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Abstract—This paper develops a model-free approach to re-
cover the missing points in streaming synchrophasor measure-
ments obtained in nonlinear dynamical systems. It can accu-
rately recover simultaneous and consecutive data losses across
all channels for some time consecutively without modeling the
nonlinear dynamics at all. The idea is to lift the nonlinear system
to an infinite-dimensional linear dynamical system and exploit
the low-rank Hankel in the lifted dimension to characterize the
system dynamics. The kernel technique is employed to handle
the implicit lifting function. Compared with existing model-free
synchrophasor data recovery methods, our approach drops the
assumption of linear systems and applies to general nonlinear
systems. The algorithm has low computational complexity and
can be implemented in real time. The method is validated through
numerical experiments on recorded synchrophasor datasets.

Index Terms—missing data recovery, phasor measurement
unit, Hankel matrix, low dimensionality, kernel technique

I. INTRODUCTION

Phasor measurement units (PMU) have been increasingly
deployed in North America and provided time-synchronized
high-resolution phasor measurements for the wide-area mon-
itoring and control of power systems [1]. Due to reasons
like PMU malfunction or communication congestions, the
synchrophasor measurements that arrive at the operator contain
data losses and bad measurements [2]. The percentage of
measurements with data quality issues can be up to 17% [3].
These data issues limit the incorporation of synchrophasor
measurements in real-time system monitoring and control.

Conventional data recovery methods [4], [5] require solving
state estimation, and the recovery accuracy relies heavily on
the accuracy of the system model. Moreover, the underlying
assumption is that enough PMUs are deployed such that the
system is observable. This does not always hold in practice.
The recent abundance of synchrophasor data enables the
development of model-free methods for data recovery. Some
clustering-based algorithms, like [6], can be applied to fill in
the missing measurements. The idea is first to partition the
training dataset with fully-observed data points into several
clusters. Then any data sample with missing entries is assigned
to one cluster, and the missing entries are estimated with
the samples in the same cluster. The performance heavily
depends on the completeness of the training dataset and
the similarities of the data samples to the training dataset.
In addition, it cannot handle the simultaneous data losses
across all sampling channels. Reference [7] combined the
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Kalman filter and one measurement updating rule, which
was first studied in [8] to represent the temporal correlation
among consecutive synchrophasor measurements, to improve
the data quality. Though these methods have low complexity
and are easy to implement, the spatial correlation among
synchrophasor measurements across different channels is not
employed, resulting in the greatly degraded performance when
the missing data ratio is high. Reference [9] studied the intra-
PMU and inter-PMU measurement correlations and leveraged
them to differentiate the spoofed data from the measurements
under the normal operation. The method, however, does not
consider the existence of missing data and does not take
the event data into account. References [10]-[13] studied the
so-called low-rank property of the PMU data matrix, i.e.,
the spatial-temporal blocks of PMU data exhibit intrinsic
low-dimensionality despite the high ambient dimension. This
property of the PMU data matrix has been exploited to develop
model-free methods with analytical guarantees for PMU data
recovery [11], [12] and bad data correction [13].

The low-rank matrix assumption characterizes the spatial
correlations among different PMUs but does not fully capture
the temporal dynamics in the measurements. One resulting
limitation in low-rank-based data recovery approaches, includ-
ing PMU data recovery methods [11]-[13] and general low-
rank matrix completion methods such as [14], [15], is that they
cannot recover the missing data if all the measurements across
all channels are lost simultaneously. However, simultaneous
data losses across all channels is not uncommon in practice. To
address this fundamental limitation, references [16], [17] prove
that the Hankel matrix of the PMU data matrix is low-rank,
as long as the measurements can be viewed as the output of
a reduced-order linear dynamical system. Exploiting the low-
rank Hankel property, model-free methods for missing data
recovery have been developed for both block processing [16],
[17] and streaming data processing [18], and these methods
can recover simultaneous data losses across all channels con-
secutively for some time without modeling system dynamics.
Moreover, the percentage of data losses that can be recovered
by the approaches in [16]-[18] is significantly higher than
that can be handled by the existing low-rank approaches. The
low-rank Hankel property has also been exploited to correct
simultaneous bad data across all channels [19].

Despite the superior analytical and numerical performance,
the low-rank Hankel-based approaches in [16]-[19] are all
based on the assumption that the system can be approximated
well by a linear dynamical system. When the system is highly
nonlinear, especially immediately after a significant event, the
linear approximation is no longer accurate, and the missing



data recovery performance degrades. This motivates us to
develop an algorithm that can recover the missing entries in
streaming synchrophasor data with a high accuracy even when
the underlying system is highly nonlinear.

The central idea of this paper is to lift the data in a
nonlinear system to a much higher dimension (potentially
infinite dimension) such that the lifted data follow a linear
dynamical system in the lifted space. This distinguishes the
work from our previous work in [16]-[19], where no data
lifting exists. We then exploit the low-rank Hankel property in
the lifted space to develop model-free approach to recover the
missing data. Our proposed low-rank Hankel property in the
lifted space characterizes the temporal dynamics in a nonlinear
system without any prior assumption on the system model.
Our algorithm can recover the missing data with a higher
accuracy even when data losses occur across all PMU channels
simultaneously and consecutively during a nonlinear event.
The algorithm has a low computational complexity and can
be implemented in real time.

In practice, the proposed method could be applied with a
combination of the method in [18]. Reference [18] presents
a method to check the occurrence of an event or not. So if
an event is determined, we resort to the method proposed in
this paper to fill in the missing measurements. The difference
between the estimated data and the initial estimation could be
recorded. When the difference is below a specified threshold
level, we think the system can be approximated well by a
linear model and switch to the method in [18] to recover the
missing measurements.

The rest of the paper is organized as follows. Section II
describes the low-rank Hankel property in the lifted space for
nonlinear systems. Section III presents the proposed approach
to fill in the missing data. Sections IV documents the results of
the numerical experiments on recorded PMU datasets. Section
V concludes the paper.

Notation: Vectors are bold lowercase, matrices are bold
uppercase, and scalars are in normal font. For example, Z is a
matrix and z is vector. zgr and zj denote the real part and imag-
inary part of z, respectively. Z* and Z' denote the conjugate
transpose and pseudo-inverse of Z. z(i) denotes the i-th entry
of vector z. Z(i,j) denotes the (7,j)-th entry of matrix Z.
The inner product between two vectors is (z1, z2) = 2}z, and
corresponding I norm of vector z is given as ||z|| = (z,z)'/2.
For one index set ¥, Z¥ denotes the submatrix of Z with only
the columns labeled by ¥, while Zy represents the submatrix
of Z with only the rows labeled by V.

II. LOW-RANK LIFTED HANKEL PROPERTY

A. Data recovery exploiting the low-rank Hankel structure

Let y; € C™ denote the measured phasors of m channels
at instant ¢, then the phasors from m channels during T
consecutive time instants can be denoted as follows:

Y=[y1 v yr] € T )

Let s denote the number of vectors in each column of the
Hankel matrix. Then the constructed Hankel matrix H,(Y)
from Y with parameter & is

yi Y2 YT—k+1
Y2 Y3 YT —r+2  Crmx(T—r+1). )
Yo Yr+1 o yr

Given a general matrix X with its singular value decom-
position (SVD) as X = UXV™*, X can be approximated by
a rank-r matrix UX"V*, where X" is the diagonal matrix
obtained by setting all but the largest r singular values in 3
to zero. The rank-r approximation error ratio is defined as

¢"(X) = UV =X|r/IIX|F = [Z=2"r/[IZ] - G)

The low-rank Hankel property of the synchrophasor data
has been demonstrated on a recorded dataset in Central New
York Power System with 11 voltage phasors measured at a
rate of 30 samples per second [18]. Fig. 1 (Fig. 1 of [18])
shows the recorded dataset of 20 seconds, where a disturbance
occurs around 2.3 seconds. Fig. 2 contains a time window of
2.7 seconds immediately after the start of the disturbance, as
indicated with two dotted lines in Fig. 1.

Fig. 3 shows the approximation errors of the constructed
Hankel matrices using the synchrophasor measurements in
Fig. 2 with different approximate rank r and . For example,
when x = 5, a rank-5 approximation to H;(Y) has an error
ratio of 0.002. When x = 1, H1(Y) is reduced to Y. Thus,
one can approximate Hankel matrices with low-rank matrices
with very small error ratios.

References [16], [18] also provide the analytical justification
of the low-rank Hankel property. One can view the measure-
ments in the time window of Fig. 2 as the output of a linear
dynamical system after an impulse input, i.e.,

Xi+1 = Axy, yi = Cxy, “4)

with state vector x; € C™, and output vector y, € C™.
Then the Hankel matrix H,(Y) is approximately rank-r if
the system can be approximated by an order-r linear system.

The low-rank Hankel property captures the spatial and tem-
poral correlations among the time series of a linear dynamical
system without directly modeling the system. Exploiting the
low-rank Hankel property, references [16], [17], [19] develop
fast block-processing algorithms to recover missing data and
correct bad measurements. Reference [18] develops an online
algorithm to recover the missing points and correct bad
data in streaming PMU data in real time. The method can
differentiate event data from consecutive bad data without any
prior assumption of system events and models.

The above data-driven approaches exploiting the low-rank
Hankel property are based on the critical assumption that the
system can be approximated by a linear dynamical system in
the observation window. Although the linear dynamic model
is an accurate approximation when the power system is under
normal operations or non-major events, the power system after
a significant event can be highly nonlinear, and the linear
approximation is no longer accurate. If one still approximates
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Fig. 2: Voltage phasors under system disturbances
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Fig. 3: Approximation error ratios of Hankel matrices from
observation data Y in Fig. 2

the Hankel matrix of the measurements by a rank-r matrix
when the system is highly nonlinear, r needs to be large to
capture the nonlinear features. A very large r usually results
in the over-fitting problem, which causes significant errors in
missing data recovery. We will show an example of over-
fitting when applying the approach in [18] to recover missing
measurements in Fig. 12 of Section IV.

B. Low-rank lifted Hankel matrix

This paper focuses on missing data recovery when the
system is highly nonlinear. The central idea is to characterize
the nonlinear dynamics without directly modeling the system.
Consider a non-linear dynamical system after an impulse input,

(&)

with the state variable x € C™, and the observation y € C™.
From Koopman theory, for every nonlinear dynamical system,
there exists a Koopman operator that lifts the system to an
infinite-dimensional but linear system with the same observa-
tions [20], [21]. In other worcls, there exists a mapping ®(-)
from C" to CV with z; := ®(x;) € CV, where N can be
infinite, A € CV*N_ and C € C"™*N such that

Xep1 = f(X0), ye = 9(x¢),

(6)

Then the oscillation modes and the stability of the nonlinear
system can be analyzed in the equivalent lifted linear system.

zi41 = Az, yi = Czy.

10 15 20

Data-driven approaches have been developed to estimate the
dominant modes of the lifted linear system [20], [21].
Let

Z=z1 2z zr] € CNXT, (7)
zZ1 2o ZT ki1

N (Z) = %2 Z_3 AT —r+2 € CFNX(T—r+1)
Z Zni zr

®)
If the lifted linear dynamical system can be approximated
by a reduced-order system in the lifted space C", then the
rank of #,,(Z) is much smaller than its ambient dimension.
The low-rank property of the lifted Hankel matrix #,.(Z)
characterizes the dominant nonlinear dynamics of the system
without directly computing the dominant modes.

Since the lifting function is often unknown or difficult to
compute, z; cannot be directly computed. One standard trick
in machine learning is to apply the kernel method [22]. The
kernel function K is defined as

K(xi, x;) = (®(xi), ®(x;)) = (2i, ). 9)
Given K, one can compute the inner product of z; and z; with-
out knowing z; and z; explicitly. For example, reference [23]
lifts a nonlinear dynamical system to a linear system in a
higher dimension and employs the kernel trick to predict the
future measurements. Reference [23] needs to estimate the
operator A in (6), which is computationally complex, and
the estimation error of A leads to the prediction inaccuracy
of z,’s. We will show here that by employing the low-rank
Hankel structure, the estimation of A is no longer needed.
We assume that one can estimate x;’s from y;’s so that we
define a kernel function X on y;’s directly, i.e.,

Popular choices of kernel functions include Gaussian kernel,
polynomial kernel, and sigmoid kernel [22]. Reference [23]
shows that the Gaussian kernel outperforms the polynomial
kernel in their nonlinear system. Moreover, different from
the polynomial kernel, the Gaussian kernel is defined in the
infinite dimensional lifted space. Since the measurements are
represented by complex numbers, we employ the complex
Gaussian kernel [24] Kcg(yi,y;), which is defined as

Kg(ymr, yjr)+Kg(yi yj1)+i(Kg(yir, yj1) —Kg(yi, yjr))

(11
where y;r,y;1 denote the real part and imaginary part of y,,
respectively. j is the imaginary unit. Kg(y;,y;) denotes the
real Gaussian kernel, which is defined as

Kg(yi,y;) = exp(—lly: — y;l3), (12)

where v is a parameter selected by users. Please see the
Appendix for a detailed discussion of the Gaussian kernel.
One can compute a rank-r approximation to H,(Z) accord-
ing to (3). Let H,,(Z) = UXV* denote the SVD of H,.(Z),
where the diagonal matrix ¥ = diag(oy, -+ ,07_x+1) con-
tains the singular values. Since H,(Z) is not explicitly known,
one cannot compute its SVD directly. Instead, we employ
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the kernel trick and compute the SVD of
VX2V*, The singular value of H, (Z)*H.(
of the corresponding singular value of H,,(Z).
of H,.(Z)*H.(Z) is

Hi(Z)"H(Z) =
) is the square
The (4, j)-entry

Zj r—1
|z Zhy i 1] = ZKCQ(Yi-Han-H) (13)
Zrtj—1 =0

and can be computed according to (11) and (12). After
obtaining 02,4 = 1,---,T — x + 1 through the SVD of
H(Z)*H . (Z), the rank-r approximation error ratio of H, (Z)
can be computed as

/T k41

Here we still use the data shown in Fig. 2 to validate
the low-rankness of #,,(Z). The rank of #,(Z) is bounded
by min(kN,T —xk+1) = T — k + 1. Here T = 81. As
shown in Fig. 4, H.(Z) can be approximated by lower-rank
matrices with relatively small error ratios. Moreover, the low-
rank Hankel property characterizes the temporal dynamics in
the dynamical system, and this does not hold for a general
low-rank matrix. To see this, let Z denote the obtained matrix
after a random column-wise permutation of Z, Fig. 5 shows
the approximation errors of H,(Z). For any x > 2 and any
r > 2, ¢"(Hu(Z)) is much larger than e"(H,(Z)). That is
because after a permutation, the temporal dynamics is no
longer preserved in H,(Z).

We notice that for the same x and 7, " (H,(Z)) is larger
than e”(H,(Y)), as one can see from Figs. 3 and 4. However,
note that the ambient dimension of z, is also much larger
than that of y;, as N > m. Analyzing the data in the lifted
dimension CV resolves the problem of over-fitting using the
linear approximation.

T— R+1
e"(Hn(Z)) = (14)

1= r+1

III. ONLINE ALGORITHM FOR MISSING DATA ESTIMATION

We next present our data recovery method by exploiting the
low-rank Hankel property in the lifted space. Our approach
exploits the nonlinear dynamics in the data without modeling
the dynamical system directly.

Let y; € C™ denote the obtained observations (possibly
with missing points) at time instant ¢. Let y; € C™ denote
the recovered measurements of y;. y; represents the initial
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estimation of y in our algorithm. The corresponding lifted
data of y, and y; are denoted as z; and z,, respectively. Let
Q represent the index set of observed entries in y,;, and we
set Y1 (i) = y+ (i) = y+ (@), Vi € Q.

Similar to the algorithm in [18], our algorithm initializes
with y; ~ yr in a window of length L and recovers missing
data at each time instant ¢ for ¢ > L in a streaming fashion.
If there exist unobserved entries in y; ~ Yy, these missing
points can be estimated from block-processing methods such
as those in [12], [17] to obtain y; ~ ?L

Let © denote the set of instants {t — .t —1}, and let
79 = [Zt—1, ..., Zt—1]. As shown in Fig. 6, the Hankel matrix
constructed by z;, to z; can be divided into two parts: the
first L — k + 1 columns, represented as HK(ZG), and the last
column, denoted by w’. Reference [18] similarly constructs a
Hankel matrix, which can be regarded as a special case of our
current approach with ®(y) = y. In this case, z; = ¥, and

H,.(Z®) = H,.(Y®) in Fig. 6.
/\G
3—6«&2 ) w
M ________ .

T2 = P s ]
: Zir Zi 1 2w : : Tl :
Vo2 ~ ~ ] 1
! ZiLn t-L+2 Zt—:c+1: 1| Ztoxce2
' : . Lo !
' . 1" [}
[N ~ ~ l: A :
VZiLax—2  ZiLex Zian ZFa !
I~ ~ ~ LILJ ~ |
: L L+x-1 ZiLax Zia :: Z :
%’_J

w

Fig. 6: Illustration of the Hankel matrix constructed at time ¢

Our algorithm includes two major steps: 1) estimate z;
by leveraging the low-rank Hankel structure H, (Z@), 2)
determine y; as the pre-image of z;. The low-rank Hankel
method in [18] can be viewed as a special case of Step 1 with
®(y) =y. Step 2 does not exist in [18].

A. Step 1: z; estimation

Since the lifted Hankel structure is low-rank in the lifted
space, the last column w' lies in the subspace spanned by the
column vectors of H,.(Z®). In other words, w’ can be written
as w' = HK(Z@)d for some d € CE=#*1 If d is known,



then from the bottom block in Fig. 6, z; can be estimated by
a linear combination of Z;_y 4,1 to Z;_1, i.e.,
L—k+1 L—r+1

z; = Z /z\t—L+ﬁ—2+ia(i) = Z aT(i)a(i)v (15)
i=1 i=1

where 7 (i) is defined as ¢ — L+ —2+i to simplify notations.
Then the problem is to estimate d.

Our algorithm needs to compute (Zz;,z;) = Kcg(¥;,¥+t)
for some j < t. It cannot be computed directly because y;
contains missing data. Therefore, we first obtain an initial
estimation, denoted as y;, from the observed entries of y;
and compute Kcg(y;,y:) instead.

We employ the algorithm in [18] to compute y;. The
approach in [18] first determines the dominant subspace basis
U” € C**" from the SVD of H,(Y®). Since w’ can be
represented by U d for some d € CE~#*1, the method in [18]
computes vector d using linear regression with the observed
entries in w’. Finally, y; is computed as:

ye(i) = {(U DO, T (16)

v (i), Vi € Q.
The approximate rank r is determined from a fixed approx-
imation ratio in [18]. When the linear model is no longer
accurate for a nonlinear event, r might be large, and that leads
to over-fitting. Since our algorithm here only needs an initial
estimation y;, we fix a small r like 1 or 2 to avoid over-fitting.

After computing y;, with the historically estimated data
Zi_ k11 ~ Zy_1, we estimate d by solving from the following
linear regression problem:

d= argmin |w' —#,(Z°)d|3 + A|ld||3
deCl—rtt
= (Ma(Z°)"1(2°) + AT) Mo (20) W
= (H+ M) 'h,

wheri: H = HH(ZG)*'HK(ZG) c C(L—m-‘rl)x(L—n-‘rl)’h _
H.(Z®)*w' € CE=*+l Here a penalty term ||d||3 with
weight A is added to reduce over-fitting. The (4, j)-th entry
in H can be computed by

a7)

Zr(j)—n+1
H(’L7]) = [(ET(i)—R+1)* (27(1))*]
Zr) ] (18)
k—1
= Z Keg(Fr@y—i> Yr(5)—1)-
1=0
The i-th entry of h can be computed as
/Z\t—n-&-l
h(i) = [(Zr(i)—n+1)" (@) ]|
Z (19)
rk—1
= Z Keg(Yr(iy—1>¥t-1) + Keg (¥ri), ¥it)-
1=1

We estimate d by combining (17), (18) and (19). Then
z; can be represented by (15). Note that we do not need to
compute z; explicitly. (15) together with the kernel function
is sufficient for the subsequent computation.

Algorithm 1 Online missing data estimation exploiting Hankel

matrix and kernels

Require: «, L, penalty weight )\, stopping criteria ¢

Initialization: obtain y; ~ ¥, from y; ~yr

Fort=L+1,L+2,---

If y, is not fully observed:

1. Let © = {t — L,--- ,t — 1}, with the data block Y® =
[Vi—rL, - ,¥t—1], compute ¥; from the algorithm in [18]
as an initial estimate of y;.

2. Construct matrix H and vector h following (18) and (19),

respectively. R

Compute coefficient vector d following (17).

4. Follow (25) to iteratively update the estimation until ||§§l) -
?El_l) || < 4. Return ?E” as the estimation y;.

End if

End for

b

B. Step 2: y; estimation

¥: can be estimated by solving

min [|®(y) —z| st y(j) =y:(4), Vi€
yeCm

(20)
Although Z, is not explicitly known, we have

[®(y) — 2|3
=(0(y), (y)) — (2(y),Z¢) — (¢, D(y)) + (21, 24)

(a) —K ~ 3/

22— 2(8(y), X" 2(Frw)d(0)z +2

) L—k+1 N

Dy 9 (/c o d:) .

; co(y:¥r@)d(@) )

(a) holds since Kcg(y,y) = (2(y), 2(y)) =
(y1,y2) = (y2,y1)", and (15). (b) follows from (10).

y can be decomposed as [yq;yqe], where 2 denotes the
complementary set of €. Similarly, we decompose y, ;) as
[@T(i))sz; (?T(i))gc}. Given yq, we combine (20) and (21)

and rewrite the constrained optimization problem in (20) as
an unconstrained optimization problem:

21

~—

2,Vy,

L—k+1
min— > (Keg (Iyasvo: L [(Fr)e: (Fri)ec) d0))

Yac i1
(22)

The objective function in (22) is a function of yqe, and we
denote it by F'(yq-). We exploit the idea in [25] to develop
a heuristic to solve (22). Note that

VEF(ya:) =0 (23)

is a necessary condition of the optimality of (22). We can
rewrite (23) as (24), where y exists in both sides of the
equations. Based on (24), we propose an iterative algorithm
to solve (22). With the computed ?gl) in the [-th iteration, we
can update §§l+1) in the (I + 1)-th iteration following (25). In
(24) and (25), the summation of ¢ is from 1 to L — x + 1.
Our proposed missing data recovery algorithm is summa-
rized in Algorithm 1. It can be easily extended to handle both
missing data and bad measurements simultaneously. Similar to
the idea in [18], we can first predict the measurements at time



t from past observations using the algorithm in [18]. After
obtaining observation y;, for each observed entry y:(7), y+(%)
is determined as trusted if it deviates from the prediction by
no more than a pre-defined threshold. The untrusted entries in
y¢ will be removed and treated as missing data. We then run
Algorithm 1 to recover the missing data.

C. Computational complexity analysis

The computational complexity of estimating y; € C™ in
Line 1 using the approach in [18] is O(kmL - min(km, L))
[18]. In Line 2, the complexity of computing H(i, ;) fol-
lowing (18) is O(km). Since the dimensionality of H is
(L —k+1) x (L -k + 1), totally it costs O(kmL?) to com-
pute H. Similarly, the complexity to compute h is O(kmL).
The computation of d in Line 3 needs O(L?) flops. In Line 4,
each iteration requires O(Lm) flops. Let ns denote the number
of iterations, then the complexity of Line 4 is O(Lmng).

The total computational complexity at time ¢ to estimate
y: is O(kmL - min(km, L) + kmL? + L3 + Lmn,). When
L < km, the complexity is simplified to O(kmL? + Lmn).
If ng is further regraded as a constant, the computational cost
is O(kmL?), in the same order as the algorithm in [18].

D. A Simplified algorithm without estimation of y;

To further reduce the computational complexity, we can
skip the initial estimation of y; and only use the data in
w, as shown in Fig. 6, to estimate vector d. Define P &
RE-DNXEN with P(i,i)=1wheni=1,---,(k—1)N and
0 otherwise. Then d can be computed from

d = argmin ||[P(w — H,.(Z°

deCL—r+1
~ ~ -1 ~
_ (HH(Z@))*P*P’HH(Z@) + /\I) H,.(Z°) P*Pw’
= (Hp + \I)~'

)d)[13 + Ald]i3

(26)
where Hp = H,.(Z°)*P*PH,,(Z°) € CLrtDx(LortD)
hp = H,.(Z®)*P*Pw’ ¢ CE~"*+1, Similar to (18) and (19),

the (¢,7)-th entry of Hp and the i-th entry of hp can be
computed as follows:

r—1

Hp(i,j) = Y Kcg(Fri)—1> Fr()—1)s (27)
=1
k—1

hp (i) = Z Keg(Fr@)—1>Ye-1)- (28)

=1

Algorithm 1 can be simplified as follows. We skip Line 1
and compute Hp and hp following (27) and (28) instead in
Line 2. Then we follow (26) instead to compute d in Line 3
and finally follow Line 4 to obtain y;.

The total complexity without initial estimation of y, is
O(Lmng + kmL? + L?). In Section IV, we compare the data
recovery performance of with and without y;.

IV. NUMERICAL EXPERIMENTS

Here we use the recorded practical synchrophasor dataset
to test the performance of the proposed algorithm in Section
III, where a phasor is represented in the rectangular form. All
the simulations are conducted on a desktop with Window 7
system, 3.4GHz Intel Core i7 and 16GB memory. Four modes
of data loss patterns are tested:

e Mode 1: Missing data points exist randomly across all m
PMU channels and all time instants.

Mode 2: Missing data points exist in all m channels
simultaneously at random time instants.

Mode 3: Missing data points exist across all m channels
simultaneously at consecutive time instants.

Mode 4: Block-wise data losses occur across k randomly
selected channels and d consecutive instants repeatedly
for fixed k and d.

Time O: observed entry X: missing entry

OOXOX0 :0X000X:0XX000:000000
g XOOO0OOX :OX00O0OX:OXX0O00:0OXXOX X
Sl OXOOX0O i!0OX0O0OXiOXX000i0OXX0OX X

OXOXO0OO0 :OXO0O0OX:0XX0O00:0XXOXX

OOXOOX :0OX0O0OOX:0OXX000:000000

XOOX0O0 "OX00OX OXX0O00 000000

Mode 1 Mode 2 Mode 3 Mode 4

Fig. 7: Diagram of four missing data modes

(o) = S (Fr)ee)r X Kg(ye, (F-()r) % dr (i) — X/ (Fr)ac ) X Ka(yr, (Fr))1) x dii)
i Ko(yr, (¥-))r) ><A ® (1) — 2 Ko (yr, (Fr())1) x di(i) R ’ 24)
(o) = >i((Yr@))ae ) x Kg(yr, (¥-3))1) % x d r(1) + 2, ((¥r())oc)r ¥ ’CQ(YAL (¥7(i))r) x di(9)
2 Ko (yr, (¥-@))1) x dr(i) + 32, Kg(yn, (¥-(i))r) x di(i)
With the computed ?El) at the [-th itearation, compute
o = i)z x Ko (( >>R, Frw)z) % d(0) = S(Fr)ac ) < Kg (F)z, Fra)r) x di(0)
Yae)r = )
5 Ko (1) Gz ) x drli) = 5, Ko (1), Fro): ) x i (i) o5
(vor) i(Fry)ee)r x Kg ((y L (¥-i)r ) r(1) + 2 ((Fr@))ae)r X Kg ¥, (¥-i))r ) x di(i)
Yae )1 = :
Ko ()0 Frit) ¢ dr(i) + 2 Ko (F)1, Fr))r) x di(i)
update 5" as: (7)o = (yoe)z +i- <ym>ﬂ, <A§“”> = (F)o-



Fig. 7 illustrates the four data loss modes, where m =
k = 3, and d = 2 in the diagram. Given a data loss percen
€, mT'e points in the ground-truth measurement block
C™*T are erased following the given data loss mode to si
late the missing data. Modes 2-4 are introduced to simulate
extreme scenarios of simultaneous and consecutive data los
The estimation error is evaluated by |[Y =Y | z/||Y| r.
result is averaged over 50 independent runs.

In the following simulations, if not otherwise specified,
10,k = 6, in (11) is set as 5, A in (17) is set as 1073,
§ = 1073. We do not delete data in the first L instants.
compute the average norm of y; to yz and use it to norms
the measurement vectors at the remaining instants. Sinct
modeling of the system is needed in the paper and mos
the methods mentioned in Section I cannot handle the ¢
of modes 2 ~ 4, here the missing data are estimated with
following five methods:

1) Duplication: the missing points in y; are filled in win
the corresponding entries in y;_1;

2) Low-rank Hankel structure: the algorithm in [18] tha
exploits the low-rank Hankel structure of Y. The ap
proximation error threshold to determine the rank of thi
constructed Hankel matrix is set as 0.01;

3) Low-rank lifted Hankel structure: our proposed Algo
rithm without an initial estimation of y;;

4) Low-rank lifted Hankel structure: our proposed Algo
rithm with an initial estimation of y;. We fix r = 1 i
estimating y, from (16).

5) Kalman filter: the method proposed in [7], where th
measurements of each channel are estimated individually

A. Missing data recovery of voltage phasors

We use the recorded data shown in Fig. 2. In Mode 4, k =
11 and d = 5 in the experiment. The results are shown i
Fig. 8. Sorted by the increasing order of average estimatior
errors, these first four methods are, from top to the bottom
our low-rank lifted Hankel algorithm with y; estimation, ou
low-rank lifted Hankel algorithm without y; estimation, th
low-rank Hankel method [18], and duplication. The Kalmar
filter method performs well only when the data loss percentage
is not over 20%, and this is consistent with the conclusion
in [7]. In contrast, our proposed method has a more stable
performance and can estimate the missing entries with a high
accuracy even when data losses occur more severely.

Fig. 9 shows one example of partially observed data with
5% consecutive data erasures in Mode 3. We compare the
estimated data using the low-rank Hankel approach in [18]
and our Algorithm 1 with y, estimation. The estimated data
by [18] follow the dominant linear trend in the data before tk
data losses, causing an increasing gap between the estimatio
and the actual values. The average estimation error is 0.589
In contrast, no evident gap is observed by using Algorithi
1, and the estimation error is 0.15%. If we focus on the la
time instant of consecutive data losses when the error is mo
significant, the error at that time instant t*, denoted by ||y~ -
e || /|lye<l, is 3.53% for the approach in [18] and 1.04% for
our Algorithm 1, respectively.
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Fig. 8: Estimation errors of voltage phasors
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Fig. 9: Partially observed and estimated voltage phasors with
5% data losses in Mode 3

w

B. Missing data recovery of current phasors

We also test on the current phasors corresponding to the
event in Fig. 1. As shown in Fig. 10, 22 current phasors are
measured at 30 samples per second. In Mode 4, k£ = 22 and
d = 5. The results are shown in Fig. 11. Algorithm 1 with y,
estimation generally achieves the best performance.
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Magnitude (A)

Phasor angle (')
\ X 1

0
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6 6.5 25 3 35 4 45 5 55 6 65
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Fig. 10: Current phasors under system disturbances



_ Mode 1 _ Mode 2
3 S
5 H
52 52
= =
.2 .S
=1 =1
£ £
A7) A7)
00 =0
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40
Data loss percentage (%) Data loss percentage (%)
_ Mode 3 _ Mode 4
S ;=4
5 85
E4 s g
(5] o
g g’
=2 k5]
g = g
G e =
=m0 =0
25 5 75 10 125 15 5 10 15 20 25 30
Data loss percentage (%) Data loss percentage (%)
-+ Duplication
—o- Low-rank Hankel structure
—#-Low-rank lifted Hankel structure without y; estimation
—o- Low-rank lifted Hankel structure with y; estimation
——Kalman filter
Fig. 11: Estimation errors of current phasors
Partially observed magnitudes 200 Partially observed angles
st ~ ST T4 g 100 o
3 =0 s === =
= g of o
=1 = = ="
£y 2 100 B R
p= o £ =S
0 - - = -200
25 3 35 4 45 5 55 6 65 25 3 35 4 45 5 55 6 65

Time (second)
]gstimaled phasor magnitudes (Hankel)

Time (second)
0 Estimated phasor angles (Hankel)

2 20

s 8

P 8

2 2

2 s

E z

> 5.

= . £ =

25 3 35 4 45 5 55 6 65 25 3 35 4 45 5 55 6 65

Time (second)
Es;ignatcd phasor magnitudes (Lifted Hankel)

Time (second)

2(I)Eostimatcd phasor angles (Lifted Hankel)

- S
<is Z 100 .
P R e
3 B e
210 £ o0 -
=} o e

A =]
2 s Z -100 —————
= = — — é ————

00 -
25 3 35 4 45 5 55 6 65
Time (second)

Fig. 12: Partially observed and estimated current phasors
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Fig. 12 shows one example of the observed data with 50%
data losses in Mode 1 and the estimated data from the approach
in [18] and our Algorithm 1. The average estimation errors are
1.93% and 1.51%, respectively. The low-rank Hankel approach
in [18] results in significant errors occasionally due to over-
fitting, as shown in Fig. 12. More specifically, for a fixed
approximation error threshold, the resulting rank 7 under the
linear model can be larger than the number of observations at
a given time instant when the data loss ratio is high. One can
address the over-fitting issue by increasing the approximation
error threshold, but that leads to an increase in the recovery
error. In contrast, our methods using the lifted Hankel model
do not have the over-fitting issue.

C. Performance evaluation on the frequency [ and the rate of
change of frequency (ROCOF)

Considering the frequency f and ROCOF are import indi-
cators about the operation status of power systems, we further
compute them from the estimated phasor angels and compare
them with the ground-truth data. The computation of f and
ROCOF follows the formulas provided in [26], i.e.,

6(6; — 0i—1) +3(01—1 — O1—2) + (0r—2 — 0:_3)

Afe= 207 x At ’
Jt =60+ Af,
Afy — Afi_
ROCOF = M7
At

(29)

where 0;, f; denotes the phasor angle and frequency at instant
t, respectively. Due to the sampling rate of 30 samples per
channel per second, At = 1/30 second.
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Fig. 13: Performance comparison of frequency estimation from
current phasors

To evaluate the performance, we compute the average error
of ZZ;I (|ft — ﬁ|) /T over all the channels and 50 trials.
Similarly, the estimation performance of ROCOF is also
evaluated in terms of average error. The results based on the
estimated current phasors are shown in Figs. 13 and 14, where
the curves in the two figures are much similar, and in most
cases, the data recovery from our proposed method with y;
estimation have the best performance. Thus, though the data
recovery performance in Figs. 11, 13 and 14 are evaluated
in different aspects, they all support the conclusion that our
proposed algorithm achieves a better performance.

D. Influence of parameters on the data recovery performance

As presented in Sections IV-A and IV-B, several key
parameters, like x, L, A and J, are determined before the
implementation of this proposed method. Here we discuss the
influence of these parameters on the missing data recovery
performance. The results are compared over the same missing
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Fig. 14: Performance comparison of ROCOF estimation from
current phasors

voltage phasors in Mode 1. Other parameters in Algorithm 1
remain the same.

1) Parameter x: With L, X and ¢ fixed as 10, 103 and
1073, the recovery performance with different » is demon-
strated in Fig. 15. We can find when x is around L/2, the
estimation achieves the best performance, which is consistent
with the previous suggestions in [17], [18].
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Fig. 15: Estimation errors of voltage phasors with varying

2) Parameter window length L: Here we fix k, A as 6,
10~3 and 1073, respectively. The estimation errors with the
varying window length L are shown in Fig. 16, where the
algorithm achieves the best performance when L ~ 2. The
reason is that Hankel matrix H,(Z?®) in Fig. 6 has L — r + 1
columns, though a larger L helps reduce the effect of noise
on the subspace estimation, it tends to have more obsolete
transient components in the past measurements, which affects
the data recovery accuracy.

3) Parameter \: Here we keep « as 6, L as 10, and ¢ as
1073, Fig. 17 demonstrates how the performance is affected
by regularization weight A\. The data estimation performance
does not change much in a wide range of A from 1076 to
10~%. Then as )\ increases, the error goes up, which means A
is larger than necessary. The reason is that the synchrophasor
measurements have a high signal-to-noise ratio, thus a small
value of ), like 107%, is appropriate in practical applications.
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Fig. 16: Estimation errors of voltage phasors with varying L
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Fig. 17: Estimation errors of voltage phasors with varying A

4) Parameter 6: Parameters k, L and A are kept as 6,10
and 1073, respectively. Fig. 18 shows the result with §
varying from 10~! to 10~®, where no evident difference in
the estimation error is observed.

Fig. 19 demonstrates the average number of iterations
needed when 0 and missing data ratio changes in Mode 1.
Here we consider voltage phasors, and the result is averaged
over 50 trials. When the data loss ratio changes, the number
of iterations is always 3 with § = 10~8. Moreover, consid-
ering the stopping criteria is ||§§l) - ?t(l_l)m < 4, we find

S _ 5 5@ _ s S _5(0 :

ly:” =yl <y =¥ Il < |ly;” =¥, || holds in our
numerical simulations. Thus, though a smaller § corresponds
to more iterations in theory, the accuracy is still close to the
case of § = 10~! in our simulation. The same phenomena
hold in voltage phasors of other modes and current phasors as
well, i.e., the iterates always converge to stationary points in
a few iterations, and the performance does not change much
with varying 4.
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Fig. 18: Estimation errors of voltage phasors with varying &

E. Algorithm robustness and running time

1) The number of channels: Here we test the performance
of our algorithm with the incomplete voltage phasors in Mode
1. When we change the number of channels processed simul-
taneously, all the parameters remain as the original values.
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We pick channel 1 and randomly select m — 1 other channels.
We estimate the missing data on these m channels together.
Fig. 20 demonstrates the average estimation error of channel
1 over 50 trials.
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Fig. 20: Estimation errors of voltage phasors in channel 1 with

a varying total number of channels

We can find that recovering more channels simultaneously
helps improve the estimation accuracy, if they are deployed
close to each other such that a disturbance affects the mea-
surements of all channels. The correlations among channels
help improve the estimation performance. Even if we estimate
the missing entries with only the measurements on one channel
by itself, the performance is still acceptable.

2) Average running time: Section III-C analyzes the com-
plexity of the proposed algorithm. Here we record the running
time of the simulation over 50 trials and compute the average
time filling in the missing entries on each instant, as shown
in Fig. 21. Based on the theoretical analysis in Section
III-C, the average time should be proportional to the number
of measurement channels and not related to the data loss
percentages. Though the running time of 22 current phasors is
not exactly twice of the time of 11 voltage phasors, the ratio
always keeps around 1.5. As data loss percentage increases,
the slight increase of the running time in Fig. 21 results from
the increasing number of instants at which the measurements
are not fully observed. Note that the processing time is below
1 ms, far less than 1/30 s, which means the algorithm can
estimate the missing data in the current samples well before
the arrival of the measurements in the next instant. Thus,
the algorithm can be implemented to improve the quality of
streaming synchrophasor measurements in real time.

V. CONCLUSION AND DISCUSSIONS

This paper presents an online algorithm to estimate missing
data points of streaming synchrophasor measurements, espe-
cially under severe disturbances. The key idea is to character-
ize the dynamics of a non-linear system through the low-rank
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Fig. 21: Average running time in mode 1

Hankel property in the lifted space. The resulting data-driven
method does not require the modeling the nonlinear system
and can be implemented efficiently in real time. Compared
to existing algorithms, the algorithm can handle the extreme
cases of data losses with superior performance.
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APPENDIX: MOTIVATION OF USING GAUSSIAN KERNEL
FOR NONLINEAR SYSTEMS

To simplify our analysis, here we assume y;,y2 € R™
and consider the real Gaussian kernel in (12) to simplify the
analysis. Without loss of generality, let v = 1/2, then based
on Taylor expansion,

1
Kg(y1,¥2) = exp(—5lly1 = ya3)

—exp(— 51 13) - p(vTy2) - xp(—5 lv2l)
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If ®(y) € R™ consists of all the entries in the form of

1 2 k 1z n—1/2 ni n
exp(—3B(, ")y

Y2 (m

with 7"

(@(y1); ®(y2)) = exp(*§||y1

Then ®(y) is a vector with infinity dimension and con-
sists of all the possible monomials that can be con-
structed with entries in y. Each monomial is scaled by
exp(=3IylIZ) (. 5 ) (k)2 where S0, = k.
Since we assume x; can be determined from y,, then from
(5), we can find a function h(-) such that y;+1 = h(y:).
Applying the Taylor expansion to /f\z(), one can express it as
vi+1 = D®(y;) for some matrix D, because ®(y;) includes
all the possible monomials with entries in y;. Since ®(y;1)
includes all the monomials with entries in y;;;, we finally
obtain that ®(y;y1) = D®(y;), where D is in R™>*>°,

_1n;=~kand k=0,---,00, then we have

—y2l3) = Kg(y1,y2)-
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