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a b s t r a c t

Domain science applications and workflow processes are currently forced to view the network as an
opaque infrastructure into which they inject data and hope that it emerges at the destination with
an acceptable Quality of Experience. There is little ability for applications to interact with the network
to exchange information, negotiate performance parameters, discover expected performance metrics,
or receive status/troubleshooting information in real time. The work presented here is motivated
by a vision for a new smart network and smart application ecosystem that will provide a more
deterministic and interactive environment for domain science workflows. The Software-Defined
Network for End-to-end Networked Science at Exascale (SENSE) system includes a model-based
architecture, implementation, and deployment which enables automated end-to-end network service
instantiation across administrative domains. An intent based interface allows applications to express
their high-level service requirements, an intelligent orchestrator and resource control systems allow
for custom tailoring of scalability and real-time responsiveness based on individual application and
infrastructure operator requirements. This allows the science applications to manage the network as
a first-class schedulable resource as is the current practice for instruments, compute, and storage
systems. Deployment and experiments on production networks and testbeds have validated SENSE
functions and performance. Emulation based testing verified the scalability needed to support research
and education infrastructures. Key contributions of this work include an architecture definition,
reference implementation, and deployment. This provides the basis for further innovation of smart
network services to accelerate scientific discovery in the era of big data, cloud computing, machine
learning and artificial intelligence.

Published by Elsevier B.V.

1. Introduction

Networked systems are evolving at a rapid pace toward pro-
grammatic control, driven in large part by the application of
software to networking concepts and technologies, and evolution
of the network as a critical subsystem in global scale systems.
This is of interest to major science collaborations that incorpo-
rate large scale distributed computing and storage subsystems.
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This software-network innovation cycle is important as it in-
cludes a vision and promise for improved automated control,
configuration, and operation of such systems, in contrast to the
labor-intensive network deployments of today. However, even
the most optimistic projections of software adoption and deploy-
ment do not put networks on a path that would make them
behave as a truly smart or intelligent system from the application
or user perspective, nor one capable of interfacing effectively with
facilities supporting highly automated data analysis workflows at
sites distributed around the world.

Today, domain science applications and workflow processes
are forced to view the network as an opaque infrastructure into
which they inject data and hope that it emerges at the destination
with an acceptable Quality of Experience. There is little ability for
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applications to interact with the network to exchange informa-
tion, negotiate performance parameters, discover expected per-
formance metrics, or receive status/troubleshooting information
in real time. As a result, domain science applications often suffer
highly variable (from excellent to poor) performance, especially
so in highly distributed data intensive environments.

Indeed, the ability to interact and negotiate with the network
infrastructures within a science ecosystem should be a hallmark
of truly smart networks and applications. The current static, non-
interactive network infrastructures do not have a path forward to
assist or accelerate domain science application innovations. We
therefore envision a new smart network and smart application
ecosystem that will solve these issues and enable future innova-
tions across many Research and Education (R&E) domain science
communities. The Software-Defined Network (SDN) for End-to-
end Networked Science at the Exascale (SENSE) [1] project has
developed an architecture and implementation to address this
vision. Key contributions of this work include an architecture
definition, reference implementation, and deployment. This pro-
vides the basis for further innovation of smart network services
to accelerate scientific discovery in the era of big data, cloud
computing, machine learning and artificial intelligence.

The SENSE solution was built upon the previous Software-
Defined Networking (SDN) work [2], which has been a sub-
ject of much discussion and research over the past decade. The
crux of the SDN concept is software control and programma-
bility of network elements and resources in a manner which
enhances network services, management, and resource use. Mul-
tiple frameworks and systems have been developed which carry
out the basic goal of software-controlled services across a hetero-
geneous mix of network elements. While many of these systems
are open source, the reality is that significant deployments in
the field have been few and limited. These deployments are
typically either small isolated systems, or vertically integrated
systems from larger operators who have complete control over
all the network resources needed by the higher-level applications
being served. A lesson learned is that basic software-defined
control functionality does not solve many of the key issues as
needed to enable pervasive deployment of end-to-end automated
services across general cyberinfrastructure. These issues include
handling of multiple administrative/control domains, resource
state hiding/visibility, scalability, and real-time responsiveness,
all of which need to be tailorable for specific deployments and
application requirements.

Initial SDN work was mostly focused on the SDN controller
south bound interface and network element control mechanisms.
Multiple mechanisms utilizing technologies such as OpenFlow [3],
NETCONF and Yang [4], and others were defined. It was eventu-
ally realized that the SDN controller northbound interface was
where the users obtain services, and that the exact mechanisms
used on the southbound side were not as interesting from a
user/application perspective. Subsequent SDN controller north-
bound work resulted in several systems focused on specific use
cases and point solutions.

Partly because of these issues, much of the SDN research
and development energy has transitioned to orchestration ser-
vices/systems. There are now multiple open source orchestration
projects [5–8], which include mechanisms to interact with multi-
ple underlying SDN systems via their SDN Controller Northbound
Application Programming Interface (API). However, there has
been relatively little architectural work to define what is needed
in an SDN controller northbound interface to enable orches-
tration systems to address issues associated with systems that
extend ‘‘east and west’’ across multiple administrative/control
domains, heterogeneity among the architectures and policies in
each domain, as well as resource state hiding/visibility, scalability,

and real-time responsiveness. In addition, there has been even
less work done in building systems which will enable the de-
sired smart-application-to-smart-network interactive ecosystem,
where in the case of major science programs the ‘‘application’’
may itself be a data management system that deals in real-time
with computational workflow among sites on several continents.

In summary, current SDN and orchestration technologies have
the following issues which inhibit development of an integrated,
interactive smart network and smart application ecosystem:

• Current SDN Technologies - The SDN Controller Northbound
API solutions are narrowly focused designs which are typ-
ically driven by an underlying southbound API feature set.
The opposite approach should be used, where the user-
facing API should be developed based on user/application
requirements, with the southbound API and feature sets
correspondingly adapted. With such a layer-based orches-
tration architecture, the SDN Controller Northbound API
should be constructed with the orchestration layer as its
user.

• Current Orchestration Technologies - The current orchestra-
tion architecture and associated implementation projects
have not defined the requirements and features needed
for the API between the orchestrator and underlying SDN
Controllers. This would be the SDN Controller Northbound
Interface, which would also be the orchestrator southbound
interface. These requirements and the orchestrator function-
ality should be driven by the user/application requirements
and therefore reflected in the orchestrator northbound in-
terface.

• Combined SDN and Orchestration Technologies - The current
solutions are focused on traditional service provisioning,
customer onboarding, and operations/maintenance. While
updated technologies such as Network Functions Virtualiza-
tion (NFV) and automated provisioning are being employed
in service of this paradigm, the service and use model is
not much changed from a customer perspective, outside
of the ability to initiate automated functions. These sys-
tems are not currently on a path to provide the degree
of realtimeness and interaction needed for the smart net-
work and smart application ecosystem envisioned by the
Research and Education (R&E) community [9]. For exam-
ple, the information exchange between the SDN Controller
and orchestrator is not designed with the ability to (i) in-
clude/exclude real-time states, (ii) adjust the degree of re-
source/topology sharing/hiding as required by local policy
and/or user requirements, and (iii) tailor operations to opti-
mize scalability or real-time responsiveness. In addition, the
orchestrator functions are not designed to take advantage
of enhanced interactions with underlying SDN controllers
with a focus on interaction, real-time responsiveness, and
intelligent services.

• End-to-End Solutions - Current SDN and Orchestration so-
lutions are not end-to-end in the context of application
workflows. Domain science application workflows need so-
lutions which manage all resources along the end-to-end
path. This needs to include the networking stack inside the
end systems, as well as the devices along the network path.

The problem statement and solution objective which motivates
this work are as follows:

Problem Statement: Current SDN and orchestration systems
do not supply the degree of interaction, realtimeness, and intelli-
gent network services needed for the next generation of domain
science workflows. An integrated smart network and smart ap-
plication ecosystem is needed to enable application workflows
to ask questions, iterate on solutions, receive recommendations,
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and access full life-cycle status and troubleshooting information.
Future SDN enabled infrastructures need mechanisms to provide
topology and state information in real time based on fine-grained
policy, scalability, and service objectives. End system resource
management needs to be integrated into the orchestration of end-
to-end network resources. In the longer term end-to-end system
operation needs to be monitored at several layers with enough
granularity, to supply a foundation for future system optimization
through such mechanisms as reinforcement learning.

Solution Objective: Domain science application workflows
need real-time, interactive, end-to-end orchestrated SDN services
across large, distributed, multi-domain networks.

In this paper we present the SENSE model-based orchestration
system which operates between the SDN layer controlling the in-
dividual network regions, and users/applications needing a vari-
ety of end-to-end network services. The SENSE system provides a
solution to the identified problem and includes a novel set of APIs
and methods for interactions with users/applications, as well as
with the underlying software-controlled network infrastructure.

Multiple science community vision and requirement reports
[10,11] have identified these types of network services as being
important for the next generation workflows, including many
that will be driven by Exascale computing resources and big data.
Also driving the need for these types of network services is the
emerging DOE Superfacility concept which includes the seamless
integration of multiple, complementary DOE Office of Science
user facilities into a virtual facility to fundamentally transform
and accelerate the scientific discovery workflow. The SENSE sys-
tem provides the mechanisms needed to synchronize and coor-
dinate the connection of multiple distributed compute, storage,
and instrument resources with deterministic performance. These
intelligent interactive services provide methods for application
driven workflow planning and operations assistance, which will
be needed to realize the Superfacility vision.

As an example, the current Exascale for Free Electron Lasers
(ExaFEL) [12] workflows utilizing multiple data transfers over
best effort network paths are being replaced by SENSE services
providing deterministic network paths capable of supporting
real-time data streaming directly to compute memory or burst-
buffers. This mode of operation will also support computational
steering, where instruments use data streaming to drive prelimi-
nary compute results which are then used to calibrate and guide
experiment configurations to create real-time science feedback
loops.

It should also be noted that this new class of smart, interactive
networked services is not expected to replace the existing best
effort routed IP services in use today. Most science data flows will
continue to use traditional IP routed services. However, based on
historic use patterns and formal requirement studies [13], there
will be a set of science-driven use cases which do require these
types of advanced, end-to-end network services. While these
use cases will make up a small subset of the total science data
flows, they are expected to be responsible for the majority of the
bandwidth utilization. Another important observation is that the
traditional IP routed services and these advanced smart network
services will need to run over common infrastructure, as a key
aim is to not require separate or parallel network infrastruc-
tures. Advanced smart network services can be realized via using
advanced IP features, such as segment routing, or direct access
to the underlying Layer 2 or Layer 1 infrastructures over which
traditional IP network services are run.

The remainder of this paper will describe the SENSE Solution
(Section 2), SENSE Services Implementation (Section 3), Testbed
Deployment (Section 4), Use Cases (Section 5), Performance Eval-
uation Analysis, Results and Analysis (Section 6), and Summary
and Future Plans (Section 7).

2. SENSE solution

As summarized in the introduction, there are several key
features which are missing from current solutions as they relate
to domain science research and associated cyberinfrastructure
systems. SENSE enables a new application to networked system
interaction paradigm, which includes the following capabilities in
response to the problem statement and solution objective:

• Intent Based - The ability for an application to submit a ser-
vice request in the form of a high-level statement of desired
results or outcomes, as opposed to a specific set of network
centric inputs. The format of an Intent based interface will
be customized based on application specific requirements.
In some situations, an intent may be expressed based on
a highly abstracted network view with performance metric
annotations. In other situations, the intent form will be
expressed in the context of application specific resources,
end points, and references. The SENSE system is designed
to apply a DevOps (Development Operations) model to the
interface construction, which is enabled by a rich seman-
tic model-based infrastructure description which allows for
variable levels of abstractions and infrastructure/services
relationship tracking.

• Interactive - The ability for an application workflow agent
to engage in a ‘‘conversation’’ via a bi-directional exchange
with the network as part of workflow planning. This con-
versation can include discovery of available services, asking
‘‘what is possible’’ or ‘‘what do you recommend’’ types of
questions, engaging in iterative negotiations prior to actual
service requests, or full-service life-cycle status and trou-
bleshooting queries. This can be extended to processes that
drive adjustments or remedial actions to maintain system
performance and/or task progress, and to balance among
competing demands on the available resources.

• Realtime - This term has many different meanings and time
scales depending on the situational context. For the pur-
poses of this project, the problem space is large scale multi-
domain, orchestrated SDN services. Each of the full lifecycle
activities of resource discovery, provisioning, service sta-
tus, troubleshooting, and feedback response loops may have
their own requirements as it relates to real-time operations.
In these contexts, realtime typically means a time scale of
seconds to minutes. For example, provisioning an end-to-
end path which consists of two Department of Energy (DOE)
Laboratories High Performance Computing (HPC) facilities
connected across a single wide area network, may have
a response time in the 10 s of seconds. A more complex
end-to-end path with ten or more separate administrative
domains, may have a response time of several minutes. A
key objective of the SENSE design is to provide the mecha-
nism where a tradeoff between realtimeness and scalability
can be made at runtime by dynamic configuration. The
SENSE model-based interface between the orchestration and
SDN layer is designed to allow this tradeoff via controls
that dynamically vary the real-time states which are in-
cluded as part of the topology distribution. In addition,
there are mechanisms which allow for on-demand discovery
of real-time information and associated service parameter
negotiation.

• End-to-End - The SENSE notion of end-to-end orchestrated
SDN includes the multi-domain wide area, regional, and
end-site networks as well as the network stack inside the
end systems. The inclusion of the end-system networking
stack is important from deterministic and automated service
provisioning, monitoring, and troubleshooting perspective.
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The practical application of this approach is to manage the
networking stack all the way to the network socket of the
host operating system, virtual machine, or container where
the application process is interacting with the network. This
is designed to provide a foundation for applications such as
science workflow management systems that coordinate the
use of computational, storage and network resources.

• Full-Service Lifecycle Interactions - To optimize performance
and adjust to changing conditions, applications need mecha-
nisms to discover status and states during the service provi-
sioning as well as during the service operational phase. This
includes functions such as resource discovery, provision-
ing, service status, troubleshooting, and feedback response
loops. The SENSE vision includes a continuous conversation
between application and network for the full-service dura-
tion to enable new levels of application situational aware-
ness.

The SENSE approach to end-to-end at-scale networking is
based on software programmability and intelligent service or-
chestration. The SENSE orchestration architecture provides many
performance and assurance benefits through application oriented
services. These are enabled by some novel technologies, includ-
ing (a) hierarchical service-resource architecture (Section 2.2 for
more details), (b) unified network and end-site resource modeling
and computation (Section 2.2.2 for more details), (c) model based
real-time control (Section 2.3 for more details), (d) application
driven orchestration workflow (Sections 2.4 and 2.5 for more
details), and (e) end-to-end network data collection and analytics
integration (Section 2.6 for more details).

2.1. SENSE key functions

There are four main functions of the SENSE system:

• SENSE Orchestrator North Bound Interface – This is a highly
customizable interface for application workflow agents to
query regarding possible actions, recommendation, and/or
request specific service instantiation. While a standard
northbound interface has been defined, this interface is
designed to be easily and rapidly customized for individual
user requirements. The SENSE system has much data and
intelligence regarding the underlying networked systems.
This information can be customized for user consumption
in a highly detailed or abstract manner.

• SENSE Orchestration - This includes the integration of re-
source model-based descriptions from underlying network
infrastructures, the computation services to process
resource models for user request responses, and the coor-
dination of provisioning actions.

• SENSE Orchestrator South Bound Interface – This provides
for a continuous exchange of topology descriptions which
include an ability for the resource owners to tailor the
level of abstraction and real-time states in accordance with
local policies and service objectives. This is one of the key
innovations of the SENSE system and is based on semantic
web based graph models which provides a high degree
of service flexibility and infrastructure owner controlled
customizations.

• SDN Layer - The SENSE architecture relies on an underlying
SDN layer; however, it does not require a specific SDN con-
troller or system implementation. The SENSE architecture
accepts that there will be a variety of deployed SDN solu-
tions which will cover different network and administrative
regions. SENSE provides mechanisms and functions to lever-
age these systems and guidance for how they can be fully

integrated into orchestrated system. This typically requires
existing SDN systems to implement the SENSE Orchestra-
tor Southbound Interface as their controller Northbound
Interface. Existing systems may accomplish this via native
implementation of the SENSE API or via thin layer on top of
their existing API which provides the proper interface. This
technique of adopting underlying SDN systems for SENSE
system integration has been used successfully as part of
the SENSE system deployment on ESnet and other R&E
infrastructures. Systems based on OpenDaylight (ODL) [14],
Network Services Interface (NSI) [15], On-Demand Secure
Circuits and Advance Reservation System (OSCARS) [16],
and Open Network Operating System (ONOS) [17] have all
been integrated into SENSE orchestrator operations. SENSE
development and testing activities have demonstrated that
valuable orchestrated services can be provided using these
existing SDN systems as they are with no internal modifi-
cations. More advanced SENSE services can also be enabled
by making some changes to these systems in the areas of
topology description, abstraction, real-time states inclusion,
and computation to support negotiations.

2.2. SENSE architecture components

Within the SENSE orchestration architecture, there are two
distinct functional roles: Orchestrator and Resource Manager
(RM). The interaction of Orchestrator(s) and RM(s) follows a
hierarchical workflow structure whereby the Orchestrator ac-
cepts requests from users or user applications, determines the
appropriate RMs to contact, and coordinates the end-to-end ser-
vice request. The RMs are (administrative or technology) domain
specific and are responsible for configuring and managing local
resources.

An overview of the SENSE architecture is shown in Fig. 1. At
the lower layer are RMs covering various organizations from the
R&E community who are part of the testbed deployment. These
RMs create model descriptions for their infrastructure, in varying
degrees of abstraction, and provide it to the Orchestrator. The
SENSE Orchestrator absorbs and integrates these models to cre-
ate an end-to-end model which provides a basis for subsequent
intelligent infrastructure reasoning and service provisioning. The
SENSE Orchestrator is also responsible for providing an interface
facing the science users. To support a variety of use cases, the
Orchestrator includes a pluggable Model Computation Elements
(MCE) architecture, which enables flexible and rapid custom ser-
vice construction. The Orchestrator operates between the au-
tomation layer controlling the individual networks/end-sites, and
the science workflow agents/middleware layer. This figure also
shows planned future work integrating external network mon-
itoring and telemetry data sources into the model descriptions
and services computation.

2.2.1. SENSE Orchestrator
The SENSE Orchestrator is expected to be closely associated

with a domain science collaboration/application (such as
LHC/CMS [18] and ExaFEL [12]) and processes ‘‘high-level’’ con-
text sensitive intents to determine what resources are needed and
coordinate the requests of ‘‘lower-level’’ (or sub) intents to the
corresponding RMs. As such, the SENSE Orchestrator performs the
following functions:

• Model Receipt - Receives model-based resource descriptions
from multiple RMs.

• Intent Receipt - Receives and responds to the user’s ‘‘high-
level’’ intent requests (which is defined within the context
of the user’s domain science collaboration/application).
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Fig. 1. SENSE architecture.

• Intent Processing - Renders the user’s ‘‘high-level’’ descrip-
tive intent request into ‘‘low-level’’ prescriptive requests for
required resources.

• Resource Computation - Performs multi-constraint resource
computation (based on AuthN (authentication) / AuthZ (au-
thorization), resource availability, and other parameters) to
determine the appropriate and necessary resources needed
and which RMs to contact. The AuthN functions are uti-
lized to create the trusted relationship between the SENSE
Orchestrator and the individual SENSE-RMs. The SENSE or-
chestration layer AuthZ/AuthN functions are based on in-
dustry standards such as OpenID [19] , OAuth [20] , and
InCommon [21].

• RM Workflow - Coordinate requests and replies from RMs
and feedback the results to the user accordingly.

• Status Queries - Support queries by the user for status and
states.

• Notifications - Provide resource notifications to the user as
necessary.

The SENSE Orchestrator can take on different functionality,
customized to the domain science needs based on the experi-
ment, compute, storage, network, and other resources available.
A SENSE Orchestrator North Bound Interface (SENSE Orchestra-
tor NBI) is provided to accommodate such needs via service-
oriented intent based interactions. This interface is discussed in
Section 3 along with the intent design, negotiation mechanisms,
and workflow operations.

2.2.2. SENSE resource manager
The SENSE Resource Manager (SENSE-RM) is tied to a do-

main with physical resources, such as a Wide Area Network
(WAN), a Regional Network, or a Site (with Science DMZ [22]

resources). The SENSE-RM is responsible for management of its
domain-specific resources and includes the following functions:

• Model Generation - Provides (appropriately scoped and ab-
stracted) model-based resource descriptions.

• Orchestrator Interactions - Receives and responds to the
‘‘low-level’’ intent requests from the Orchestrator.

• Resource Computation - Performs multi-constraint resource
computation (based on authentication/authorization,
resource availability, other parameters) to determine the
local resources appropriate and necessary to service the
request.

• Resource Provisioning - Coordinates resource allocations/
commitments, provisioning, and de-provisioning with local
controllers as necessary.

• Status Query - Supports queries by the SENSE Orchestrator
for status and state.

• Resource Notification - Supplies resource notifications to the
SENSE Orchestrator as necessary.

The SENSE-RMs are specific to an administrative domain.
However, within a single administrative domain, multiple in-
stances of RMs may be deployed based on the distinct tech-
nology regions (such as Data Transfer Nodes (DTNs), optical
packet/transport, Layer2, and/or OpenFlow resources).
Conversely, a SENSE-RMmay model multiple technology domains
as a single resource description. For example, a network may have
distinct switches and routers which provide layer 2 and layer
3 services correspondingly. However, the domain may instanti-
ate a single RM which provides a unified resource description
characterizing both sets of resources. The current SENSE imple-
mentation includes the following types of SENSE-RMs: Network
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Resource Manager (Network-RM) and Data Transfer Node Re-
source Manager (DTN-RN). There are multiple types of Network-
RM which are tailored toward interoperation with specific types
of underlying SDN systems. The DTN-RM is currently evolving
into a Site Resource Manager (Site-RM) where it will manage local
site networking in addition to the end host networking stacks.

2.2.3. Many-to-many relationship between SENSE Orchestrator and
SENSE-RM

The SENSE Orchestrator should not be confused with a central
orchestration service for all applications. Instead, multiple SENSE
Orchestrator instances can independently serve different organi-
zations, collaborations and application groups. The primary mo-
tivation for this architecture is that each scientific collaboration
or workflow may have unique security, resource computation,
and access policies/mechanisms. This allows each collaboration
to implement fine-grained authentication, authorization, resource
utilization, and security functions in accordance with its collabo-
ration group policies. Each SENSE Orchestrator instance in turn
has a unique trust relationship with multiple SENSE-RMs. This
facilitates scalability in that an RM does not need to manage
authentication, authorization, and policy information at the in-
dividual end-user level. The RM can enforce policies against the
identity of the requesting SENSE Orchestrator instance and the
negotiated service parameters.

In addition, different collaborations may have access to dif-
ferent resources within a SENSE-RM’s domain. For instance, one
collaboration may be restricted to a certain set of network links,
whereas another collaboration may not have the same constraint.
By having distinct SENSE Orchestrator instances per collaboration,
a SENSE-RM may publish different resource descriptions based
on Service Level Agreements (SLAs) that it has with the SENSE
Orchestrator instance. The SENSE Orchestrator instance in turn
may perform resource computation and allocation with priorities
and constraints that are unique to the collaboration.

SENSE-RM’s can also receive detailed information regarding
the individual requesting user, which may be desired to ap-
ply finer grained policy and resource management policies. The
SENSE Orchestrator supports multiple industry standard AuthN
(authentication) / AuthZ (authorization) mechanisms, such as
OpenID [19], OAuth [20], InCommon [21], Shibboleth [23], and
Kerberos [24]. This facilitates the exchange of meaningful user
information between multiple Orchestrator and RMs in the dis-
tributed system.

An important SENSE architectural premise is that from an
Orchestrator’s perspective, the RM is the owner and in control of
its underlying resources. That is, the RM is the source of ‘‘ground
truth’’ regarding the resource topology and states. The RM decides
what set of resource descriptions to provide to an Orchestrator,
and how to process (accept, modify, or reject) service requests.
An Orchestrator’s role is to simply gather resource descriptions
from multiple RMs and facilitate the computation and service
provisioning coordination across multiple Resource Managers. A
key benefit of the SENSE approach is that the RM only needs
to concern itself with the resources it owns and controls. A RM
does not need to think about end-to-end services or resources
in other administrative domains. This architecture will require
careful optimizations and tuning in the two key dimensions of
data consistency and conflict resolution.

Data consistency refers to the accuracy of the resource de-
scription information held by the Orchestrators. This information
is provided by the RMs and may be incomplete or become in-
accurate over time. A key benefit of the model-based exchange
between the RM and Orchestrator is that the amount of real-
time data and the update frequency can be optimized based on
service objectives and scalability realities. An RM may provide a

resource model, which includes only topology information that
is relatively static. For instance, a resource topology model may
just include the fact that an End Site has a specific number of
Data Transfer Nodes (DTNs) which are connected at 100 Gigabit
per second (Gbps), and that the site has 100 Gbps connections
to two different wide area networks. It should be noted that
changes to this ‘‘static’’ information are still automated, with
periodic model updates sent as needed. At the other end of the
resource model update spectrum, the RM could continuously
update its states to reflect the current services provisioned and
resource usage. For example, the resource model could include
real-time information regarding services which are provisioned
to the DTNs, including VLAN and bandwidth usage. This model
could be updated every second, resulting in an Orchestrator with
a much higher fidelity view of the current resources states. The
SENSE system was designed to allow the tailoring of the amount
of real-time data in the model exchange. Deployments which
have small total number of RMs, and service objectives which
include rapid provisioning, may want to provide frequent model
updates with more real-time data included. Deployments which
include a large number of RMs, and provisioning times which
can be longer, may opt for model updates with less real-time
information and less frequent updates. Both of these approaches
will allow for successful multi-RM services provisioning due to
the conflict resolution features which are described next.

Conflict resolution refers to the fact that an Orchestrator will
likely be interacting with multiple RMs. Likewise, an RM may
interact with multiple Orchestrators. The SENSE approach is to
leverage the fact that the RM is in control of its resources and
can always optimize based on its knowledge of real-time states.
We could have taken the approach of also adding Orchestrator-to-
Orchestrator coordination. However, we felt that this would add
unnecessary complication to the system. Instead, we built into
the Orchestrator to RM interface the notion of real-time nego-
tiation and hold times. The negotiation features allow the RMs
to inspect a request from an Orchestrator and suggest specific
resource usage or configuration changes to optimize based in its
unique knowledge of real-time states. The hold times provide a
mechanism for the Orchestrator to receive a promise for specific
resources being available for a small window of time, sufficient
for it to coordinate with other RMs as part of a multi-RM service
provisioning event. These features, with an intelligent Orchestra-
tor possibly engaging in multiple negotiation rounds with some
RMs as needed, are intended to result in a high percentage of ser-
vice provisioning success, and resource utilization optimization.
Testing and detailed data analytics in this area will be the subject
of future work and papers. In addition, the need for Orchestrator
to Orchestrator coordination may be reevaluated based on future
testing and deployments.

There will be a tradeoff between optimization for data con-
sistency versus contention resolution. Increasing the data consis-
tency by including more real-time information in the model with
more frequent updates, will allow an Orchestrator to make better
initial decisions, along with less utilization of the negotiation and
hold time features. However, the inclusion of too much real-time
information may cause scalability or stability issues. If there is too
little real-time state information available to the Orchestrators, it
will have to rely on the negotiation and hold time features to ob-
tain the real-time information at service provisioning time, which
may increase service responsiveness from a user perspective.

Fairness and contention management are also important con-
siderations that must be addressed at both the data plane and
control plane levels. From the data plane perspective, SENSE
includes some services with resource guarantees which allow
these issues to be managed at the control plane level as part of
service instantiation. For services which operate across shared
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resources, standard mechanisms for traffic monitoring can be
utilized to identify unacceptable levels of utilization by specific
users. Control plane interaction is the area where the SENSE
system presents some new challenges in the fairness and con-
tention management dimensions. A combination of monitoring,
policy enforcement, and cost structures will be used to ensure
that a user does not ‘‘game’’ the system to the detriment of
other users. The first line of defense relies on the RMs using
their freedom to flexibly manage their total resource pool for
overall optimization based on the infrastructure owner policies.
In this manner, the amount of resources which can be reserved
or dedicated to a specific set of users can be tailored and con-
trolled. The second line of defense is that there will be a ‘‘cost’’
associated with reserving or using specific resources. The specific
form of this ‘‘cost’’ structure is future work, and may include
monetary considerations, usage of allocation credits, or real-time
monitoring to highlight and publicize when resources are not
being used effectively. Thirdly, all users accessing the control
plane will be authenticated which will enable historical usage
profiling. This will allow the implementation of explicit priority
and/or fair sharing policies and algorithms which manage the
user interaction dynamics. The overall goal will be to ensure that
if resources are made available via the SENSE intelligent interface,
they are used effectively and efficiently.

2.3. Ontology-based resource modeling

Orchestrating end-to-end SDN services over large network
infrastructures must address two classic challenges: control au-
tomation and distributed coordination. Automation in any complex
system requires formation of a control loop. In one direction,
control operation results in state changes in the infrastructures. In
the other, control feedback and/or telemetry is desired to provide
additional state awareness back to the orchestration layer. Uni-
fied resource modeling can supply semantics in both directions.
With a proper level of abstraction, the orchestration intelligence
can learn dynamic resource and service states and create new
services with reduced chance of conflict and better efficiency.
The same modeling semantics can also serve to synchronize the
orchestration intent to resource and service states in the un-
derlying infrastructures and thus close the control loop. We call
this a full-stack model driven approach, which is also a complete
service-oriented approach. Applying this approach helps solve the
other challenge in distributed coordination. When all resource
owners use unified, extensible models to describe their resources,
services, and states, we effectively create a thin-API to introduce
universal programmability to all the parties. Each party can en-
gage in free-form provider–consumer relationships for any As-a-
Service transactions and thus decentralize the service integration,
orchestration and instantiation processes.

The above vision led us to the search for a standards-based,
composable, extensible and scalable semantic representation for
Resource Modeling. We settled with using ontology-based mod-
eling based on Semantic Web technologies [25]. Semantic Web, or
Linked Data, is a suite of well-established standards by the World
Wide Web Consortium (W3C) for web applications to describe
and interconnect resources or data. Among the standards, the Re-
source Description Framework (RDF) [26] defines ways for ‘‘how’’
to exchange data, i.e. syntax, while the Web Ontology Language
(OWL) [27] defines ways for ‘‘what’’ to exchange, i.e. semantics.
The RDF/OWL combination provides a solution for defining on-
tologies which allow machines/software programs to understand
and reason about the data.

Based on RDF/OWL we developed a Multi-Resource Markup
Language (MRML) [28] as the ontology base for extensive types
of resources and services in large information infrastructures.

The modeling framework is based on extensions to the Network
Markup Language (NML) [29] ontology developed by the Open
Grid Forum (OGF) [30]. As part of a DOE Advanced Scientific Com-
puting Research (ASCR) research project, RAINS [31], extensions
to NML were defined to allow other resource types in addition to
network elements/topologies to be described and modeled. The
base NML standard and these extensions define the MRML, which
is used as the ontology basis for resource modeling in the SENSE
architecture.

2.4. SENSE Orchestrator to resource manager API

From the resource providers’ perspective, the SENSE RM API
provides the mechanism for real-time ontology-based data in-
tegration of distributed and diverse resource domains into the
SENSE orchestration. The SENSE Orchestrator manipulates the
provided topology model to achieve its target goal, computes and
expresses a model ‘‘delta’’ between the original topology and the
desired topology, and then proposes this resulting delta to the
RMs.

2.4.1. MRML resource modeling
The SENSE-RM API is based on a resource model exchange and

manipulation paradigm. The SENSE Orchestrator queries multiple
RMs for a resource model which describes the infrastructure and
services available for use. The resource model provided by each
RM includes a description of its local network and other resources
such as Data Transfer Nodes (DTN) [32], storage systems, instru-
ments, and compute nodes. This model description includes a
definition of the interconnects to external resources which allows
the SENSE Orchestrator to build a model-based connected graph
with all the RMs in its query space. This end-to-end model-based
graph provides the basis for the SENSE Orchestrator to respond to
user requests and construct workflows for service provisioning
interactions with the proper RMs. In the SENSE Orchestrator,
Modular Computation Elements (MCEs) provide the mechanisms
to translate high level intent based user requests into specific
workflow orchestration steps and resource requests to individ-
ual SENSE-RMs. Additional details regarding the MCE functions
and usage for custom workflow computations is provided in
Section 2.5.

2.4.2. Model driven real-time resource management
Each RM describes its topology and resources in the form of

an MRML document with version management to track changes
over time. This model document defines all the semantics for
the SENSE Orchestrator API. Therefore, the API operations are
radically reduced, down to two: model pull and delta push. The
latter is divided into two methods, propagate and commit, to
support a transactional Two-Phase Commit (2PC) push process.
This simple set of API methods will not need to change when
resource types or services are modified. Since all information is
embedded within the model, only the model processing func-
tions will need to be adjusted. In SENSE, we also emphasize
another important performance metric: realtimeness. We will dis-
cuss what this means for end-to-end resource integration and
service orchestration, below.

• Pull Model - The SENSE Orchestrator receives a model-based
resource description from each of the RMs in the end-to-end
SENSE ecosystem. The SENSE Orchestrator integrates models
from multiple SENSE-RMs to generate a multi-domain re-
source description model. The individual SENSE-RMs utilize
local policy to determine what information is provided with
regard to resources, abstraction degree, and any other fac-
tors based on use cases associated with an individual SENSE
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Orchestrator. On the current SENSE Testbed, the SENSE Or-
chestrator is customized to pull RM models every 30 s.
The HTTP ‘‘If-Modified-Since’’ mechanism is used to reduce
redundant data pull. SENSE-RMs will be responsible for
adjusting the abstraction degree and resource update fre-
quency to satisfy the ‘‘realtime’’ requirements posed by the
SENSE Orchestrator. The SENSE-RM API also provides an
optional subscribe-notify mechanism for the SENSE-RMs to
push model changes to the SENSE Orchestrator before the
Pull call, for speedier updates.

• Propagate Delta - The SENSE Orchestrator processes intent-
based service requests from the SENSE Orchestrator API and
generates a ‘‘model delta’’ which will be used to commu-
nicate a potential action/provision request to the SENSE-
RM(s). The SENSE-RM is not expected to take any provi-
sioning action based on the Propagate Delta method. In
response to the Propagate Delta method, the SENSE-RM
should inspect, verify, and confirm the request of suggest
revisions. For example, a specific VLAN may be requested
in the Propagate Delta method, while the SENSE-RM would
prefer another VLAN. In this case the SENSE-RM should
indicate the modified VLAN request in the response via
modifying the provided ‘‘model delta’’. As the propagate call
is composed entirely of data transactions, it can be executed
quickly. Experiment results reported in Section 6 demon-
strate that a Network-RM running on the production ESnet,
which include a resource model with over 100 network
elements, can execute a Propagate Delta around in under
11 s on average. A host based DTN-RM can execute a Prop-
agate Delta in under one second on average. A negotiation
procedure has been built into this phase such that multiple
rounds of fast propagate and feedback transactions can be
performed, to achieve an updated real-time result that may
be different than the original ‘‘delta’’. This real-time negoti-
ation and update is necessary as the SENSE Orchestrator and
SENSE-RM are in a many-to-many loosely coupled relation-
ship that does not always allow for a complete ‘‘real-time’’
synchronization of the resource state information.

• Commit Delta - The SENSE Orchestrator uses this method to
ask the SENSE-RM to commit the changes negotiated as part
of the Propagate Delta exchange(s). This is where the SENSE-
RM is expected to provision resources. As this procedure is
normally time-consuming, it is separated from the trans-
actional propagate method. The SENSE-RM API commit is
always asynchronous so that none of the SENSE Orchestrator
calls to the SENSE-RMs are blocked for long time periods.
Polling-based status queries are used to check the result
of each asynchronous commit. Again, an optional subscribe-
notify mechanism is supported for the SENSE-RMs to call
back to the SENSE Orchestrator for real-time updates.

2.5. Intelligent orchestration and model computation framework

The core of SENSE Orchestrator is StackV [33], a general-
purpose open-source orchestrator for networked multi-services.
StackV is implemented based on the full-stack model driven
intelligent orchestration approach. From the very top of the stack,
applications communicate to the orchestrator with an abstract
service intent. Intents including those specifically for SENSE take
different forms, for the convenience of users. The SENSE Orches-
trator NBI translates each service intent into a so-called ‘‘Service
Model Description and Abstraction’’, which is a formal MRML
model that consists of abstract resources annotated with service
policy statements. The abstract model data are then fed to a
dynamic compile procedure and compiled into a model-based
computation workflow. A computation workflow consists of a

variety of Model Computation Elements (MCE) as intelligent func-
tions assembled into an execution tree. Each MCE uses system
model data, service model data and policy data as input and
accomplishes a specific function such as resource placement and
connection computation. The output will be more detailed service
model data, which could be used as input for another MCE. When
the computation workflow finishes successfully, a System Model
Delta will be created that provides detailed model statements
about what needs to change in the underlying infrastructures
governed by RMs to satisfy the intent.

The benefits of model-based computation include (i) elimi-
nating conversions between external interface and internal data
structures, (ii) leveraging standard tools for data query, naviga-
tion, transformation and reasoning, and, (iii) maintaining consis-
tent data semantics through all the computation modules. In this
framework, MCE is the basic computation module. The input and
output of an MCE are both model data based on the RDF/OWL,
MRML and policy ontologies. Each MCE instance computes for
a specific purpose and produces a compiled workflow of exe-
cution instructions. For an example, a Layer-2 VLAN Connection
MCE absorbs the initial service abstraction model that specifies
connection terminals, bandwidth and schedule parameters. It
then creates model statements for end-to-end layer-2 connection
across end sites and wide area networks. The result is an updated
service abstraction model which is exported together with some
intermediate policy data. The intermediate policy data has dy-
namically generated resource constraints and interdependencies
that add to the context of next step computation actions. In this
example, it suggests new VLAN interfaces as related to terminal
ports and requests for data-plane IP addresses on such interfaces.
Then a Layer-3 Address Assignment MCE uses this new service
abstraction model and policy data (which is more detailed than
the original one) as input to perform its own computation and
add layer-3 modeling statements to the further updated service
abstraction model. StackV has implemented sophisticated logic
to concatenate MCEs and merge computation results. The basic
idea of this technique is to use SPARQL [34] queries to ‘‘shape’’
the output of an upstream MCE into custom JSON format and use
JSONPath [35] queries to extract information and ‘‘fit’’ to the input
required by downstream MCEs. Success in finishing the computa-
tion workflow means StackV has resolved all model abstractions
and policy annotations in the final product and has converted an
application intent into a System Model Delta. This ‘‘delta’’ can be
pushed down to the SENSE-RM API for instantiation. This modular
model computation framework enables SENSE Orchestrator to
perform in-situ intelligent computation when working with both
real-time model data from SENSE-RMs and interactive intents
from users.

In the context of this project, the terms ‘‘intelligence’’ and
‘‘smart’’ refer to several related SENSE architectural features and
capabilities. To provide a flexible and customizable set of in-
teractive, real-time, intent-based services across distributed au-
tonomous SDN infrastructures, the SENSE system needs to do
many things, which when taken together represents a certain
level of intelligence. These activities include the absorption of
information from the underlying dynamic SDN layer, computing
multi-constraint solutions, and engaging in subsequent inter-
actions and negotiations, both on the orchestrator southbound
and northbound interfaces. Another context for intelligence is
from the user services perspective. Here the user, via the SENSE
Orchestrator northbound intent based API, can ask abstract and
open-ended questions. As part of this, the user can engage in a
‘‘conversation’’ via a bi-directional exchange with the network as
part of workflow planning. This conversation can include discov-
ery of available services, asking ‘‘what is possible’’ or ‘‘what do
you recommend’’ types of questions, engaging in iterative nego-
tiations prior to actual service requests, or full-service life-cycle
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status and troubleshooting queries. This constitutes a certain
level of intelligence from a user perspective and is discussed in
more detail in Section 3 (SENSE Services Implementation). The
third context for intelligence is based on the SENSE architecture
definition and vision, which includes the incorporation of real-
time telemetry data to feed the orchestration algorithms. The
expectation is that this data will also be used to feed future
machine learning systems, which will provide a mechanism for
enhanced SENSE operations. This network telemetry integration,
machine learning, and artificial intelligence work is part of fu-
ture work, and represents the plan for SENSE movement toward
more intelligence as a key part of future services. Additional
information on this is provided in Section 2.6.

2.6. Network data collection and analytics integration

Topological model and resource states are the basis for the
SENSE Orchestrator intelligent computation for orchestration ser-
vices. In the current SENSE Testbed, ESnet and many DTN end
sites have deployed various monitoring and data collection and
archiving mechanisms. The planned SENSE analytics solution will
consolidate these existing resources into a functional utility en-
gine that has distributed data collection, archiving and access
endpoints, but uses common API and data schema definitions.

The expectation is that further integration of real time and
historical network data through an analytics engine can pro-
vide improved quality of experience for users, through better
understanding of end-to-end network states and more precise
prediction of traffic trends. The analytics-based feedback will also
help users better understand network conditions and options and
refine their service intent requests. An extended SENSE archi-
tecture includes integration with a data analytics engine that
collects network data from end sites and transport networks,
and provides analytics pre-processing and feedback to the SENSE
Orchestrator. It will collect extensive telemetry data from various
monitoring and active measurement sources that reflect network
resource utilization and real-time states. This data collection and
analytics capability is not yet in place and is anticipated as part
of future work.

The Data Analytics Engine will be a component external to
the SENSE Orchestrator. Following the suit of model driven API
design, the interaction between the Data Analytics Engine and
SENSE Orchestrator will be based on the same resource model
used for the orchestration and resource management functions.
With per-user and per-service ownerships being annotated upon
collection, data contents and formats will be customized based on
service orchestration needs. In addition, the analytics data will
be integrated with the existing MRML model through abstrac-
tion, reference and annotation processing. New MCEs will also
leverage the custom, pre-processed, MRML friendly data from
the Analytics Engine to compute improved results for existing
service intents and provide answers to more complex intent
questions. This includes finer grained and more accurate answers
to the ‘‘what is possible’’ or ‘‘what do you recommend’’ types of
questions. In general, the objective is to utilize historical and real-
time telemetry data to provide the user with estimates regarding
end-to-end performance, and recommendations about when and
how to use the network.

The Service Specific Data bridge across the Analytics Engine
and the SENSE Orchestrator will form a closed control-feedback
loop. The orchestration results will be monitored and measured
and provided as feedback for fine tuning of future orchestration
computation. On the other hand, the SENSE Orchestrator will
also provide information to the Analytics Engine to help verify
and instrument the data collection and analysis more efficiently.
Including telemetry-based data analytics in the control-feedback
loop will enhance SENSE realtimeness and interaction capabilities
for end-to-end orchestration.

3. SENSE services implementation

The SENSE system has been developed to operate in ‘‘De-
velopment Operations (DevOps)’’ mode, where custom services
can be rapidly developed in response to individual application
requirements. The general system philosophy is that while not
‘‘every’’ service imaginable can be implemented, almost ‘‘any’’
service can be. This philosophy results in a system design that
resource states and capabilities are sufficiently available to allow
the construction of many different services. The user require-
ments will be utilized to form the basis of the actual services. For
each of these services, the user can interact with SENSE in the
following modes:

• Immediate Provision - If SENSE finds a resource path which
satisfies the application request, provisioning starts at once
(after routine confirmations from both sides).

• What is Possible? - In this mode, SENSE simply conducts
a ‘‘Resource Computation’’ and provides the results back
to the requestor. No provisioning action is taken without
further explicit requests from the user.

• Negotiation - One or more rounds of Resource Computa-
tion requests with subsequent provisioning request by the
application user if desired.

In the context of SENSE services, the ‘‘network’’ includes the
switching and routing elements and the network stacks of the end
systems, such as Data Transfer Nodes inside Science DMZ facil-
ities. The data plane capabilities associated with these services
are:

• Layer 2 point-to-point with Quality of Service (QoS)
• Layer 2 multi-point with QoS
• Layer 3 Virtual Private Network (VPN) and Flow QoS

Additional details regarding these (and other) services, the
supporting system architecture, use case integration, and testing
results are provided in the subsequent sections.

From the user application perspective the SENSE Orchestra-
tor provides services via a programmable northbound interface,
called the SENSE Orchestrator NBI. The SENSE Orchestrator sup-
ports modular intelligent computation and arbitrary orchestrated
services. The SENSE Orchestrator NBI is a customizable intent
based API with an emphasis on end-to-end network connec-
tion discovery, computation, and intelligent services to support
science workflows.

3.1. SENSE Orchestrator End-to-End service and intent based API

The SENSE Orchestrator NBI service is designed to be cus-
tomized based on individual use case requirements. An example
service is a ‘‘Multi-Path P2P VLAN’’ where a user requests a 10G
connection with hard-capped bandwidth QoS between DTN sites
at NERSC and Caltech. An alternative service type, ‘‘Multi-Point
VLAN Bridge’’ could be used to request a VLAN connection of
three and more terminals. A Layer 3 service allows the dynamic
creation or attachment of end site resources to a specific VPN.
The intent requests are captured in a simple JSON document
and sent to the SENSE Orchestrator NBI for processing. A service
request message format and key field information example is
listed below:

Key Message Field Information

• service_type - This field indicates the type of service being
requested. The example value is ‘‘Multi-Path P2P VLAN’’,
which allows for multiple point-to-point connections to be
computed and provisioned as a group.
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• service_alias - This field indicates a service specific name for
this service instance.

• connections - This section defines the specific connections
requests. There may be multiple individual connections in-
cluded in a single request. The advantage to including mul-
tiple connections in a single request is that they will be
computed and optimized as a group with regard to satisfy-
ing the user requests and also using the network resources
efficiently.

• name - This field supplies a service specific name for this
connection instance.

• terminals - This block names one or more endpoint pairs for
each connection.

• uri - A uniform resource indicator which defines the end-
points where service should terminate. The values correlate
to information in the resource models.

• label - A list of any constraints or preferences for connection
labels which may be VLANS or other network flow space
element. The example value ‘‘any’’ indicates that the SENSE
system may select a value based on available resources.

• bandwidth - This section defines the type of bandwidth
desired for a specific connection.

• qos_class - An indication of the type of QoS desired with
options as described in Section 3.3. Supported QoS classes
include guaranteedCapped (no burst over the capped limit),
softCapped (allowing for bursting over the cap when extra
bandwidth is available) and bestEffort. The example value is
‘‘guaranteedCapped’’.

• capacity - This field indicates the amount of bandwidth
requested.

• units - This field defines the units for the above capacity
value.

SENSE has developed an intent schema to describe complex
end-to-end network connectivity, QoS and scheduling require-
ments for the intent-based API. Internally, SENSE Orchestrator
converts such intents into an ontology-based MRML model and
converges them into a full-stack model computation, transaction
and integration process that performs service instantiations and
life-cycle operations.

3.2. Interactive service negotiation workflow

The SENSE Orchestrator NBI also includes a set of messages
which allow applications to interact with SENSE as part of its
workflow planning. This includes SENSE messages for service and
resource discovery, asking questions about options, and seeking
recommendations. These are referred to as query and negotiation
features. Additional description and examples for these types of
interactions are provided below.

3.2.1. Service request with queries
A service request can optionally include a ‘‘query’’ block in or-

der to ask questions without initiating actual provisioning events.
Using the above service intent as an example, the below ‘‘query’’
blocks ‘‘ask’’ questions about end-to-end QoS capabilities. The
query response from the SENSE Orchestrator then performs the
regular service computation, to provide answers to the questions
posed in the ‘‘queries’’. In the below example, the question is
‘‘What is the maximum bandwidth possible for the indicated
connection?’’. The query response from the SENSE Orchestrator
answers that it can allocate 10G of guaranteed and hard-capped
bandwidth at this moment. The response also reports that this
end-to-end path has a 100 Gbps bandwidth capability, based on
the combined allocated and unallocated resources.

3.2.2. Service request with negotiation and multi-round interactions
An application workflow agent may ‘‘negotiate’’ with the

SENSE system by engaging in multiple rounds of query request/
response exchanges. As part of this negotiation, the SENSE Or-
chestrator will revise the intent and post a newer version to
the same service session identified by the service instance ID
found in the reply from the initial service request call. Following
the above example, the user knows the maximum bandwidth
is 10 Gbps for the requested end-to-end connection. However,
this only applies at the instant of the last reply, and this gives
the user only a rough idea of the available network capacity.
Then the user could negotiate for a feasible schedule in a sliding
window that is bounded by the maximum and minimum allowed
bandwidth, as illustrated in the request segments below. Here the
user asks for a time-bandwidth product of 1 TB to be transferred
within next 2 days with acceptable bandwidth between 2 and
10 Gbps, the SENSE Orchestrator provided a feasible solution for
a transfer, that it accomplished between 10:00:00 and 10:26:40
ET on September 1st 2018 at a fixed speed of 5 Gbps. Additional
information regarding the time-bandwidth product is provided in
Section 3.3.2.

3.2.3. Reserve and commit service
Negotiation can be performed for many rounds until the user

is satisfied with the reply. Once the user has settled on the final
intent, it could use the Reserve method to reserve the service,
which corresponds to the reply sent by the SENSE Orchestrator in
the last round of negotiation as the final intent. In a final step, the
user calls the Commit method to actually allocate the resources.
Compared to a ‘‘soft’’ Reserve that is mostly a database operation,
the Commit call is ‘‘hard’’ operation, which can take considerable
time for some resources. The SENSE Orchestrator NBI offers both
synchronous and asynchronous methods to execute the commit
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call. The complete intent API document for SENSE Orchestrator
NBI is published at [36], which includes other components such
as the service termination and discovery methods.

3.3. End-to-End quality of experience and intelligent services

Through ontology-based resource modeling and intelligent or-
chestration, SENSE provides a powerful solution for end-to-end
QoS across many network domains. Bandwidth QoS only repre-
sents one aspect of Quality of Experience for data transfer appli-
cation users. Many users also want deterministic or predictable
time schedules for data transfers. In addition, some users would
like to ask open-ended questions, so they can optimize their
workflow operations based on the network services and status.

Through implementation of these sophisticated capabilities,
SENSE represents an innovative end-to-end SDN service
paradigm. In this paradigm, the network control plane is an in-
telligent system that integrates and orchestrates arbitrary end-to-
end services through ontology based real-time resource modeling
and modular model computation. Users or client agents can then
ask intelligent and complex ‘‘What is possible’’ questions via

an intent based, interactive and negotiable service interface. In
the SENSE project, we are building a reference implementation
that is specific to the big science models, controlling primarily
data transfer and network resources. Further developments of
this implementation will continue to provide more sophisticated
intents adapted to complex situations encountered in actual
field operations, and possible optimized responses using machine
learning.

To add more specificity to these ideas of smart network ser-
vices, we present four examples of SENSE service capabilities that
represent the use of query, negotiation, and question features to
enhance the overall user Quality of Experience.

3.3.1. Immediate QoS provisioning
This is the most basic feature where a user asks for a spe-

cific connection service with a specific QoS level. The supported
QoS classes include guaranteedCapped (no burst over the capped
limit), softCapped (allowing for bursting over the cap when extra
bandwidth is available) and bestEffort. For users who are not sure
how much bandwidth to ask for, or want to check availability be-
fore provisioning they may first query for the maximum available
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using the ‘‘maximum-bandwidth’’ query statement as shown in
the earlier example. Once the intent negotiation is concluded, the
service will be reserved across all domains, and then immediately
provisioned once it is committed.

3.3.2. Time-Block-Maximum Bandwidth (TBMB)
With this feature the user would like to know the maxi-

mum bandwidth available for a specific time period. This is the
same as the immediate provisioning service, but adds the time
dimension to queries, and scheduling for provisioning. As an
example, the user may ask for the same 10 Gbps connection
as above without requiring immediate provisioning. Instead the
request is to schedule a bandwidth service to start and end
at specific times in the future, and to provide the maximum
possible bandwidth that is continuously available during that
block of time. The query ‘‘ask’’ segment would include a ‘‘total-
block-maximum-bandwidth’’ value along with ‘‘start’’ and ‘‘end’’
values.

3.3.3. Bandwidth Sliding Window (BSW)
SENSE also implements a feature for end-to-end bandwidth

scheduling based on the ‘‘sliding window’’ concept. As an exam-
ple, a user may ask to schedule a service lasting for 4 h that can be
scheduled flexibly within the next 2 days. This particular intent
is called a ‘‘bandwidth-sliding-window’’. The query statement is
only slightly different than TBMB in that it includes a ‘‘start-
after’’ and ‘‘end-before’’ fields allow the SENSE system to flexibly
identify a time block within that window.

3.3.4. Time-Bandwidth Product (TBP)
Another SENSE service intent is based on the concept of the

‘‘Time-Bandwidth Product’’ (TBP). For instance, an 8-hour transfer
at 10 Gbps represents a data volume, or TBP, of 36000 GB or
36 TB. Allowing users to query and negotiate bandwidth and
schedule based on a given TBP is provided to assist bulk data
transfer focused workflows, as TBP is a good estimate of the
total amount of data to transfer. As an example, user ‘‘queries’’
may be formatted to find a schedule for the transfer an esti-
mated 10,000 MB (10 GB) of data within a 2 day time window
after October 1st 2018 8:00ET. The user would like to check
for the fastest possible transfer speed using a ‘‘use-highest-
bandwidth = true’’ option. Alternatively, the user can ask for
the least bandwidth (or widest schedule) using a ‘‘use-lowest-
bandwidth = true’’ option, or a bandwidth-bounded schedule
using both ‘‘bandwidth-mbps ≥’’ and ‘‘bandwidth-mbps ≤’’
options. The latter will return a feasible schedule that satisfies
both the time-bandwidth-product and the bandwidth upper and
lower bounds.

4. Testbed deployment

The SENSE solution architecture aims to address the problem
of real-time interactive end-to-end SDN orchestration, which
includes a complex set of issues and features revolving around
distributed resource management, real-time modeling, multi-
domain data integration, end-to-end orchestration, and intelli-
gent service interface and interaction. The method for SENSE
solution architecture design is more empirical than quantitative.
Reference implementations and testbed experiments are the pri-
mary means to validating the design. In addition, a real-world,
at-scale SENSE testbed deployment helps us evaluate its technical
applicability for a wide spectrum of use cases, scenarios and
application workflows.

The SENSE architecture, models, and protocols define methods
such that new implementations can include the most advanced
levels of smart interactive networked services. However, a key

part of the SENSE vision is to allow adaptation to and deployment
on existing facility deployments interconnected by production
networks. The same features that allow for adjustment and op-
timization of realtimeness vs. scalability, also allow existing SDN
deployments to adapt their use of the SENSE functions in a
manner which is compatible with their underlying network in-
frastructure. This allows early deployment of SENSE services for
testing and use case development, and also provides guidance for
future upgrades of network automation systems. This approach
allowed the deployment of SENSE services which operate on top
of ESnet, DOE laboratory, and university production and testbed
infrastructures. The result is a SENSE testbed which allows for
real world testing and the ability to provide services to use cases
which include connections to their production resources.

The SENSE testbed deployment had to deal with multiple
existing deployed SDN systems. The SENSE system provides the
mechanisms and infrastructure to leverage these systems and
provide guidance as to how they can be fully integrated into the
SENSE system. This requires existing SDN systems to implement
the SENSE Orchestrator Southbound Interface as their controller
Northbound Interface. Existing systems may accomplish this via
native implementation of the SENSE API or via a thin layer on top
of their existing API which provides the proper interface.

This technique of adopting underlying SDN systems for SENSE
system integration has been used as part of the SENSE system
deployment on ESnet and other R&E infrastructures. Systems
based on OpenDaylight (ODL) [14], Network Services Interface
(NSI) [15], On-Demand Secure Circuits and Advance Reserva-
tion System (OSCARS) [16], and Open Network Operating Sys-
tem (ONOS) [17] have all be integrated into SENSE Orchestrator
operations. The SENSE development and testing activities have
demonstrated that valuable orchestrated SDN services can be
provided using these existing SDN systems as is, with no internal
modifications. The practical implication of this approach so far
is that existing SDN system capabilities may limit the degree of
realtimeness or interactivity that SENSE can provide to the user’s
application workflows.

However, we have also identified the needed changes to these
systems in the areas of topology description, abstraction, real-
time states inclusion, and computations to support negotiation
that will allow for full provision of the more advanced SENSE
services. There are also opportunities for native implementation
of a SENSE based SDN system which further enhances the ability
to increase the realtimeness and interactivity of the orchestrated
services. This typically involves a tighter coupling between the
SENSE defined resource model generation, real-time states track-
ing, and resource control mechanisms. This native implemen-
tation approach was utilized for the SDN layer at end sites,
and higher performance was observed in the subsequent testing
activities.

A SENSE testbed has been deployed which includes a mix
of development and production resources. This testbed is be-
ing utilized to develop and test the SENSE software, as well as
test with domain science use cases. As shown in Fig. 2, this
testbed is deployed at multiple DOE laboratory and university
facility sites. For the allocation of network resources, the SENSE
system interacts with production provisioning systems of ESnet
and other networks. For the end-system resources, a mix of
production and prototype DTNs are deployed. For the production
DTNs limited access is provided, resulting in tailoring the set of
SENSE based dynamic configurations to match local site policies.
This approach to use a mix of production and research resources
enables experience with various real-world site deployments and
considerations.

The initial experimentation on the SENSE testbed were focused
on validating the SENSE solution architecture design, evaluating
soundness of intent based interactive service workflow for real-
world use cases, and obtaining metrics on the key performance
factors for realtimeness and scalability.
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Fig. 2. SENSE testbed deployment.

5. Use cases

The SENSE project is now in a phase where use case integra-
tion is a key focus area. The main use cases currently under test
are described below.

Data Transfer Node Priority Flow: Science DMZ located Data
Transfer Nodes (DTNs) are a common method for moving data
to/from compute facilities in the R&E community. For this use
case, SENSE services are utilized to enable a ‘‘DTN Priority Flow
Service’’. Since SENSE services are provisioned across the switch-
ing and routing elements and the network stacks of the end
systems, this allows the creation of QoS-enabled paths that can
be utilized for specific flows such that deterministic performance
can be achieved regardless of the background traffic. The con-
cept of operation is that these ‘‘SENSE enabled DTNs’’ can either
be placed adjacent to current production DTNs as standalone
transfer nodes, or SENSE software can be installed directly on
the production DTNs. In either case, standard DTN operations
and flows across the best effort routed IP paths continue as
normal. When a SENSE flow is established between DTNs, this
flow will receive priority access to network and host level re-
sources. The best effort flows will continue, possibly at a reduced
rate. This SENSE capability currently includes Layer 2 point-to-
point, Layer 2 multipoint, and Layer 3 VPN services. The work-
flow agent for this use case utilizes the ‘‘Time-Block-Maximum
Bandwidth’’, the ‘‘Bandwidth-Sliding-Window’’, and the ‘‘Time-
Bandwidth-Product (TBP)’’ SENSE features to instantiate Layer 2
paths with QoS. This workflow also demonstrates the ‘‘What is
Possible?’’ and ‘‘Negotiation’’ feature sets. A description of SENSE
services, as well as more information regarding testing for this
use case is available here [37].

LHC/CMS Use Cases: The SENSE project is also working on
use cases that integrate with Large Hadron Collider/ Compact
Muon Solenoid (LHC/CMS) data movement and analysis work-
flows. SENSE integration with this science domain is focused in
two areas:

• Rucio - This is a next-generation of Distributed Data Man-
agement system addressing high-energy physics experiment

scaling requirements. Rucio was originally developed to
meet the requirements of the high-energy physics exper-
iment ATLAS and now is extended to support not only
the LHC experiments but also other diverse scientific com-
munities. Rucio uses File Transfer Service (FTS) to globally
distribute the majority of the LHC data across the WLCG
infrastructure. The SENSE team is implementing a plugin for
FTS Service to be able to request network resources depend-
ing on the transfer queues and sizes between participating
sites and do bulk transfer of files reliable from one site to
another.

• nanoAOD - Another ongoing implementation is a new com-
pact event form called the ‘‘nanoAOD’’ [38] that enables
the rapid widespread distribution, ingest and real-time pro-
cessing through a set of ‘‘PhysicsTools’’ of entire datasets
of one to a few terabytes, that can be subsequently further
analyzed on user’s desktops and laptops.

The associated CMS analysis workflows and Distributed Data
Management implementations currently under development, are
planned to be accelerated and scaled up in terms of the number
of simultaneous workflows supported, through the use of SENSE’s
interactive bandwidth allocation and management services, to-
gether with the RM services at a number of CMS sites, and high
throughput data transfer applications such as FTS, XRootD and
Caltech’s open source Fast Data Transfer (FDT) [39].

Further related developments, underway through the NSF-
funded SDN Assisted NDN for Data Intensive Experiments
(SANDIE) project [40], include the use of Named Data Networking
(NDN) and its caching and routing methods, to be supported as
part of future SENSE services to expand NDN’s ability to deal with
larger scale data intensive workflows.

Exascale for Free Electron Lasers (ExaFEL): The objective of this
use case is to stream nano crystallography diffraction data from
SLAC National Accelerator Laboratory (SLAC) to National Energy
Research Scientific Computing Center (NERSC) over the network
in order to perform analysis on Cori, a Cray XC40, which has a
peak performance of about 30 petaflops with 2,388 Intel Xeon
‘‘Haswell’’ processor nodes, 9,688 Intel Xeon Phi ‘‘Knight’s Land-
ing’’ nodes, and a 1.8 PB Cray Data Warp Burst Buffer. The feed-
back is provided afterwards to the beamlines in the form of 3D
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electron structure visualization. The workflow uses SENSE com-
ponents to stream the data from the LCLS online cache at SLAC
to NERSC compute nodes over network, and also orchestrates
the SFX analysis processes to give near-real-time feedback to the
experiment. For this use case, the ExaFEL application workflow
agent utilizes the ‘‘Time-Block-Maximum Bandwidth’’ SENSE Ser-
vice to provision the network path. This includes establishment
of Layer 2 paths with QoS with time domain scheduling. More
information about testing for this use case is available here [41].

BigData Express: BigData Express provides schedulable, pre-
dictable, and high-performance data transfer service for DOE’s
large-scale science computing facilities (LCF, NERSC, and US-LHC
computing facilities, among others) and their collaborators. This
project seeks to orchestrate the system, storage, and network re-
sources involved in high-performance data transfers. From a net-
work services perspective, BigData Express focuses on controlling
local network resources supporting the end systems. For wide-
area service, the BigData Express system utilizes SENSE services
to provision paths across ESnet. The BigData Express workflow
agent utilizes the ‘‘Time-Block-Maximum Bandwidth’’ and the
‘‘Bandwidth-Sliding-Window’’ SENSE services to instantiate Layer
2 paths with QoS. This application also utilizes the ‘‘What is Possi-
ble?’’ and ‘‘Negotiation’’ features sets to co-schedule across mul-
tiple end-sites and network resources. More information about
testing for this use case is available here [42].

6. Performance evaluation, results and analysis

The SENSE solution architecture enables feature rich end-to-
end services for many use cases. It is important to evaluate the
design and implementation against our target problem in realis-
tic settings and verify its performance in at-scale deployments.
Results from testbed experiments will provide (a) reference per-
formance metrics for integrating new network domains, end sites
and facilities, and (b) ground truth in support of large-scale
deployments and service operations. The performance study in
this paper reflects an initial attempt to verify system functionality
with a focus on real-time speeds and scalability metrics.

6.1. Performance tests setup

The overall performance evaluation setups include testbed
configuration, experiments run, data collection and results analy-
sis. For the baseline performance evaluation, we ran experiments
and collected data from the actual SENSE Testbed that consisted
of 8 select SENSE RMs, including 3 Network RMs for Production
ESnet, ESnet Testbed and CENIC/PacificWave wide area domains,
and 5 DTN-RMs for the NERSC/LBL, Argonne National Lab (ANL),
Fermilab (FNAL), Caltech and University of Maryland (UMD) end
sites. The SENSE Orchestrator and RMs were standalone software
suites running on medium sized virtual servers (VM). Each VM
typically had 4 vCPU cores and 8 GB of memory. The experimental
testing plan was as follows.

• Compose - Compose a batch of 6 DTN-to-DTN service intents.
Each represents a point-to-point (P2P) or multi-point (MP)
layer-2 network connection service that requires transac-
tions with 3, 4, 5, 6, 7 and 8 RMs respectively. These intents
are described in Table 1.

• Request - Request the batch of services to SENSE Orchestra-
tor. Repeat the same batch when all the requested services
have been orchestrated and go active.

• Collect - Collect performance data from SENSE Orchestrator
and the 8 SENSE-RMs. This work mainly involves extracting
beginning and ending timestamps for model generation,
model pull, delta propagate, delta commit, model integra-
tion and orchestration computation events from logging
outputs by all the participating systems.

Table 1
Service intents in one batch of testbed experiments.
Experiment service intent # of RMs

P2P UMD - FNAL 3 × RM
P2P NERSC - FNAL 4 × RM
P2P NERSC - Caltech 5 × RM
MP NERSC + Caltech + ANL 6 × RM
MP NERSC + Caltech + ANL + FNAL 7 × RM
MP NERSC + Caltech + ANL + FNAL + UMD 8 × RM

6.2. SENSE testbed baseline experiment results

Through the experiments, we collected data to verify the
speed and scalability of the entire control-feedback loop for
SENSE orchestration. We can break down the speed metrics into
these three parts:

A. Decision speed: Service computation at the SENSE Orches-
trator.

B. Control speed: Service model delta ‘‘propagate’’ and ‘‘com-
mit’’ times from the SENSE Orchestrator to SENSE-RM.

C. Feedback speed: Model generation from SENSE-RM pull and
integration times at the SENSE Orchestrator.

Data collected for (A) and (B) include per-service event times,
which are presented in Fig. 3. Item (C) is a per-system metric as-
sociated with the SENSE Orchestrator pull of a full model update
from a SENSE-RM system. These results are presented in Fig. 4.

There are three different types of SENSE-RMs referenced as
part of these experiments: N-RM-OSCARS is a Python implemen-
tation of SENSE-RM on top of the latest ESnet OSCARS API, N-
RM-NSI is a Java implementation wrapping around the Network
Service Interface (NSI) that many R&E networks currently use
for dynamic layer-2 circuit provisioning, and DTN-RM is a native
implementation of SENSE model driven resource management for
DTN centric end sites and local SDN implementations. The results
are aggregated based on the system components involved in the
orchestration: SENSE Orchestrator, N-RM-OSCARS, N-RM-NSI and
DTN-RM. From Fig. 3, we have the following observations.

1. Network RMs take a much longer time than DTN RMs to
propagate a service delta. This is because both OSCARS and
NSI have their own reservation system that adds overhead
to the SENSE propagate process, while the DTN-RM can
have this process built on native SENSE modeling without
wrapping around a legacy system. The propagate is trans-
actional, so propagate with RMs has to be synchronous,
meaning the propagate times add up for all involved RMs
in a service. The number of DTN end sites has very little
impact as the DTN-RM propagate is very fast. The number of
WAN domains the service traverses will have a major im-
pact on the speed, as the average N-RM propagate operation
takes about 11.2 s. The largest service in these experiments
has 3 N-RM and 5 DTN-RM instances, bringing the total
propagate transaction time to 48 s.

2. commit takes the longest times, because this is the pro-
cess where resource allocation is actually executed. Unlike
propagate, the commit process is asynchronous. Multiple
commits are done in parallel, so that the total commit time
equals the longest among the RMs involved in a service.
30 s of commit is quite common in these tests, although the
maximum could be around 48 s when N-RM-OSCARS is in-
volved. It should be noted that the actual RM commit could
be very short. For example, a DTN-RM takes only a bit more
than a second to finish end site configuration. The SENSE
Orchestrator runs a periodic poll after the asynchronous
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Fig. 3. SENSE testbed service orchestration speeds breakdown (in seconds).

Fig. 4. SENSE testbed system model generation pull and integration speeds (in seconds).

commit call to identify the ‘‘finish’’ status which introduces
an extra time penalty due to the fixed polling intervals. The
SENSE-RMs can also use the optional subscribe-notifymech-
anism to call back to the SENSE Orchestrator for immediate
update which eliminates this time penalty.

3. The SENSE Orchestrator service computation times have
the biggest deviation, ranging from 4.5 to 31.1 s. This is
largely driven by the number of domains and provisioned
paths in the requested end-to-end topology. A point-to-
point (P2P) service spanning 3 or 4 RMs takes the least time
for path finding, while a multipoint (MP) service spanning
all 8 RMs takes the longest computation time.

4. Adding up the times for the various steps, we see that
the full process of service control including computation,
propagation and committing takes about 1 to 2 min at this
scale. From the scalability perspective, the number of RMs
involved in a service matters as it will add overhead to the
service computation and delta propagation times.

The SENSE orchestration performance also depends on how
quickly the SENSE-RMs can update their models, and how fast the
SENSE Orchestrator can pull and integrate these model updates.
The results shown in Fig. 4 provide some insight into these
factors.



196 I. Monga, C. Guok, J. MacAuley et al. / Future Generation Computer Systems 110 (2020) 181–201

1. The N-RMs need longer times than the DTN-RMs on aver-
age to generate a model, due to the overhead in communi-
cating with the OSCARS or NSI API. However, this difference
becomes less important when the network size (number
of resources under the RM) increases. The N-RM-OSCARS
takes a much longer time than the N-RM-NSI because
the production ESnet controlled by N-RM-OSCARS is much
bigger than the other two WANs controlled by the N-RM-
NSI instances. Generating a model at the Caltech DTN-RM
is also significantly longer than other DTN-RMs because
Caltech has a more complex campus SDN component that
adds to the model generation time for its DTN-RM.

2. Model pull times have the biggest range from milliseconds
to many seconds, due to very different model sizes be-
tween RMs. The longest pull time of 24 s comes from the
production ESnet N-RM-OSCARS, which generates a model
from OSCARS on-the-fly with a pull API call. A planned
improvement will separate the model generation proce-
dure from the API method and reduce the pull time to
sub-second. The SENSE-RM API recommends using the ‘‘If-
Modified-Since’’ HTTP header, which allows the RM to re-
turn code 304 instead of the actual model content when no
model update is available. SENSE-RM API also recommends
HTTP content encoding with gzip compression. These op-
tions result in the shortest pull times for the two N-RM-NSI
instances that have implemented them.

3. Model integration is a process in which the SENSE Orches-
trator combines all the model pieces pulled from RMs into
a connected union model. This requires CPU computation
at the SENSE Orchestrator. Experiments show that this
process is normally sub-second at this scale.

4. The SENSE Orchestrator model pulls from all RMs are asyn-
chronous and done in parallel. The speed is determined
by the combined model generation and model pull times
at the slowest RM. The total feedback time, which is the
system wide model learning time, can then be calculated
by adding up the longest SENSE-RM model generation plus
pull time and the SENSE Orchestrator model integration
time. This total time is easily scalable as model integration
time is the only limiting factor that will increase with the
number of RMs in orchestration. The good news is that the
model integration process is very fast.

To summarize, with a reasonable number and size of services
on the eight-RM SENSE testbed, 1 to 2 min of decision making,
and service control time is needed, and less than half a minute
is needed for system wide model learning and update. We have
identified and analyzed the factors that determine the overall
decision and control time. The majority of these are related to
the local computation and legacy API overhead, which can be
improved through software internal tuning. At the SENSE-RM API
level, several enhancements have been designed but not imple-
mented. The results of our experiments have confirmed that these
enhancements will potentially reduce the remaining overheads
substantially. At the SDN infrastructure layer, we see that the
choice of control plane technologies has a significant impact on
performance, as manifested by the difference between pre-SENSE
systems such as OSCARS and SENSE native implementations such
as the DTN-RM SDN. The experimental results have shown that
while SENSE can adapt legacy systems to work with SENSE-RM
API, the control and feedback often becomes less than real-time.
Enhancing such systems with SENSE native resource modeling,
model update and negotiation mechanisms will greatly improve
the overall performance and hence the Quality of Experience.

6.3. Scale-out emulation and results

The baseline experiments summarized above provide the ini-
tial results and insights into real-time speed metrics. A bigger
question now is: how would these findings fare in a much larger
orchestration environment? To answer this question, we set up
a SENSE emulation environment for scale-out experiments. We
deployed a total of 25 emulated DTN-RMs on real-world end sites.
We also created 42 NSI N-RM instances to emulate the global
AutoGOLE network domains [43]. In this environment, both the
DTN-RMs and N-RMs present realistic topological models to the
SENSE Orchestrator. Model visualization of the 67-domain topol-
ogy is shown in Fig. 5. They interact with the SENSE Orchestrator
through the same SENSE-RM API with realistic distributed trans-
actions, except that the device-level resource allocation actions
are emulated.

In the scale-out experiments, we generated multiple batches
of service requests among select DTN end sites. Each batch con-
sists of 20 service instances, requested simultaneously. When one
batch is fully committed, a second batch will then be handled.
This scale of SENSE deployment and service operations is very
close to what is expected in real world global R&E infrastructures.
We collected data from the SENSE Orchestrator and all 67 RMs
and present the results in Fig. 6.

These results confirm the projected scalability performance
based on observations from the baseline experiments and supply
further insights.

1. Model propagate and commit are per-RM events. They are
not affected by the size of the testbed. Emulation makes
them slightly faster than working with actual devices. Due
to the SENSE Orchestrator poll based model verification,
it takes around 30 s for a service to be committed, even
though this is emulation. As the device-free commit takes
no time, we could use the optional subscribe-notify mecha-
nism to update SENSE Orchestrator for completion of com-
mit operations. This should reduce the commit time to
sub-second for emulation, and potentially a few seconds for
real services.

2. SENSE Orchestrator scalability refers to its ability to handle
large topologies (quantified by the number of independent
resource models and elements) and high degrees of dy-
namism (many model updates due to tracking real-time
states and/or high service provisioning frequency). This
scalability is affected by three factors: model pull and in-
tegration from all RMs; per-service model computation;
and per-service delta propagate and commit with involved
RMs. The test results confirm the model pull and commit
operations scale well with little performance impact due
to their asynchronous and parallel performance mode of
operation. The model integration and per-service propa-
gate operations are synchronous and serial process, and
there was some concern that they would not scale as well.
However, based on the parameters of the testing described,
there were no significant differences from the baseline
experiments.

3. The biggest and practically only factor affecting the scala-
bility is the service computation times at SENSE Orches-
trator. We see an average of 57 s for each computation,
and the maximum time can reach 4 min. One reason is
that when dealing with a large network of 67 domains that
consists of 92 nodes and over 200 links, the longest path
could span over 9 domains and 11 nodes. Path finding takes
significantly more time than for an 8-domain network. A
more important reason is that with each batch of 20 service
instances being requested simultaneously, the concurrent
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Fig. 5. SENSE-Orchestrator model visualization of the 67-domain topology (screen shot) for scale-out experiments.

Fig. 6. SENSE scale-out experiments, with 42 WAN domains and 25 DTN end sites, results (speeds in seconds).

computation threads cause contention in a modest virtual
server. SENSE Orchestrator is built with Enterprise Java and
can be deployed in cluster mode with workloads balanced
to multiple nodes. The current SENSE testbed has not taken
advantage of this capability. A next generation of testbed
will use a clustered SENSE Orchestrator deployment to
eliminate the computation bottleneck.

From the scale-out experiments, we have proven that the
overall SENSE architecture is optimized for parallel orchestration
and is highly scalable. The orchestrator path finding algorithm
and deployment size needs to be improved for large networks to
reduce the per-service computation time. Combining that with
the reduction introduced by RM-pushed commit notification, the
whole SENSE orchestration will potentially only carry seconds of
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overhead. This will provide additional value for many real-time or
time sensitive operations, as well as for major science programs
with a global reach.

7. Summary and future plans

The SENSE system architecture and implementation presented
utilizes model-driven datafication of cyberinfrastructure to en-
able intelligent network services. Science applications utilizing
intent based APIs with automated resources discovery and ne-
gotiation enable a significantly different mode of operation as
compared to current network usage modes. With the falling
costs of 100 Gbps capable devices, powerful end systems are in-
creasingly being placed at edge locations where high-bandwidth
connections directly to regional and national networks will be the
norm, and this trend will continue with the current emergence of
400 Gbps capable switches and the corresponding end systems.
The Science DMZ based, National Research Platform Initiative [44]
is an example of a high-performance end-system edge deploy-
ment. As a result, the expectation is that we are entering a cycle
where network capacity will be easily overwhelmed by these
advanced end-site and edge facilities. This indicates a need for
methods to manage network resources and access them in a
more intelligent manner, which includes providing the applica-
tion agents with sufficient information so that they can plan
and optimize their operations. The SENSE vision and solution is
focused on these issues in anticipation of the time where un-
managed network utilization and extreme overprovisioning is no
longer the preferred operational approach, or no longer feasible
due to cost and/or technical considerations.

The SENSE project tackles a range of network research prob-
lems and has produced results that are interesting for many
aspects of network research and practical operations. In this
paper, we are focused on the centric problem of real-time, in-
teractive, end-to-end SDN orchestration. We presented a SENSE
Solution to this problem with detailed description of architectural
functions, components and novel resource modeling, manage-
ment, computation and orchestration mechanisms. We validated
this solution as noted in the SENSE Services Implementation
section and described how the SENSE Orchestrator supports so-
phisticated interactions for better quality of experience through
an intent based interface and intelligent negotiation workflows.
We further validated realtimeness and end-to-end aspects of the
solution with description of the SENSE Testbed Deployment and
Use Cases. In the Performance Evaluation section, we quantified
the speed and scalability metrics through real-world experiments
and emulations. This provided insights and assurance regarding
the applicability of the SENSE solution to real-time, large, dis-
tributed, multi-domain environments. The experimental results
presented in this paper also pointed us to several implementation
issues that can be fixed or improved in a straightforward fashion
via follow-up work. Initial prototyping [41] indicates that this
solution provides a set of services which can greatly facilitate the
realization of the emerging DOE Superfacility concept. This vision
includes the seamless integration of multiple, complementary
DOE Office of Science user facilities into a virtual facility to enable
fundamentally greater capabilities. The SENSE system provides
the mechanisms needed to synchronize and coordinate the con-
nection of multiple distributed compute, storage, and instrument
resources with deterministic performance and methods to assist
in the application driven workflow planning/operations to realize
the Superfacility vision. Key contributions of the SENSE work in-
clude the architecture definition, reference implementation, and
deployment as the basis for further innovation of smart network
services to accelerate scientific discovery in the era of big data,
cloud computing, machine learning and artificial intelligence.

The SENSE solution architecture and services implementation
creates many avenues for investigation and provides a platform
to address interesting research questions. These issues revolve
around the focus on interaction, negotiation, the degree of real-
time state management and consideration at many levels of the
decision and control operation process. Future plans include ex-
ploring some of these issues noted below as part of ongoing
development and testing of the SENSE system:

• Real-time States - SENSE is designed to allow resource owner
to flexibly adjust the amount and type of real-time informa-
tion to share with orchestrators. There are tradeoffs which
revolve around scalability and performance. More real-time
data means better orchestrator computation results, fewer
rounds of negotiation, and faster provisioning times. Too
much real-time information can result in scalability issues
and the need to ignore some updates in order to keep the
control feedback loop stable. Future activities will seek to
quantify and develop best practices regarding the amount,
type, and update frequency of real-time data to be included
in the resource model exchange.

• Real-time Data Dynamic Adjustment - The optimal amount
and type of real-time information is expected to be de-
pendent on specific deployment topologies, changing op-
erational conditions, and service objectives. Future activi-
ties will investigate options of data collection, analysis, and
mechanisms associated with the dynamic adjustment for
real-time data inclusion in resource models.

• Resource Model Abstraction Level - Resource models can vary
from highly detailed (complete representation of the physi-
cal infrastructure) to highly abstract (an entire infrastructure
described as single node with just edge connections). Future
activities will investigate and evaluate different levels of
abstraction. There is a complex interaction between abstrac-
tion level and the real-time data issues noted above which
will also be investigated.

• Policy Guided Decisions - There are multiple levels of authen-
tication and authorization that are independently managed
by different resource managers and orchestrators. Federated
user authentication will allow individual resource owners to
use a common identification base over which to apply their
local policies. These policies can be communicated in the
resource models and service computations. Future activities
will investigate the best method for realizing multi-domain,
multi-resource authentication and authorization, including
issues around granularity and resource types (user, project,
domain, individual network, end system resource elements,
and/or flows).

• Machine Learning and Artificial Intelligence - The above issues
highlight that SENSE is a real-time system with multiple
levels of dynamic information exchange and feedback loops.
Multiple architectural features are included to allow tai-
loring of this real-time information based on deployment,
operational, and service constraints. Previous work has eval-
uated unsupervised. semi-supervised [45], and reinforce-
ment learning [46] techniques to classify flows in real time
and plan network usage profiles. Future activities will eval-
uate if these types of systems can leverage SENSE data as
an added input and also recommend SENSE service provi-
sioning actions. The system goals would include enhanced
individual workflow quality of experience and optimization
of overall infrastructure use.

As the SENSE architecture and implementation evolves
through multi-institution testbed deployment, the focus of the
project is to continue integration with domain science use cases
and transition the SENSE services to production status for both
the network and application operations.
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