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Abstract

Modeling human language requires the ability
to not only generate fluent text but also en-
code factual knowledge. However, traditional
language models are only capable of remem-
bering facts seen at training time, and often
have difficulty recalling them. To address this,
we introduce the knowledge graph language
model (KGLM), a neural language model with
mechanisms for selecting and copying facts
from a knowledge graph that are relevant to
the context. These mechanisms enable the
model to render information it has never seen
before, as well as generate out-of-vocabulary
tokens. We also introduce the Linked WikiText-
2 dataset,! a corpus of annotated text aligned to
the Wikidata knowledge graph whose contents
(roughly) match the popular WikiText-2 bench-
mark (Merity et al., 2017). In experiments, we
demonstrate that the KGLM achieves signifi-
cantly better performance than a strong base-
line language model. We additionally com-
pare different language models’ ability to com-
plete sentences requiring factual knowledge,
and show that the KGLM outperforms even
very large language models in generating facts.

1 Introduction

For language models to generate plausible sen-
tences, they must be both syntactically coherent as
well as consistent with the world they describe. Al-
though language models are quite skilled at generat-
ing grammatical sentences, and previous work has
shown that language models also possess some de-
gree of common-sense reasoning and basic knowl-
edge (Vinyals and Le, 2015; Serban et al., 2016;
Trinh and Le, 2019), their ability to generate fac-
tually correct text is quite limited. The clearest
limitation of existing language models is that they,
at best, can only memorize facts observed during
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[Super Mario Land] is a [1989] [side-scrolling]
[platform video game] developed and published
by as a [launch title] for their [Game
Boy] [handheld game console].

Super Mario Land | PYBLISHER
Q647249

launch game

MANUFACTURER

PUBLICATION
DATE

(21 April 1989]  [platform game] Game Boy|
Q155357

INSTANCE OF

handheld game console
Q941818

Figure 1: Linked WikiText-2 Example. A localized
knowledge graph containing facts that are (possibly)
conveyed in the sentence above. The graph is built by it-
eratively linking each detected entity to Wikidata, then
adding any relations to previously mentioned entities.
Note that not all entities are connected, potentially due
to missing relations in Wikidata.

side-scrolling video game
Q2281714

training. For instance, when conditioned on the text
at the top of Figure 1, an AWD-LSTM language
model (Merity et al., 2018) trained on Wikitext-2
assigns higher probability to the word “PlaySta-
tion” than “Game Boy”, even though this sentence
appears verbatim in the training data. This is not
surprising—existing models represent the distribu-
tion over the entire vocabulary directly, whether
they are common words, references to real world
entities, or factual information like dates and num-
bers. As a result, language models are unable to
generate factually correct sentences, do not gen-
eralize to rare/unseen entities, and often omit rare
tokens from the vocabulary (instead generating UN-
KNOWN tokens).

We introduce the knowledge graph language
model (KGLM), a neural language model with
mechanisms for selecting and copying information
from an external knowledge graph. The KGLM
maintains a dynamically growing local knowledge



graph, a subset of the knowledge graph that con-
tains entities that have already been mentioned in
the text, and their related entities. When generating
entity tokens, the model either decides to render
a new entity that is absent from the local graph,
thereby growing the local knowledge graph, or to
render a fact from the local graph. When render-
ing, the model combines the standard vocabulary
with tokens available in the knowledge graph, thus
supporting numbers, dates, and other rare tokens.

Figure 1 illustrates how the KGLM works. Ini-
tially, the graph is empty and the model uses the
entity Super Mario Land to render the first three
tokens, thus adding it and its relations to the local
knowledge graph. After generating the next two to-
kens (“is”, “a”) using the standard language model,
the model selects Super Mario Land as the parent
entity, Publication Date as the relation to render,
and copies one of the tokens of the date entity as
the token (“/989” in this case).

To facilitate research on knowledge graph-based
language modeling, we collect the distantly su-
pervised Linked WikiText-2 dataset. The underly-
ing text closely matches WikiText-2 (Merity et al.,
2017), a popular benchmark for language model-
ing, allowing comparisons against existing mod-
els. The tokens in the text are linked to entities in
Wikidata (Vrandeci¢ and Krotzsch, 2014) using a
combination of human-provided links and off-the-
shelf linking and coreference models. We also use
relations between these entities in Wikidata to con-
struct plausible reasons for why an entity may have
been mentioned: it could either be related to an
entity that is already mentioned (including itself)
or a brand new, unrelated entity for the document.

We train and evaluate the KGLM on Linked
WikiText-2. When compared against AWD-LSTM,
a recent and performant language model, KGLM
obtains not only a lower overall perplexity, but also
a substantially lower unknown-penalized perplex-
ity (Ueberla, 1994; Ahn et al., 2016), a metric that
allows fair comparisons between models that accu-
rately model rare tokens and ones that predict them
to be unknown. We also compare factual com-
pletion capabilities of these models, where they
predict the next word after a factual sentence (e.g.,
“Barack is married to ") and show that KGLM
is significantly more accurate. Lastly, we show that
the model is able to generate accurate facts for rare
entities, and can be controlled via modifications
the knowledge graph.

2 Knowledge Graph Language Model

In this section we introduce a language model that
is conditioned on an external, structured knowledge
source, which it uses to generate factual text.

2.1 Problem Setup and Notation

A language model defines a probability distribution
over each token within a sequence, conditioned on
the sequence of tokens observed so far. We denote
the random variable representing the next token as
x; and the sequence of the tokens before ¢ as x4,
i.e. language models compute p(z¢|z<;). RNN lan-
guage models (Mikolov et al., 2010) parameterize
this distribution using a recurrent structure:

p(x|r<y) = softmax(Wprhy + b),

)
ht = RNN(ht_l, Xt—l)-

We use LSTMs (Hochreiter and Schmidhuber,
1997) as the recurrent module in this paper.

A knowledge graph (KG) is a directed, labeled
graph consisting of entities £ as nodes, with edges
defined over a set of relations R, i.e. KG =
{(p,rye)|pe & reR,ec &}, where pis a par-
ent entity with relation r to another entity e. Prac-
tical KGs have other aspects that make this for-
mulation somewhat inexact: some relations are to
literal values, such as numbers and dates, facts
may be expressed as properties on relations, and
entities have aliases as the set of strings that can
refer to the entity. We also define a local know!-
edge graph for a subset of entities £ as LG4 =
{(p,r,e) |pe&cq,r € R,e €&}, ie. contains
entities £« and all facts they participate in.

2.2 Generative KG Language Model

The primary goal of the knowledge graph lan-
guage model (KGLM) is to enable a neural lan-
guage model to generate entities and facts from
a knowledge graph. To encourage the model to
generate facts that have appeared in the context
already, KGLM will maintain a local knowledge
graph containing all facts involving entities that
have appeared in the context. As the model decides
to refer to entities that have not been referred to
yet, it will grow the local knowledge graph with
additional entities and facts to reflect the new entity.
Formally, we will compute p(x¢, &|x<t, E<t)
where x4 is the sequence of observed tokens, €4
is the set of entities mentioned in x4, and KG ¢ is
the local knowledge graph determined by £, as
described above. The generative process is:



Super Mario Land is a 1989 side-scrolling platform video game developed and published by Nintendo
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Figure 2: KGLM Illustration. When trying to generate the token following “published by”, the model first decides
the type of the mention (¢;) to be a related entity (darker indicates higher probability), followed by identifying the
parent (p;), relation (r;), and entity to render (e;) from the local knowledge graph as (Super Mario Land, Publisher,
Nintendo). The final distribution over the words includes the standard vocabulary along with aliases of Nintendo,
and the model selects “Nintendo” as the token z;. Facts related to Nintendo will be added to the local graph.

e Decide the type of z;, which we denote by
t;: whether it is a reference to an entity in
KG ¢ (related), a reference to an entity not in
KG < (new), or not an entity mention ({)).

e If £, = new then choose the upcoming entity e;
from the set of all entities &.

o If t; = related then:

— Choose a parent entity p; from E,.

— Choose a factual relation r; to render,
Ty € {(parv e) € Icg<t’p = pt}‘

— Choose ¢; as one of the tail entities,
er € {e|(pt,rt,e) € KG<i}.

o Ift; = () thene; = 0.

e Generate z; conditioned on e;, potentially copy-
ing one of e;’s aliases.

o Ife; & <y, then E(yy1) + E<t U {er},
else g<(t+1) — Ect.

For the model to refer to an entity it has already
mentioned, we introduce a Reflexive relation that
self-relates, i.e. p = e for (p, Reflexive, e).

An illustration of this process and the variables
is provided in Figure 2, for generating a token in
the middle of the same sentence as in Figure 1.
Amongst the three mention types (¢;), the model
chooses a reference to existing entity, which re-
quires picking a fact to render. As the parent entity
of this fact (p;), the model picks Super Mario Land,
and then follows the Publisher relation (r¢) to se-

lect Nintendo as the entity to render (e;). When
rendering Nintendo as a token z;, the model has an
expanded vocabulary available to it, containing the
standard vocabulary along with all word types in
any of the aliases of e;.

Marginalizing out the KG There is a mismatch
between our initial task requirement, p(x¢|r<),
and the model we describe so far, which computes
p(xt, E|x<t, E<¢). We will essentially marginal-
ize out the local knowledge graph to compute the
probability of the tokens, i.e. p(x) = > ¢ p(x, E).
We will clarify this, along with describing the train-
ing and the inference/decoding algorithms for this
model and other details of the setup, in Section 4.

2.3 Parameterizing the Distributions

The parametric distributions used in the generative
process above are defined as follows. We begin
by computing the hidden state h; using the for-
mula in Eqn (1). We then split the vector into
three components: h; = [hy ;¢ ;e ], which
are respectively used to predict words, parents, and
relations. The type of the token, ¢;, is computed
using a single-layer softmax over hy , to predict
one of {new, related, 0}.

Picking an Entity We also introduce pretrained
embeddings for all entities and relations in the



knowledge graph, denoted by v, for entity e and
v, for relation r. To select e; from all entities in
case t; = new, we use:

p(er) = softmax(ve - (hey + hy )

over all e € £. The reason we add hy ;, and hy ;. is
to mimic the structure of TransE, which we use to
obtain entity and relation embeddings. Details on
TransE will be provided in Section 4. For mention
of a related entity, t; = related, we pick a parent
entity p; using

p(pe) = softmax(vy, - hyp)
over all p € &, then pick the relation r; using
p(ry) = softmax(v, - hy )

over all 7 € {r|(p,r,e) € KG;}. The combina-
tion of p; and r; determine the entity e; (which
must satisfy (pg, ¢, e1) € KGy; if there are multi-
ple options one is chosen at random).

Rendering the Entity If e; = (), i.e. there is
no entity to render, we use the same distribution
over the vocabulary as in Eqn (1) - a softmax using
h; ;. If there is an entity to render, we construct
the distribution over the original vocabulary and
a vocabulary containing all the tokens that appear
in aliases of e;. This distribution is conditioned
on e; in addition to z¢. To compute the scores
over the original vocabulary, h; ; is replaced by

t.x = Woroj[hy z; Ve,] where Wiy, is a learned
weight matrix that projects the concatenated vector
into the same vector space as hy ;.

To obtain probabilities for words in the alias
vocabulary, we use a copy mechanism Gu et al.
(2016). The token sequences comprising each alias
{a;} are embedded then encoded using an LSTM
to form vectors a;. Copy scores are computed as:

p(zy = aj) x exp [a ((hgvx)TWCOpy) a]}

3 Linked WikiText-2

Modeling aside, one of the primary barriers to in-
corporating factual knowledge into language mod-
els is that training data is hard to obtain. Standard
language modeling corpora consist only of text,
and thus are unable to describe which entities or
facts each token is referring to. In contrast, while
relation extraction datasets link text to a knowledge

graph, the text is made up of disjoint sentences that
do not provide sufficient context to train a pow-
erful language model. Our goals are much more
aligned to the data-to-text task (Ahn et al., 2016;
Lebret et al., 2016; Wiseman et al., 2017; Yang
et al., 2017; Gardent et al., 2017; Ferreira et al.,
2018), where a small table-sized KB is provided to
generate a short piece of text; we are interested in
language models that dynamically decide the facts
to incorporate from the knowledge graph, guided
by the discourse.

For these reasons we introduce the Linked
WikiText-2 dataset, consisting of (approximately)
the same articles appearing in the WikiText-2 lan-
guage modeling corpus, but linked to the Wiki-
data (Vrandeci¢ and Krotzsch, 2014) knowledge
graph. Because the text closely matches, mod-
els trained on Linked WikiText-2 can be compared
to models trained on WikiText-2. Furthermore,
because many of the facts in Wikidata are de-
rived from Wikipedia articles, the knowledge graph
has a good coverage of facts expressed in the
text. The dataset is available for download at:
https://rloganiv.github.io/linked-wikitext-2. Our
system annotates one document at a time, and con-
sists of entity linking, relation annotations, and
post-processing. The following paragraphs de-
scribe each step in detail.

Initial entity annotations We begin by identify-
ing an initial set of entity mentions within the text.
The primary source of these mentions is the human-
provided links between Wikipedia articles. When-
ever a span of text is linked to another Wikipedia
article, we associate its corresponding Wikidata
entity with the span. While article links provide a
large number of gold entity annotations, they are in-
sufficient for capturing all of the mentions in the ar-
ticle since entities are only linked the first time they
occur. Accordingly, we use the neural-el (Gupta
etal., 2017) entity linker to identify additional links
to Wikidata, and identify coreferences using Stan-
ford CoreNLP? to cover pronouns, nominals, and
other tokens missed by the linker.

Local knowledge graph The next step iteratively
creates a generative story for the entities using rela-
tions in the knowledge graph as well as identifies
new entities. To do this, we process the text token
by token. Each time an entity is encountered, we
add all of the related entities in Wikidata as candi-

Zhttps:/ /stanfordnlp.github.io/CoreNLP/



Tokens x; Super Mario Land is a 1989 side - scrolling platform video game developed
Mention type t; new 0 0 related new related 0
Entity Mentioned ¢, * 0 0§ 04-21-1989 SIDE_SCROLL PVG 0
Relation 7, ® @ pub date 1] genre 1]
Parent Entity p; 0 00 - 0 - 0
x¢ and published by Nintendo as a launch title for their Game Boy handheld game console .
te 0 0 0 related 0 0 new 0 0 related related 0
e 0 o o NIN 9o LT o o |GAMENBOY HGC 0
re 0 0 0 pub 0 O 0 0 ©® R:manu / platform instance of 0
pe 0 0 o SNl 0 0 0 o 0 NIN /[SML! ‘GAME_BOY ¥

Table 1: Example Annotation of the sentence from Figure 1, including corresponding variables from Figure 2.
Note that Game Boy has multiple parent and relation annotations, as the platform for Super Mario Land and as
manufactured by Nintendo. Wikidata identifiers are made human-readable (e.g., SML is Q647249) for clarity.

dates for matching. If one of these related entities
is seen later in the document, we identify the entity
as a parent for the later entity. Since multiple re-
lations may appear as explanations for each token,
we allow a token to have multiple facts.

Expanding the annotations Since there may be
entities that were missed in the initial set, as well
as non-entity tokens of interest such as dates and
quantities we further expand the entity annotations
using string matching. For entities, we match the
set of aliases provided in Wikidata. For dates, we
create an exhaustive list of all of the possible ways
of expressing the date (e.g. "December 7, 1941",
"7-12-1941", "1941", ...). We perform a similar
approach for quantities, using the pint library in
Python to handle the different ways of expressing
units (e.g. "g", "gram", ...). Since there are many
ways to express a numerical quantity, we only ren-
der the quantity at the level of precision supplied
by Wikidata, and do not perform unit conversions.

Example Annotation An example annotation is
provided in Table 1 corresponding to the instance in
Figure 1, along with the variables that correspond
to the generative process of the knowledge graph
language model (KGLM). The entity mentioned for
most tokens here are human-provided links, apart
from “7989” that is linked to 04-21-1989 by the
string matching process. The annotations indicate
which of the entities are new and related based on
whether they are reachable by entities linked so far,
clearly making a mistake for side-scrolling game
and platform video game due to missing links in
Wikidata. Finally, multiple plausible reasons for
Game Boy are included: it’s the platform for Super
Mario Land and it is manufactured by Nintendo,
even though only the former is more relevant here.

Train Dev Test
Documents 600 60 60
Tokens 2,019,195 207,982 236,062
Vocab. Size 33,558 - -
Mention Tokens 207,803 21,226 24,441
Mention Spans 122,983 12,214 15,007
Unique Entities 41,058 5,415 5,625
Unique Relations 1,291 484 504

Table 2: Linked WikiText-2 Corpus Statistics.

Even with these omissions and mistakes, it is clear
that the annotations are rich and detailed, with a
high coverage, and thus should prove beneficial for
training knowledge graph language models.

Dataset Statistics Statistics for Linked WikiText-2
are provided in Table 2. In this corpus, more than
10% of the tokens are considered entity tokens, i.e.
they are generated as factual references to informa-
tion in the knowledge graph. Each entity is only
mentioned a few times (less than 5 on average, with
a long tail), and with more than thousand different
relations. Thus it is clear that regular language
models would not be able to generate factual text,
and there is a need for language models to be able
to refer to external sources of information.

Differences from WikiText-2  Although our
dataset is designed to closely replicate WikiText-2,
there are some differences that prevent direct com-
parison. Firstly, there are minor variations in text
across articles due to edits between download dates.
Secondly, according to correspondence with Merity
et al. (2017), WikiText-2 was collected by querying
the Wikipedia Text APIL. Because this API discards
useful annotation information (e.g. article links),
Linked WikiText-2 instead was created by directly
from the article HTML.



4 Training and Inference for KGLM

In this section, we describe the training and infer-
ence algorithm for KGLM.

Pretrained KG Embeddings During evaluation,
we may need to make predictions on entities and
relations that have not been seen during training.
Accordingly, we use fixed entity and relations em-
beddings pre-trained using TransE (Bordes et al.,
2013) on Wikidata. Given (p,r,e), we learn em-
beddings v, v, and v, to minimize the distance:

2
5(vp Vi, ve) = vy + ve — Vel
We use a max-margin loss to learn the embeddings:

L = max (0,7 + 60 (Vp, Vi, Ve) — 0 (V;,VT,Vé))

where 7 is the margin, and either p’ or €’ is a ran-
domly chosen entity embedding.

Training with Linked WikiText-2 Although the
generative process in KGLM involves many steps,
training the model on Linked WikiText-2 is straight-
forward. Our loss objective is the negative log-
likelihood of the training data:

((©) = Zlogp(xt,gt\:r<t,8<t; 0),
t

where O is the set of model parameters. Note that
if an annotation has multiple viable parents such as
Game Boy in 1, then we marginalize over all of the
parents. Since all random variables are observed,
training can performed using off-the-shelf gradient-
based optimizers.

Inference While observing annotations makes the
model easy to train, we do not assume that the
model has access to annotations during evaluation.
Furthermore, as discussed in Section 2.2, the goal
in language modelling is to measure the marginal
probability p(x) = > ¢ p(x, £) not the joint proba-
bility. However, this sum is intractable to compute
due to the large combinatorial space of possible
annotations. We address this problem by approxi-
mating the marginal distribution using importance
sampling. Given samples from a proposal distribu-
tion ¢(€|x) the marginal distribution is:

P00 =X p(x.8) = 3 el

q
Il r(xE)
- N;} q(€lx)

This approach is used to evaluate models in Ji et al.
(2017) and Dyer et al. (2016). Following Ji et al.
(2017), we compute ¢ (€£]x) using a discriminative
version of our model that predicts annotations for
the current token instead of for the next token.

5 Experiments

To evaluate the proposed language model, we
first introduce the baselines, followed by an evalua-
tion using perplexity of held-out corpus, accuracy
on fact completion, and an illustration of how the
model uses the knowledge graph.

5.1 Evaluation Setup

Baseline Models We compare KGLM to the fol-

lowing baseline models:

o AWD-LSTM (Merity et al.,, 2018): strong
LSTM-based model used as the foundation of
most state-of-the-art models on WikiText-2.

e ENTITYNLM (Ji et al., 2017): an LSTM-based
language model with the ability to track entity
mentions. Embeddings for entities are created dy-
namically, and are not informed by any external
sources of information.

o EntityCopyNet: a variant of the KGLM where
t; = new for all mentions, i.e. entities are
selected from &£ and entity aliases are copied, but
relations in the knowledge graph are unused.

Hyperparameters We pre-train 256 dimensional
entity and relation embeddings for all entities
within two hops of the set of entities that occur in
Linked WikiText-2 using TransE with margin v = 1.
Weights are tied between all date embeddings and
between all quantity embeddings to save memory.
Following Merity et al. (2018) we use 400 dimen-
sional word embeddings and a 3 layer LSTM with
hidden dimension 1150 to encode tokens. We also
employ the same regularization strategy (DropCon-
nect (Wan et al., 2013) + Dropout(Srivastava et al.,
2014)) and weight tying approach. However, we
perform optimization using Adam (Kingma and Ba,
2015) with learning rate 1e-3 instead of NT-ASGD,
having found that it is more stable.

5.2 Results

Perplexity We evaluate our model using the stan-
dard perplexity metric: exp (% Z;le log p(mﬂ).
However, perplexity suffers from the issue that it



PPL UPP
ENTITYNLM® (Ji et al., 2017) 85.4 189.2
EntityCopyNet" 76.1  144.0
AWD-LSTM (Merity et al., 2018)  74.8  165.8
KGLM" 4.1 885

Table 3: Perplexity Results on Linked WikiText-2. Re-
sults for models marked with * are obtained using im-
portance sampling.

overestimates the probability of out-of-vocabulary
tokens when they are mapped to a single UNK
token. This is problematic for comparing the per-
formance of the KGLM to traditional language
models on Linked WikiText-2 since there are a large
number of rare entities whose alias tokens are out-
of-vocabulary. That is, even if the KGLM identifies
the correct entity and copies the correct alias token
with high probability, other models can attain bet-
ter perplexity by assigning a higher probability to
UNK. Accordingly, we also measure unknown pe-
nalized perplexity (UPP) (a.k.a adjusted perplexity)
introduced by Ueberla (1994), and used recently
by Ahn et al. (2016) and Spithourakis and Riedel
(2018). This metric penalizes the probability of
UNK tokens by evenly dividing their probability
mass over U, the set of tokens that get mapped
to UNK . We can be compute UPP by replacing
p(UNK) in the perplexity above by |71|p(UNK),
where |U{] is estimated from the data.

We present the model perplexities in Table 3. To
marginalize over annotations, perplexities for the
ENTITYNLM, EntityCopyNet, and KGLM are es-
timated using the importance sampling approach
described in Section 4. We observe that the KGLM
attains substantially lower perplexity than the other
entity-based language models (44.1 vs. 76.1/85.4),
providing strong evidence that leveraging knowl-
edge graphs is crucial for accurate language mod-
eling. Furthermore, KGLM significantly outper-
forms all models in unknown penalized perplexity,
demonstrating its ability to generate rare tokens.

Fact Completion Since factual text generation
is our primary objective, we evaluate the ability
of language models to complete sentences with
factual information. We additionally compare with
the small GPT-2 (Radford et al., 2019), a language
model trained on a much larger corpus of text. We
select 6 popular relations from Freebase, and write
a simple completion template for each, such as “X
was born in __” for the birthplace relation. We

AWD- KGLM

LstM  CPT2 0 once NEL
nation-capital 0/0 6/7 0/0 0/4
birthloc 0/9 14/14 94 /95 85/92
birthdate 0/25 8/9 65/ 68 61/67
spouse 0/0 2/3 2/2 1/19
city-state 0/13 62/62 9/59 4/59
book-author 0/2 0/0 61/62 25728
Average 0.0/8.2 15.3/15.8 38.5/47.7 29.3/44.8

Table 4: Fact Completion. Top-k accuracy

(@1/@5,%) for predicting the next token for an incom-
plete factual sentence. See examples in Table 5.

generate sentences for these templates for a number
of (X,Y) pairs for which the relation holds, and
manually examine the first token generated by each
language model to determine whether it is correct.
Table 4 presents performance of each language
model on the relations. The oracle KGLM is given
the correct entity annotation for X, while the NEL
KGLM uses the discriminative model used for im-
portance sampling combined with the NEL entity
linker to produce an entity annotation for X.
Amongst models trained on the same data, both
KGLM variants significantly outperform AWD-
LSTM; they produce accurate facts, while AWD-
LSTM produced generic, common words. KGLMs
are also competitive with models trained on orders
of magnitude more data, producing factual com-
pletions that require specific knowledge, such as
birthplaces, dates, and authors. However, they do
not capture facts or relations that frequently appear
in large corpora, like the cities within states.? It is
encouraging to see that the KGLM with automatic
linking performs comparably to oracle linking.
We provide examples in Table 5 to highlight
qualitative differences between KGLM, trained on
600 documents, and the recent state-of-the-art lan-
guage model, GPT-2, trained on the WebText cor-
pus with over 8 million documents (Radford et al.,
2019). For examples that both models get factu-
ally correct or incorrect, the generated tokens by
KGLM are often much more specific, as opposed
to selection of more popular/generic tokens (GPT-2
often predicts “New York™ as the birthplace, even
for popular entities). KGLM, in particular, gets
factual statements correct when the head or tail en-
tities are rare, while GPT-2 can only complete facts
for more-popular entities while using more-generic
tokens (such as “January” instead of “20”).

3This is not a failure of the KG, but of the model’s ability
to pick the correct relation from the KG given the prompt.



Input Sentence Gold GPT-2 KGLM
Both correct Paris Hilton was bornin New York City  New 1981
Arnold Schwarzenegger was bornon ____ 1947-07-30 July 30
Bob Dylan was bornin ____ Duluth New Duluth
KGLM correct Barack Obama was bornon ____ 1961-08-04 January August
Ulysses is a book that was written by ____ James Joyce a James
St. Louis is a city in the state of ____ Missouri Missouri  Oldham
GPTv2 correct  Richard Nixon was bornon 1913-01-09 January 20
Kanye West is married to ____ Kim Kardashian Kim the
Both incorrect The capital of Indiais ___ New Delhi the a
Madonna is married to Carlos Leon a Alex

Table 5: Completion Examples. Examples of fact completion by KGLM and GPT-2, which has been trained on
a much larger corpus. GPT-2 tends to produce very common and general tokens, such as one of a few popular
cities to follow “born in”. KGLM sometimes makes mistakes in linking to the appropriate fact in the KG, however,
the generated facts are more specific and contain rare tokens. We omit AWD-LSTM from this figure as it rarely
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produced tokens apart from the generic “the” or “a”, or

Effect of changing the KG For most language
models, it is difficult to control their generation
since factual knowledge is entangled with gener-
ation capabilities of the model. For KGLM, an
additional benefit of its use of an external source
of knowledge is that KGLM is directly control-
lable via modifications to the KG. To illustrate this
capability with a simple example, we create com-
pletion of “Barack Obama was born on __” with
the original fact (Barack Obama, birthDate, 1961-
08-04), resulting in the top three decoded tokens
as “August”, “4”,“1961”. After changing the birth
date to 2013-03-21, the top three decoded tokens
become “March”, “217, “2013”. Thus, changing
the fact in the knowledge graph directly leads to a
corresponding change in the model’s prediction.

6 Related Work

Knowledge-based language models Our work
draws inspiration from two existing knowledge-
based language models:

(1) ENTITYNLM (Ji et al., 2017) which im-
proves a language model’s ability to track entities
by jointly modeling named entity recognition and
coreference. Our model similarly tracks entities
through a document, improving its ability to gener-
ate factual information by modeling entity linking
and relation extraction.

(ii)) The neural knowledge language model
(NKLM) (Ahn et al., 2016) which established the
idea of leveraging knowledge graphs in neural lan-
guage models. The main differentiating factor be-
tween the KGLM and NKLM is that the KGLM
operates on an entire knowledge graph and can be

“<UNK> ”.

evaluated on text without additional conditioning
information, whereas the NKLLM operates on a rel-
atively smaller set of predefined edges emanating
from a single entity, and requires that entity be pro-
vided as conditioning information ahead of time.
This requirement precludes direct comparison be-
tween NKLM and the baselines in Section 5.

Data-to-text generation Our work is also related
to the task of neural data-to-text generation. For
a survey of early non-neural text generation meth-
ods we refer the reader to Reiter and Dale (1997).
Recent neural methods have been applied to gener-
ating text from tables of sports statistics (Wiseman
etal., 2017), lists and tables (Yang et al., 2017), and
Wikipedia info-boxes (Lebret et al., 2016). The pri-
mary difference between these works and ours is
our motivation. These works focus on generating
coherent text within a narrow domain (e.g. sports,
recipes, introductory sentences), and optimize met-
rics such as BLEU and METEOR score. Our focus
instead is to use a large source of structured knowl-
edge to improve language model’s ability to handle
rare tokens and facts on a broad domain of topics,
and our emphasis is on improving perplexity.

General language modeling Also related are the
recent papers proposing modifications to the AWD-
LSTM that improve performance on Wikitext-
2 (Gong et al., 2018; Yang et al., 2018; Krause
etal., 2018). We chose to benchmark against AWD-
LSTM since these contributions are orthogonal,
and many of the techniques are compatible with
the KGLM. KGLM improves upon AWD-LSTM,
and we expect using KGLM in conjunction with
these methods will yield further improvement.



7 Conclusions and Future Work

By relying on memorization, existing language
models are unable to generate factually correct text
about real-world entities. In particular, they are
unable to capture the long tail of rare entities and
word types like numbers and dates. In this work,
we proposed the knowledge graph language model
(KGLM), a neural language model that can access
an external source of facts, encoded as a knowledge
graph, in order to generate text. Our implementa-
tion is available at: https://github.com/rloganiv/
kglm-model. We also introduced Linked WikiText-
2 containing text that has been aligned to facts in
the knowledge graph, allowing efficient training
of the model. Linked WikiText-2 is freely avail-
able for download at: https://rloganiv.github.io/
linked-wikitext-2. In our evaluation, we showed
that by utilizing this graph, the proposed KGLM
is able to generate higher-quality, factually correct
text that includes mentions of rare entities and spe-
cific tokens like numbers and dates.

This work lays the groundwork for future re-
search into knowledge-aware language modeling.
The limitations of the KGLM model, such as the
need for marginalization during inference and re-
liance on annotated tokens, raise new research prob-
lems for advancing neural NLP models. Our dis-
tantly supervised approach to dataset creation can
be used with other knowledge graphs and other
kinds of text as well, providing opportunities for
accurate language modeling in new domains.
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