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This study presents a generalized elastodynamic
theory, based on fractional-order operators, capable of
modelling the propagation of elastic waves in non-
local attenuating solids and across complex non-local
interfaces. Classical elastodynamics cannot capture
hybrid field transport processes that are characterized
by simultaneous propagation and diffusion. The
proposed continuum mechanics formulation, which
combines fractional operators in both time and
space, offers unparalleled capabilities to predict the
most diverse combinations of multiscale, non-local,
dissipative and attenuating elastic energy transport
mechanisms. Despite the many features of this theory
and the broad range of applications, this work
focuses on the behaviour and modelling capabilities
of the space-fractional term and on its effect on the
elastodynamics of solids. We also derive a generalized
fractional-order version of Snell’s Law of refraction
and of the corresponding Fresnel’s coefficients. This
formulation allows predicting the behaviour of fully
coupled elastic waves interacting with non-local
interfaces. The theoretical results are validated via
direct numerical simulations.

1. Introduction
Recent theoretical and experimental studies have shown
that transport processes in complex media are often
characterized by either hybrid or anomalous mechanisms.
As an example, wave propagation in highly scattering
(either periodic [1] or random [2]) media is characterized
by a diffused field that coexists with the propagating
component. This dual mechanism is often referred to
as hybrid transport [3–5]. Depending on the structure
of the medium, the diffusive component can follow
classical Fourier [6] or Fickian [7,8] Laws associated
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with Gaussian distributions; but it can also diverge significantly from them giving rise to
anomalously diffusive mechanisms associated with heavy-tailed distributions. The present study
will be limited to the analysis of wave propagation in complex elastic solids. In such class of
media, anomalous behaviour has been observed, to name a few, in layered or porous media
[9–11], cracked or damaged materials [12,13], natural soil [14], and biomedical materials like
bones and tissues [15]. Propagation of waves in real media is characterized by both dissipation
(typical of lossy media) and attenuation (due to frequency dispersion) that vary according to
the specific material and geometric configurations. Several studies have highlighted a power-
law dependence of the attenuation in many types of lossy media, including fractal and porous
materials [16,17], animal tissues [16] and even molten rocks [18]. Anomalous attenuation has
been observed in several (non-lossy) scattering media, particularly those characterized by fractal
or random structures [2,19]. The coexistence of different spatial scales results in a dependence of
the constitutive relations on the wavenumber, which renders the elastodynamic response fully
non-local [20].

Seminal works from Eringen [20,21] have explored the role of non-locality in elasticity and laid
its theoretical foundation. Later, several theories were proposed including those based on gradient
and integral methods. Gradient elasticity theories [22,23] account for non-local behaviour by
introducing strain or stress gradient-dependent terms in the stress–strain constitutive law.
Integral methods [24,25] model non-local effects by defining the constitutive law in the form of
a convolution integral between the strain and spatially dependent elastic properties. Although
some of the physical behaviours described above have been addressed by selected methods, a
comprehensive elastodynamic theory capable of capturing and simulating the complex interplay
between these transport mechanisms is not available. It follows that the modelling of multimodal
wave transport in complex media is still a very challenging task.

In recent years, fractional calculus has emerged as a powerful mathematical tool to model a
variety of non-local, multiscale and anomalous phenomena. Fractional derivatives, being a differ-
integral type of operator, are intrinsically multiscale and provide a natural way to account for
both non-local and memory effects. In the context of elasticity, space-fractional derivatives have
been used to formulate non-local constitutive laws [26–32] and to account for long-range cohesive
forces [33,34]. In the context of wave propagation, fractional models have helped modelling
dissipation in lossy media using time-fractional derivatives [16,35–37]. More recently, space-
fractional derivatives have been employed to capture attenuation in media exhibiting long-range
cohesive forces [29,34,38] and even bandgaps in periodic media [39].

In the present work, we obtain the wave equation for a non-local media by starting from a
frame invariant and thermodynamically consistent fractional continuum formulation. We show
that the fractional model establishes a clear dependence between the order of the fractional
derivative and the length scale (horizon of non-locality) which ultimately depend on the
attenuation characteristics of the medium. The overall goal of this study is three fold. First, we
present a comprehensive fractional-order elastodynamic formulation capable of incorporating
in a unified framework several complex transport mechanisms. We highlight here that, while
the fractional continuum formulation developed in this study builds upon [27,28], in our study,
we have generalized the formulation in order to account for asymmetric horizon conditions that
typically occur near geometric/material boundaries or interfaces. This is particularly important
in the context of the second goal of this study that is to formulate a non-local Snell’s Law enabling
the theoretical prediction of refraction of elastic waves at non-local interfaces. Finally, we validate
the non-local Snell’s Law by considering the example of a practical physical system that can be
effectively described by the fractional-order elastodynamic model.

2. Non-local continuum formulation using fractional calculus
The fractional-order continuum formulation presented below expands and generalizes the
concept of classical non-local elasticity to its fractional-order counterpart and addresses key
limitations of gradient and integral formulations. Although gradient elasticity theories provide
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a satisfactory description of non-local behaviour (including some constitutive parameters
depending on the material micro structure), they introduce serious difficulties when enforcing
the boundary conditions associated with the strain gradient-dependent terms [22,23]. This latter
aspect is particularly challenging in media like porous, cracked and fractal materials. On the
other side, the integral methods are better suited to deal with boundary conditions but impose
restrictions on the kernel used in the stress–strain relation [24]. It is shown in [40] that instabilities
in integral methods are avoided if the Fourier transform of the kernel is positive everywhere.
Note that the kernel used in fractional derivatives is positive everywhere. Additionally, in the
context of slender structures, the classical integral approaches lead to mathematically ill-posed
governing equations which leads to erroneous predictions such as absence of non-local effects
and hardening behaviour for certain combination of boundary conditions [41,42]. In this class of
problems, the ill-posedness stems from the fact that the constitutive relation between the bending
moment field and the curvature is a Fredholm integral of the first kind, whose solution does not
generally exists and if it exists, is not necessarily unique [41,42].

Remarkably, by formulating the deformation gradient tensor in a space-fractional form, the
resulting theory can effectively combine features characteristic of both gradient and integral-
based methods. It was established in [43] that the fractional-order non-local model gives rise
to a self-adjoint and positive-definite system accepting a unique solution. Consequently, the
fractional-order approach to non-local elasticity does not encounter mathematical ill-posedness
and predicts a consistent softening behaviour of non-local slender structures irrespective of
the nature of the boundary conditions [30,43]. Note also that, unlike gradient-based methods,
additional boundary conditions are not required when the fractional derivative is defined
in Caputo form. Further, in contrast to classical non-local approaches, the fractional-order
formulation allows for a strong localized application of all thermodynamic balance laws [44].

Further, the fractional-order model of non-local elasticity enables modelling of hybrid
transport mechanisms as well as anomalous attenuation–dispersion behaviour often linked
to the coexistence of different spatial and temporal scales. From a general perspective, the
space-fractional deformation gradient tensor can be interpreted as a fractional homogenization
approach that is capable of capturing the non-local behaviour of complex attenuating solids
and interfaces while greatly simplifying the treatment of boundary conditions. Recently, the
second-gradient [45] and the relaxed micromorphic approaches [46,47] have been explored to
account for dispersion in micro-structured media. However, these approaches usually lead to
nonlinear governing equations. This is unlike the fractional-order governing equations of the
non-local continuum developed in this study, which remain linear in nature and thus provide
unique opportunities to extend important tools from theory of linear differential equations (e.g.
the principle of superposition). This characteristic has several ramifications, particularly in the
perspective of obtaining closed form relations for selected properties. More specifically, for
the problem treated in this study, the fractional framework allows obtaining the attenuation–
dispersion relations for complex materials exhibiting anomalous behaviour due to either
geometrical or material inhomogeneities. The same approach also enabled the reformulation and
validation of the analogue to the traditional Snell’s Law of refraction for complex interfaces.

(a) Fractional deformation gradient
In analogy with the traditional continuum approach to mechanics, the deformation analysis of
a non-local solid can be performed by introducing two stationary configurations, namely, the
reference (undeformed) and the current (deformed) configurations. Coordinates in the reference
configuration are denoted by X and in the current configuration by x. The motion of the body
from the reference configuration to the current configuration at any instant of time t is given as:

x= ψ(X, t), (2.1)

such that ψ(X, t) is a continuous and invertible mapping operation. In the initial configuration,
the relative position of two point particles located at P and Q in the non-local medium is denoted
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Figure 1. (a) Schematic of the infinitesimal material (dX̃) and spatial (dx̃) line elements in the non-local medium under the
displacement fieldu. (b) Horizon of non-locality and length scales at differentmaterial points. The non-localmodel can account
for a partial (i.e. asymmetric) horizon that occurs at a generic pointX close to a boundary or a material interface. (c) Relations
between the material and spatial line elements in the non-local medium (dX̃ and dx̃) and in the local medium (dX and dx).
The schematic (c) is adapted from [27].

by dX̃ (figure 1). After deformation, the particles move to new positions p and q, such that the
relative position vector is dx̃. dX̃ and dx̃ are the material and spatial differential line elements in
the non-local medium, conceptually analogous to the classical line elements.

In the classical continuum description, the differential line elements in the reference and
current configurations, dX and dx, are related using the deformation gradient tensor:

dx= [
D1
Xψ(X, t)

]
dX = [F(X, t)] dX, (2.2)

where D1
X(·) denotes the first integer-order spatial derivative with respect to the reference

coordinates. In order to describe the non-local continuum, we model non-locality in the
differential line elements of the non-local medium by imposing a fractional-order transformation
on the line elements of the local medium. More specifically, space-fractional gradients are used to
map the differential line elements in the local medium to the non-local medium in the following
manner:

dx̃= [
Dα
Xψ(X, t)

]
dX = [

F̃X(X, t)
]

dX (2.3a)

and

dX̃ = [
Dα

xψ−1(x, t)
]

dx= [
F̃x(x, t)

]
dx (2.3b)

where Dα
Xψ is a space-fractional derivative whose details will be discussed below. Given the

differ-integral nature of the space-fractional derivatives, the differential line elements dX̃ and dx̃
are non-local in nature. Using the definitions for dX̃ and dx̃, the fractional deformation gradient

tensor
α

F with respect to the non-local coordinates can be derived. Note from equation (2.3) that F̃X
and F̃x transform as vectors and hence, are two-point tensors. Consequently, by using the classical

chain rule and equations (2.2) and (2.3),
α

F is found as:

dx̃

dX̃
=

α

F = F̃XF−1F̃
−1
x . (2.4)

A visual interpretation of the mapping operations between local and non-local configurations is
given in figure 1c. Note that, although the deformation gradient tensor builds upon a previous
theory proposed in [27,28], we start from a different definition of the fractional derivatives that
has interesting implications for the resulting theory.
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The fractional derivative Dα
Xψ(X, t) is a space-fractional Riesz–Caputo (RC) derivative of order

α ∈ (0, 1) defined on the interval X ∈ (XA,XB) ⊆R
3 in the following manner:

Dα
Xψ(X, t) = 1

2
Γ (2 − α)

[
Lα−1
A

C
XA

Dα
Xψ(X, t) − Lα−1

B
C
XD

α
XB

ψ(X, t)
]

(2.5a)

and

Dα
Xj

ψi(X, t) = 1
2
Γ (2 − α)

[
Lα−1
Aj

C
XAj

Dα
Xj

ψi(X, t) − Lα−1
Bj

C
Xj

Dα
XBj

ψi(X, t)
]

, (2.5b)

where, C
XA

Dα
Xψ and C

XD
α
XB

ψ are the left- and right-handed Caputo derivatives, respectively. In
equation (2.5), LAj and LBj are length scales in the jth direction in the reference configuration, and
Γ (·) is the Gamma function. Note that the index j in equation (2.5b) is not a repeated index. In the
current configuration, these length scales are denoted as lAj and lBj . The fractional deformation
gradient defined in equation (2.4) is non-local due to the properties of the RC derivative. The
interval of the derivative (XA,XB) defines the horizon of non-locality which is schematically
shown in figure 1 for a generic point X in a two-dimensional (2D) domain.

Aside from providing an explicit parameter to define the range of non-locality, the length-
scale parameters ensure the dimensional consistency of the deformation gradient tensor. Further,
the factors 1

2 Γ (2 − α), Lα−1
Aj

and Lα−1
Bj

allow ensuring the frame invariance of the formulation.
We prove that the deformation gradient tensor is frame invariant for LAj =Xj − XAj and LBj =
XBj − Xj in §2b. Thus, the horizon length (XBj − XAj ) in the jth direction is LAj + LBj . We emphasize
and prove in the following sections that the non-local formulation in equation (2.3) is more general
than [27,28] because it enables an efficient and accurate treatment of frame invariance in the
presence of asymmetric horizons, material boundaries and interfaces (figure 1b).

We make an important remark on the definition of the deformation gradient tensor for points
lying on the boundaries of the solid. Consider, a material point X0 lying on one of the boundaries
identified by the normal in the jth direction such that LAj = 0. Under this limiting condition:

F̃Xij = lim
LAj→0

Dα
Xj

ψi =
1
2

⎡
⎣dψi(X, t)

dXj

∣∣∣∣
X0

+ (1 − α)Lα−1
Bj

∫XBj

X0j

D1
Sj

ψi(S, t)

(Sj − Xj)α
dSj

⎤
⎦ . (2.6)

The detailed derivation of the above expression is provided in the electronic supplementary
material. From equation (2.6), it is immediate to observe that while the right-handed Caputo
derivative captures non-locality ahead of the point X0 (in the jth direction), the left-handed
derivative is reduced to the classical first-order derivative. This suggests that the truncation of
the non-local horizon (and the corresponding convolution) at the boundary has been accounted
for in a consistent manner. We emphasize that similar expressions hold when LBj = 0. Further,

while the above is valid for F̃X, similar expressions can be derived for F̃x and
α

F.

(b) Frame invariance of the fractional deformation gradient tensor
In the following, we establish the frame invariance of the fractional-order continuum formulation.
Recalling the definition of the deformation gradient tensor, we must show that the individual
terms in equation (2.4) are frame invariant. We start by investigating the frame invariance of F̃X.

Consider a rigid-body motion superimposed on the reference configuration of the body X as:

χ = c(t) + Q(t)X, (2.7)

where Q(t) is a proper orthogonal tensor denoting a rotation and c(t) is a spatially constant term
representing a translation. Under this rigid-body motion, the fractional deformation gradient F̃

χ

X

should be an orthogonal tensor such that F̃
χT
X F̃

χ

X = I. More specifically, the fractional deformation
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gradient tensor should transform as F̃
χ

X =Q, similar to the classical continuum case, such that the
strain measures are null. From the definition of F̃X in equation (2.3), it follows that:

F̃
χ

Xij
= 1

2
Γ (2 − α)

⎡
⎣ Lα−1

Aj

Γ (1 − α)

∫Xj

XAj

D1
Sj

χi(S, t)

(Xj − Sj)α
dSj +

Lα−1
Bj

Γ (1 − α)

∫XBj

Xj

D1
Sj

χi(S, t)

(Sj − Xj)α
dSj

⎤
⎦ , (2.8)

where S is a dummy vector variable in space. For the rigid-body motion χ , D1
Sj

χi =Qij. Using this
result along with the relation Γ (2 − α) = (1 − α)Γ (1 − α) in equation (2.8), we obtain:

F̃
χ

Xij
= 1

2

[
Lα−1
Aj

(Xj − XAj )
1−α + Lα−1

Bj
(XBj − Xj)

1−α
]
Qij. (2.9)

For F̃
χ

X =Q to hold for all time, LAj =Xj − XAj and LBj =XBj − Xj. By repeating this procedure, it is

immediate to show that the same arguments hold for the frame invariance of F̃
χ

x and subsequently

of
α

F. It is emphasized that the non-local formulation introduced through equations (2.3)–(2.5)
allows for an exact treatment of frame invariance in the presence of asymmetric horizons which
occurs at points close to material boundaries and interfaces. The different horizon lengths LAj

and LBj enables the truncation of the horizon at points close to or on the boundary. These
characteristics generalize the formulation previously presented in [27,28].

(c) Fractional strain
Analogous to classical strain measures, the fractional strain is defined using the difference in the
scalar product of the differential line elements: dx̃dx̃ − dX̃dX̃. Using equation (2.5), we obtain:

α

E= 1
2

[ α

F T
α

F−I
]

(2.10a)

and
α
e = 1

2

[
i −

α

F −T
α

F −1
]
, (2.10b)

where
α

E and
α
e are the Lagrangian and Eulerian strain tensors in the non-local medium, and I

and i are identity matrices. Now we obtain the expressions for the strain tensors in terms of the
displacement gradients by using the kinematic position–displacement relations. The fractional-
order gradient of the displacement field U(X) = x(X) − X is obtained using equation (2.3) as:

∇αUX = F̃X − I. (2.11)

The fractional gradient denoted by ∇αUX is given as ∇αUXij =Dα
Xj
Ui. Similarly, the fractional

displacement gradient in the Eulerian coordinates is given by:

∇αux = i − F̃x. (2.12)

Using the non-local strain defined in equation (2.10) together with the equations (2.5), (2.11)
and (2.12), the relationship between the strain tensors and displacement gradient tensors are
obtained as:

α

E= 1
2

[∇αUX + ∇αUT
X + ∇αux + ∇αuTx − ∇u − ∇uT + h.o.t

]
(2.13a)

and
α
e = 1

2

[∇αux + ∇αuTx + ∇αUX + ∇αUT
X − ∇U − ∇UT + h.o.t

]
, (2.13b)

where ∇U and ∇u are the classical displacement gradient tensors. For small deformations, the
higher-order terms can be ignored and the infinitesimal fractional strain tensor is given by:

ε̃ = 1
2

(∇αUX + ∇αUT
X
)= 1

2

(∇αux + ∇αuTx
)
. (2.14)

The relations in equations (2.13) and (2.14) are derived in the electronic supplementary material.
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The compatibility condition for the strain-displacement fields in the fractional-order model for
the non-local medium extends analogously from the classical compatibility relations as:

∇α × ∇α × ε̃ = 0, (2.15)

where, ∇α(·) denotes the fractional curl operator which is analogous to the classical curl operator
but contains the RC derivatives. The fractional-order compatibility condition can be derived by
considering the following fractional-order differentiation of the fractional-order strain tensor:

ε̃ij,k̃l̃ =
1
2

(ui,j̃k̃l̃ + uj,ĩk̃l̃), (2.16)

where �̃ indicates fractional-order differentiation. Through simple interchange of subscripts, we
can generate the following additional relations:

ε̃kl,ĩj̃ =
1
2

(uk,l̃ĩj̃ + ul,k̃ĩj̃); ε̃jl,ĩk̃ = 1
2

(uj,l̃ĩk̃ + ul,j̃ĩk̃); ε̃ik,j̃l̃ =
1
2

(ui,k̃j̃l̃ + uk,ĩj̃l̃). (2.17)

Working under the assumption of continuous displacements, we can interchange the sequence of
the fractional-order differentiation in equations (2.16) and (2.17) and the displacement field can
be eliminated to obtain: ε̃ij,k̃l̃ + ε̃kl,ĩj̃ − ε̃jl,ĩk̃ − ε̃ik,j̃l̃ = 0, which is equivalent to equation (2.15). Note
that this is the necessary condition for compatibility. The sufficient nature of this condition follows
from the application of the fractional Stokes theorem [48], analogous to the classical case.

(d) Fractional stress
Stress in a non-local isotropic medium is defined analogously to the local isotropic case as:

σ̃ij = 2με̃ij + λε̃kkδij, (2.18)

where λ and μ are Lamé constants of the solid. Traction t̃ on a surface in the non-local solid with
normal n̂ is defined analogous to the classical continuum formulation as:

t̃i = σ̃jinj. (2.19)

The fractional-order continuum model presented above requires a few important remarks.
First, it is evident that the fractional-order model presented above is based on a continuum
mechanics approach. While this is a fundamental approach to mechanics and, in many aspects,
analogous to classical and well-established continuum formulations, we introduce an important
hypothesis by assuming a fractional-order formulation for the kinematics. More specifically, we
define differential line elements using fractional-order deformation gradients similar to [27,28].
This hypothesis results in assuming that the response of a selected point within the solid is
affected directly by the response of a collection of points within a characteristic volume, the
so-called horizon of non-locality. Given that the fractional operator is applied directly to the
displacement field via the deformation gradient, from a physical standpoint, the formulation
accounts for long-range interactions that are proportional to the relative displacement of distant
points within the horizon. This is indeed a possible formulation of the concept of action-
at-a-distance that is often implemented in terms of long-range cohesive forces. Additional
considerations on the physical meaning of fractional-order models can be found in [29,33,43].

Second, the fractional-order continuum formulation is thermodynamically consistent and it
allows for a rigorous application of all thermodynamic principles. As shown in [44], the use
of non-local fractional-order kinematic relations prevents the requirement of additional integral
(non-local) constitutive stress–strain relations as seen in classical non-local approaches (e.g. [25]).
As a result, the thermodynamic laws in the fractional-order theory are free from non-local
residual terms. This greatly simplifies the constitutive modelling of the non-local solid while
enabling a rigorous implementation of the thermodynamic laws at each point in the solid.
The latter observation highlights an important benefit and a key motivation to pursue the
fractional-order model of non-local elasticity. Recall that, classical non-local approaches allow
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only a weak application (in a domain integral sense) and prevent the localized (point-wise)
application of the thermodynamic balance laws. As discussed in [25], the weak application of
thermodynamic balance laws, particularly the second law, leads to inconsistencies in the non-
local continuum framework. As a result, the fractional-order continuum formulation is free from
such thermodynamic inconsistencies.

Finally, we emphasize that all classical continuum relations are recovered from the fractional-
order model when the order of the fractional derivative is set as α = 1.

3. Elastodynamics of the non-local medium
The linear momentum balance equation in the non-local solid is derived by conservation
principles analogous to the case of a local solid, and it is obtained as [27]:

ρ
d2u
dt2

= λ∇(∇α · u)+ μ∇ · ∇αu + μ∇ · ∇αuT + f̃ , (3.1)

where f̃ is the external force vector, and ∇α · u=Dα
Xk
uk is the fractional divergence. The space-

fractional wave equation (3.1) can be further extended to include time-fractional derivatives as:

ρτ
β−2
0

dβu
dtβ

= λ∇(∇α · u)+μ∇ · ∇αu + μ∇ · ∇αuT + f̃ . (3.2)

The time-fractional derivative in equation (3.2) is a left-handed Caputo derivative with order
β ∈ (1, 2) which allows accounting for non-conservative dissipative effects such as those typical
of frequency-dependent viscoelastic media. τ0 is a time constant that maintains dimensional
consistency of the wave equation. Lossy materials and time-fractional wave equations have
been thoroughly studied in the literature. Hence we concentrate only on the space-fractional
component and its effect on non-local elastodynamics.

An important remark should be made concerning the nature of the space- and time-fractional
derivatives. Note that the double-sided RC derivative can only be used for fractional-order
spatial differentiation and not for fractional-order temporal differentiation. In fact, the left-handed
derivative is an operation performed on the past states (in time) or on points preceding a target
point (in space), while the right-handed derivative is an operation performed on future states
(in time) or on points following a target point (in space). Consequently, the use of a right-handed
time-fractional derivative would render the formulation non-causal. Further, from a mathematical
perspective, note that the right-handed fractional derivatives are conjugate to the left-handed
derivatives. Consequently, a complete theory for fractional-order boundary value problems can
only be developed when using both left- and right-handed space-fractional derivatives [49].
For the specific problem of non-local elasticity, both the left- and right-handed space-fractional
derivatives are essential to capture a complete horizon of non-locality (figure 1b).

4. Dispersion relations and causality
To obtain the dispersion relation, we substituted in the space-fractional wave equation given in
equation (3.1) the following ansatz:

u(x, t) =Axei(k1·x−ωt)x̂ + Ayei(k2·x−ωt)ŷ, (4.1)

where Aj is the wave amplitude in the jth direction (with j= x, y), ω is the angular frequency,
and k1 = k1xx̂ + k1yŷ and k2 = k2xx̂ + k2yŷ. The components of the wavevectors k1 and k2 are
complex and they combine both compressional (P) and shear (S) wave components. Derivation
of the dispersion relations requires the operation of the RC derivative that defines operators in
equation (3.1) on the exponential functions in the assumed solution in equation (4.1). The RC
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derivatives in equation (3.1) have lower and upper bounds at the respective terminals of the
horizon of non-locality. When the fractional derivative has a lower bound of −∞,

C
−∞Dα

x [ebx] = bαebx, (4.2)

the solution kernel of the fractional wave equation can be chosen in the form of exponential
functions [39] corresponding to propagating plane waves. When lower bounds other than −∞
are chosen, then solution kernels based on Mittag–Leffler functions are appropriate. However,
under proper assumptions for the interval of the fractional derivative [39] both kernels satisfy
the same dispersion relations. Similar comment holds for the upper bound. In the following, we
choose exponential kernels given their simplicity and computational efficiency.

Using the RC derivative of the exponential given in equation (4.2), we obtain the complete
form of the dispersion relations for compressional and shear waves in the non-local medium as:

−ρω2Axe1 = iα+1Γ (2 − α)
[
(λ + 2μ)Axl̄α−1

x kα+1
1x e1 + μAxl̄α−1

y kα+1
1y e1

+ λAyl̄α−1
y kα−1

2y k2xe2 + μAyl̄α−1
x kα−1

2x k2ye2
]

(4.3a)

and

−ρω2Aye2 = iα+1Γ (2 − α)
[
(λ + 2μ)Ayl̄α−1

y kα+1
2y e2 + μAyl̄α−1

x kα+1
2x e2

+ λAxl̄α−1
x kα−1

1x k1ye1 + μAxl̄α−1
y kα−1

1y k1xe1
]

(4.3b)

where l̄α−1
j = 1

2 (lα−1
Aj

+ lα−1
Bj

) and for brevity, we denote e1 := ei(k1·x−ωt) and e2 := ei(k2·x−ωt). To
separate the compressional and shear waves, we set k1y = k2y = 0 allowing us to let both
the wavevectors k1 = k1xx̂ and k2 = k2xx̂ to be along the x̂-direction. The component of the
displacement field u(x, t) along the x̂-direction is parallel to the wavevector k1 and hence gives
the field of particles vibrating along the direction of propagation of the wave. This allows us to
recover the P wave and to denote k1x = kp. Likewise, the component of the displacement field
u(x, t) along the ŷ-direction is perpendicular to the wavevector k2 and hence gives the field of
particles vibrating perpendicular to the direction of propagation of the wave. This allows us to
recover the S wave and to denote k2x = ks. The complex wavenumbers kp and ks are found as:

−ρω2 = iα+1Γ (2 − α)(λ + 2μ)l̄α−1
p kα+1

p (4.4a)

and
−ρω2 = iα+1Γ (2 − α)μ l̄α−1

s kα+1
s . (4.4b)

In equation (4.4), l̄p and l̄s are defined the effective horizon lengths along the direction of
propagation of the P wave and the S wave, respectively (figure 2). These lengths are given as:

l̄α−1
m = 1

2

(
lα−1
Am

+ lα−1
Bm

)
(4.5a)

and

lNm =
⎧⎨
⎩lNx sec θm θm ≤ θl

(
=tan−1

( lNy

lNx

))
lNy csc θm θm > θl

, (4.5b)

where N ⊂ {A,B} and m⊂ {p, s} (p denotes compressional waves and s denotes shear waves).
Simplifying equation (4.4) gives the dispersion relations for the non-local medium as:

k(s)
m = −i

[
l̄1−α
m

Γ (2 − α)

]1/(α+1)(
ω

Vm

)2/(α+1)
eiπ/(α+1), (4.6)

where Vp

(
=√

(λ + 2μ)/ρ
)

and Vs(=
√

μ/ρ) are the classical compressional and shear wave speeds
in an isotropic bulk solid. In order to differentiate the dispersion relations of the space-fractional
and the time-space-fractional wave equations (which we will derive in the following) from each
other we use the superscripts �(s) and �(t), respectively.
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qsqp

Figure 2. Schematic illustrating the horizon lengths lNp and lNs in equation (4.5).

The real and imaginary parts of the complex wave vector k(s)
m correspond to the propagating

and attenuating component of the wave. By extracting the imaginary part κ
(s)
m = 
(k(s)

m ) from
equation (4.6), we find the attenuation corresponding to the space-fractional formulation to be:

κ
(s)
m (ω) =

[
l̄1−α
m

Γ (2 − α)

]1/(α+1) (
ω

Vm

)2/(α+1) ∣∣∣∣cos
(

π

α + 1

)∣∣∣∣ , (4.7)

Noting that cos (π/(α + 1)) < 0 ∀ α ∈ (0, 1), we conclude that space-fractional waves exhibit a
power-law frequency-dependent attenuation with index 2/(α + 1). Since, the index is always
positive, it is immediate to conclude that the space-fractional formulation predicts an increase
in attenuation with the increasing frequency. The dispersion in terms of the wave speed cm is:

c(s)
m (ω) =

[
Γ (2 − α)

l̄1−α
m

]1/(α+1)( V2
m

ω1−α

)1/(α+1)∣∣∣ csc
(

π

α + 1

) ∣∣∣. (4.8)

Noting that sin(π/(α + 1)) > 0 ∀ α ∈ (0, 1) the phase velocity decreases as frequency increases,
hence indicating anomalous dispersion if compared with traditional dispersion of bulk materials.

Although the present study focuses on the attenuating effects due to the space-fractional terms,
we provide for completeness the attenuation and dispersion relations for the time-space-fractional
waves. By using the same procedure described above, we obtain the dispersion relations as:

k(t)
m = −i

[
τ

β−2
0 l̄1−α

m

Γ (2 − α)

]1/(α+1)
(

ω

V
2
β

m

)β/(α+1)

e−iπβ/2(α+1). (4.9)

Indicating 
(k(t)
m ) = κ

(t)
m and noting that cos(πβ/2(α + 1)) < 0 for α ∈ (0, 1) and β ∈ (1, 2), the

attenuation κ
(t)
m (ω) for the compressional and shear waves is obtained as:

κ
(t)
m (ω) =

[
τ

β−2
0 l̄1−α

m

Γ (2 − α)

]1/(α+1)
(

ω

V
2
β

m

)β/(α+1)∣∣∣ cos
(

πβ

2(α + 1)

) ∣∣∣. (4.10)

Clearly, the time-space-fractional wave follows power-law attenuation with attenuation index
β/(α + 1) for ω. Again, a positive value of the power-law index indicates that the time-
space-fractional formulation predicts an increase in attenuation with frequency. Noting that
sin(πβ/2(α + 1)) > 0 ∀ α ∈ (0, 1) and β ∈ (1, 2), the dispersion in the wave speeds is given by:

c(t)
m (ω) =

[
Γ (2 − α)

τ
β−2
0 l̄1−α

m

]1/(α+1)( V2
m

ωβ−1−α

)1/(α+1)∣∣∣ csc
(

πβ

2(α + 1)

) ∣∣∣. (4.11)

It follows that the phase velocity decreases as frequency increases, hence indicating anomalous
dispersion if compared with traditional dispersion of bulk local materials. Note also that,
the attenuation–dispersion terms of both the space-fractional and time-space-fractional wave
equations form a Hilbert pair confirming that the wave equations are causal [16,17].
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(a) Equivalent fractional model of a non-local solid
Consider a material with attenuation described by κ = κ0|ω|γ for the P wave or the S
wave, where κ0 and γ are constants characterizing the medium. The equivalent non-local
(fractional) representation is found by comparing the power-law behaviour of the material with
equation (4.7). The non-local parameters α and l̄m are found as:

α = 2 − γ

γ
(4.12a)

and

l̄m =
[
κ0V

γ
m

∣∣∣ sec
(πγ

2

) ∣∣∣]1/(γ−1)[
Γ

(
3 − 2

γ

)]γ /2(γ−1)
. (4.12b)

Thus, for a given medium the length scale and the order are related. Note that as γ → 1, α → 1
and l̄m is undefined, which means that we recover the local formulation.

A particularly striking outcome of the space-fractional model is that since α ∈ (0, 1)
equation (4.12a) leads to the restriction that γ ∈ (1, 2). Indeed, a majority of the experiments
on practical materials has so far established that the attenuation exponent γ ∈ (1, 2) [16,36,37].
For example, attenuation of compressional waves by underground sediments and layered rocks
are found to correspond to γ ≈ 1 [50,51]. Attenuation exponents of γ ∈ (1, 2) were observed in
human tissues [52], and fluids such as distilled water and certain oils [53]. In high-frequency
regimes, certain materials like plastics (e.g. lexan), low- and high-density polyethylene, and
aerogels exhibit attenuation with exponent γ ∈ (0, 1) [16,37,54]. This behaviour is captured by the
time-space-fractional wave equation which allows the attenuation exponent γ to vary in (0, 1)
(equation (4.10)). This short discussion on practical materials exhibiting anomalous attenuation
highlights that the fractional formulation could be essential to model these complex materials.

Note that both attenuation and dissipation affect the dispersion relation by inducing a power-
law dependence in frequency. Hence, in practical experiment it is not immediate to discern
what physical mechanism lies behind the occurrence of fractional dispersion. However, based
on the mathematical formulation presented above, it is clear that space-fractional operators
are indicative of attenuation in conservative media whereas time-fractional operators imply
dissipation in non-conservative media [1,4,5,39]. Note also that, in the purely space-fractional
case the attenuation (equation (4.7)) is a fractional-order power-law function of the wavenumber.
While in the purely time-fractional case (i.e. for α = 2 and β ∈ (1, 2) in equation (4.10)), the
attenuation is a fractional-order power-law function of frequency only. Thus, based on available
experimental data, one could determine if the solid should be modelled via either space-fractional
or time-fractional operators (or a combination of them as in equation (4.10)), by assessing whether
it exhibits a wavelength-based or frequency-based power-law attenuating behaviour. A double
Fourier transform of a transient response would provide these data. Then, the fractional-order
can be obtained by a power-law fit of the distribution.

5. Non-local interfaces: Snell’s Law and Fresnel’s coefficients
A key question to understand the propagation of elastic waves in complex non-local media
concerns the effect of interfaces between media having different constitutive behaviour. Consider,
as an example, an interface between a local and a non-local medium or between two different non-
local media. The first case can be modelled as an integer–fractional interface, while the second as
a fractional–fractional one. The local–non-local interface represents the most general case, and
hence it is selected as a benchmark example for the following analyses.

In classical wave analysis, the interaction of plane waves with planar interfaces is fully
characterized by Snell’s Law (which provides the angle of propagation of the reflected and
refracted waves) and Fresnel’s coefficients (which allow determining the amplitude of the
reflected and refracted wave fronts). Consider the interface between a local (solid #1, α = 1) and
a non-local (solid #2, 0 < α < 1) isotropic bulk elastic solid (figure 3). An incident P-type plane
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Figure 3. Schematic of the interface between the local (α = 1) and the non-local (0< α < 1) elastic bulk medium. Given
an incident P wave, the possible wave types and angles of reflection and refraction are identified. The dashed double arrow
indicates the polarization of the wave.

wave travels from the local to the non-local medium. By leveraging the previously introduced
elastodynamic model, we extend Snell’s Law to account for this type of mixed local–non-local
interfaces. Enforcing the continuity of displacement and traction at the interface gives:

u= u0 + Rppu
(1)
p + Rpsu

(1)
s = Tppu

(2)
p + Tpsu

(2)
s (5.1a)

and

t̃ = t̃0 + t̃(1)
p + t̃(1)

s = t̃(2)
p + t̃(2)

s , (5.1b)

where Rpp,Rps,Tpp and Tps are reflection and transmission coefficients of P and S waves (for an

incident P wave). u0, u(1)
p , u(1)

s , u(2)
p and u(2)

s are displacement polarization vectors for the incident,
reflected, and transmitted waves, as shown in figure 3. The superscripts �(1) and �(2) indicate the
medium supporting the wave, hence �(1) refers to reflected waves and �(2) refers to transmitted

waves. The corresponding tractions are denoted as t̃0, t̃(1)
p , t̃(1)

s , t̃(2)
p and t̃(2)

s . The angles of the
incident, reflected and refracted waves measured with respect to the normal to the interface are
denoted as θ0, θ

(1)
p , θ

(1)
s , θ

(2)
p and θ

(2)
s .

The continuity of the displacement field along the interface holds at all time instants and leads
to the following relation between the wavenumbers of the P/S waves at the interface:

k0 sin θ0 = kp sin θ
(1)
p = ks sin θ

(1)
s = kαp sin θ

(2)
p = kαs sin θ

(2)
s , (5.2)

where k0, kp and ks are wavenumbers of the incident P wave, and reflected P and S waves, while
kα
p and kαs are wavenumbers of the transmitted P and S wave within the non-local medium. By

combining equation (5.2) with equation (4.8), we obtain:

sin θ
(1)
m = V(1)

m

V(1)
p

sin θ0 (5.3a)

and

sin θ
(2)
m = l̄(α−1)/(α+1)

m
ω

V(1)
p

[√
Γ (2 − α)V(2)

m

ω

]2/(α+1)
sin θ0

sin
(

π
α+1

) (5.3b)

where m⊂ {p, s} and V(1)
p , V(1)

s , V(2)
p and V(2)

s are the classical compressional and shear wave speeds

in solid #1 and #2. The length scales l̄p and l̄s, vary with θ
(2)
p and θ

(2)
s as given in equation (4.5)

and thus, equation (5.3) must be solved numerically. By setting sin θ
(2)
p = sin θ

(2)
s = 1, the first and

second critical angles (indicated by θ cp and θ cs , respectively) are obtained as:

sin θ cm = sin
(
π/(α + 1)

)
l̄(α−1)/(α+1)
m

⎡
⎣V(1)

p

ω

(
ω√

Γ (2 − α)V(2)
m

)2/(α+1)
⎤
⎦ . (5.4)
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For an incident P wave, equation (5.1) can be recast in a matrix form as:

⎡
⎢⎢⎢⎢⎢⎣

cos θ
(1)
p − sin θ

(1)
s cos θ

(2)
p sin θ

(2)
s

sin θ
(1)
p cos θ

(1)
s − sin θ

(2)
p cos θ

(2)
s

λ1 + 2μ1 cos2 θ
(1)
p −μ1 sin 2θ

(1)
p A33 A34

sin 2θ
(1)
p

V(1)
p

V(1)
s

cos 2θ
(1)
s A43 A44

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
Rpp

Rps

Tpp

Tps

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cos θ0
− sin θ0

−(λ1 + 2μ1 cos2 θ0)
sin 2θ0

⎤
⎥⎥⎥⎦ ,

(5.5a)
where, λ1, μ1, λ2 and μ2 are the Lamé constants of solid #1 or #2. A33, A34, A43 and A44 are:

A33 = Ā
[
(λ2 + 2μ2)l̄α−1

x cos θ
(2)
p cotα θ

(2)
p + λ2 l̄α−1

y sin θ
(2)
p

]
, (5.6a)

A34 = Ā
[
(λ2 + 2μ2)l̄α−1

x sin θ
(2)
s cotα θ

(2)
s − λ2 l̄α−1

y sin θ
(2)
s

]
, (5.6b)

A43 = −Ā
(

μ2

μ1

)[
l̄α−1
x sin θ

(2)
p cotα θ

(2)
p + l̄α−1

y cos θ
(2)
p

]
(5.6c)

and A44 = −Ā
(

μ2

μ1

)[
−l̄α−1

x cos θ
(2)
s cotα θ

(2)
s + l̄α−1

y sin θ
(2)
s

]
, (5.6d)

with Ā given as: Ā= −Γ (2 − α)kα−1
0 sin(π/2α)(sin θ0)α . As expected, for α = 1 the classical form of

both Snell’s Law and the Fresnel coefficients are recovered.
The formulation presented above allows for some preliminary observations on the effect of

non-locality on the wave scattering process. Consider a situation where solid #1 is local and
solid #2 is non-local, but both have the same elastic constants (e.g. they both are made out
of steel having Young’s modulus E= 200 GPa and Poisson’s ratio ν = 0.29). We investigate the
effect of the degree of non-locality on the wave scattering by plotting equation (5.3) for different
combinations of order α and length-scale l in figure 4. When α → 1 and l→ 0 the refraction angle
of the P wave approaches the results of classical Snell’s Law, as expected. When both solids
are local (α = 1), there is neither mode conversion or scattering because the interface vanishes
giving rise to a uniform continuous medium. As the degree of non-locality of solid #2 increases
(by decreasing α or increasing l [43]), the refracted P/S waves progressively bend towards the
normal to the interface indicating a consistent softening of the solid. Further, the transmitted
waves are attenuated in the non-local solid. It follows that, with increasing degree of non-
locality, the interface evolves from high transmissibility (local to local) to high reflectivity (local
to non-local). We merely note that such behaviour is typical of solids subject to high temperature
gradients where non-local effects are prominent and thermo-rheological properties are strongly
affected [6].

6. Validation studies
In this section, we proceed to the validation of the fractional-order elastodynamic model by
following a twofold approach. First, we numerically solve the fractional-order continuum model
to simulate the wave interaction with a local-to-non-local interface. The numerical results are
compared with the predictions from the non-local Snell’s Law. This step is intended to confirm
the validity of the equivalent (fractional) non-local Snell’s Law extracted from the underlying
elastodynamic model. Certainly, given that Snell’s Law itself is derived from the same model
used for the numerical simulations, these results are not sufficient to validate the elastodynamic
model itself. In order to address this latter aspect of the validation process, we select a practical
example of a physical system that can be effectively described by the fractional elastodynamic
model and present a semi-analytical approach to obtain the fractional-order that describes
the physical medium. The details of this two-step validation strategy are presented here
below.
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Figure 4. Theoretical predictions of the variation of the refraction angles (a) θ (2)
p and (b) θ (2)

s assuming an incident P wave on
a local–non-local interface. Elastic constants of steel and excitation frequency f = 100 kHz are assumed for the calculations.
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(Online version in colour.)

(a) Validation of the non-local Snell’s Law
In order to validate the theoretical formulation of the non-local Snell’s Law, we solved
equation (3.1) numerically and compared the observed scattering behaviour with the theoretical
predictions. The numerical solution of the non-local elastodynamic model was obtained by
finite difference (details provided in electronic supplementary material). The simulations were
performed assuming an interface between a local and a non-local isotropic medium. The
non-local character of a solid is typically connected to its internal microstructure whose length-
scale varies across classes of materials [24]. The effect of the length-scale on the material
dynamics has been experimentally captured for several classes of materials including aluminium,
copper and nickel [55]. The sources of non-locality include, among others, heterogeneity of
the microstructure, presence of distributed cracks and metal plasticity [24], and even periodic
material or geometric inclusions [1,39]. A specific example belonging to the latter class of systems
will be shown in §6b. Here, we choose cadmium as the classical medium and steel as the non-
local medium. The specific selection of these materials was mostly driven by the need to produce
a sufficient discontinuity in the mechanical impedance of the layers so as to produce appreciable
scattering at the interface and to achieve both critical angles.

As numerical benchmark case, we considered the 2D domain 0.5 × 0.25 m2 shown in figure 5
including an interface between local cadmium (solid #1; Vp = 2790 m s−1, Vs = 1490 m s−1 and
α = 1) and non-local steel (solid #2; Vp = 5990 m s−1, Vs = 3200 m s−1, α = 0.9 and isotropic
horizon 0.025 × 0.025 m2). A single quasi-planar P-wave burst with centre frequency fc = 100 kHz
and with an angle of incidence θ0 was selected as excitation. The incident wave was generated
by the application of an external force on a straight line of length 0.16 m. The wave burst was
obtained by applying a Hanning window to a sine wave with the prescribed centre frequency
fc. This strategy helps focusing most of the energy at the centre frequency, thereby reducing the
presence of spurious harmonics due to the initial transience. Further, we imposed fixed boundary
conditions on all edges. All the simulations presented here below were conducted in the time
domain so that boundary reflections could be easily eliminated by a time-gating process.

The first and second critical angles for the system were obtained from equation (5.4) as 29◦ and
69.3◦, respectively. Based on these values, the system was simulated in four different regimes, that
is θ0 < θ cp , θ0 = θ cp , θ cp < θ0 < θ cs and θ0 = θ cs . The corresponding values of θ0 are: 20◦, 29◦, 45◦ and
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Figure 6. Numerical simulations showing the interaction of a P wave with the interface between the local and non-local
medium in figure 5. The solid white line denotes the interface. The black lines show the main wave fronts after the interaction
with the interface; solid line: refracted P wave, dashed line: refracted S wave, dotted line: reflected S wave, and dashed-dot
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perpendicular to the interface normal. The low intensity waves that can still be observed in solid #2 are due to the finite nature
of the line source which produces spurious non-planar components at its edges. (Online version in colour.)

69.3◦. Figure 6 shows the numerically evaluated elastic wave fields, after interaction with the
interface. The P/S waves were identified from the relation between the direction of the wave and
particle velocities (electronic supplementary material, figure S1). Curve fitting was used to extract
the angles of reflection and transmission. Theoretical and numerical predictions are compared in
table 1. As evident from the absolute errors, numerical results show an excellent agreement with
the non-local Snell’s Law.

(b) Validation of fractional-order continuummodel for non-local solids
In the previous section, we pointed out that many materials of practical interest show non-
local effects, mostly due to different types of inhomogeneities present at microstructural level.
Despite the existence of experimental data corroborating both the existence and the importance
of non-local effects in selected media, their connection with specific material parameters (that is
of paramount importance for numerical simulations) is still a challenging topic. For this reason,
we present an alternative material system that is characterized by non-local effects induced by
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Figure 7. (a) Schematic of the computational domain used to validate the analytical predictions of the generalized
elastodynamic model. (b) The super-cell used to construct the solid #2. The unit-cell is highlighted in red and its dimensions
are specified. (c) Dispersion curves for the periodic solid in (b) plotted along the irreducible part of the first Brillouin zone. P
denotes the longitudinal mode, and S0 and S1 represent the shear modes. The two points marked in ′♦′ were used to extract
the parametersα and l using equations (6.1) and (6.2). (Online version in colour.)

Table 1. Comparison of the theoretical and numerical predictions of reflection and refraction angles for various regimes of
incidence θ0 and the relative error between them in percentage.

Snell’s Law finite difference error in percentage

θ0 θ (1)
p θ (1)

s θ (2)
p θ (2)

s θ (1)
p θ (1)

s θ (2)
p θ (2)

s θ (1)
p θ (1)

s θ (2)
p θ (2)

s

20 20 10.5 44.2 21.5 20 11 45 22 0 4.8 1.8 2.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29 29 15.0 90 30.9 29 15.6 90 31 0 4 0 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

45 45 22.2 — 48.1 45.6 23 — 49 0 4 0 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69.3 69.3 30.0 — 90 68 31 — 90 1.9 3.3 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the macrostructural configuration. This material system offers an ideal benchmark to validate
the fractional-order elastodynamic model as well as its ability to describe practical physical
systems. The system under investigation is shown in figure 7 and consists of an interface between
an isotropic homogeneous medium and a non-homogeneous medium. The latter is realized by
embedding a square grid of a stiffer material into a more compliant background. Although we use
a plane strain model in this study, this configuration can be considered representative of a classical
thin walled panel with a square grid of stiffeners. This material system is of particular interest
because its dynamic response can be simulated using a traditional finite element technique
without requiring any assumption on either length scales or microstructural properties.

We consider a 2D domain of size 0.5 × 0.25 m2, as shown in figure 7a. The two subdomains are
made out of steel (solid #1; E1 = 205 GPa (Young’s modulus), ν1 = 0.3 (Poisson’s ratio), and ρ1 =
7700 kg m−3 (density)) and a stiffened medium (solid #2). The stiffened medium consists in a steel
background an embedded square grid of a stiffer material: E2 = 10 250 GPa = 50E1, ν2 = 0.3 and
ρ2 = 7700 kg m−3. The dimensions of the unit-cell are illustrated in figure 7b. In order to be able to
use the fractional-order elastodynamic model to predict the scattering behaviour in such system,
we need a procedure to estimate the fractional model parameters, order α and length scale l,
corresponding to the non-local solid #2. The specific configuration chosen for solid #2 offers a very
viable approach to extract these parameters. Solid #2 can be seen as a periodic medium having a
lattice constant a= 6.25 mm. The infinite medium constructed from this unit cell is associated with
a specific dispersion behaviour which can be calculated numerically by solving the eigenvalue
problem based on the Navier’s equations describing the medium. This calculation was performed
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Figure 8. Numerical simulations performed in COMSOL showing the interaction of a P wave with an interface between the
local and the periodically stiffened medium. The lines used to indicate the different wave fronts are the same as described for
figure 6. (Online version in colour.)

using COMSOL Multiphysics and the results are shown in figure 7c in terms of the irreducible part
of the first Brillouin zone.

Having the numerical dispersion curves available, we can extract the parameters α and
l by fitting the power-law behaviour given in equation (4.6) against the numerical data.
More specifically, the fractional model parameters are extracted from the dispersion curve
corresponding to the Γ − M direction of the longitudinal mode which captures the situation of a
wave impinging on the local–non-local interface at an angle of 45◦. Selecting two pairs of points
(k1, f1) and (k2, f2) (k� is the magnitude of the wave-vector, f� is the frequency, and � ∈ {1, 2})
on the longitudinal mode, the fractional parameters can be extracted by fitting the power-law
behaviour in equation (4.6). More specifically, we extract the order α by taking the logarithm of
both sides of the dispersion relation in equation (4.6). Then we extract the order from the slope of
the log k–log f relation as:

α = 2
[

log f2 − log f1
log k2 − log k1

]
− 1. (6.1)

Substituting the order derived above in equation (4.6) gives the length scale l as:

l= [Γ (2 − α)]1/(1−α)
(

Vp

2π f1

)2/(1−α)[
k1 csc

(
π

α + 1

) ](1+α)/(1−α)
. (6.2)

The specific pairs chosen in the computation were kx1 = ky1 = 20.11 m−1 and f1 = 42.3 kHz, and
kx2 = ky2 = 226.19 m−1 and f2 = 385.7 kHz (figure 7c). Using equations (6.1) and (6.2), the fractional
parameters were evaluated as α = 0.82 and l= 0.72. The compressional wave speed Vp in solid #2
used in equation (6.2) was calculated using the expression: Vp = √

[E(1 − ν)]/[ρ(1 + ν)(1 − 2ν)].
The stiffness of the non-local solid was obtained as E= 901 GPa using a Rank-2 composite
model [56]. Since both the density and Poisson’s ratio of the stiffener were chosen to be equal
to that of steel, they remain the same for the unit-cell and consequently for the non-local solid.

We now validate the accuracy of the fractional model parameters obtained for solid #2 by
simulating the scattering of a P-wave at the interface of solid #1 and solid #2 in COMSOL
and comparing the obtained scattering angles with the predictions made from the fractional
elastodynamic model. In the simulation set-up, a quasi-planar P-wave incident at an angle
θ0 = 45◦ and frequency f = 300 kHz was selected as the source of excitation as shown in figure 7a.
The spatial and temporal features of the incident wave are the same as has been described in §6a.

Using the non-local Snell’s Law in equation (5.3) and the fractional parameters α = 0.82 and l=
0.72, the scattering angles for the set-up shown in figure 7a are found as θ

(2)
p = 58◦, θ

(1)
p = 45◦ and

θ
(1)
s = 22.2◦. In order to validate this prediction, we perform a full field time-domain simulation of

the set-up shown in figure 7a. The results are shown in figure 8. By curve fitting the reflected and
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refracted wave fronts, the scattering angles are obtained as θ
(2)
p = 57◦, θ

(1)
p = 43◦ and θ

(1)
s = 21.9◦.

It appears that the predictions of the fractional-order elastodynamic model match very closely
the direct simulations obtained from an integer-order and physically realizable structural model.
This result completes the validation of the fractional-order elastodynamic model and confirms
its ability to capture the response of non-local solids. It is worth noting that the procedure
of replacing an integer-order inhomogeneous solid with a fractional-order homogeneous solid
effectively results in a homogenization approach where space-fractional derivatives are used to
capture the effect of inhomogeneities on a global scale.

7. Conclusion
We presented a generalized non-local elastodynamic theory based on fractional-order differ-
integral operators and extended the concept of Snell’s Law to non-local interfaces. This continuum
theory can capture a variety of unconventional transport mechanisms that are of great importance
to enable the next generation of predictive tools for many real world applications. Of particular
relevance is the ability to account for non-locality (associated with multiscale effects), hybrid
and anomalous transport, frequency- and wavelength-dependent dissipation and attenuation
effects, and memory (when time-fractional derivative are included). Remarkably, this space-
fractional continuum formulation can be interpreted as a fractional homogenization approach
that is capable of maintaining the many complex dependencies of the underlying material system
due to either spatial or temporal multiscale behaviour. This elastodynamic theory provides
the basis for the formulation of a non-local Snell’s Law, including closed-form expressions for
critical angles and Fresnel’s coefficients, hence providing an indispensable tool to design material
interfaces between local and non-local media. The fractional-order model was validated against
a practical non-local material characterized by macrostructural inhomogeneities. Numerical
simulations performed via traditional finite elements matched closely the predictions obtained by
the fractional model hence providing a complete validation of both the elastodynamic model and
the non-local Snell’s Law. It is expected that these results could provide an important foundation
to significantly impact predictive capabilities in a variety of applications ranging from continuum
mechanics, to elastography, to seismology, to biomedics.
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