Multibody Syst Dyn
https://doi.org/10.1007/s11044-020-09749-7

®

Check for
updates

Billion degree of freedom granular dynamics simulation
on commodity hardware via heterogeneous data-type
representation

Conlain Kelly! - Nicholas Olsen' - Dan Negrut!

Received: 1 February 2020 / Accepted: 27 May 2020
© Springer Nature B.V. 2020

Abstract We discuss modeling, algorithmic, and software aspects that allow a simulation
tool called Chrono::Granular to run billion-degree-of-freedom dynamics problems on com-
modity hardware, i.e., a workstation with one GPU. The ability to scale the solution to large
problem sizes is traced back to an adimensionalization process combined with the use of
mixed-precision data types that reduce memory pressure and improve arithmetic intensity,
judicious use of the memory ecosystem on GPU cards as exposed by CUDA on Nvidia ar-
chitectures, and a software implementation that prioritizes execution speed over modeling
generality. The simulation approach is demonstrated for 3D scenarios with up to 710 million
bodies for the frictionless case (of relevance in emulsions), and up to 210 million bodies for
scenarios with friction (of relevance in terradynamics, additive manufacturing, soft-matter
physics). The frictional contact model used draws on the Discrete Element Method (DEM).
A performance benchmark shows linear scaling with problem size up to GPU memory ca-
pacity. The implementation has an application programming interface that enables it to in-
teract in a cosimulation framework with third-party dynamics engines. This interaction is
anchored by a force—displacement data exchange protocol that brings in external bodies as
geometries defined by triangle meshes. We demonstrate the cosimulation mechanism by
interfacing to an open source, multiphysics simulation engine called Chrono. Therein, tri-
angular meshes define moving boundary conditions for Chrono::Granular, which in turn
provides forces and torques acting on the triangular meshes. Several tests are considered
for validation and scaling analysis purposes. The limiting aspects of the current implemen-
tation are its exclusive support of monodisperse granular systems, and its lack of handling
geometries beyond spheres. These limitations are addressed by ongoing work.

B<X D. Negrut
negrut@wisc.edu

C. Kelly
ckellyS @wisc.edu

N. Olsen
nicholas.olsen@wisc.edu

1" Dept. of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA

Published online: 03 June 2020 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11044-020-09749-7&domain=pdf
http://orcid.org/0000-0003-1565-2784
mailto:negrut@wisc.edu
mailto:ckelly5@wisc.edu
mailto:nicholas.olsen@wisc.edu

C. Kelly et al.

Keywords Many-body dynamics - GPU parallel computing - Friction and contact -
Discrete element method - Granular material

1 Introduction

More than 50% of the materials processed/handled in industry come in granular form [1].
Understanding their dynamics is relevant in a range of practical applications and scientific
pursuits, e.g., additive manufacturing, terramechanics, composite materials, suspensions,
pyroclastic flows, formation of asteroids and planets, meteorite cratering, etc. Handling fric-
tional contact dynamics in granular materials can be done via a so-called contact dynamics
(CD) approach [2] or a Discrete Element Method (DEM) formalism [3]. For a comparison
of the two methodologies, see [4]; herein, the approach used draws exclusively on DEM. Re-
gardless of the formulation though, CD or DEM, fully resolved simulations for the granular
dynamics problem remain time consuming. Attempts to coarse-grain the granular material
(see, for instance, [5—7]) have met with good success when certain conditions are met: the
material is dry, the particles have spherical shape, and the spheres have identical radii. Yet
there are numerous applications that don’t meet these assumptions and which typically fall
back on DEM, the “go-to” solution, extensively validated and proven to provide reliable
results in granular dynamics [8—11]. However, the use of DEM comes with caveats: (i) se-
lecting the right DEM model parameters is problem-specific and requires nontrivial effort
and insights; (i7) fully resolved granular systems associated with practical problems can lead
to billions of elements, which poses storage and processing challenges; (iii) the shape of
the discrete elements in practical applications is complex, which makes the contact detection
process time consuming to the point where in most cases one compromises on the geome-
try for the sake of maintaining reasonable execution speed; and (iv) the physical properties
of the grains (material and size attributes), might place stringent limits on the size of the
simulation time step.

This contribution addresses (ii) above by relying on GPU computing, with potential
future work outlined for addressing (ii7). Leveraging bandwidths close to 1000 GB/s (com-
pared to 100 GB/s on high end CPU systems) and compute rates close to 15 Tflops/s (com-
pared to 1 Tflops/s on high end CPU systems), we demonstrate granular dynamics simula-
tions with more than 700 million elements for frictionless systems (relevant in emulsions)
and 220 million for systems that employ a Mindlin-type friction model with memory. To the
best of our knowledge, the largest granular dynamics simulation of practical relevance to
date contained 2.4 billion elements. It was run on 16,384 CPUs (131,072 cores) of Japan’s
K-supercomputer [12—-14], the 2012 fastest supercomputer in the world and now the 18th
in the ranking of the world’s supercomputers [15]. Although we report frictional contact
dynamic problem of sizes roughly one-tenth of the size reported in [12—14], our approach
uses one GPU instead of more than 100,000 cores. Moreover, the source code of the soft-
ware implementation is available as open source for unrestricted use. The key aspects of the
approach adopted are: an adimensionalization process combined with mixed-precision data,
full leverage of the GPU memory ecosystem exposed through the Nvidia CUDA program-
ming environment, and exploiting a select set of assumptions that trade modeling generality
for performance and scalability.

The manuscript is organized as follows. Section §2 contains a description of the DEM
model and equations of motion used, and the adimensionalization process that affords the
use of integers for storing position information in the DEM simulation. Section §3 highlights
implementation aspects tied to heterogeneous data use (integers for positions and single

@ Springer

Billion degree of freedom granular dynamics

Table 1 Model and simulation

parameters b Particle count
m' Particle i mass
R! Particle i radius
ol Particle i density
g Gravitational acceleration
kn Normal elastic coefficient
Yn Normal damping coefficient
kt Tangential elastic coefficient
Vs Tangential damping coefficient
s Coefficient of sliding friction
Wr Coefficient of rolling friction

precision floating point values for velocity); data structures used in the code; extending the
simulation domain via local coordinates; computational flow, and use of cosimulation for
interfacing to third-party dynamics engines. Section §4 reports results of a scaling analysis
tied to a commonly used benchmark problem, namely filling of a box with granular material.
Section §5 contains results associated with several numerical experiments: hopper flow, dam
brake test, and communicating vessels experiments. Section §6 places the present work in a
broader context by providing a literature overview in which the focus is on problem sizes,
as they have been defining the state-of-the-art in various application areas. The last section
summarizes a set of conclusions and directions for future work.

2 The DEM model
2.1 The equations of motion

We summarize below a general formulation of the equations of motion that draws on the
classical DEM method [3]. Superscripts denote the relevant particle (or pair of particles),
whereas subscripts denote components of a vector. Since no exponentiation occurs in this
section, there should be no conflict with this use of superscripts. Table 1 summarizes the pa-
rameters associated with the DEM model adopted herein. Two spheres in mutual contact are
shown in Fig. 1, along with the normal and tangential (friction) forces and several kinematic
quantities that come into play in computing the frictional contact force.

For spherical element i, let C(i; t) be the collection of bodies that i is in mutual contact
with at time ¢. The time evolution of sphere i is governed by the Newton—Euler equations
of motion:

dvt . L. ii
i =me s) (R +F7), (1a)
JjeC(ist)
jide’ _ S MU= 3 A xF M (1b)
dt ! e

JeC(it) JeC(it)

where, for element i, m' is its mass; I’ is its mass moment of inertia (a scalar in the spherical
case); the velocity v/ =i is the time derivative of the position; Ar” is the vector from
element’s i center of mass to the point where the friction force F;’ is applied; and M}, is

@ Springer

C. Kelly et al.

Fig. 1 Schematic of two spheres
in contact

Fu Fu

6"

the rolling resistance moment. Given that all elements are spheres, there is no need to store
their orientation, and the angular velocity @' will provide the information needed to track
the friction history at the point of contact. The normal and tangential forces are determined
using the Hertzian and Mindlin contact formulations, respectively:

ij

Fi = | = (k"0 —y,mv/) +F,, (1c)

" 2R

s 5 o
F/ = YT (—k,u;/ - y,n_fz”vﬁj)) (1d)

Above, F, is a cohesion force, m"/ and RV represent the effective mass and effective radius
for the contact, and v,/ and v;’ are the normal and tangential components of the relative
velocity:

_. mim/
i = P (le)
m' +m/’
[an
R+ RI’
V/i=v + @/ x A —v — @' x Ar¥, (1g)
Vil = (v - nif)n | (1h)
v/ =il i (11)

The friction force is capped relative to the normal contact force via the Coulomb criterion
IF/| < |F|.

In order to compute the forces in Egs. (1¢) and (1d), one must evaluate the contact normal
n/, normal penetration 87, tangential displacement at the contact point u;/, and normal and
tangential velocities v,/ and v;’, respectively. Except for u,’ these quantities can be readily
computed from the sphere positions, linear velocities, and angular velocities.

The computation of u;’ is somewhat more involved. Dropping the ij superscripts for no-
tational brevity, u, is updated in a multistep fashion, i.e., from integration step to integration
step, tracking its history between steps. We employ the notation u, ; to denote the tangential
displacement history at time step k. In Chrono::Granular, this quantity is always enforced to

@ Springer

Billion degree of freedom granular dynamics

be perpendicular to the current contact normal, i.e., to lie in the contact plane:

u;k,k =51 + VAL,
2

U = ll;k — (Ilk . u;’ik)nk .

This pairwise interaction history must be maintained for each partner in C(i; t) for each
particle i. The Coulomb capping of the friction force is then enforced via

. M/Sknsn
Ww=mn |\ Wi, Wi—), 3)
ke luy |

where p, is taken to be the same between static and dynamic motions. Note that since the
nonlinear \/251;:’” term appears in both F, and F,, it cancels out of the Coulomb criterion
and does not effect clamping. Moreover, only the frictional force computed in Eq. (1d) is
clamped — the rolling resistance torque described below is not affected by the Coulomb
criterion.

In Chrono::Granular, v, is interpreted as the relative velocity at the contact point in-
cluding both sliding and rolling contributions. This enforces a situation of “rolling without
slipping”, where only the relative displacement of the contact point is relevant and not the
means of locomotion. An additional rolling resistance torque My, of Eq. (1b) is introduced
based on ideas outlined in [16—19] to bring in an interparticle rolling resistance meant to
emulate effects induced by roughness and interlocking. Two rolling resistance models are
implemented based on work reported in [18]. The simpler scales a constant torque by the
magnitude of the normal component of the contact force, where 0"/ = @' — @’:

M= RED 4
= et [F;/ 1. 4)

The second model applies a resistive moment based on the relative slip at the contact point
due to relative roll, i.e.,

MY = —p, RV|F (0 x A7 — @/ x ArV). 3)
2.2 User units vs. simulation units

Regardless of the system of units employed by the user, e.g., CGS, MKS, etc. (called herein
“user units”), the code internally adimensionalizes and rescales quantities. This change of
units is motivated by the interplay between two aspects (further discussed in Sect. 3.1):
(i) for granular systems with elements that are very small (low mass) and stiff, computing
normal or tangential deformations in user units may become numerically compromised due
to finite precision representation and arithmetic constraints; and (ii) computationally it is
more efficient to use integers than floats, and even better to use single-precision floats than
doubles. As a consequence, the position of the elements is stored internally using 32-bit
integers as explained in Sect. 3.2. Most other quantities are stored as 32-bit floating point
numbers (float), and in instances where critical values are evaluated, the computation
carries out in 64-bit double precision, and then quantities appropriately recast to int or
single precision float type. As such, a means of converting quantities into a consistent
range of values is needed so that we can reliably use mixed-precision data types and avoid
related overflow/underflow issues.

@ Springer

C. Kelly et al.

The unit conversion consists of two steps—establishing base units and determining scal-
ing factors. To convert all quantities, we first select characteristic mass, length, and time
units. Each unit is subsequently divided by a scaling factor (¥,,, ¥, or ¥,) for the unit to
become more tractable with mixed-precision types. Based on a Hertzian force model with
spring constant k,,, sphere mass m;, sphere radius Ry, and system gravity g, these are chosen
as

1
Mypit = Emsv (6a)
1 % 1
msg 3
Lunie = % (k,) Rs3) (6b)
1 [mg
tunit = — ./ — . 6
nit i\ &, (6¢)

All derived units are then expressed as multiples of these units, i.e., the simulation ve-
locity unit is % Internally, all user-provided quantities are converted to this adimensional
set of so called “simulation units”. In fact, the user’s unit system does not come into play
insofar as the simulation’s internals are concerned.

This decision of £,,; was chosen so that the deformation required to sustain a single
sphere resting on top of another sphere will be ¥, in the new set of units. Thus, a typical
deformation will be order ¥/, or greater, so that most deformations are above order unity and
therefore positions can be well represented by integral multiples of £,,;. We have worked
with ¥, = 16 in most experiments, but this selection is user-controlled. Indeed, this choice
translates into determining how many units of length go along with the overlap witnessed
when one sphere sits at rest on the top of a different one. Note that this adimensionalization
applies to particulate systems beyond monodisperse spheres. One could replace m; and R;
with a characteristic particle mass and size, or perhaps those of the smallest in the system to
ensure stability for all particles. One possible limitation with this approach would occur in
low-gravity situations, so that g (and correspondingly £,,;;) are very small. However, these
situations also lead to an ill-conditioning of the system similar to very still or small particles,
regardless of the adimensionalization.

Of the three user-selected scaling factors, the most consequential selection is that of v, as
it impacts the accuracy of data representation for position. Although Chrono::Granular uses
a nonlinear Hertzian contact force model, it still relies on a pseudolinear spring constant
k, (having units force per distance) and adds in the nonlinearity through a dimensionless

Hertz stiffening factor ,/ 2‘2—],, Quantitatively, this means that the spring constant supplied to

provide a certain normal force for a given deformation needs to be larger for the Hertzian
case than a pure Hookean case, since the stiffening factor actually has magnitude less than
unity. However, the nonlinear spring stiffens faster, so that the force evolution over a period
of contact is different. By using this stiffening, we can retain the meaning of a linear spring
constant but obtain the desirable nonlinear behavior a Hertz model provides.

3 Software design aspects. Implementation details

3.1 Heterogeneous data-type representation

Several scales come into play in the typical DEM simulation, i.e., that of the target appli-
cation, of the particle, and of the particle deformation. The cornerstone of the approach

@ Springer

Billion degree of freedom granular dynamics

embraced is its use of different data types for storing and computing information pertain-
ing these scales. Consider, for instance, two spheres of density p = 2600 kg/m?, radius
R =0.5 x 1073 m, and stiffness k£ = 10 N/m — one resting on top of the other. With a
simple Hookean contact model, the force balance leads to %pn Rig=k§ = 6= ;—”’”TRS‘?.
Then, & is on the order of 107!3. This penetration must be computed from two elements’
position values. Note that the machine precision for an IEEE float is €y ~ 1077 for a
32-bit float and €pqen & 10716 for a 64-bit double precision floating point number. Imagine
next that two spheres in contact are part of a deformable terrain on which a rover operates;
it is reasonable to assume that the application scale, and thus the two position values men-
tioned above, are at least order 1 m. As such, given the IEEE standard machine precision
€mach Values above, calculating § will experience catastrophic loss of precision with a 32-bit
float and have little margin with a 64-bit float. The loss of precision situation becomes more
dramatic if the rover operates on the moon, Mars, a moon of Mars, or an asteroid, when the
gravitational acceleration, and thus §, can be markedly smaller. Note that albeit to a lesser
degree, these loss of precision issues also pertain to a Hertzian force model, and indeed to
any penalty-based DEM model that spans multiple scales.

By using the unit scaling in Eq. (6b), a particle’s position herein is stored in a 32-bit
int (integer) type. From a high vantage point, the idea promoted is as follows: both the
single precision float and int data types have a 32 bit budget. However, for the former
data type, this bit budget is used to generate machine numbers, i.e., proxies, for all values
between —oo and +o00. In a rover mobility application or some other typical granular flow
simulation, one needs to capture position values in the range, for instance, (—10, 10) meters.
As such, bits provisioned to represent, for instance, values in the hundreds of millions, go
wasted since the simulation doesn’t hit such values. Instead, it is more advantageous to use
the 32 bits organized as an int thus capturing approximately four billion of them, and
represent any location as an integer multiple of a smallest value, which was denoted in
Eq. (6b) by £yni. Then, the range of positions that can be captured, extends over a distance
of 232 x £y in each of the three directions of the 3D space (a discussion of how to go
beyond this range is saved for Sect. 3.3). Hence, no bits are wasted on position values in the
hundreds of millions, which do not actually come into play in the typical DEM application.
It should be noted that the size of the error introduced by this approach is of the order %
(in user units). Indeed, the center of mass (CM) of the body, can only be placed at multiples
of €ynic. As such, any scenario in which the solver would try to place the body somewhere
in between two grid points will lead to “round off.” For simplicity, assume that the problem
is 1D. In this case, the CM can be placed at location ..., —1,0, 1,2, ..., etc. For instance,
the body cannot be placed at a location 4.32, in this case it will be placed at location 4;
likewise, it cannot be placed at position 7.68, in this case it would be rounded to the next
integer, that is, 8. Thus, for any location “off-grid”, there will be round-off that, in user units,
is less than % It should be pointed out that the straight use of C++/C’s double data type
instead of int to store positions would be superior in terms of precision. However, this
would require 64 bits, which translates into doubling the amount of memory necessary to
store position information. Also, it would lead to an increase in simulation time given that
the effective bandwidth would drop by a factor of two. Finally, one additional advantage of
the integer-position approach is that the numerical error is uniform over the entire range,
whereas £1oat would have nonuniform error over its range of values.

3.2 Data structures

Throughout its implementation, Chrono::Granular uses CUDA’s managed memory mech-
anism [20, 21], wherein the CUDA runtime provides a unified virtual address space in

@ Springer

C. Kelly et al.

which data pointers can be invoked transparently from either host or device. The bene-
fits are twofold: effortless host—device data transfers, and cleaner implementation. The dy-
namic quantities for an element, i.e., positions, velocities, and accelerations, are stored in a
structure-of-arrays format to maximize coalesced memory accesses and leverage effectively
the GPU’s high bandwidth. For host-side data management, C++ STL vectors are used with
a custom memory allocator that relies on CUDA unified memory, a decision that improved
the performance, brevity, and maintainability of the code base. A list of managed memory
pointers that come into play in device execution is stored itself as a structure that is passed
by pointer between CUDA function calls.

The rules followed in the implementation are summarized as follows: (/) use double
data type (8 bytes) variables only when absolutely necessary and if at all possible only in
conjunction with variables stored in fast or very fast memories (see Fig. 2); (/1) use four-
byte (or less) data types for variables that are stored in slow memory; (//7) in any circum-
stance, use the data type that meets the accuracy and/or range necessary at the smallest byte
budget. The specific data types used in the implementation are elaborated below (carrying
C++/CUDA semantics).

The position of the center of mass of a particle is stored using three signed ints.
The translational and angular velocities are each stored as a collection of three £1oat-type
variables. Note that only when friction is present do angular velocities come into play, and
memory is conditionally allocated accordingly. The common particle mass, the constant
cohesion force, and the acceleration of gravity are all stored as £1oat. No element state
information is stored in global memory in double precision in order to improve mem-
ory bandwidth and reduce memory pressure; however, double-precision types are used
internally for intermediate quantities when computing penetrations and forces.

During collision detection, spheres can be binned using just the integer positions. How-
ever, when the normal penetration ¢ is computed, all quantities are first upcast to doubles
and then used to compute the normal penetration in double precision. The normal force is
computed from the penetration, but then downcast to float. There is no major loss of signif-
icant digits to this downcast since these forces were only computed from 32-bit quantities
to start with. This ensures that minimal precision is lost in the many arithmetic operations
required, including multiple subtractions, divisions, and even a reciprocal square root. Al-
though doing this in double is slightly slower, the overhead is minimal compared to the
overhead of loading all the required data from global memory. When friction is present,
the friction force is computed as £1oat using local tangential kinematic information (see
Eq. (2)) stored as £1oats. Other nonposition temporary and helper variables are generally
stored as floats.

These choices of data types are largely motivated by the hardware design of the mod-
ern graphics card. Referring to Fig. 2, which uses hardware notation conventions associated
with Nvidia GPUs, a triplet of integers are stored in the “Device Global Memory” and used
to locate in the 3D space a particle i. When brought over to a GPU stream multiprocessor
(SM) for use, this data is placed in cache and/or shared memory and/or registers, i.e., in fast
memory. Then, for instance, when a distance from two points is evaluated to compute the
penetration § of two elements, the integers are first converted to doubles and the distance
is computed like \/(xi — x7)2 + (y' — yJ)2 + (z' — z/)2, where x' is obtained upon double
precision conversion from the integer value p’, y' is obtained from p;, and so on. Note
that this conversion and the ensuing math operations (carried out by the scalar processors
(SP) or by the special function units, the latter not shown in Fig. 2) involve the fast mem-
ory of the SM, i.e., registers/L1 cache/shared memory. Storing integers in “Device Global
Memory” and then bringing them over to the SM through the purple conduit (i) reduces the

@ Springer

Billion degree of freedom granular dynamics

“ ﬁ g :. “ d’ E:’ Device Global Memory

(~32 GB)
| | Data

SM Shared Memory SM L1 Cache ‘Movementl
(~48 KB) (~ 16 KB) (via L2 Cache)

Fig. 2 Schematic showing the hardware layout and the memory hierarchy in a typical Nvidia GPU. Each
stream multiprocessor (SM), shown as the left rectangle, possesses a relatively limited amount of fast mem-
ory, i.e., registers, L1 cache, shared memory. The SM has access though to a relatively large amount of slower
global memory (represented as the right rectangle of solid color). The slower memory still has a very signif-
icant bandwidth, approximately one order of magnitude higher than what is typically available on a CPU. A
better GPU card has by comparison more SM units

GPU very fast
memory

Aowaw mojs NdD

GPU fast
memory

Table 2 Slices of the different

history vectors for a given body. RCI Active Partner Body ID History vector
Notation used: RCI — Relative (bool) (unsigned int) (float3)
contact index
0 X X (X, X, X)
(X, X, X)
2 X X (x, X, X)
11 X X (X, X, X)

memory footprint since the “Device Global Memory” stores integers; and (ii) improves the
effective bandwidth since twice the amount of useful information is brought over to the SM
in the unit of time. As order of magnitude, while bringing the integers from the “Device
Global Memory” happens rarely but incurs an overhead of hundreds of cycles, the values
in registers/L1 cache/shared memory are accessed very often but at very small overheads,
of order from 1 to 10 s of cycles. This is critical as most often the simulation bottleneck is
tied to the memory transactions and not to the arithmetic operations. Indeed, in a pipelined
architecture present on today’s GPUs one fused multiply—add operation can be completed
at the end of each clock cycle, which is to be compared to hundreds of cycles required by a
“Device Global Memory” access.

Regarding restrictions present in the current implementation, the data structures are
mostly general, except in two cases. First, the data structures for frictional force compu-
tation build off the observation that one element can have up to 12 neighbors (specific data
structure, with information pertaining these 12 neighbors, shown in Table 2). For polydis-
perse or nonspherical particles, either this 12 would have to be replaced by a different cap on
the maximum number of simultaneous contacts allowed in the simulation, or a more general
data structure (such as a GPU hash map) would be required. Note that for the table used in
the current implementation, this memory is only allocated once (to avoid reallocations and
copy overhead), so that one cannot adjust this number during runtime. However, such an
adaptive reallocating approach could potentially be used, and indeed was employed for the
cosimulation API (discussed in Sect. 3.6). Second, given that particles are monodisperse, lit-
tle storage was required for problem parameters such as stiffnesses, radii, or particle shape.
This translated into a smaller memory footprint as well as less data movement. For a poly-

@ Springer

C. Kelly et al.

disperse system, the memory overhead would be commensurately larger to accommodate
variation in these parameters.

Finally, one salient aspect of the current implementation is that the DEM problem size is
not strictly limited to the size of the memory available on the GPU card. Indeed, given that
the implementation relies on CUDA-managed memory, a user-transparent paging mecha-
nism kicks in to page data between CPU and GPU memory when the latter is exhausted.
This point is further elaborated upon in Sect. 4 in conjunction with a scaling analysis exper-
1iment.

3.3 Extending the spanned physical domain via local coordinates

A DEM problem with any combination of the following: large contact stiffnesses, small ele-
ment radii, or low gravity, will lead to tiny deformations (akin to a very small v,) that must
be tracked in simulation. Consequently, the small simulation unit for length in combination
with the use of int data to store positions could limit too much the size of the domain that
can be spanned in simulation (called in what follows the “big domain”). The current imple-
mentation evades this limitation by employing local coordinates, a solution that can also be
regarded as using one level of indirection in producing particle location. In the indirection-
based approach, a second set of integers is used to identify a collection of subdomains (SDs)
that together span the big domain. Then, each particle’s position field embeds one additional
piece of information — the ID of the SD whose reference frame is used to define its location.

The following process is employed to position a sphere: The big domain is split into SDs
or bins (used also for broad-phase contact detection, see Sect. 3.5), each spanning approxi-
mately 4 sphere-diameters in each dimension. These axis-aligned SDs form a cubic grid that
spans the entire big domain, visualized in Fig. 3a. Each sphere’s position is defined as the
combination of two values: the index of the SD that owns a sphere, and the sphere’s relative
position within that SD. The SDs are indexed via one unsigned int; within the SD, the
sphere’s relative position is represented as an int3 (X, y, and z offsets). This requires a total
of 4 x 4 = 16 bytes to represent a sphere’s position, compared to the 3 x 8 = 24 bytes if
three long ints or doubles are used. Because the SDs are ordered in a grid, most of the
relevant digits of a sphere’s absolute positions can be stored in that single unsigned int
(assuming there are less that 232 SDs, which holds most problems of physically reasonable
scale). Moreover, since the contact and friction forces are inherently local quantities, these
local integer positions are the only information needed for almost the entire simulation pro-
cess. In output/postprocessing situations where absolute global positions are required, global
positions are computed in simulation units as triplets of long integers and then dumped back
into user units.

This approach provides several advantages. First, by assigning one physical SD to one
CUDA thread block, the implementation exploits data locality by having the execution draw
on the SM’s fast memory, see Fig. 2. In fact, the DEM solution maps really well onto the
GPU architecture: the CUDA grid is associated with the simulation big domain; the grid
is broken into blocks, each of which is associated to a simulation SD; finally, a block is
composed of threads, each of which is associated with one granular element. Figure 3b
provides a visualization of this decomposition. When computing forces between spheres
in the same SD, only the SD-relative position triplet is required, so that only 12 bytes of
information are needed per sphere, and the representation of an SD has minimal impact
on performance. Moreover, each sphere is described with uniform accuracy dependent on
Y, which can be tuned as needed, but will always be able to represent the characteristic
deformation. Since an unsigned int represents an SD index and each SD can contain

@ Springer

Billion degree of freedom granular dynamics

Grid

Block(0, 0) | Block(1,0) | Block(2, 0)

Block(0, 1)" | Block(1, 1) "Block(2, 1)

Subdomain Block(1, 1)
(sD)

3-Dimensional Grid

(a) Visualization of SD geometry (b) CUDA thread block layout [20].

Fig. 3 The simulation big domain is split into axis aligned SDs, each containing no more than a predefined
sphere count C. The 3D physical grid of SDs is mapped onto a CUDA grid, which has blocks, each of which
has threads. One element in the DEM approach is handled by one CUDA thread

dozens of spheres, this representation scheme could scale to billions of particles without
overflow/underflow. For a system with many extremely small particles and a long aspect
ratio, any potential overflow concerns in SD index could be alleviated by using a triplet to
represent an SD, similar to particle positions.

3.4 Storing contact history information for friction force computation

Storing contact history, which requires caching tangential displacements between time steps,
is a prerequisite for obtaining meaningful friction forces [22]. Since in the current imple-
mentation each sphere has the same radius, one sphere can touch at most 12 other spheres at
any given time [23]. Because of this constraint, each sphere needs space allocated for only
12 contacts. An array of size 12 x N}, structures stores contact histories; each “history” struc-
ture is made of three pieces of information (see Table 2): a variable active of type bool,
which indicates if the contact is active or not; a partner body ID of type unsigned int
that stores the id of body in mutual contact with the body of interest (if such a partner body
exists); and a history vector of type £1oat3 that stores the local tangential displacement.
At the beginning of a timestep, all contacts have active set to false. If the partner body ID
issetto (unsigned int) -1, the entry is not in use. Otherwise, that entry is the index
of the body that occupied that contact slot in the last time step. When a contact is detected
between bodies i and j, each body undergoes the following process. Body i checks each
of its entries to see if body j appears there; if so, that slot is set to active = True and the
current value of the history vector is used for the process described in Eq. (2). If body j does
not appear in the contact table for body i, the first empty entry is claimed for this contact pair
and active is set to True. At the end of a timestep, any entries with active set to false have
their partner body ID’s set to -1 and their history vectors zeroed out. This provides a means

@ Springer

C. Kelly et al.

to hold the entire contact histories for all possible contact pairs in only O(N;) space, with
each contact lookup happening in constant time. Although this data structure is designed to
have a small memory footprint, it still demands up to 70% of the total memory required to
carry out the simulation. This system could be extended to a system of general (polydisperse,
nonspherical) particles through the use of an efficient hash map or by imposing limitations
on the number of contacts any particle can experience. Such a hash map approach is feasible
due to continuing advances in GPU-friendly data structures [24].

3.5 Computational flow

Simulating one timestep consists of four stages: (i) broad-phase contact detection; (ii)
narrow-phase contact detection; (iii) force computation (see Sect. 2.1); and (iv) time in-
tegration. The contact detection is a rehashing of the so-called linked-cell method [25]
implemented to leverage the GPU architecture [26]. Specifically, for sphere—sphere broad-
phase, Chrono::Granular performs a geometric decomposition by uniformly dividing the
user-specified domain into cubic SDs. These SDs are the same used in computing local co-
ordinates (Sect. 3.3). Chrono::Granular bins spheres into SDs via the following procedure:
first, each sphere determines which SDs it touches. As an SD is much larger than a sphere, a
sphere can touch at most 8 SDs, which only occurs if it lies near where SDs juxtapose. This
provides a mapping of the SDs that each sphere touches, which is then inverted into a map-
ping of what spheres each SD touches. As each sphere undergoes the same procedure and
requires only knowledge of sphere and SD locations, this process involves minimal memory
transactions and computational overhead. If Ngp denotes the number of SDs, the outcome
of the broad-phase is a list collection of Ngp lists. List L; contains the IDs of all the spheres
that touch SD of index i. To avoid any dynamic memory allocation, it is assumed that an SD
contains no more than C DEM elements. In practice we selected the parameter C = 256, al-
though the limit imposed by geometric packing is lower. For the narrow phase of the contact
detection, in each SD, a linear sweep is carried over each sphere to check it against every
other sphere in the SD, for a total of O(C?) comparisons for each SD (see Fig. 3). Each
comparison is a straightforward distance check since the particles are spherical, although
different particle geometries could be modeled simply by changing their specific contact de-
tection algorithm. Once a contact is detected, for frictionless systems, the associated contact
force is computed on the spot. However, in the presence of friction, trying to peg the evalua-
tion of both the normal and frictional forces to the narrow phase contact detection becomes
unwieldy owing to high register pressure. Consequently, the frictional contact force compu-
tation process is split into two separate steps with the contact map described in conjunction
with Eq. (2) used to keep track of contact information from time step to time step.

The current implementation supports four time integrators, see Table 3. Explicit Euler
is the simplest; it has modest stability properties and exists largely for legacy reasons. Ex-
tended Taylor brings in the next Taylor series term (%a (A1)?) into the position-level update
[27]. Centered Difference was proposed by the original DEM method [28] and displays
improved stability for minimal overhead. Chung’s method [29] features strong numerical
damping and good stability, but requires higher memory overhead to cache data from the
previous time step.

3.6 Co-simulation

Chrono::Granular is designed for dual use: it can work as a standalone granular dynamics
simulation engine; or it can be used in cosimulation mode with any other simulation engine

@ Springer

Billion degree of freedom granular dynamics

Table 3 Summary of time integrators in Chrono::Granular. The order-of-accuracy (OOA) is listed for posi-
tion and velocity variables. Notation used: P-OOA — Position OOA; V-OOA — Velocity OOA

Name P-OOA V-O0A Notes

Explicit Euler 1 1 Simplest, modest stability

Extended Taylor 2 1 Similar to Euler, higher order

Centered Difference 2 2 Velocities are half-timestep off of positions
Chung 2 2 Requires caching old accelerations

with a C++ interface. The cosimulation coupling draws on a force—displacement pairing
paradigm [30] in which an object, e.g., a wheel, is presented to Chrono::Granular as a tri-
angle mesh with specified position, orientation, translational and angular velocities. This
kinematic information is used to establish boundary conditions for Chrono::Granular. At
each step of the cosimulation cycle, Chrono::Granular reports back kinetic information, i.e.,
rigid-body forces and torques on the triangle mesh. The third-party simulation engine is then
responsible for advancing its system’s state and subsequently update the kinematic state of
the mesh shared with Chrono::Granular.

The cosimulation mode draws on a second contact detection algorithm, also implemented
on the GPU, used to resolve the contact between external meshes and the Chrono::Granular
elements. This second contact detection algorithm scaffolds on the existing sphere—sphere
collision algorithm. In broad-phase, mesh triangles are paired against the same grid of SDs
used for spheres. Given its own GPU thread, each triangle is checked for a few convenient
cases, like being confined to a single SD or a single column of SDs. In these nice cases,
the implementation quickly and iteratively registers all SDs touched by this triangle; else,
the triangle undergoes a more tedious check for contacts with all SDs in its axis-aligned
bounding box. Given one GPU block per SD, narrow-phase then identifies contact pairs and
parameters by checking all registered sphere—triangle pairs within each SD. This contact
check consists of projecting the sphere center to the plane of the triangle, snapping it to the
nearest point on the triangle, and then checking the distance from that point to the center of
the sphere against the sphere radius R as in [31].

4 Scaling analysis

A scaling analysis of the code has been performed for three generations of Nvidia hardware:
Pascal (GTX 1080 and Tesla P100), Volta (Tesla V100), and Turing (RTX 2080Ti and Titan
RTX). The benchmark problem was that used in [32—34]: increasingly more elements were
dropped into a box and allowed to settle. The registered time is associated with this settling
process and the results are reported for the frictionless case in Fig. 5. The spheres had radius
5 mm, density 2.5 g/cm?, and spring constant 1 x 103 g/s or 1 x 10° N/m; the simulated
time was 1 s; the simulation timestep was 2 x 107> s; the integrator used was Explicit Euler.
The problem domain was a square patch of dimension L x L x 1 m, where, in order to
accommodate an increasing number of elements, L ranged from 0.2 m to 2.7 m. A snapshot
of the elements in the box is shown in Fig. 4a, with a zoom-in in Fig. 4b.

The purpose of this scaling analysis was threefold: estimating how the code scales; under-
standing how varying generations of Nvidia graphics cards impact the speed of simulation;
and understanding how large of a problem each GPU card can solve and what happens upon

@ Springer

C. Kelly et al.

(a) 715 million frictionless bodies settling (b) Magnified version of Fig. 4a, color is
on a Tesla V100 particle velocity.

Fig. 4 Snapshots, settling simulation for scaling analysis via Chrono::Granular (Color figure online)

1s Terrain Settling, dt=2e—-5,r=.5

m GTX 1080 8 GB, $549
—— GTX 1080 fit: T(N) = 0.6713 N - 0.0231
A Tesla P100 16 GB, $6199
—— Tesla P100 fit: T(N) = 0.2457 N - 0.03855
4001 + RTX2080Ti1ll GB, $1199
—— RTX 2080Ti fit: T(N) = 0.138 N - 0.1076
® Titan RTX 24 GB, $2499
—— Titan RTX fit: T(N) = 0.1087 N - 0.02626
* Tesla V100 32 GB, $8699

Tesla V100 fit: T(N) = 0.09632 N - 0.1024
L]

500

A

w
o
o

runtime (hours)

N
o
o
|]

100

0 100 200 300 400 500 600 700
bodies (millions)

Fig. 5 Scaling analysis of a one second terrain settling simulation showing linear scaling of the implemen-
tation in Chrono::Granular, demonstrated for a collection of GPU cards. As expected, the more SMs (see
Fig. 3b), the faster the simulation; and, the larger the memory, the larger the problem size for which the
GPU-CPU memory paging kicks in (Color figure online)

the GPU memory being exhausted. On each card, the code exhibits linear scaling with prob-
lem size, up until the device memory is exhausted. For example, on a GTX 1080 with 8 GB
device memory, the code scales linearly up to about 180 million bodies and appears to scale
quadratically after that point. The superlinear scaling kicks in when the code exhausts the
device’s onboard memory and the CUDA runtime begins paging in and out. Unsuccessful
attempts were made to optimize the code to handle these paging scenarios; at the time of
development this was a new feature with very little documentation available. As the paging
technology improves, looking further into this aspect is certainly warranted, especially in
context of multi-GPU solutions. One reason to look into either optimizing the paging via

@ Springer

Billion degree of freedom granular dynamics

the use of CUDA streams or into using multiple GPUs is that keeping the simulation on
one system leads to manifestly higher bandwidths and lower latencies than one enjoys in a
distributed-memory, MPI solution. For instance, looking at Japan’s K-supercomputer used
in [14], based on information reported in [35], the bandwidth at which information is ex-
changed between MPI ranks is of the order 4 GB/s and latencies of the order 4 x 107> s.
This is to be compared to 900 GB/s and 4 x 10~7 s when moving data on the GPU; or 10—
16 GB/s and 1 x 1073 s when moving data between the host and device over a PCI bus or
NVLINK interconnect.

Looking beyond the GTX 1080 card, the same scaling and paging occur on the other
graphics cards at values commensurate to their memory capacity. For newer cards these
results can likely be improved by memory “hints”; furthermore, cards with more device
memory can simply run bigger problem sizes. In the largest case, an Nvidia Tesla V100 with
32 GB of device memory can scale up to 715 million frictionless spheres. As each sphere
has 3 translational degrees of freedom, this provides a system with over 2 billion degrees of
freedom on a single GPU. For this scenario, it takes 75 hours of simulation time to capture
1 s of system dynamics. Although the large body count is impressive, the salient point is
that the implementation scales linearly and a problem with one million bodies concludes
700 times faster.

5 Numerical experiments
5.1 Hopper flow

The phenomenon of granular discharge, i.e., material flowing out of a hopper, is common in
many industrial applications. Oftentimes, the flow is restricted through an orifice of diameter
significantly larger than the particle size. Experimentally, these flows have been studied
extensively, with the most famous result being the “Beverloo” equation [36] relating mass
flow rate M to gravity g, particulate density p,, aperture diameter Dy, and particle diameter
d, via two empirical constants, C and k, that are material specific:

M = Cpy/g (Do — kdp)%))

The Beverloo empirical relation has been shown to describe the flow rate relatively well
within a range of the parameters. Little is known though about the dependence of C and k
on material parameters, but common intuition is that k ~ 1 (since Dy — d,, is the “effective”
aperture gap). This relation also assumes that Dy > d,, so that the boundary effects at the
outlet can be neglected. In the regime where the Beverloo law is assumed to hold, one would
expect the following macroscale relations to also hold, where “~” represents a linear corre-
spondence: M~ py, M ~ /&, and M ~ (Dy /dp)%. Note that the last linear dependency is
somewhat contrived and is expected to hold only when k ~ 1 and Dy > d,,.

A series of numerical experiments were conducted using Chrono::Granular to gauge its
predictive attributes. The goal was to understand whether by tracking the motion of each
element in the problem the simulation can capture the macroscale emergent behavior of
the granular material. We explored whether the Beverloo macroscale relations also hold in
simulation by sweeping over the parameters with which the flow rate should have known
dependency: density, gravity, and aperture gap. The results of these simulations are summa-
rized in Fig. 6. It appears that the scalings for gravity and density are linear, with the scaling
for aperture gap showing dependency close, but not quite linear and thus coming in line with

@ Springer

C. Kelly et al.

Hopper mass flow rate vs aperture opening Hopper mass flow rate vs material density
—=— g =180, p=2000
701 — g =3.80, p=2000
—— g =5.80, p=2000
60| —®— 9=7.80, p=2000
—4— g =9.80, p=2000

= g=180,D,=10
— g=3.80,D,=10
2001 —— g=5.80,0p=10
—e— g=7.80,D0=10
17.51 —— g=9.80,00=10

Iy w
3 s

w
3

Mass flow rate (kg /s)
Mass flow rate (kg /)
IS
&

20

o 1000 2000 D3\000 4000 5000 1000 1500 2000 2500 3000 3500 4000 4500 5000
&) Pmat (kg / m?)
(a) Mass flow vs. aperture gap (b) Mass flow vs. density
Hopper mass flow rate vs gravity Force on bottom vs time; Do =0.02, p = 3000.0,g = 9.8
2251 s p=1000,00=10 2000
— p=2000,Dp =10
20.01 . 5 =3000,D0=10 1750
—e— p=4000,D0=10
17.57 —a— p=5000, D =10 1500
>
g0 1250
o z
g 125 ' 1000
H o
% 10.0 2 2750
£
75 500
—— Fp on bottom
50 250 —— Lineer Fit, W(t) = 673.6 x - 184.8
—— Fp on bottom
25 0 —— Linezr Fit, W(t) = 673.6 x - 184.8
0.4 05 0.6 0.7 0.8 09 1.0) 2 2 6 8 10
Vi Time (s)
(c) Mass flow vs. gravity (d) Example of flow rate used to compute M

. . . 5
Fig. 6 Hopper mass flow rate experiments: numerical study of the M ~ p;, M ~ /g, and M ~ (Dg/dp)?
dependencies. Simulation setup: 240,306 spheres of diameter dp = 8 mm; integration time step

At = x107° s; amount of simulated time 10 s; simulation run time 130 s; GPU used was Nvidia GTX
1080 Ti (Color figure online)

theoretical predictions. Finally, the results in Fig. 6d come in line with the expectation that
an hourglass has a constant rate of discharge for most of its operation, i.e., between 1.5 and 4
seconds. Note that these simulations were all frictionless. All hopper numerical experiments
used an integration step size of 107> s and simulated 10 s of the system’s dynamics.

In order to further explore the relationship between flow rate and aperture gap, a “helper”
variable C’ is introduced as

M
Po/8

ol

C'=C(Dy—kdp)? =

®)

5
Given that C is a constant, C’ should vary as (Dy — kd,,)*, or equivalently C'3 should

vary linearly with Dy for a fixed value of d,. By creating linear fits between Dy and C’%,
one can compute estimates for empirical parameters C and k. Using the simulation results
previously described, C’ was estimated for each instance, raised to power 2, and plotted as
a function of Dy in Fig. 7 (d, was held constant). This chart is an alternative representation
of Fig. 6a, with the added advantage that estimates for C and k can be evaluated based on
the slope and intercept of the linear fit.

@ Springer

Billion degree of freedom granular dynamics

C’ estimates as a function of Dy

X D() %
.) X
0.25 linear fit
0.20
Qo
T 0.15
0.10
0.05

5 10 15 20 25 30
Do
a

2
Fig.7 Plot of C'5 vs. g—;) to explore Beverloo reliability and coefficients

Fig. 8 End state of simulation experiment for the communicating vessels test with 114,106,578 elements of
radius 0.5 mm. The data indicates that Ak # 0. Amount of time simulated was 9 s. Simulation run time took
approximately 16 days

5.2 The “communicating vessels” test

This experiment seeks to answer the following question: does frictionless granular material
obey the law of communicating vessels? For fluids, this law states that two communicat-
ing vessels display at equilibrium the same fluid surface height. This is a consequence of
taking the velocity to be constant in the Navier—Stokes momentum balance equation. In the
proposed experiment, a hollow cylinder of interior radius 25 cm and overall radius 27.5 cm
is placed inside a containing box with a square base of side length 100 cm. First, while
resting on the bottom of the box, the cylinder is filled up with granular material to a height
ho = 100 cm. After the granular material settles, the cylinder is lifted to create a 4 cm gap
with the floor. The granular material flows out of the bottomless cylinder to reach equi-
librium after approximately 5 seconds (the length of the experiment was 9 seconds). The
question is whether, just like for fluids, the heights of the material inside and outside of the
cylinder will match at equilibrium. Such a steady state solution is shown in Fig. 8 with the
cylinder removed to reveal the material column. The metrics of interest are the ratio be-
tween material height /iy, inside the cylinder and the height of material /4y, Outside of
the cylinder, as well as the difference Al = hipper — Pouter-

Other aspects of interest pertain to how the radius and density of the granular material
affect the steady state solution. Figure 9a shows how the ratio oyer/ Zinner €VOlves over time
in one of the experiments. At first, there is no material in the outer chamber until the moment

@ Springer

C. Kelly et al.

Fig. 9 Communicating vessels Communicating Vessels - Radius 0.05cm

results (Color figure online) 12
—— p=1.5g/cm?
—— p=3.5g/cm?
1.0 —— p=4.5 g/cm?®
— p=5.5g/cm?
0.8 {
N
g
\2 0.6
H
<
0.4 1
0.2 {
0.0 — ; r : r
0 2 4 6 8

Time (s)

(a) Time evolution of the ratios of the heights of material inside
and outside the cylinder with a radius of 0.05 cm.

Communicating Vessels Height Differences

(w2) sanoy — sy

140.1(5).1820

1127 \)
018 _“s\cﬂ‘

(b) Resulting height differences for the inner and outer chambers of
the communicating vessels test sweep. The surface is always above
the zero (horizontal) plane, which indicates that in this study the
height in the two vessels was never the same.

when the gap between the cylinder and the floor is large enough for the first layer of particles
to fit under the lip of the cylinder and spill out. The ratio eventually settles to the same value,
not the 1 : 1 of fluid hydrostatics, regardless of the density of the material the spheres are
made of (all experiments carried out with a monodisperse material).

The results of a sweep over particle radius and density are presented in Fig. 9b. They
reveal a coherent, bilinear trend throughout the data. The particle density has no significant
impact on the height differential. What does significantly impact A# is the particle radius.
Indeed, the height differential between vessels decreases significantly with particle size.
However, even at a radius of 500 microns, or alternatively 1.25% of the height of the gap
made with the floor, there is a large differential Ah of roughly 6 cm. Thus, even for the
optimal case of frictionless spherical particles, granular material does not obey the law of

communicating vessels owing to its ability to jam and stack. This phenomenon is reduced,
but not eliminated, as the particle radius decreases.

@ Springer

Billion degree of freedom granular dynamics

Fig. 10 Granular dam break v|(m/s)
with material flow impacting

0 1 2 3
\[\\\

-

cylinder. Granular material
colored according to velocity H

magnitude (Color figure online)

Table 4 Radii and

corresponding particle counts for ~ Particle radius (cm) Np

the dam break simulations
2.0 292,625
1.0 2,358,036
0.5 18,939,589

5.3 The “dam break with obstacle” test

We borrow a common test from the computational fluid dynamics literature — a dam-break
simulation — and change it slightly by including a cylindrical obstacle placed in the way of
the wave. A discussion of this experiment for the fluid side is provided in [37]. Herein, we
focus exclusively on the granular material physics.

Granular material is initially settled for 1 second in a 2 m x 4 m x 4 m volume at the
front of a 6 m x 4 m x 4 m containing box. The cylinder had a radius of 0.3 m and it was
placed 5 m from the left wall of the container. After the granular material settles on the left
side of the container, the plane holding back the material is removed and the material is left
to collapse and “flow” for 9 seconds. As the granular material front hits the cylinder (see
Fig. 10), the force on the obstacle is recorded as a function of time. The force exerted on the
cylinder should depend on the material’s bulk properties, e.g., density, and, asymptotically, it
should not depend on simulation or particulate parameters, e.g., the simulation time step and
particle radius, respectively. Moreover, we hypothesize that since the material flows quickly,
its motion is largely “inertial” and governed by particle density more than geometric locking
or friction. As such, we posit that the force exerted on the obstacle should have a linear
dependence on element density — the higher the density, the larger the force exerted on the
obstacle. A set of simulations were conducted for the dam break with and without friction
(u = 0.5) for spheres of three different sizes. Sizes along with element counts are provided
in Table 4.

Figure 11 shows the force on the cylinder in the direction of flow scaled by element
density. First, we note that all frictionless numerical experiments (left column) yield the
same characteristics: peak in force as the material first washes over the cylinder, a sharp

@ Springer

C. Kelly et al.

Dam Break with Cylinder - Frictionless - Radius 2.0
000

Dam Break with Cylinder - u= 0.5 - Radius 2.0

4 4000
— p= 1.0 g/cm? — p=1g/cm?
p= 2.0 g/cm? p =2 g/cm?
3000+ —— p=3.0g/cm? 30004 —— p=3g/m?
— p=4.0g/cm? — p=4g/m?
% 2000+ . 2000
o [
£ 2
> 10001 & 10001
s s
=l 0 e 04
///——_
z
—1000 —1000-
—-2000 ‘ —~20001— :
0 4 8 0 1 2 3 4 6 7
Time (s) Time (s)
40I(:))gm Break with Cylinder - Frictionless - Radius 1.0 Dam Break with Cylinder - 4= 0.5 - Radius 1.0
—— p= 1.0g/cm?® 4000 —— p=1g/cm?®
p= 2.0 glcm? p=2g/m?
3000 —— p=3.0g/m? 3000 1 — p=3g/m?
— p= 4.0 g/cm?® — p=4g/cm?
5 20001 . 2000
° [
£ 2
3 1000 3 1000 1 Whogal?
C < R
o o
=l 0 1 e 0 1
—1000- ~1000 1
2000 i . ~2000
0 4 6 8 0 1 2 3 4 6 7
Time (s) Time (s)

40I3§m Break with Cylinder - Frictionless - Radius 0.5

Dam Break with Cylinder - u=0.5 - Radius 0.5

4000

— p= 1.0g/cm? —— p=1g/m?®
p= 2.0 g/lcm? p=2g/cm?®
3000+ — p= 3.0 glem? 3000 — p=3gkm?
— p= 4.0 g/cm?® — p=4g/cm?®
%5 2000 + 2000 1
° 7
< s
J 1000 3 1000 1
c < |
5] ©]
= 0 - “*0g
—1000 —1000
—2000 —2000 — T T T T T T T
0 2 4 6 8 0 1 2 3 4 5 6 7
Time (s)

Time (s)

Fig. 11 Comparison of cylinder forces in the dam break test for varying densities and particle sizes without
friction (left column), and with friction (right column). These simulations were all run with a step size of
At =x1077 . Regardless of element density, the simulation for the frictionless case required 37,804 s to
capture the dam break dynamics for 9 s using 18,939,589 elements (Color figure online)

drop in force which reverses direction as the material splashes back, and finally a leveling-
off as the material settles. More than just matching the same evolution pattern, these results
also match quantitatively, with nearly the same extrema. It is noted that for large particle size
(top picture in the left column), the net force on the cylinder does not zero out, a consequence
of the geometric locking. Indeed, fine particles lead to an overall behavior similar to that of a
fluid (bottom picture in the left column), while larger, bulkier particles lock up, particularly
so when the density of the granular material is large. The right column in Fig. 11 reports

@ Springer

Billion degree of freedom granular dynamics

results when friction was present in the simulation. The high transients are eliminated, the
motion is more subdued. The relatively large value for the friction coefficient (u = 0.5)
arrests the relaxation of the granular material in a configuration that yields a nonnegligible
force on the cylinder.

6 Discussion

The main goal of this contribution is to outline a solution approach that opens the door
to large granular dynamics simulations on affordable hardware. This effort stopped short
of surpassing the state-of-the-art, i.e., a 2.4 billion element geomechanics simulation out
of Japan [12-14]. However, the simulations discussed herein come relatively close in size.
Indeed, the settling simulations discussed in Sect. 4 reached up to 715 million bodies for the
frictionless case; for the frictional case we settled more than 200 million bodies. We used
more than 115 million bodies in the communicating vessels experiment, and 18 million
bodies in the “dam brake with obstacle” test. The notable aspect though is that while the
geomechanics simulations in [12—14] ran on an architecture that afforded more than 130,000
cores on what used to be the fastest supercomputer in the world, the results reported here
ran on one GPU.

The present work is placed in a broader context through a literature overview in which
the focus is on problem sizes, as they have been defining the state of the art in various
application areas. In [38], benchmark simulations were run for 2D systems with 200,000
elements using Swiss-T1, a 64-node supercomputer. In [39], a mixing via tumbling mill of
1,000,000 spheres required one week to simulate a 1.5 s rotation of the mixer on a cluster
with 32 processors. In [40], an MPI-based implementation scaled up to 1,000,000 particles
using up to 16 processors. In [41], the problem size for a hopper simulated via DEM went
up to 400,000 bodies. The simulation drew on MPI [42] and a cluster with 36 processors.
In [43], 150,000 glass beads were considered in the “high fill” scenario for a spheronizer
simulation. Ten seconds of simulation required 375 hours of run time on a Dell SC1425
cluster with 16 Intel Xeon (3.6 GHz) processors. In [44], a 81,000-body simulation took
35 days on a 32-core architecture managed under MPI to simulate 120 s of system dynam-
ics. In [34], the authors switched to a multi-GPU solution for systems with more than one
million particles owing to GPU memory exhaustion; a settling simulation with 10 million
bodies was run with up to 32 GPUs that were coordinated via MPI. The one million body
simulation in [34] was carried out on one GPU using a monodisperse systems. In [45], the
number of bodies was 130,000. Results pertaining powder compaction simulation are re-
ported in [46]. Therein, the authors use mixtures of spheres of up to three different radii.
Strong scaling analysis results were presented for the dynamics of one million bodies us-
ing from four up to 20 GPUs. A compaction analysis was carried out using up to 563,000
elements. In [47] the authors ran powder simulations. The number of particles in the sim-
ulation was 4,030,000. For a 2,800,000 element system run on Nvidia GTX 1080Ti GPU,
the simulation took roughly 0.03 s per time step and certain measures were taken to shorten
the computation, which would otherwise have required 32 days to complete. In [48], a DEM
solver running on the GPU was stated to handle systems with 60 million elements. Several
simplifications were made to reach this particle count, e.g., the arithmetic was carried out
in single precision and, as the authors indicate, this “limits the range of values in a single
calculation to < 1 x 1075 This is, however, hardly sufficient, given that the deformations in
granular material are of the order 10~'3 m and lower. Therein, the normal force model could
only be Hookean; moreover, the friction force model did not keep track of history, which is

@ Springer

C. Kelly et al.

known to lead to inaccurate results, see, for instance, [22]. Another issue with the friction
force model was that the friction force “opposes the motion of the two particles.” This de-
cision will prevent the apparition of a friction force without relative velocity since with no
relative velocity, the direction of the force is undefined. As such, granular material could not
pile, for instance. The issue with simplifying the friction force model by dropping the his-
tory and not handling the stick mode is also encountered in [49], where the implementation
is reported to handle approximately one million spheres that are clumped in sets of four to
form 256,000 million aggregate bodies of a more complex shape. Shifting the discussion to
terradynamics applications, the number of elements in the simulation is typically smaller. In
[50], a set of four deformable wheels interacts with a granular terrain made up of 900,000
elements. The 7.64 s long simulation of the vehicle operating on granular terrain required
5.5 days of compute time. A similar problem was analyzed in [51], where the terrain was
made up of 90,304 spheres. The settling of the particles was reported as taking 46 hours
of simulation time, while the rolling of one tire for approximately 5 s took approximately
52 hours. In [52], the DEM particle was obtained as the union of three spheres of identical
radii. A wheel—terrain interaction problem was simulated using 392,049 such particles; no
simulation times were reported.

7 Conclusions. Directions of future work

This contribution describes an approach that extends the problem size in DEM simulations
of practical relevance run on commodity hardware. Using one GPU card, for frictionless
DEM relevant in the simulation of particle suspensions, we report numerical experiments
with more than 700 million elements. In the presence of friction, the problem size drops
to 220 million elements, a consequence of the need to store more state information, e.g.,
body orientation and contact history. In both cases, the 3D system dynamics is carried out
using more than one billion generalized coordinates to capture the time evolution of the
distinct elements. Given that the software implementation of the methodology described
scales linearly with problem size, problems that are smaller run correspondingly faster, to
the point where they open the door to parameter sweeps like those carried out herein for three
numerical experiments: hopper flow, communicating vessels, and dam break with obstacle.

The ability to handle large problem sizes and the linear scaling attribute are traced down
to the following aspects: a process of adimensionalization; use of local coordinate repre-
sentation; parsimonious use of memory via data types that require few bytes; and judicious
use of memory bandwidth and other GPU resources such as shared memory and registers. In
particular, we highlight the use of integer type variables for positioning the discrete elements
in the simulation space. This allowed for a smaller memory footprint and shorter variable
access times as the amount of data moved in the unit of time improved twofold relative to
the double precision alternative. With slight alterations to the underlying assumptions, the
key points of this work apply to a wider variety of discrete systems of pairwise interactions,
e.g., molecular dynamics or Smoothed Particle Hydrodynamics.

Looking ahead at the computing framework, ongoing work seeks to generalize particle
geometries to polydisperse spheres. A second thrust is aimed at support for 3D ellipsoids.
A third one concentrates on improving the friction model insofar as the rolling and spinning
friction are concerned. Finally, an ongoing effort seeks to use a homogenization approach
[53] to treat problems when the DEM body count is too large for a fully resolved approach,
and a continuum representation of the granular flow becomes more desirable.

@ Springer

Billion degree of freedom granular dynamics

The software that implements the methodology described and used to generate the results
reported herein is called Chrono::Granular. It is open source and freely available online
under a permissive BSD3 license for unfettered use, modification, and release. It is part of
the Project Chrono simulation platform [54] that can be cloned/downloaded from a public
GitHub repository [55].

Acknowledgements The modeling/numerical method development associated with this project was
funded through Army Research Office grant W911NF1910431. The hardware assets used herein have been
available through Army Research Office grant W911NF1810476. The software development effort associated
with this project was funded through National Science Foundation grant CISE—1835674.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Richard, P., Nicodemi, M., Delannay, R., Ribiere, P., Bideau, D.: Slow relaxation and compaction of
granular systems. Nat. Mater. 4(2), 121-128 (2005)

2. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Pana-
giotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications, pp. 1-82. Springer, Berlin (1988)

3. Cundall, P, Strack, O.: A discrete element model for granular assemblies. Geotechnique 29, 47-65
(1979)

4. Pazouki, A., Kwarta, M., Williams, K., Likos, W., Serban, R., Jayakumar, P., Negrut, D.: Compliant
versus rigid contact: a comparison in the context of granular dynamics. Phys. Rev. E 96, 042905 (2017)

5. Goyon, J., Colin, A., Ovarlez, G., Ajdari, A., Bocquet, L.: Spatial cooperativity in soft glassy flows.
Nature 454(7200), 84-87 (2008)

6. Jop, P, Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727—
730 (2006)

7. Kamrin, K., Koval, G.: Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108(17),
178301 (2012)

8. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM.
J. Eng. Mech. 124(3), 285-292 (1998)

9. Silbert, L., Ertas, D., Grest, G., Halsey, T., Levine, D., Plimpton, S.: Granular flow down an inclined
plane: bagnold scaling and rheology. Phys. Rev. E 64(5), 051302 (2001)

10. da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials:
discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)

11. Parteli, E., Poschel, T.: Particle-based simulation of powder application in additive manufacturing. Pow-
der Technol. 288, 96-102 (2016)

12. Furuichi, M., Nishiura, D., Asai, M., Hori, T.: Poster: the first real-scale DEM simulation of a sandbox
experiment using 2.4 billion particles. In: Supercomputing Conference (2017)

13. Furuichi, M., Nishiura, D., Kuwano, O., Bauville, A., Hori, T., Sakaguchi, H.: Arcuate stress state in
accretionary prisms from real-scale numerical sandbox experiments. Sci. Rep. 8, 12 (2018)

14. Nishiura, D., Sakaguchi, H., Yamamoto, S.: Multibillion particle DEM to simulate centrifuge model tests
of geomaterials. In: Physical Modelling in Geotechnics, Volume 1: Proceedings of the 9th International
Conference on Physical Modelling in Geotechnics (ICPMG 2018), London, United Kingdom, July 17—
20, 2018, p. 227. CRC Press, Boca Raton (2018)

15. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: TOP500 Supercomputer Site. http://www.
top500.o0rg

16. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: An experimental and numerical study of the angle of repose of
coarse spheres. Powder Technol. 125(1), 45-54 (2002)

17. Oda, M., Iwashita, K.: Study on couple stress and shear band development in granular media based on
numerical simulation analyses. Int. J. Eng. Sci. 38(15), 1713-1740 (2000)

18. Ai,J., Chen, J.-F.,, Rotter, M., Ooi, J.: Assessment of rolling resistance models in discrete element simu-
lations. Powder Technol. 206(3), 269-282 (2011)

19. Geer, S., Bernhardt-Barry, M., Garboczi, E., Whiting, J., Donmez, A.: A more efficient method for
calibrating discrete element method parameters for simulations of metallic powder used in additive man-
ufacturing. Granul. Matter 20(4), 77 (2018)

@ Springer

http://www.top500.org
http://www.top500.org

C. Kelly et al.

20.

21.

22.
23.
24.
25.
26.
217.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

NVIDIA Corporation: Compute unified device architecture toolkit documentation (2019). https://docs.
nvidia.com/cuda

Negrut, D., Serban, R., Li, A., Seidl, A.: Unified Memory in CUDA 6.0: a brief overview of re-
lated data access and transfer issues. Technical Report TR-2014-09, Simulation-Based Engineer-
ing Laboratory, University of Wisconsin-Madison, (2014). https://sbel.wisc.edu/wp-content/uploads/
sites/569/2018/05/TR-2014-09.pdf

Fleischmann, J., Serban, R., Negrut, D., Jayakumar, P.: On the importance of displacement history in
soft-body contact models. J. Comput. Nonlinear Dyn. 11(4), 044502 (2016)

Musin, O.R.: The kissing problem in three dimensions. arXiv Mathematics e-prints (2004). math/
0410324

Green, O.: Hashgraph — scalable hash tables using a sparse graph data structure (2019)

Hockney, R., Eastwood, J.: Computer Simulation Using Particles. CRC Press, Boca Raton (1988)
Mazhar, H., Heyn, T., Negrut, D.: A scalable parallel method for large collision detection problems.
Multibody Syst. Dyn. 26, 37-55 (2011). https://doi.org/10.1007/s11044-011-9246-y

Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems.
Springer, Berlin (2009)

Cundall, P.: Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and
represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Min. Sci. Ge-
omech. Abstr. 25(3), 107-116 (1988)

Chung, J., Lee, J.M.: A new family of explicit time integration methods for linear and non-linear struc-
tural dynamics. Int. J. Numer. Methods Eng. 37(23), 3961-3976 (1994)

Schweizer, B., Li, P,, Lu, D.: Explicit and implicit cosimulation methods: stability and convergence
analysis for different solver coupling approaches. J. Comput. Nonlinear Dyn. 10(5), 051007 (2015)
Ericson, C.: Real Time Collision Detection. Morgan Kaufmann, San Francisco (2005)

Zhou, Z., Pinson, D., Zou, R., Yu, A.: Discrete particle simulation of gas fluidization of ellipsoidal
particles. Chem. Eng. Sci. 66(23), 6128-6145 (2011)

Hou, Q., Zhou, Z., Yu, A.: Micromechanical modeling and analysis of different flow regimes in gas
fluidization. Chem. Eng. Sci. 84, 449-468 (2012)

Gan, J., Zhou, Z., Yu, A.: A GPU-based DEM approach for modeling of particulate systems. Powder
Technol. 301, 1172-1182 (2016)

University of Tennessee: High Performance Computing Challenge Benchmark (2019). http://icl.cs.utk.
edu/hpec/hpee_results_lat_band.cgi

Mankoc, C., Janda, A., Arevalo, R., Pastor, J., Zuriguel, 1., Garcimartin, A., Maza, D.: The flow rate of
granular materials through an orifice. Granul. Matter 9(6), 407—414 (2007)

Rakhsha, M., Kelly, C., Olsen, N., Serban, R., Negrut, D.: Multibody dynamics vs. fluid dynam-
ics: two perspectives on the dynamics of granular flows. J. Comput. Nonlinear Dyn. (2020). https:/
doi.org/10.1115/1.4047237

Cleary, P., Sawley, M.: DEM modelling of industrial granular flows: 3D case studies and the effect of
particle shape on hopper discharge. Appl. Math. Model. 26(2), 89-111 (2002)

Bertrand, F., Leclaire, L., Levecque, G.: DEM-based models for the mixing of granular materials. Chem.
Eng. Sci. 60(8-9), 2517-2531 (2005)

Fleissner, F., Eberhard, P.: Load balanced parallel simulation of particle-fluid DEM-SPH systems with
moving boundaries. In: Parallel Computing: Architectures, Algorithms and Applications, vol. 48, pp. 37—
44 (2007)

Kloss, C., Goniva, C., Hager, A., Amberger, S., Pirker, S.: Models, algorithms and validation for open-
source DEM and CFD-DEM. Prog. Comput. Fluid Dyn. 12(2-3), 140-152 (2012)

Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing
Interface, 2nd edn. MIT Press, Cambridge (1999)

Bouffard, J., Bertrand, F., Chaouki, J., Dumont, H.: Discrete element investigation of flow patterns and
segregation in a spheronizer. Comput. Chem. Eng. 49, 170-182 (2013)

Alizadeh, E., Bertrand, F., Chaouki, J.: Comparison of DEM results and Lagrangian experimental data
for the flow and mixing of granules in a rotating drum. AIChE J. 60(1), 60-75 (2014)

Hou, Q., Dong, K., Yu, A.: DEM study of the flow of cohesive particles in a screw feeder. Powder
Technol. 256, 529-539 (2014)

He, Y., Evans, T, Yu, A., Yang, R.: A GPU-based DEM for modeling large scale powder compaction
with wide size distributions. Powder Technol. 333, 219-228 (2018)

Toson, P., Siegmann, E., Trogrlic, M., Kureck, H., Khinast, J., Jajcevic, D., Doshi, P., Blackwood, D.,
Bonnassieux, A., Daugherity, P.D., et al.: Detailed modeling and process design of an advanced contin-
uous powder mixer. Int. J. Pharm. 552(1-2), 288-300 (2018)

Govender, N., Wilke, D., Kok, S.: Blaze-DEMGPU: modular high performance DEM framework for the
GPU architecture. SoftwareX 5, 62-66 (2016)

@ Springer

https://docs.nvidia.com/cuda
https://docs.nvidia.com/cuda
https://sbel.wisc.edu/wp-content/uploads/sites/569/2018/05/TR-2014-09.pdf
https://sbel.wisc.edu/wp-content/uploads/sites/569/2018/05/TR-2014-09.pdf
http://arxiv.org/abs/math/0410324
http://arxiv.org/abs/math/0410324
https://doi.org/10.1007/s11044-011-9246-y
http://icl.cs.utk.edu/hpcc/hpcc_results_lat_band.cgi
http://icl.cs.utk.edu/hpcc/hpcc_results_lat_band.cgi
https://doi.org/10.1115/1.4047237
https://doi.org/10.1115/1.4047237

Billion degree of freedom granular dynamics

49.

50.

51,

52.

53.

54.

55.

Longmore, J.-P.,, Marais, P., Kuttel, M.M.: Towards realistic and interactive sand simulation: a GPU-
based framework. Powder Technol. 235, 983-1000 (2013)

Recuero, A.M., Serban, R., Peterson, B., Sugiyama, H., Jayakumar, P., Negrut, D.: A high-fidelity ap-
proach for vehicle mobility simulation: nonlinear finite element tires operating on granular material. J.
Terramech. 72, 39-54 (2017)

Zhao, C.-L., Zang, M.-Y.: Application of the FEM/DEM and alternately moving road method to the
simulation of tire-sand interactions. J. Terramech. 72, 27-38 (2017)

Johnson, J.B., Kulchitsky, A.V., Duvoy, P., lagnemma, K., Senatore, C., Arvidson, R.E., Moore, J.:
Discrete element method simulations of Mars exploration rover wheel performance. J. Terramech. 62,
31-40 (2015)

Dunatunga, S., Kamrin, K.: Continuum modelling and simulation of granular flows through their many
phases. J. Fluid Mech. 779, 483 (2015)

Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J., Taylor, M., Sugiyama,
H., Negrut, D.: Chrono: an open source multi-physics dynamics engine. In: Kozubek, T. (ed.) High
Performance Computing in Science and Engineering. Lecture Notes in Computer Science, pp. 19—49.
Springer, Berlin (2016)

Project Chrono: Chrono: an Open Source Framework for the Physics-Based Simulation of Dynamic
Systems (2020). http://projectchrono.org. Accessed: 2020-03-03

@ Springer

http://projectchrono.org

	Billion degree of freedom granular dynamics simulation on commodity hardware via heterogeneous data-type representation
	Abstract
	Introduction
	The DEM model
	The equations of motion
	User units vs. simulation units

	Software design aspects. Implementation details
	Heterogeneous data-type representation
	Data structures
	Extending the spanned physical domain via local coordinates
	Storing contact history information for friction force computation
	Computational ﬂow
	Co-simulation

	Scaling analysis
	Numerical experiments
	Hopper ﬂow
	The "communicating vessels" test
	The "dam break with obstacle" test

	Discussion
	Conclusions. Directions of future work
	Acknowledgements
	References

