviour leads to
the ‘viscous–viscoelastic’ model. The shading of the guide symbolizes the continuous nature of the VO damping. (b) Plot of
the VO α as a function of location for the ‘viscoelastic–viscous’ model and the ‘viscous–viscoelastic’ model. (Online version in
colour.)

the ends of the guide. The opposite frictional behaviour is called ‘viscous–viscoelastic’. The model
assumed a smooth transition between the viscous and viscoelastic sections of the guide.

Coimbra [33] formulated the following mass-normalized equation of motion for the oscillator
with non-uniform frictional forces:

D2ξ (τ ) + c0
C
0 Dα(ξ (τ ))

τ ξ (τ ) + k0D0ξ (τ ) = F∗
0(τ ), (5.4)

where ξ ∈ [−1, 1] is the non-dimensionalized position of the mass, τ is the non-dimensionalized
time, α(ξ (τ )) is the spatially varying VO, c0 is a generalized damping coefficient with appropriate
dimensions, k0 is a mass-normalized spring constant and F∗

0(τ ) is the mass-normalized forcing
function. For the viscoelastic–viscous oscillator, α(ξ (τ )) = (1 + ξ (τ )2)/2, while α(ξ (τ )) = (1 −
ξ (τ )2)/2 for the viscous–viscoelastic oscillator (figure 4b). The friction force, f (τ ) = c0Dα(ξ (τ ))ξ (τ ),
changes its behaviour between purely viscoelastic and viscous types of damping.

For comparison, Coimbra [33] also formulated the equivalent CO model given by

D2ξ (τ ) + c0f (ξ )D1ξ (τ ) + c0(1 − f (ξ )) C
0 D1/2

τ ξ (τ ) + k0D0ξ (τ ) = F∗
0(τ ), (5.5)

where f (ξ ) = ξ2 for the viscous–viscoelastic oscillator and f (ξ ) = 1 − ξ2 for the viscoelastic–viscous
oscillator. Using FD methods, Coimbra [33] numerically simulated both the VO and the CO model
and analysed the phase diagrams of the system. It was concluded that the numerical solutions to
equations (5.4) and (5.5) possess the same overall behaviour for the oscillator. However, the VO
exhibited an advantage when the mass transitioned between the viscous and viscoelastic portions
of the guide since it better captured the quickly changing dynamics. This work paved the path to
better model practical problems whose dynamics are poorly represented by current mathematical
tools (such as purely integer-order models) that face strong constraints and limitations.

Approximately at the same time Coimbra was developing the viscoelastic oscillator, Ingman &
Suzdalnitsky [153] produced and studied an equation that is essentially the same as equation (5.4).
Using the VO constitutive stress–strain equation, Ingman & Suzdalnitsky [153] considered the
dynamics of a single degree of freedom (SDOF) oscillator consisting of a mass, an elastic spring
and a ‘viscoelastic’ spring. First, Ingman & Suzdalnitsky [151,153] rewrote the equation of motion
in the following standard form:

D2x(t) + 2ηω
2−α(t)
0

RL
0 Dα(t)

t x(t) + ω2
0D0x(t) = f (t), (5.6)

where ω0 is the natural frequency of the undamped system and η is the damping coefficient.
The VO α(t) characterizes the changing physical properties. Further, Ingman & Suzdalnitsky
developed a method to determine the natural frequency (first eigenvalue) of the system in
[153], and then expanded on it in [151] to present three total approaches. After obtaining the
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eigenvalues, Ingman & Suzdalnitsky [153] formulated a numerical iterative approach to solve
the VO-FDE. Using the work in [153], Ingman & Suzdalnitsky [154] determined the dependence
of the VO on the strain and the strain rate from experimental data of deformable polymers. An
expression for the VO was obtained for the viscoelastic deformation by fitting the experimental
data to a fractional constitutive relationship at each measured instant. Using the iterative
technique developed in [153], Ingman & Suzdalnitsky numerically obtained the oscillation of
the SDOF oscillator in [154]. Comparing the results with a CO model used to represent the
experimental data, Ingman & Suzdalnitsky concluded that the CO models can be used as initial
approximations in oscillatory systems. The approximations can then be improved by tuning the
value of the order.

Two years after [33], Soon et al. [156] extended the work of [33] by considering a viscoelastic–
viscous oscillator. The work was similar to that of Ingman & Suzdalnitsky [153,154], but used
the VO Caputo operator from [33] (equation (2.6)). The damping force in this oscillator varied
continuously between purely elastic and purely viscous depending on the location of the mass,
therefore justifying the use of VO operators. Soon et al. [156] compared the solution of the VO-
FDE with a multi-weighted nonlinear CO approximation of the motion of the mass, which was
given as

D2ξ (τ ) + c0

N∑
n=1

fn(ξ (τ ))Dαnξ (τ ) + kD0ξ (τ ) = F∗
0(τ ), (5.7)

where the variables have the same meaning as in equation (5.4) and fn are weighting functions
of the CO derivatives. The numerical solutions of the VO-FDE and the CO-DE indicated that
the multi-weighted CO model was able to provide a reasonable approximation. Unsurprisingly,
the accuracy of the CO models was directly dependent on factors such as the number of CO
derivatives in the summation, the weighting functions and the forcing frequency [156]. In order
to reach an accuracy comparable to that of the VO model, the CO model needed at least five
weighted CO terms. Although the numerical computational expenses of a VO operator are greater
than those of a CO operator, the need for multiple CO terms in order to produce an accurate model
of the viscoelastic oscillator rendered the CO approach just as expensive as the VO model, if not
more so. Thus, because of the enhanced accuracy of the VO model, Soon et al. [156] deduced
that it is more prudent to use a VO operator to model the complex dynamics of this viscoelastic
oscillator.

More recently, Sahoo et al. [155] also used VO models to study viscoelastic oscillator systems.
Although Sahoo et al.’s study was simply a review of the model presented in [33,156], novel
contributions included a study of the Laplace transform of the VO integral operator as well as
a numerical scheme based on the GL definition. On the other hand, Morales-Delgado et al. [157]
were concerned with obtaining an analytical solution to the VO oscillator problem. To do so, they
implemented the VO Atangana–Koca–Caputo (AKC) operator [158,159]. By using the Laplace
transform of the VO-AKC operator, they rigorously worked through the Laplace domain before
transforming back to obtain analytical solutions. Note that the VO-FDEs that they considered
were fundamentally different from equation (5.4). Thus, the work in [157] is not applicable to the
main model of the mass–spring–viscodamper considered throughout this section.

6. Application of VO-FC to the modelling of transport processes
Recent theoretical and experimental studies have shown that transport processes in complex
media are often characterized by either hybrid or anomalous mechanisms. Further, the nature
of the transport processes transitions across very different underlying physical phenomena
such as transitions from sub-diffusive flow to diffusive flow, and from diffusive flow to super-
diffusive flow [34,127,128,160–162]. These complex transport processes have been observed
experimentally in various fields, including fluid flow through porous media [5,134–136,163,164],
reaction–diffusion interactions between chemical substances leading to pattern formations in
nature [165–167], diffusion of ions in human neurons [168], analysis of financial data [169],
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advection–diffusion of groundwater [134–136] and elastography [7]. Given the complex nature
of transport in the above cases, CO differential models have failed to model many characteristics
of the above transport processes. We start by reviewing the need behind VO fractional models
in describing complex diffusive transport. Then, we review the applications of VO-FC to the
modelling of complex advection–diffusion, reaction–diffusion and hybrid propagating systems.

(a) Anomalous diffusion
The mean square displacement (MSD), which is used to characterize diffusion processes, scales
as a constant power of time for classical diffusion models, and as a fractional power of time
for CO fractional diffusion models. However, experiments have shown that in several complex
diffusive processes the scaling power varies as a function of time and/or spatial location, i.e.
〈x2(t)〉 ∝ tμ(t,x). Clearly CO (fractional or classical) diffusion equations are unable to model these
complex processes. This variation in the scaling law stems from the medium heterogeneity,
memory effects, long-range interactions and heavy tail characteristics seen in anomalous diffusion
[34,127,160]. Hence, VO models have been used to model these complex processes as the MSD for
VO diffusion equations has been shown to have a spatially and/or temporally varying scaling
exponent.

In their seminal study on VO diffusion models, Chechkin et al. [34] in 2005 derived a VO
diffusion equation as the continuum limit of a continuous time random walk (CTRW) model for a
spatially heterogeneous system. The particles in this heterogeneous system experience a spatially
varying power-law waiting-time ψ(t, x) ∝ t−1−α(x). The VO diffusion equation is given as

∂

∂t
c(t, x) = ∂2

∂x2

(
K(x)RL

0 D1−α(x)
t c(t, x)

)
, (6.1)

where c(t, x) is the particle concentration, 0 < α(x) < 1 and K(x) is the diffusion constant. Since
closed-form solutions are difficult to obtain for equation (6.1), the authors have analysed the VO
diffusion equation by taking the example of a composite medium consisting of two semi-infinite
sub-diffusive systems with different sub-diffusion exponents. The solution to this simplified set-
up shows the appearance of drift, which at small times is in the direction of the region with a
smaller diffusion exponent and at large times is in the direction of a larger diffusion exponent.
Further, the time dependence for drift and diffusion spreading also changes in the course of time.
Similarly, a VO Fokker–Planck equation was also derived in [170] as the continuum limit of a
CTRW where the spatially variable time-scaling behaviour of the MSD is modelled by a spatially
varying β(x)-stable Lévy noise in the waiting time probability density function.

Diffusion processes are also characterized by the Hurst exponent, which is expressed relative
to the MSD as 〈x2(t)〉 ∝ t2H. Clearly, the classical diffusion process corresponds to H = 0.5. Sun
et al. [128] derived the MSD law starting from a different VO diffusion equation given as

C
0 Dα(t)

t c(t, x) = K
∂2c(t, x)

∂x2 , (6.2)

where 0 < α(t) < 1 and K is the diffusion coefficient. The MSD for equation (6.2) is found as

〈x2(t)〉 = 2Ktα(t)

Γ (α(t) + 1)
. (6.3)

Clearly, the Hurst exponent is a function of time. The time-dependent Hurst exponent has been
used in [164,169,171,172] to analyse multi-fractional Brownian processes. Further, anomalous
diffusion in fractal structures has been analysed in [168,173] by constructing an MSD which is
a function of the fractal dimension and time. Particularly, anomalous diffusion of chemical ions
in Purkinje cell dendrites has been modelled in [168] by considering the complex disordered
neuronal dendrites as a fractal body, the dimension of which is a function of space (and time)
(figure 5a).

Sun et al. [35] proposed a more generic VO diffusion equation where the order of the time
derivative is a function of time, space, concentration or other process variables, i.e. α � α(t, x, c).
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classical diffusion in
unbranched dendrites

anomalous diffusion
(b)(a)

Figure 5. (a) Diffusion of ions in neuronal dendrites is accuratelymodelled by VOmodelswhere theHurst exponent is a function
of the fractal dimension of the dendrites, which varies in both space and time [168]. (b) Spatial patterns occurring in nature are
modelled by the VO Gray–Scott model in [92], where it is argued that medium heterogeneity leads to anomalous diffusion of
the reacting substances. The images of the dendrites and the leopard are taken fromWikipedia, while the image of the particle
diffusing in the dendrites is adapted from [168]. (Online version in colour.)

For example, when α � α(t), the model could more accurately depict diffusion processes with a
time-variable Hurst exponent. The VO α(x) was used to represent diffusion in heterogeneous or
anisotropic media, such as porous materials [174]. Sun et al. [174] used the VO diffusion equation
to describe transient dispersion observed in case (i): uranine transport at the small-scale Grimsel
test site where the transport transitions from strong sub-diffusion to Fickian dispersion and
case (ii): the transport of tritium at the regional-scale macrodispersion experimental site which
transitions from near-Fickian dispersion to strong super-dispersion. Further, they used the VO-FC
model to study conservative particle transport through a regional-scale discrete fracture network
which transitions from super-dispersion to Fickian dispersion. As shown in [174], the VO model
can accurately capture these transitions with the VO α(t, x) transitioning in (0, 2) depending on
the temporal or spatial state. Furthermore, the time-derivative order α can also be a function of
the concentration, or some other system or independent variable [35]. The particular form of the
VO would dictate the functional form of the Hurst exponent of the diffusion process.

Umarov & Steinberg [175] presented a thorough mathematical analysis of VO diffusion
equations. They studied diffusion processes with changing modes where the memory of the
diffusion process alters between a ‘long-term’ memory and a ‘short-term’ memory. The main
findings in [175] focus on theorems, corollaries and proofs of the mathematics of the VO diffusion
equations.

Heat transfer through complex structures has also been shown to be anomalously diffusive in
nature. Recently, a VO diffusive heat transfer equation was used to model heat transfer through
a structure with holes, where the grid-hole geometry changed in time in [176]. The grid-hole
structure was a copper plate with time-varying insulated areas that are arranged according to
a pattern akin to the first tier of a Sierpinski carpet fractal design. This resulted in changing
diffusivity coefficients and the diffusive phenomenon was modelled using a VO operator. From
the fractional diffusion equation for temperature (equation (6.2), where temperature T(t, x)
replaces c(t, x)), the relationship between the temperature and the heat flux H(t, x) was found
to be

T(t, x) = 1√
λα

∂−α/2H(t, x)
∂t−α/2 , (6.4)

where λα is a homogenized diffusion coefficient. Through an optimization tool, the values of α

and λα were obtained for two different ratios of the length of the insulators to the length of the
copper plate. The VO model was developed from CO models where the size ratio between the
length of the insulators to the length of the copper plate suddenly changed at a specific time
instant. The results from this VO model by Sakrajda & Sierociuk [176] were shown to be in good
agreement (error less than about 3%) with the results obtained via a finite-element model.

A year later, Sakrajda & Wiraszka [177] extended the work in [176] to include the iteration
tier of the Sierpinski fractal geometry. The relationship between the fractional-order α and the
iteration level nf of the Sierpinski carpet design was obtained by fitting parameters of the
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fractional equation to results obtained by a finite-element method for two sets of simulations.
In the first study, the CO was calculated for different fractal levels nf of the structure. This yielded
a plot of the fractional CO as a function of nf . In the second set of simulations, the structure’s
geometry could vary in time. The geometry would immediately change from a homogeneous
structure (where α=1) to a fractal structure (where the order α is obtained through the first set
of CO simulations) at a specific time. Results of the VO model compared with the results from a
finite-element analysis showed that a definition of a VO operator called the ‘D-type’ by [177]
could accurately represent the diffusion process in a heterogeneous, spatially varying, fractal
geometry.

(b) Advection–diffusion systems
The VO diffusion equation formed the basis of several interesting investigations involving
anomalous advection–diffusion systems, especially those seen in nature. For example, the flow
of groundwater through underground aquifers has been modelled in [134–136] through VO time-
fractional operators. Groundwater diffuses through porous, fractured, layered and heterogeneous
aquifers, whose structure changes with space as well as time, leading to anomalous diffusion
and a VO scaling of the MSD with time. Hence, this flow process cannot be modelled accurately
through CO models. Thus, in [134,135] this anomalous flow is modelled through a VO version of
the groundwater flow equation (called the Theis equation) given as

SC
0 Dα(r,t)

t Φ(r, t) = T∇2
r Φ(r, t) + 1

r
∇rΦ(r, t), (6.5)

where r is the radial location, α(r, t) ∈ (0, 1), Φ is the flow head, S is the specific storativity and T
is the transmissivity of the aquifer. Further, the spread of groundwater pollutants through these
aquifers has also been modelled using VO advection–diffusion equations in [136].

(c) Reaction–diffusion systems
Another application of VO-FC involves modelling of reaction–diffusion systems. These systems
correspond to a change in the concentration of interacting chemical substances in both space and
time, i.e. they involve local chemical reactions, in which the substances react with each other,
and diffusion, which causes the chemicals to spread out in space creating rich patterns. Reaction–
diffusion processes have been linked to spots on deer and patterns in giraffe, zebra, leopards and
butterfly wings [165–167]. The Gray–Scott model is often used to understand reaction–diffusion
systems as patterns created by this model very closely resemble many patterns seen in living
things (figure 5b). These living systems exhibit rich dynamics due to heterogeneity of the diffusing
media, which causes the diffusion reactions to exhibit transience between sub-diffusion to Fickian
diffusion to super-diffusion. Coronel-Escamilla et al. [92] proposed a VO Gray–Scott model where
they analysed the effect of several VOs on the patterns created by two interacting chemicals.

(d) Wave propagation
A very interesting application of the VO-FC in the modelling of transport processes was presented
by Zhao & Karniadakis [89], who used VO differential operators to control errors in the solutions
of classical integer-order partial differential equations arising from truncated domains and
erroneous boundary conditions or from the loss of monotonicity of the numerical solution either
because of under-resolution or because of the presence of discontinuities. VO operators are used
to control erroneous wave reflections in truncated computational domains of the integer-order
wave equation by switching from a wave to a diffusion-dominated equation at the boundaries.
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Using VO-FC the wave equation in [89] for a bounded domain Ω is modified as

C
0 Dα(t,x)

t u = uxx, x ∈ Ω , t ∈ (0, T], (6.6)

where u(x, t) denotes the particle displacement in the x direction. The initial conditions are taken
as u(x, 0) = φ(x) and ut(x, 0) = ψ(x), and u(x, t) = 0 ∀ x ∈ ∂Ω is imposed as the boundary condition.
The VO α(t, x) is crafted such that α(t, x) = 2 in the inner part of the domain and α(t, x) ≤ 2 near the
boundaries. The results show that maximum errors are less and decay in time for the VO wave
equation, unlike the classical wave equation for which the errors are order 1 and which increase
with time. Similarly, the VO viscous Burgers’ equation is

C
0 Dα(t,x)

t u + 1
2

∂u2

∂x
= μ

∂2u
∂x2 , x ∈R, t > 0, (6.7)

with the initial condition u(x, 0) = φ(x). It was shown that 0 < α(t, x) ≤ 1 suppresses the loss of
monotonicity owing to the formation of wiggles as μ → 0. Clearly, the VO-FC model allows
the use of super-diffusion/sub-diffusion in controlling the above numerical artefacts and is
particularly useful in large-scale practical simulations, where all fine scales of a heterogeneous
field in a complex geometry are difficult to capture or outflow boundary conditions are not readily
available [89].

7. Application of VO-FC to control theory
This section analyses applications of VO-FC in control theory. There is a multitude of research on
the control and stability of CO fractional systems that essentially serves as the foundation of VO-
FC-based formulations for control applications. As noted by Orosco & Coimbra [178], the main
advantage of introducing fractional calculus into control theory is to improve robustness and
dynamic characteristics. CO fractional controllers include, but are not limited to, the fractional
proportional–integral–derivative (PID) controller, fractional lead–lag controllers and fractional
adaptive controllers. The interested reader is referred to [179] for a thorough review of the control
of CO systems, as well as practical applications and implementations. In this section, we focus
on the extension to VO control by reviewing the mathematics and applications of the VO PID
controllers, as well as other control and stability studies that involve systems with VO dynamics.
We conclude with a brief discussion of VO filters.

(a) Variable-order fractional PID control
Podlubny [180] generalized the well-known PID controller to a fractional PID controller where
the integral control is a fractional integral while the derivative control is accomplished using a
fractional derivative. The fractional PID controller is more commonly referred to as PIλDμ control,
where λ is the order of the fractional integral and μ is the order of the fractional derivative. Liu
et al. [181] discussed the main advantages of CO PIλDμ control, such as the addition of two more
parameters (the orders λ and μ) to the usual PID gains kP, kI and kD. The additional parameters λ

and μ enhance the flexibility and robustness of the controllers. The value of the order λ in PIλDμ

control affects the slope of the low-frequency range of the system as well as the peak value of
the system. On the other hand, the value of the derivative μ affects the accuracy of the dynamic
closed-loop response, system overshoot and stability as well. For a more detailed discussion of
the roles of λ and μ, the interested reader is referred to §3 of [181].

The first extensions of PIλDμ controllers to VO occurred in the early 2010s. In [182], Sheng et al.
fit experimental data of the temperature of an electrical element (called a ‘fractor’) to a VO system.
Previous work by the authors showed that the order of a transfer function of a circuit containing
the fractor changed over time as a function of temperature. Sheng et al. [182] proceeded to propose
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Figure 6. (a) Block diagram illustrating the feedback VO PIλDμ controller based on [182]. The orders of the VO integral and
derivative are both 0≤ λ,μ ≤ 1. The definition of the VO integral and derivative are from equation (2.1) and equation (2.2),
respectively, although any form presented in §2 can be used. (b) Schematic of the inverted pendulum attached to a block sliding
along a VO damped guide, based on the problem presented in [178]. The shaded guide depicts the smooth evolution of the
damping from purely viscous at the ends to viscoelastic at the centre. (Online version in colour.)

a VO PIλDμ controller for the fractor system described by

u(t) = kPe(t) + kID
−λ(t)
t e(t) + kDDμ(t)

t e(t), (7.1)

where u(t) is the input voltage and e(t) is the error between the output voltage y(t) and the
reference signal r(t). The controller is depicted in figure 6a. Sheng et al. [182] do not include any
simulations or results of this PIλ(t)Dμ(t) controller, but merely proposed the concept.

In a series of three papers, Ostalczyk et al. [129–131] explored the development of VO PIλDμ

controllers. In [129], Ostalczyk presented a VO finite backward difference equation (VO-FBDE)
and focused on the stability of a closed-loop single input–single output (SISO) system with
a controller described by the VO-FBDE. They determined the optimal parameters of the VO
controller that gave a stable transient closed-loop dynamic response. Then, in [130] Ostalczyk
examined the VO PIλDμ controller and explained that the variability of the orders led to ‘new
possibilities of shaping the transient characteristics of a closed-loop system that are unattainable
in classic PID control’ [130]. While exact analytical expressions for the VO λ and μ are still open
questions, in [130,131] Ostalczyk et al. proposed that values of the order change according to the
present and past values of the error function and the output signal of the controller. This in turn
significantly affected the transient properties and stability of a closed-loop response. In [131], the
VO controller was also applied to a microprocessor. According to Ostalczyk et al. [131], the main
advantages of the VO controller include the fact that it provides a larger scope to design the
dynamics of the closed-loop system than classical PID control and that smoother transient states
result from continuous VO functions [131].

In [50], a VO PID controller was used in conjunction with a switching objective function.
A switching objective function could arise from manual user input of the reference signal. The
changing objective function was robustly captured by changing the order of the controller, which
was accomplished by using a VO PID controller. Sierociuk & Macias [50] implemented the
designed VO controller on a heat transfer process in a steel beam with a changing reference signal.
Results exemplified the utility of VO for controlling a system with rapidly varying dynamics in
the form of changing objective functions.

In addition to a review of the CO PIλDμ control, Liu et al. [181] extended their work to VO
PIλDμ control combined with fuzzy logic. They developed a control algorithm where a fuzzy
logic controller used the value of the error and the time derivative of the error to determine the
changes in the tuning parameters kP, kI and kD as well as the fractional orders λ and μ used in
the VO PID controller. The analysis then compared the control of an example plant using the VO
fuzzy logic PID controller, an optimal CO controller and an optimal classical PID controller. The
comparison between the three controllers was conducted for both fractional-order and integer-
order plants. The fractional-order controllers performed better than the classical PID controller
when applied to a fractional-order plant. While both the VO and CO controllers performed well,
the VO fuzzy PIλDμ controller had a smaller overshoot and smaller rise time. Even for controlling
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the integer-order plants, the VO fuzzy PIλDμ controller outperformed the optimized classical
PID controller, again with a smaller rise time and less overshoot. Thus, the VO fuzzy controller
exhibited enhanced system performance, robustness and adaptability to VO plants [181].

Most recently, Dabiri et al. [183] also designed a VO PIλDμ controller for a SISO linear
dynamical system and addressed its stability. To accomplish this, Dabiri et al. implemented spline
and backward FD approximations to discretize the governing equations. Furthermore, a particle
swarm optimization algorithm determined the optimal and stable values of the orders and gains.
The algorithm was then applied to multiple dynamical examples, including the control of a typical
mass–spring system and a Duffing oscillator. In general, the VO PIλDμ control was shown to
perform slightly better owing to its increased flexibility and robustness.

(b) Other variable-order fractional control and stability studies
Diaz & Coimbra [184] and Orosco & Coimbra [178] focused on developing VO controllers for
Coimbra’s viscoelastic oscillator [33] using a strategy different from PIλDμ control. In [184], two
different controllers were designed to track a reference function for the nonlinear VO viscoelastic–
viscous oscillator given in equation (5.4). The VO oscillator equation was converted to a state-
space form in the form of a matrix equation. After finding the locations of the eigenvalues of the
linear portion of the matrix system, a feed-forward controller was created according to u = −Kx +
Gr, where K = [k0, k1], k0 and k1 are constants corresponding to the location of the preferred values
of the closed-loop eigenvalues and G is the feed-forward gain for the reference r [184]. Results of
the performance of this controller were provided for a Heaviside and oscillatory reference signal.
The second controller developed in [184] was an optimal tracking controller which functioned by
minimizing a defined performance index. Finally, Diaz & Coimbra [184] developed a method to
rewrite the Van der Pol equation in the form of a VO-FDE. Recall the Van der Pol equation

D2y(t) + C(y2 − 1)D1y(t) + D0y(t) = u(t), (7.2)

where C is a coefficient. Equation (7.2) is matched to equation (5.4), resulting in

C(y2 − 1)D1y(t) = C
0 Dα(x(t))

t x(t), (7.3)

where y(t) is the solution of the Van der Pol equation and x(t) is the solution of the VO-FDE. Setting
y = x, a minimization algorithm can be applied to calculate the VO such that equation (7.3) holds
true. Once this method was applied to transform the Van der Pol equation to the VO-FDE, the
developed VO control algorithms could be applied to control a Van der Pol oscillator.

Orosco & Coimbra [178] developed a controller for the classic inverted pendulum problem,
depicted in figure 6b. The inverted pendulum is connected to a cart which moves along a track that
is coated in a thin film with spatially varying order of damping. This damping film introduced
VO Caputo operators (equation (2.6)) into the nonlinear equations of motion, similar to the
viscoelastic damping in [33]. After non-dimensionalizing the equations of motion, two controller
strategies were proposed. The first was a quasi-linearized state-space method where the VO term
was treated as a nonlinear disturbance, while the second was a model-predictive controller (see
[178] for more details). Simulations established that there was a critical value of the friction
coefficient above which unstable oscillations persisted in the pendulum. A perturbation and
eigenvalue analysis was performed using a half-order derivative to determine the critical friction
coefficient value. For the VO system, this critical value depended on the initial perturbation of the
system and increasing the value of the VO produced a continuous destabilizing effect.

Additionally, VO fractional controllers were designed and implemented using Crone
approximations in [47] to control plants with time-varying poles and gain. The drift in the
parameters was significantly slower than the plant dynamics and a constant phase margin was
sought resulting in constant overshoot in step responses. Valério & Sá da Costa [47] varied
the order of the fractional controller to analytically adapt to the time-varying plant in order to
overcome the drift.
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Lastly, some recent papers considered the VO control of chaotic systems. Ávalos-Ruiz et al.
[185] implemented a controller on a field-programmable gate array for VO chaotic systems using
four different types of chaotic attractors. Using an extensive LabVIEW model that was based
on sliding mode control, the control of the VO chaos of the four different types of attractors
was studied and stabilized according to a developed theorem. Coronel-Escamilla et al. [186]
considered a state-observer-based approach for the synchronization of VO chaotic systems. The
approach considered in [186] implemented a master–slave relationship where the slaves were VO
observers whose input signal arose from the master dynamical system. This predictor–corrector
numerically solved chaotic systems such as the Rössler oscillator, the Chua system and the
multi-scrolls system using VO.

(c) Variable-order filters
VO digital filters have been very popular for signal processing as they allow for quick changes
in frequency characteristics without needing to redesign a new filter. Conventional CO fractional
differentiators have been widely used to design finite-impulse responses (FIRs) and have been
extended to design VO FIRs in [132]. VO digital filters were also designed in [133] using Taylor
series expansion, and in [187] using an iterative method. Charef & Idiou [188] developed a
design technique for VO analogue filters based on a polynomial interpolation of the residues
of the analogue rational function approximations of the filters. VO filters were also used for
adaptive-order and parameter estimation in [189], where a gradient-based algorithm was used
to identify the VO. The VO of the system was estimated on the basis of known input and output
signals measured in real time. An adaptive estimation law based on the minimization of the next
instantaneous cost function was used subject to a constraint on the upper bound of the order.

8. Miscellaneous applications
Complex competitive interactions are commonly seen in nature; for example, in ecological models
including food chains of species linked by trophic interactions, diffusion or spread of nutrients
or species in different states, competition between healthy and disease-causing cells. These
biological systems exhibit long-range temporal memory or long-range spatial interactions and the
strength of such interactions varies with space and time. Thus, the use of VO fractional operators
can handle efficiently the dynamics of these interactions that often change with space and time.
On these lines, Ghanbari & Gómez-Aguilar [137] have modelled the competitive dynamics in
a nutrient–phytoplankton–zooplankton interaction model using VO operators. It is shown that
the VO model leads to a change in the memory effects of the system, wherein the temporal
memory of the interactions is affected by the relative populations of the nutrient–phytoplankton–
zooplankton system, as well as the particular order variation. Further, a VO growth model was
used in [138] to study the population history of several countries, and it was shown that the VO
model was highly accurate when compared with the existing CO models.

A similar competitive dynamics involves interaction between people who are affected by
three different strains of tuberculosis (TB), namely drug sensitive, emerging multi-drug resistant
and extensively drug resistant, and people unaffected by TB. Sweilam & Al-Mekhlafi [139] have
numerically modelled this complex dynamics using VO-FDEs with GL operators. Further, using
data provided by the World Health Organization they estimate the required rate of treatment to
achieve control over the spread of TB in Egypt.

Another biological example which has been modelled via VO fractional operators involves
the competitive dynamics between healthy and tumorous bone cells. Neto et al. [140,141] have
shown that VO-FDEs provide results similar to those of original integer-order bone cells and
tumour interaction models with fewer parameters. The VO-FDE results in a non-local approach
with memory effects where the VO depends on time as well spatial location. The VO is influenced
by the tumour dynamics and induces the effect of tumours in the original healthy bone model. The
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authors comment that comparison of the VO models with real experimental data will provide real
insights into tumour growth and will form the basis of efficient and targeted tumour therapies.

A particularly interesting application of VO-FC pertains to modelling the impact of Twitter on
the spread of alcoholism [142]. VO operators with time delays were added to existing CO models
and it was shown that the VO model better captured the spread of alcoholism than the CO models.
In all the above-reviewed works, VO-FC has been used to model complex competitive dynamics
between various biological entities and it has been shown that the VO successfully captures areas
of transition between dynamic regimes of the various biological phenomena.

VO-FC has also been applied to study random-order models [128,143,190]. However, to date,
the work on random-order operators and their applications has been limited. Particularly lacking
is a rigorous mathematical definition of these operators and their properties. Despite this issue,
the concept of random-order fractional calculus is particularly exciting and can have important
applications in modelling random and chaotic dynamics observed, as an example, in financial
systems, turbulent dynamics, noise and vibration control. These models could potentially form
the basis for the development of highly accurate risk analysis and control models.

9. Conclusion
This review paper provided a comprehensive overview of the remarkable progress made in
the general area of scientific and engineering modelling based on VO-FC. The relatively recent
development of VO-FC has sparked much interest across several scientific communities. This
interest directly resulted in a fast-growing number of studies focusing on the many unique
opportunities and modelling capabilities offered by this outstanding mathematical tool. Although
a few excellent reviews and critical analyses of VO-FC have been presented to date, the existing
literature mostly targeted the mathematics community and focused on presenting the many
important mathematical aspects of such operators. The present review, instead, is intended for
the broader scientific community and it provides an overview of the many areas of science and
engineering that have already found much benefit in the use of VO-FC. Particular attention was
given to the application of VO-FC to the numerical modelling and simulation of complex physical
systems.

Although there are still significant mathematical difficulties preventing the widespread use
of VO fractional operators, the development of dedicated numerical approaches has helped in
uncovering and leveraging the hidden potential of these operators. A critical step to further
promote the use of VO-FC models for numerical simulations is to establish the connection
between the mathematical properties of VO operators (i.e. the order variation) and the physical
properties and parameters of the system to be modelled. In other terms, closed-form relations
allowing the selection of both the order and its functional relationship with the physical
parameters are paramount to turning VO-FC into a mainstream modelling tool.
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