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Abstract

The objective of this work is to provide experimental validation of the graph theory approach
for predicting the thermal history of additively manufactured parts. The graph theory approach for
thermal modeling in additive manufacturing was recently published in these transactions. In the
present paper the graph theory approach is validated with in-situ infrared thermography data in the
context of the laser powder bed fusion (LPBF) additive manufacturing process. We realize the
foregoing objective through the following four tasks. First, two kinds of test shapes, namely, a
cylinder and cone, are made in two separate builds on a production-type LPBF machine (Renishaw
AM250); the material used for these tests is stainless steel (SAE 316L). The intent of both builds
is to influence the thermal history of the part by controlling the cooling time between melting of
successive layers, called the interlayer cooling time. Second, layer-wise thermal images of the top
surface of the part are acquired using an in-situ a priori calibrated infrared camera. Third, the
thermal imaging data obtained during the two builds is used to validate the graph theory-predicted
surface temperature trends. Fourth, the surface temperature trends predicted using graph theory
are compared with results from finite element analysis. The results substantiate the computational
advantages of the graph theory approach over finite element analysis. As an example, for the
cylinder-shaped test part, the graph theory approach predicts the surface temperature trends to
within 10% mean absolute percentage error, and approximately 16 Kelvin root mean squared error
relative to the surface temperature trends measured by the thermal camera. Furthermore, the graph
theory-based temperature predictions are made in less than 65 minutes, which is substantially
faster than the actual build time of 171 minutes. In comparison, for an identical level of resolution
and prediction error, the finite element approach requires 175 minutes.

Keywords: Additive Manufacturing, Thermal Modeling, Graph Theory, Validation, Finite
Element (FE), Laser Powder Bed Fusion (LPBF), Infrared Thermal Measurements, Interlayer
Cooling Time (ILCT).
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1 Introduction
1.1 Motivation and Objective
Fast and accurate computational approaches to predict the temperature distribution (thermal

history) in additive manufactured parts are valuable for the understanding and prevention of flaw

formation, among other critical functions exemplified in Figure 1 [1-4].

Optimize
Part Design,
Build
Orientation,
\ & Support y
\ \  Placement / Optimize
Predict AN Lo Process
Build N Parameters
\ Failures (Laser Power,
\  (Recoater Crash) / / \ .  Scan Strategy,
'\ Recoating time) /
Thermal
‘ History /, ‘
Predict 1\ /" / Guide Process \
Mechanical / /" “Monitoring
Properties ’ a4 &
&
. Optimize A\ PFGEd'fogNaidl
\_ Post-Processing /  /  Predict \ Frocesstontol /
' Steps 4 / Microstructure, \_ (Digital Twin) /
Residual NN
Stresses |
(Warping),
&
Defect /
\  Formation /

Figure 1: Fast and accurate modeling of the thermal history is central to quality assurance of additive
manufactured parts, ranging from physics-based process optimization; monitoring and control; and
prediction of part functional properties.

In a previous paper, we proposed a graph theory-based computational heat transfer approach
for predicting the thermal history in additive manufactured parts in near real-time [5]. In that paper,
the graph theory-predicted temperature trends were verified with: (a) exact analytical Green’s
function-based solutions, (b) finite element (FE) implementation of Goldak’s double ellipsoid
moving heat source model [6, 7], and (c) a commercial software for thermal simulation in additive
manufacturing (Autodesk Netfabb). Results from our prior work showed that the graph theory

approach was about ten times faster than the benchmark Goldak’s model implemented in a
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commercial FE software (Abaqus) [5]. The mean absolute percentage error of the graph theory-

derived predictions relative to FE analysis was less than 10%.

The objective of this paper is to validate the graph theory approach in the specific context of
the laser powder bed fusion (LPBF) additive manufacturing (AM) process using in-situ infrared
thermal measurements. In LPBF, metal powder is deposited on a bed (build plate) and selectively
melted layer-upon-layer with a laser. The temperature gradients induced in the part during LPBF

is one of the main causes for flaws such as cracking and distortion in shape [2, 4].

1.2 Approach and Novelty

To realize the foregoing objective, we frame the following four tasks:
(1) Two test part geometries are made in two separate builds on a Renishaw AM250 production-
grade LPBF system. The two test parts are described below.

(1) A cylinder of diameter 8 mm and height 60 mm. The test cylinder is sintered alongside
eight other identical cylindrical-shaped parts on the build plate. The total time for the build
1s 171 minutes (1200 layers).

The build plan for the test cylinder has three phases. First, for the first 20 mm vertical height of
the test cylinder, it is scanned simultaneously with the rest of the eight cylinders. In the second
phase, the test cylinder is processed to a total height of 40 mm, while the scanning of the rest of
the eight other cylinders is paused. The third and concluding phase is identical to the first phase
— the test cylinder is processed to its final height of 60 mm along with the rest of the eight

cylinders.

The preceding build strategy, where some parts are intermittently scanned, leads to a variation
in the time required by the laser to process a layer, because, the laser takes longer to complete a
layer in the first and third phases when more parts are scanned, compared to the second phase.
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Accordingly, the time elapsed between the processing of two successive layers — called the
interlayer cooling time (ILCT) — varies across the build. The layer-to-layer variation in ILCT leads

to microstructural heterogeneity in LPBF parts [8].

(i1) Inverted cone shape with a bottom diameter of 2 mm, top diameter of 20 mm, and vertical
build height of 11 mm. The build time is nearly 51 minutes (220 layers). The gradual
increase in the surface area of the cone as a function of its vertical build height causes a

variation in the ILCT.

Simple cylinder and cone-shaped test parts is used because the ILCT can be readily
determined compared to complex-shaped parts; the ILCT is a critical input parameter for model

validation.

(2) Surface temperature measurements for the two test parts are acquired layer-by-layer using an
in-situ longwave infrared thermal camera. The surface temperature measurements is recorded
over their entire build duration consisting of 1200 and 220 layers for the cylinder and inverted
cone shapes, respectively. To the best of the authors’ knowledge, model validation efforts
documented in the literature use in-situ temperature measurements from at most 25 layers.

(3) The steady state surface temperature for the two test parts is predicted using the graph theory-
based approach and subsequently validated layer-by-layer relative to the experimental
measurements acquired using the thermal camera.

(4) The layer-by-layer thermal history predictions from the graph theory predictions are compared
with a previously published FE model [9]. The comparison of FE and graph theory approach
includes predictions of the steady state surface temperature, as well as the temperature at a

point in the interior of each of the two test parts.



1.3 Organization of the paper

The rest of this paper is structured as follows. In Section 2, we review the prior literature and
delineate the challenges involved in the acquisition of thermal history in LPBF. Section 3 describes
the experimental methodology, and adaption of the graph theory and FE approaches to predict the
surface temperature. Section 4 reports results concerning the validation of the graph theory with
experimental measurements, and comparison with FE analysis. Lastly, conclusions and avenues

for future work are summarized in Section 5.

2 Review of Prior Work and Challenges in Temperature Measurement in Metal AM

Articles by Yan et al. [10], and Tapia and Elwany [11] review in-situ thermal measurement
approaches in AM. There are two approaches to obtain part-level in-situ temperature in LPBF. The
first approach is to embed thermocouple(s) inside the part or in the substrate. The second approach
uses thermal imaging to measure part surface temperature [12, 13]. This work applies the second
strategy. In the next two sub-sections, Sec. 2.1 and Sec. 2.2, we highlight the key challenges in
both the thermocouple and infrared thermography approaches, respectively, and justify the use of

infrared thermography as a viable means to validate the graph theory-based thermal model.
2.1 Measurement of the Temperature Distribution in LPBF using Contact-Based Thermocouples.

The temperature profile at discrete points in LPBF parts is obtained by embedding
thermocouple(s) (i): inside the substrate, (i1) incorporating thermocouples inside a pre-built part(s)
and then building the test part(s) over the pre-built part(s). To the best of the our knowledge, there
are no examples in the literature that describe stopping the LPBF process to instrument

thermocouples inside the test part.



Researchers have acquired the temperature trends at the underside of the part by brazing
thermocouples on the surface of the build plate in a manner such that the head of the thermocouple
is barely exposed [12, 13]. However, it is observed that the temperature signals obtained by the

thermocouple inside the substrate is considerably attenuated as the part grows in size.

For example, Dunbar et al. embedded both a thermocouple and strain gage array within the
build plate of an EOS M270 machine to validate their predicted distortion trends [12, 13]. In their
setup, the sensor array is coupled to a battery-powered data acquisition system incorporated
underneath the build plate. Thermocouples are drilled through the build plate, such that the tip of
a thermocouple is exposed (= 0.25 mm) above the build plate, and care is taken to insulate the
underside of the thermocouple(s). The build dimensions for the test coupons used by Dunbar et
al. are 6.25 mm % 6.25 mm x 2.33 mm (vertical build height), and the experiment lasts 10 minutes,

in which temperature data is acquired for a maximum of three layers.

Promoppatum ef al. [14] used a setup similar to that of Dunbar to acquire temperature data for
a large 165 mm x 60 mm x 70 mm (vertical build height) stainless steel part. Temperature trends
at five discrete points on the underside of the part is tracked using thermocouples. The temperature
readings recorded by the thermocouples at the underside of the part reduced to a steady state

temperature of 200 °C within 25 layers.

Similar attenuation of the temperature signature acquired by a thermocouple embedded in the
substrate is also observed in a recent work of Hoelzle et al. [15]. Experiments were conducted on
a custom experimental open architecture LPBF setup at Edison Welding Institute. Prebuilt cuboid-
shaped stainless steel coupons of ~12 mm X 12 mm % 12 mm size were embedded with four
thermocouples at different layer heights, and one thermocouple was embedded into the build plate.

In one of their tests, Hoelzle et al. [15] deposit a total of five layers (200 pum total thickness) on
6



the prebuilt coupons. Thermocouple data was acquired for roughly 7 seconds per layer. The

thermocouple embedded in the build plate did not register any temperature variation.

Researchers have obtained the temperature trends at discrete points inside the part and
substrate in the directed energy deposition (DED) AM process. In DED, because the part is not
surrounded by powder, a thermocouple can be readily embedded onto the substrate or spot welded
on the surface of the part by stopping the process as demonstrated in the work of Heigel ez al [16].
In one of our prior works, we validated the graph theory approach for the DED process with
temperature data obtained from thermocouples embedded inside the substrate for titanium alloy

test parts [17].

The preceding literature review highlights the difficulty in obtaining the thermal history at
discrete points via contact-based thermocouples embedded inside the LPBF substrate or part as the

temperature signature attenuates after a few layers.
2.2 Measurement of the Temperature Distribution in LPBF using Infrared Thermography.

Given the challenge in measurement of temperature trends in the inside of the part with
thermocouples in LPBF, researchers frequently use a thermal camera to obtain the relative
temperature trends on the top surface of the part before the next layer of powder material is
deposited [11, 18-21]. The infrared camera is typically mounted either inside or outside the
chamber at an angle to the powder bed — called staring configuration. However, the surface
temperature data acquired by the thermal camera is a relative measurement and not the absolute
surface temperature [18, 19, 22-24]. Hence, the temperature readings captured by the thermal
camera must be calibrated a priori under practical LPBF conditions so that they can be scaled to

absolute temperature measurements.



Researchers at the National Institutes of Standards and Technology (NIST) report different
approaches to calibrate thermographic measurements in LPBF [18, 19, 22]. One such approach
uses the concept of a black body emitter to calibrate the thermal camera measurements [18]. This
approach is exemplified by Rodriguez et al. [25]. The key idea is to embed a thermocouple inside
a deep cavity drilled in an AM test part. When the part is heated, the cavity inside the object
behaves as a black body emitter per Planck’s law. As the part is heated in a controlled manner to
a steady state temperature, the absolute temperature readings measured by the thermocouple are
used to scale (calibrate) the surface temperature readings measured by a thermal camera. In this
work, we use the black body emitter approach to calibrate the thermal camera. The calibration

procedure is summarized in Sec. 3.2 and described in detail in Ref. [8].

3 Methods

3.1 Experimental Setup

The schematic of the experimental setup is shown in Figure 2; further details are reported in
Ref. [8]. A longwave infrared (LWIR) thermal camera (FLIR A35X) with a spectral range of 7.5
pum to 13 um is incorporated within the build chamber of a Renishaw AM250 LPBF machine. The
thermal camera is sealed inside a vacuum-tight box with a germanium window and focused onto
the build plate inclined at an angle of 66° from the horizontal. The configuration of the infrared

thermal camera allows the measurement of surface temperature of the entire top surface of the part.

Thermal images are captured at a resolution of 320 x 256 pixels, providing a pixel resolution
of approximately 1 mm?, and recorded at a rate of 60 frames per second. The response time for the
sensor is approximately 12 milliseconds. the calibration process used in our previous works is

briefly described in the forthcoming section (Sec. 3.2) [8].
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Figure 2: The schematic of the experimental setup used in this work; surface temperature data is
acquired by a longwave infrared camera inclined at an angle of 66° to the horizontal plane.

3.2 Calibration of the Thermal Camera Measurements to Absolute Temperature

To calibrate the temperature trends captured by the thermal camera, a cylinder-shaped test
artifact is made using LPBF. The calibration test artifact is identical in geometry, material (SAE
316L), and LPBF processing parameters used for the two experimental builds (Sec. 3.3). The

calibration setup is shown in Figure 3 is adapted from Ref. [8].

The temperature of the calibration artifact is controlled using a 200 W cartridge heater
embedded in a recess in the bottom. The calibration artifact is heated, and its resulting surface
temperature is recorded using two thermocouples located in two respective recesses milled on its
top surface. One of these thermocouples (TC1 in Figure 3) is used as a feedback control for the

cartridge heater, while the other (TC2) records the temperature trends used for calibration.

The thermal camera is calibrated in the range of 300 K to 800 K because the maximum
temperature to which the cartridge heater is operational is 800 K. A 9-pixel x 9-pixel (9 mm?)
sample of thermal intensity values in the center of the top surface of the calibration artifact are

extracted from the thermal camera data.
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Figure 3: The calibration procedure used for the thermal camera (adapted from Ref. [8]). (a) two
thermocouples are located inside a slot in an LPBF part which is identical to the cylindrical part
from Build 1. (b) the heating of the part with a cartridge heater to simulate the rise in temperature.
(c) the calibration function of actual temperature measured by the thermocouple vs. the data
recorded by the IR camera.

A calibration function (Figure 3(c)) is obtained by fitting the average intensity over the 9-
pixel x 9-pixel sample area recorded by the thermal to the mean temperature recorded by the
thermocouple TC2. To ascertain the uncertainty in the thermal camera readings the calibration
procedure is repeated ten times (n = 10). The 95% confidence interval in temperature readings in
the interval of 300 K to 800 K ranged from 0.1% to 1% of the mean temperature reading [8]. For
temperature readings beyond 800 K, we expect the calibration function to remain valid, as it is
derived from Planck’s law and the emissivity would not change significantly until melting occurs

(viz., 1643 K).

The calibration procedure is repeated with a thin layer of unmelted powder deposited on top
of the calibration artifact, and the test data is used to derive another calibration curve. Such a two-
part calibration procedure, with a solid part, and with unmelted powder layered on top, ensures
that the temperature readings account for the change in material emissivity in LPBF after a layer

is fused (but before a new layer is recoated), and after a new layer is added (but before it is melted).
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3.3 Experimental Builds

In this work, we make two LPBF test parts in two different builds that are designed to
influence the surface temperature in the part through variation in the ILCT. The scan pattern,

process parameters and material properties for the two builds are reported in Table 1.

3.3.1 Build I — Inducing variation in the interlayer cooling time by altering the build plan.

The test part is a cylinder of diameter § mm and height 60 mm in the center of the build plate.
This cylindrical test part is built in three phases, as depicted in Figure 4. The test part is built with
a laser power of 200 W, while the rest of the eight other cylinders are built at 5 W; all parts are
built without anchoring supports. As we will explain shortly, building the rest of the eight cylinders

prevents their collapse during Phase 3 of Build 1.

Phase 3
40 mm to 60 mm,
Phase 2 Layer 801 to Layer 1200
20 mm to 40 mm, ILCT=105s
Layer 401 to Layer 800 E T T
Phase 1 ILCT=6.6s =
20 mm ST ey =14 Il
Layer 1 - Layer 400 E
ILCT=10.5s 8_-1__ £

i N
£
&

Phase 3
Build all nine cylinders

Phase 1 Phase 2
Builld all ni{Ie cyligders Build only the center cylinder

2

Test
Sample 3

Infrared Thermal Image of the Build

Figure 4: The three phases in building the cylinder-shaped part. The total build time is 171 minutes
and consists of 1200 layers; each phase has 400 layers. The test part (sample) is the central
cylinder. Shown in the top is the front view, with the change in the interlayer cooling time (ILCT)
depending on the number of parts being processed in a layer. Shown in the bottom is the
corresponding infrared image of the test part (central cylinder) captured by the thermal camera.
All the cylinders are built without supports. The center cylinder is built at a laser power of 200 W,
the rest of the eight cylinders are built at 5 W.
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In Phase 1, the test part is built along with eight other identical cylinders arranged in a grid
pattern. The ILCT in Phase 1 is roughly 10.5 seconds. After a build height of 20 mm is reached
(400 layers, each layer is 50 um), the processing of the rest of the cylinders is stopped, marking
the end of Phase 1, and start of Phase 2. In Phase 2, only the test sample, i.e., the center cylinder
is processed until a total build height of 40 mm is reached (800 layers). Because only one cylinder
is processed, the ILCT reduces to nearly 6.6 seconds from 10.5 seconds in Phase 1. Lastly, in Phase
3, all nine cylinders are again processed for a total build height of 60 mm (1200 layers).
Accordingly, in Phase 3, the ILCT again increases from 6.6 seconds to approximately 10.5

seconds. The total build time is about 171 minutes.

In Phase 3, because there is un-melted powder underneath the rest of the eight cylinders —
there are no anchoring supports below the part, the parts will tend to move and cause a build failure.
Hence, the laser power for melting of the eight cylinders around the periphery of the test sample
is always set at a minimum of 5 W. In other words, the scanning of the rest of the eight cylinders

at low power allows them to be built without supports.

Table 1: Summary of the material and processing parameters used in this work for Build 1 and 2.

Process Parameter Values [units]
Laser type and wavelength. 200 W fibre laser, wavelength 1070 nm
Laser power, point distance, exposure time 200 W, 60 um, 80 us

Inner border parameters - power, point distance, | 200 W, 40 um, 90 us
exposure time for the test part (center cylinder)

Outer border parameters - power, point | 110 W, 20 um, 100 us
distance, exposure time (center cylinder)

Hatch spacing 110 um

Layer thickness 50 um

Spot diameter of the laser 65 um

Scanning strategy for the bulk section of the | Meander-type scanning strategy without
part rotation of scan path between layers.

Build atmosphere Argon

Material Properties Values [units]

Material type 316L stainless steel

Particle size 10-45 um
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3.3.2  Build 2 — Inducing variation in the interlayer cooling time through the part geometry.

The test part devised for this build is shown in Figure 5; it is an inverted cone whose diameter
gradually increases from 2 mm to a diameter 20 mm over a vertical build height of 11 mm (50 um

layer thickness, 220 layers). The build time is about 51 minutes.

In this test part, the ILCT increases almost linearly in proportion to the build height from 10
seconds at the start of the build to 16 seconds at the final 11 mm build height. Furthermore, the
temperature of the top surface increases progressively with the deposition of new layers as the

narrower cross-section of the part in the preceding layers impedes the diffusion of heat.

Figure 5: The schematic of the inverted cone geometry implemented in Build 2. The total build
time is 51 minutes, and consists of 200 layers of 50 pum.

3.4 Procedure for obtaining the steady state surface temperature from the thermal camera images.
We process the surface temperature data (7(t)) acquired by the thermal camera to obtain the
steady state surface temperature between two immediate layers. The steady state temperature

TFH is derived

between layers k and k+1 is represented as Ty 1. The steady state temperature
from the time-varying surface temperature 7(t) acquired from the thermal camera using the

following steps.
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As explained in Sec. 3.2, the surface temperature 7(t) is the temperature averaged over the 9
mm? area encompassing the center of the part, which corresponds to a 9-pixel x 9-pixel region of
the thermal camera image (Figure 3). Referring to Figure 6, the surface temperature signal 7(t) is
distilled into three steps common to both Build 1 and Build 2. The y-axis of Figure 6 is 7(t) in
Kelvin. The x-axis is time in seconds; each data point is processed from a frame of the thermal
camera (frame rate 60 Hz).

Step 1: Large upward spike denoting the beginning and end of melting

In this stage of the process, the laser is active (ON), and is currently scanning the powder bed.
A large upward peak is observed when the laser is directly sintering the 9 mm? area sampled from
the thermal image. The large upward spike lasts less than 0.5 seconds (30 thermal image frames).

The time from the end of the large upward spike to the start of the next upward spike is the ILCT.

Precise quantification of the ILCT is critical for model validation purposes; the time # = ILCT
in Eqn.(1), Sec. 3.5. However, the ILCT is not constant, but can change between layers depending
on the build plan and shape of the part. As we will show in Sec. 4.1, for Build 1 the ILCT for Phase
1 and Phase 3 is approximately 10.5 sec, which is considerably longer than the ILCT for Phase 2
which is 6.6 sec. In Build 2 the ILCT increases continually over the build from 10 sec to 16 sec.

In this work the ILCT is tracked using an spike detection procedure in Matlab.

Step 2: First downward spike due to the recoater blocking the field-of-view of the IR camera when it returns
to the powder reservoir.

After the end of melting of a layer, the recoater returns to fetch fresh powder. During Step 2, the
bed is lowered so that the recoater can pass freely over the powder bed and avoid contact with the
part. As the recoater returns to fetch fresh powder, the IR camera field-of-view is momentarily

blocked leading to a large downward spike in temperature lasting less than a 1/50™ of a second.
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Step 3: Second downward spike due to new powder being deposited on the powder bed when the

recoater rakes a new layer of powder on the surface of build plate.

As the recoater makes another pass to deposit a fresh layer of powder, it again momentarily
blocks the field-of-view of the IR camera causing a large downward spike in the signal. Because
the recoater speed is considerably slower than in the previous Step 2, hence the downward peak

lasts for close to 1/5™ of a second.
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Figure 6: The physical process-related reasons for the spikes observed in the thermal camera
images. (a) The three large periodic spikes in the temperature and the schematic representation of
why these spikes occur. (b) zoomed in portion of the thermal camera signature. This signal is for
Phase 1 of Build 1, according the ILCT is 10 seconds.

15



When the powder is initially spread it is at ambient temperature (300 K). Therefore, the powder
will extract heat from the solidified part surface which is still at a higher temperature. The heat
required to raise the powder temperature will cause the surface temperature of the part to decrease.
This drop in the surface temperature of the part due to the deposition of fresh powder is accounted
in the separate powder-related step in the calibration of the infrared camera as described in Sec.
3.2. The corrected temperature signature is overlaid on the surface temperature signal in Figure
7(a). The steady surface temperature readings for layer k and k+1, Tf 2, is the temperature in the
relatively flat portion of the curve in Figure 7(b) before layer k+1 is processed. Described another

way T is the minimum temperature recorded just before melting of the new layer.
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Figure 7: (a) The surface temperature signature (dotted line) obtained before applying the
calibration to account for deposition in powder. Note the slight increase in temperature after Step
3. The solid line shows the temperature after calibration of the thermal camera to account for
deposition of the powder (note the = 40 K difference between the powder calibrated, and un-

calibrated measurements). (b) The steady state temperature is obtained just prior to the sintering
of the fresh layer.
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3.5 Procedure for Application of the Graph Theory Approach

The graph theory approach is illustrated schematically in Figure 8 in the context of Build 1.
These steps are discussed in detail in our previous works [5, 26]. The graph theory approach, as

explained in our previous work, converts the part geometry into a set number of discrete nodes [5].

New Layer  Fused Layer  Diffusion

Edges “

e ol L -
Step 1- Obtaining the geometry  Step 2- Constructing a Step 5~ Depositing material osi)tfam?r{g
of a part and converting it to a  network graph from the layer-upon-layer, and diffusion of the result
set of discrete nodes. sampled nodes the heat through the part.

Figure 8: The four steps in the graph theory approach as applied to the cylindrical part described in Build
1. The mathematical details are described in [5].

A network graph is constructed over these nodes, and heat diffusion over the graph is studied
layer-by-layer. If the temperature at each node is arranged in matrix form, the instantaneous
temperature T after time ¢ (=ILCT) is obtained as a function of the Laplacian eigenvectors (¢p) and

eigenvalues (A), with Ty (= 1600 K) as the melting point of the material (SAE 316L),

T = pe AP, (1)

We reiterate that in this work, only the surface temperature is available for validating the
predictions from the graph theory approach. Further, the temperature predictions for every node in
the interior of the part at each time step is readily obtained at no additional computation cost. To
demonstrate this possibility, we track the temperature trends for a point in the interior of the test

parts, and verify these trends with FE analysis in Sec. 4.3.
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To maintain consistency with the calibrated thermal data, the temperature distribution
predictions for the graph theory model are validated against the same 9 pixel x 9 pixel sample
region on the surface of the test part shown in Figure 3. While validation of the graph theory
predictions with temperature measurements nearer to the edges of the test part would be valuable,
we are constrained by the limited 1 mm? resolution of the thermal camera used in this work. The
part-powder boundary involves complex phenomena encompassing convective and conductive
heat transfer modes, compared to the dominance of conduction-based heat loss near to the center
of the part, therefore, the measurement uncertainty at the edges of the part would become

overwhelmingly large.

3.5.1 Simulating deposition of multiple layers at once (super layer or meta-layer approach) to

reduce the computation time.

To mitigate the computation time, instead of simulating the deposition one individual layer
(layer height 50 um) at a time, we adapt the graph theory approach to simulate the deposition of
several layers at a time. Such a layer consolidated from two or more individual layers is called a
super layer or meta layer, and is commonly used in coarse FE modeling of the AM process to

reduce the computation time [9].

Using the super layer approach is particularly well suited to the graph theory method as the
precision is independent of the simulated time step. This is because the time ¢ for which the heat
is diffused in the part in Eqn. (1) can be set to one large time step without computing the
temperature at intermediate discrete steps as in FE analysis. In this work, the time ¢ is set to the
interlayer cooling time (ILCT) accrued over super layers. In this work, the super layer is varied

from 3 mm (consisting of 60 individual layers of 50 pm each) to 0.3 mm (6 individual layers).
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3.5.2  Tuning the graph theory model parameters
The graph theory simulation studies require tuning of two types of factors.
(1) Number of Nodes (N)

Selecting the total number of nodes (N) into which the part is discretized involves a tradeoff in
computation time and accuracy [5]. In our previous work for a complex geometry part, selecting a
higher number of nodes results in a smaller error in comparison to benchmark FE studies, while
degrading the computational efficiency [5]. In this work, we evaluated the effect of varying the

number of nodes from 1000 to 5000 in steps of 1000.

(2) Model Parameters related to heat diffusion.
In the graph theory approach two model parameters related to the heat diffusion must be
determined, namely, the gain factor (g) Eqn. (1), and the neighborhood distance (¢) which governs
the connectivity of the nodes [5]. There is an interaction between these two parameters. To mitigate
this complexity, and need for extensive tuning, in this work we have made one change to the graph
theory model, instead of setting ¢ to an absolute distance in mm, we now connect the nearest 50

neighbors of a node with edges. The number 50 is selected based on extensive offline studies.

We report the mean absolute percentage error (MAPE) and root mean square error (RMSE,
Kelvin) for each tested combination of super layer thickness and number of nodes. To obtain the
gain factor (g), we fix the total number of nodes at 1000, and conduct a grid search with respect to
the infrared thermal measurements obtained for Phase 1 of Build 1. To make the calibration more
rigorous, the layer height set in the simulation for the calibration of g studies is 50 pm, which is
the same as the layer height of the build — i.e., the super layer is set equal to actual layer height for

model calibration.
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The value of g is changed with the number of nodes (N) fixed at 1000 and layer thickness 50
um. The graph theory approach is applied for the first 20 mm of the build height, i.e., the graph
theoretic model is calibrated for the temperature readings from Phase 1 of Build 1. The results
from the model calibration procedure are shown in Figure 9(a). The value of g that minimizes the
MAPE and RMSE is selected. The results from the grid search are shown in Figure 9(b). The value
of g that minimizes MAPE and RMSE is 1.5 x 10%; this value is set constant for all subsequent

simulation studies, including Phase 2 and Phase 3 of Build 1, and entirety of Build 2.

The rest of the material-related constants and simulation parameters are described in Table 2.
The simulations are conducted in the MATLAB environment on a desktop personal computer with

an Intel Core 17-6700 CPU, clocked at 3.40 GHz with 32 gigabytes of onboard memory.
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® 600 %3
g 5
0 1400 =
E- 500 o
Ko
400 } 1200
Experimental IR Measurements
300 . e = 0 . . . 0
0 100 200 300 0 1 2 3 4
(a) Layer (b) Gain Factor <104

Figure 9: (a) Representative steady state surface temperature trends obtained for Phase 1 of Build 1 by
varying the gain factor (g). (b) The mean absolute percentage error (MAPE) and root mean squared error
(RMSE, in Kelvin).
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Table 2: Summary of the simulation parameters used in this work.

Simulation Parameters Values
. Varies from 3 to 0.3 mm for Build 1 (Cylinder) and from 1 to

Super layer thickness [mm] 0.2 mm for Build 2 (Inverted Cone) © )
Total number of nodes in the part (N) Varies from 1000 to 5000 in steps of 1000

. Varies from 0.3 to 1.6 for Build 1 (Cylinder) and from 0.8 to
Node Density (N per mm’) 43 for Build 2 (Inverted Cone) (Cylinden)
Number of neighbors which is 50
connected to each node.
Gain factor (g) 1.3 x 10*
Convection coefficient wall to powder, 1 % 10
hy [W-m? K]
Convection coefficient substrate (sink), 1 % 102
hy [W-m?- K]
Thermal diffusivity (a), [m%/s] 3x10°
Density, p [kg/m’] 8,440
Melting Point (Ty) (K) 1,600
Ambient temperature, Ty, (K) 300
Processing hardware Intel Core 17-6700 CPU, @3.40 GHz with 32 GB RAM.

3.6 Procedure for Verification with Finite Element (FE) Analysis

The FE approach used for predicting the thermal history in LPBF parts is detailed in our
previous publication [9]. To maintain parity, the FE model uses the identical meta-layer or super
layers implemented for the graph theory approach. In our prior work, we obtained both the
temperature distribution and distortion in an LPBF part by simulating the deposition of super

layers. The FE predicted thermal-induced distortions are within 10% of offline measurements [9].

To ensure equitable comparison of FE and graph theory approaches the following steps are
taken: (1) for both the FE and graph theory implementations MAPE and RMSE are quantified in
for the same number of nodes and resolution (super layer thickness); (i1) we compare the
computation time required by the FE predictions to converge to approximately the same MAPE
and RMSE of the graph theory predictions at an identical level of resolution. Lastly, we
qualitatively compare the FE and graph theory predictions for a point in the interior of the two test
parts; there is no additional computation cost associated with calculating the temperature

distribution at an interior point.
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4 Results

4.1 Results for Build 1

4.1.1 Thermal signatures acquired from the thermal camera.

The surface thermal signatures recorded for Build 1 are shown in Figure 10. The y-axis in
Figure 10(a) is the surface temperature 7(t). In Figure 10(b) the steady state surface temperature
between two successive layers (TK*1) is tracked on the y-axis. Changes in the temperature trend
across the three phases of Build 1 are more clearly evident in Figure 10(b) on processing the

temperature signatures 7(t) from Figure 10(a).

A gradual increase in the steady state surface temperature is observed during Phase 1,
succeeded by a sharp increase observed at the start of Phase 2, and finally followed by a drop at
the start of Phase 3. These changes in the temperature correspond to the change ILCT; the reason
for the sharp increase in temperature in Phase 2 is the decrease in ILCT to roughly 6.6 seconds

(Figure 10(d)), compared to 10.5 seconds in Phase 1 and Phase 3 (Figure 10(c)).

To summarize these observations, in Build 1, the ILCT, and consequently, the surface
temperature distribution of the cylindrical test part changes considerably from Phase 1 through 3.
These temperature trends from Build 1 have two practical implications, as shown in our previous
work [8]. First, tasks that require stopping the build, e.g., replenishing the power, re-filling the
chamber with inert gas, that entail a change in the ILCT are liable to cause microstructural
heterogeneity. Second, it is not viable to optimize the process parameters for one type of geometry,
and consider this knowledge as transferable to other situations — the process parameters must be
demarcated through in-silico thermal experiments for every build if there is any change in the part

geometry, orientation, build layout, number of parts, and scanning strategy.
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Figure 10: Data obtained from Build 1. (a) the surface temperature readings recorded by the long
wave infrared (LWIR) camera, (b) smoothened trends obtained after considering the steady state
temperature in the interlayer cooling time (ILCT). (c) and (d) the ILCT decreases from 10.5
seconds in Phase 1 to 6.6 seconds in Phase 2 leading to a large increase in the steady state
temperature seen in (b).

4.1.2 Comparing the graph theory temperature predictions with experimental observations.

In Figure 11(a) maps the effect of changing the super layer thickness (SLT) on the steady state

surface temperature distribution predicted by the graph theory approach for number of nodes N=

3000. In Figure 11(b), the converse case, i.e., the SLT is maintained constant (0.3 mm, 6 individual

layers of 50 pm each) and the steady state surface temperature distribution with varying N is

predicted. A more detailed sensitivity analysis determining the effect of N and SLT on the MAPE,

RMSE, and computation time is reported in-depth in Appendix 1.
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Figure 11: Representative steady state temperature trend predictions for Build 1 (cylinder). (a) The
effect of the super layer thickness on the temperature trends predicted using graph theory with
number of nodes fixed at N = 3000. (b) The effect of varying the number of nodes N at a fixed
super layer thickness of 0.3 mm (consisting of 6 actual layers of 50 um each).

In general, the prediction accuracy improves (MAPE and RMSE reduces) as the SLT is
decreased, and N is increased. However, the relationship is not linear. An amicable balance in
both accuracy and computation time is obtained by setting SLT = 0.3 mm (6 individual layers) and
N =3000. The error under these conditions (MAPE) is close to 13%, and the results are obtained

in approximately 26 minutes (= 1/6™ of the actual build time of 171 minutes). The MAPE reduces

to ~9% for N = 4000 and SLT = 0.3, however, the computational time increases to 65 minutes.
4.1.3 Comparison of graph theory temperature predictions with finite element analysis

The predictions from the graph theory approach are compared with finite element (FE)
analysis in Figure 12 and Table 3. As explained in Sec. 3.6, to ensure equitable comparison, we
implemented the super layer approach in a FE in a commercially software (Abaqus), the detailed

implementation of the FE analysis is described in Ref. [9].
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Figure 12. The FE and graph theory results compared for different super layer thicknesses (SLT) for Build
1. (a) FE and graph theory analysis with 3000 nodes, (b) FE and graph theory analysis with 5000 nodes.

In Figure 12(a), representative thermal trends for two super layer settings 0.3 mm (6 individual

layers) and 0.5 mm (8 individual layers), with N = 3000 for the graph theoretic approach are

compared with FE analysis under identical conditions relative to the experimental temperature

measurements. Likewise, Figure 12(b) shows the analysis repeated for N = 5000. The comparison

between FE and graph theory results is quantified in Table 3.

Table 3: Comparison of finite element (FE) and graph theory approaches with experimental data
for Build 1 (cylinder). The actual build time is 171 minutes (10,260 seconds)

Finite Graph Graph Theory Finite Graph Theory
Element Theory Element
Nodes (N) 3000 3000 4000 5000
Super Layer
Thickness 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5
(SLT) [mm]
Computation | » 4| 1 347 | 1655 | 949 | 3912 |2.209 | 10446 | 6,053 | 7.270 | 4,176
Time [s]
MAPE (%) 16.7 | 294 13.8 | 18.2 8.7 11.5 9.1 9.4 8.6 10.4
RMSE
(Kelvin, [K]) 36.8 | 90.1 16.2 | 54.1 15.7 16.8 17.2 18.4 152 | 25.1
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With N =3000, and super layer thickness (SLT) 0.3 mm, the MAPE for the FE analysis is
approximately 16%, and the results are obtained within 2,048 seconds (34 minutes). Using the
graph theory approach, the MAPE is 14%, and the trends are obtained in 1,655 seconds (27

minutes) of computation.

Next, we fix the MAPE of ~ 9% , and RMSE 16.5 + 1 K and compare the computational time
for graph theory and FE approach for an identical resolution (SLT = 0.3). For the graph theory
approach the MAPE and RMSE reduced to less than 9% and 16 K on increasing N = 4000 with
corresponding computation time of 65 minutes. To achieve the same level of prediction error it
requires the FE approach 5000 nodes, and nearly 175 minutes. Effectively, the graph theory
approach requires 40% of the computation time of FE to reach approximately similar level of
MAPE and RMSE with an identical level of resolution (super layer thickness). The computational
advantage of the graph theory approach is retained when the number of nodes N = 5000 for both

FE and graph theory; the graph theory approach converges ~30% faster than FE.

The graph theory approach is currently implemented in Matlab (an interpreted computer
language) which does not allow multi-core processing, and the code is not optimized for
parallelization. In contrast, the FE analysis is conducted in a commercial package (Abaqus).
Porting the graph theory approach to a compiled language, such as C++ with code optimization

will further increase its computational efficiency.
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4.2 Results for Build 2

4.2.1 Thermal signatures acquired from the thermal camera.

The procedure described earlier in Sec. 3.4 is used to pre-process the thermal signatures
obtained for Build 2. As shown in Figure 13(a), in Build 2, a gradual increase in the steady state
surface temperature is observed. The ILCT increases with the build height (Figure 13(b)), because,

as the top surface area increases, the time required to scan successive layers also increases.

Consequently, while the temperature increases for layers near the top, there is also more time
for the layer to cool because it takes longer time for the laser to scan a larger surface area. Hence,
there is a gradual increasing trend in surface temperature as the accumulation of heat near the top
surface occurs concurrently with an increase in ILCT. The steady state surface temperature nearly
reaches the liquidous temperature of 316L stainless steel (1600 K) The practical implication of
Build 2 is that the process parameters must be adapted layer-by-layer as opposed to a fixed
parameter set so that the part temperature remains consistent. This can be achieved by varying the

scan pattern, laser power, and ILCT (by pausing the process between layers for a longer time).
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Figure 13: (a) The gradual increase in the surface temperature, as well as (b) the interlayer cooling time
with the build height.
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4.2.2 Comparison of graph theory temperature predictions with experimental observations.

The inverted cone shape is more complex than the cylinder as its cross-section area changes

with the build height, and hence more number of nodes are required to capture the heat flux. As

before, a smaller super layer thickness (SLT) and larger number of nodes both improve the

accuracy of the solution.

Sensitivity analysis tracking the effect of number of nodes (N) and super layer thickness on

MAPE, RMSE, and computation time is reported in Appendix 2. Representative results are shown

in Figure 14. For instance, in Figure 14(a) when the number of nodes (N) is set at 4000, and the

SLT is 0.2 mm the MAPE ~ 6%, and computation time is close to 41 minutes. In Figure 14(b) the

SLT is held equal to 0.3 mm and N = 4000, which results in MAPE ~ 7%, and computation time

~33 minutes; the actual build time for Build 2 is close to 51 minutes.
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Figure 14: (a) Representative temperature trend predictions for Build 2 (inverted cone) the build time is 51
minutes. The effect of the super layer thickness on the temperature trends predicted using graph theory with
number of nodes fixed at N = 4000. (b) The effect of varying the number of nodes N at a fixed super layer

thickness of 0.3 mm (6 actual layers of 50 um each).
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4.2.3 Comparison of graph theory temperature predictions with finite element analysis

The graph theory-derived predictions for Build 2 are compared with the FE analysis in Figure
15 and Table 4. For equitable comparison, the FE analysis is set to a super layer thickness of 0.2
mm and 0.3 mm, and the number of nodes (N) is set at 4000. As apparent from Figure 15(a), both
the FE and graph theory approaches track the increasing surface temperature trends evident in the
experimental data. Furthermore, for the results shown in Figure 15(b) we increased number of
nodes (N) for the FE analysis until it converged to a nearly identical accuracy level of accuracy in

terms of MAPE and RMSE observed for graph theory.
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Figure 15: The temperature trends predicted using the FE and graph theory approach compared for different
super layer thicknesses (SLT) and number of nodes (N) for Build 2. Abaqus is used for simulating the
deposition of super layers in the FE analysis. (a) N=4000 for both the graph theory and FE approaches. (b)
N = 6800 for FE, and N = 5000 for graph theory.

As exemplified in Figure 15, and quantitatively in Table 4, for a fixed resolution (SLT), and
for an RMSE of 28.5 £ 1 K, and MAPE ~ 6%, the FE analysis required N = 6800 and 96 minutes

of computation time. By contrast, for the foregoing degree of prediction error, the graph theory
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approach required N = 4000, and converged in 41 minutes. In other words, the graph theory

required 40% fewer nodes and converged within 40% of the time required by FE. These results

affirm the computational advantages of the graph theory approach over FE.

Table 4: Comparison of finite element and graph theoretic approaches for Build 2 (inverted cone).

Finite Graph Theory Graph Finite

Element Theory Element
Number of nodes (N) 4000 4000 5000 6800
Super Layer Thickness (mm) | 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3
Computation Time [s] 3,274 12,948 | 2,471 [ 2,081 | 4,784 | 4,045 | 5,982 | 5,034
MAPE (%) 9.6 159 |573 |68 372 1454 |62 10.9
RMSE [K] 42.1 |764 |26 32.8 12.15 [20.7 [27.6 |43.8

4.3 Comparison of graph theory predictions with FE analysis for point in the interior of the part

We compare the graph theory and FE predictions for a point in the interior volume of the two

builds. The results, shown in Figure 16, substantiate that both the graph theory and FE approaches

capture the cyclical heating and cooling characteristic of LPBF as material is deposited and melted

layer-upon-layer.
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Figure 16: Comparison of the FE and graph theory predictions in the interior of the build volume (a) Build
1, the measurement point is on the axis, 4 mm from the bottom. The number of nodes N = 3000 and
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superlayer thickness (SLT) is 0.3 mm (b) Build 2, the measurement point is on the axis, 2 mm from the
bottom; N = 4000 and SLT is 0.2 mm.

In the case of Build 1, Figure 16(a), the measurement (sample) location for testing both FE
and graph theory models is on the central axis cylinder, 4 mm from the bottom (viz., 1/5" of the
height of Phase 1 build of 20 mm; the total build height over the three layers is 60 mm). In Build
2, we observe the temperature at a location on the central axis of the cone, and at a distance of 2
mm from the bottom (~1/5" of the build height of 11 mm).The x-axis of Figure 16 corresponds to
the build height, in the context of time. Closer examination of the plots, particularly Figure 16(b),
shows a close alignment in the peaks and valleys of the temperature predictions from the graph

theory approach and FE predictions.

Close examination of Figure 16(a), in the context of Build 1, reveals that there is a slight
increase in the temperature corresponding to start of Phase 2, and decrease at the start of Phase 3.
The change in temperature at the interior point shown in Figure 16(a), corresponding to the phases
of Build 1 is not as prominent as in the steady state surface temperature plots in Figure 10 due to
attenuation of the temperature signature as the part grows in size. The attenuation of the thermal
signature harkens to the limitations in acquiring the temperature data by embedding a

thermocouple inside of the substrate discussed in Sec. 2.1.

Concerning Build 2, in Figure 16(b) the attenuation again affects the cyclical pattern as the
build progresses. However, the temperature at the measurement point for Build 2 does not decrease
as in Build 1, because, as explained in the context of Figure 13, Sec. 0, the surface temperature for

the conical test part increases continually throughout the process.
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5 Conclusions

This work provides experimental evidence to substantiate the computational efficiency and
accuracy of the graph theoretic approach proposed in our previous work [5]. We arrive at the
following conclusions through two experimental builds conducted in the specific context of the

laser powder bed fusion (LPBF) AM process.

(1) In Build 1, a cylindrical part 8 mm diameter, 60 mm vertical build height is processed with a
phased build plan, such that other parts are intermittently added and removed during the build.
Consequently, the interlayer cooling time varies over the 1200 layers of the build, which in
turn influences the thermal history and microstructure.

The graph theoretic approach predicts the resulting complex thermal history within 65 minutes
with a mean absolute percentage error (MAPE) less than 10% and 16 K root mean squared
error (RMSE), which is substantially the actual build time of 171 minutes. For a comparable
level of MAPE and RMSE a coarse finite element approximation requires 177 minutes.

From a practical perspective, Build 1 shows that the graph theory approach is capable of
emulating a complex multi-part build plan with test parts being removed and added during the
process.

(2) In Build 2, a conical part of diameter 20 mm and vertical build height 11 mm is processed in a
way such that the diameter of its circular end progressively increases with the build height (an
inverted cone). The actual build time is 51 minutes. The steady state surface temperature for
this test part gradually increases with the addition of new layers, despite processing under
constant LPBF parameters. The graph theory approach predicts this increasing steady state

temperature trends within 41 minutes the surface temperature distribution with MAPE less
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than 7% and RMSE of 32 K relative to the experimental observations. In contrast, for nearly

identical level of MAPE and RMSE, the finite element approach requires 96 minutes.

The graph theory approach has the potential to facilitate physics-based optimization of process
parameters (laser power, hatch pattern, etc.), build strategy, support placement, etc., to minimize
warping and distortion. In our forthcoming works we will validate the graph theory approach for
complex geometry parts. However, the prediction of microstructural evolution with graph theory
remains a challenging problem. This is because the microstructure evolution is a function of both
the part-level temperature and the meltpool-level thermal-fluid flow phenomena. The graph theory

approach currently does not incorporate meltpool-level phenomena.
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Build 1 — Cylinder built in multiple phases.

Appendix 1

60 mm build height, 1,200 layers, 50 um layer thickness, 171 minutes (10,260 sec) build time

RMSE Mean Computation
Number | Super-Layer IS\I:;;;)_er of (K) ?/S[tl?lpl[i)ev Over three Time in seconds. (Std.
of Nodes | Thickness layers (Std. Dev. Over repe'ti tion.s) Dev over three
three repetitions) repetitions)

3 20 68.57 (8.3) 30.48 (2.2) 289 (2.6)

2 30 46.78 (7.9) 22.45 (2.4) 699 (7.3)

1 60 37.22 (6.3) 17.24 (1.3) 1323 (11.4)
5000 0.8 75 3747 (7.2) 14.85 (1.5) 2086 (15.7)

0.6 100 33.08 (7.0) 14.52 (1.2) 3037 (18.3)

0.5 120 25.18 (6.3) 10.42 (1.1) 4176 (20.4)

0.4 150 20.75 (3.7) 9.48 (0.8) 5500 (24.2)

0.3 200 15.27 (1.3) 8.67 (0.4) 7270 (29.5)

3 20 79.06 (13.6) 29.46 (3.2) 169 (1.4)

2 30 69.15 (12.3) 21.44 (3.0) 384 (2.2)

1 60 44.07 (9.5) 18.21 (2.1) 727 (5.4)
4000 0.8 75 42.55 (8.5) 16.46 (1.6) 1125 (10)

0.6 100 35.41 (8.4) 15.88 (1.4) 1636 (14.2)

0.5 120 16.87 (8.5) 11.54 (1.4) 2209 (16.8)

0.4 150 15.29 (7.9) 9.67(1.2) 2971 (17.2)

0.3 200 15.73 (2.4) 8.75 (0.8) 3912 (23)

3 20 74.44 (14.5) 27.64 (3.4) 75(0.4)

2 30 64.38 (13.7) 22.54 (2.8) 166 (1.2)

1 60 63.76 (13.6) 21.48 (2.8) 311 (2.4)
3000 0.8 75 57.94 (12.9) 20.55 (2.5) 481 (3.2)

0.6 100 56.93 (7.3) 20.24 (1.5) 696 (6.3)

0.5 120 54.1(7.9) 18.2 (1.9) 949 (7.8)

0.4 150 26.18 (5.5) 15.89 (1.3) 1254 (9.4)

0.3 200 16.28 (2.3) 13.81 (0.9) 1655 (13.8)

3 20 77.52 (16.0) 31.82 (4.7) 27(0.2)

2 30 52.69 (15.4) 30.75 (4.2) 56 (0.3)

1 60 51.28 (12.1) 25.17 (3.1) 98 (0.7)
2000 0.8 75 49.38 (12.5) 23.22 (3.6) 152 (1)

0.6 100 48.34 (12.2) 20.85(3.2) 217 (1.4)

0.5 120 41.68 (10.8) 18.72 (2.7) 298 (1.7)

0.4 150 38.64 (10.5) 17.37 (2.5) 383 (1.9)

0.3 200 30.96 (11.2) 16.38 (3.1) 501 (2.7)

3 20 88.64 (19.4) 35.24(5.9) 9(0.1)

2 30 54.16 (18.8) 35.63 (6.5) 14 (0.1)

1 60 54.58 (16.3) 30.58 (4.2) 22 (0.2)
1000 0.8 75 52.54 (14.7) 24.35 (3.5) 31(0.2)

0.6 100 45.06 (13.5) 21.52 (3.3) 42 (0.3)

0.5 120 37.52 (16.7) 20.38 (4.5) 53 (0.4)

0.4 150 37.10 (17.4) 19.09 (5.2) 71(0.5)

0.3 200 34.24 (14.6) 19.38 (4.8) 92 (0.7)
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Figure 17: Sensitivity analysis for Build 1. (a)The effect of the super layer thickness (SLT) in mm
and number of nodes (N) used in the graph theory approach on the error vis-a-vis experimental
data. (b) The ratio of the simulation time to build time as a percentage, versus N and SLT. The
decrease in super layer thickness and increase in number of nodes improves the prediction
accuracy, but at the cost of computation time.

37



Appendix 2
Build 2 — Inverted Cone.

11 mm build height, 220 layers, 50 um layer thickness, 51 minutes (3060 sec) build time

Number of Super- Number RMSE (K) MAPE (Std. Dev. Mean Computation Time
Nodes Layer of Super- | (Std. DeV: .Over Over. . three | in seconds.(.Std. Dev over
Thickness | layers three repetitions) | repetitions) three repetitions).
1 11 267.07 (30.6) 38.54 (4.5) 434 (2.4)
0.9 12 231.71 (27.4) 37.45(4.2) 913 (6.4)
0.8 14 134.86 (15.2) 27.21 (3.4) 1420 (10.3)
0.7 15 94.52 (10.4) 24.64 (2.5) 1981 (15.5)
5000 0.6 18 64.94 (8.4) 11.77 (1.7) 2374 (18)
0.5 22 39.18 (4.2) 10.87 (1.5) 2865 (19.1)
0.4 28 26.54 (4.4) 9.21(1.5) 3436 (21.7)
0.3 36 20.71 (2.2) 4.54 (0.6) 4045 (25.7)
0.2 55 12.15 (1.4) 3.72 (0.7) 4784 (26.3)
1 11 302.97 (35.2) 49.43 (5.2) 237 (1.6)
0.9 12 231.03 (26.4) 41.09 (4.6) 470 (3.5)
0.8 14 175.75 (19.2) 3593 (34 720 (5.3)
0.7 15 101.07 (11.8) 25.84 (2.4) 1003 (7.7)
4000 0.6 18 93.28(12.0) 20.97 (2.6) 1198 (8.2)
0.5 22 75.47 (7.8) 15.46 (1.4) 1442 (9.9)
0.4 28 50.49 (7.2) 11.03 (1.2) 1752(12.2)
0.3 36 3543 (24) 6.84 (0.5) 2081 (14.2)
0.2 55 26.00 (2.8) 5.73 (0.6) 2471 (15)
1 11 357.36 (38.5) 41.76 (4.9) 136 (1)
0.9 12 351.88 (37.1) 40.64 (4.6) 258 (1.5)
0.8 14 226.31 (23.4) 35.24 (3.6) 387 (2.8)
0.7 15 127.97 (14.4) 28.21 (2.4) 521 (3.1)
3000 0.6 18 154.19 (16.2) 24.19 2.7) 615(4.2)
0.5 22 128.79 (13.8) 20.64 (2.5) 729 (4.8)
0.4 28 108.46 (12.0) 18.72 (1.6) 870 (5.5)
0.3 36 101.20 (11.4) 17.13 (1.5) 1017 (6.8)
0.2 55 94.56 (11.5) 12.21 (2.1) 1192 (7.3)
1 11 343.17 (41.2) 51.46 (6.3) 41 (0.3)
0.9 12 265.67 (29.7) 34.51 4.2) 79 (0.5)
0.8 14 201.36 (23.2) 34.88 (3.5) 119 (0.8)
0.7 15 148.04 (18.6) 31.54 3.1) 162 (0.9)
2000 0.6 18 154.16 (17.3) 30.46 (4.3) 193 (1.1)
0.5 22 128.77 (11.3) 28.40 (3.5) 231 (1.5)
0.4 28 125.54 (10.3) 26.84 (2.5) 278 (1.6)
0.3 36 120.45 (9.5) 24.48 (2.7) 325(2.4)
0.2 55 98.48 (9.2) 21.37 (2.1) 381 (2.7)
1 11 348.57 (48.1) 57.41(7.3) 35(0.2)
0.9 12 327.99 (41.9) 51.20 (5.7) 45 (0.3)
0.8 14 261.20 (32.3) 50.49 (5.4) 55(0.4)
0.7 15 253.21 (19.8) 48.34 (4.2) 65 (0.5)
1000 0.6 18 246.07 (23.4) 43.24 (4.5) 73 (0.6)
0.5 22 203.12 (26.4) 35.11 (4.2) 82 (0.6)
0.4 28 167.88 (18.4) 30.24 (4.2) 93 (0.7)
0.3 36 165.79 (18.5) 27.71 (4.8) 104 (0.8)
0.2 55 111.53 (17.4) 26.21 (4.2) 116 (0.8)
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Figure 18: Sensitivity analysis for Build 2. (a) The effect of the super layer thickness (SLT) in mm and
number of nodes (N) used in the graph theoretic approach on the error vis-a-vis experimental data. (b) The
ratio of the simulation time to build time as a percentage, versus N and SLT. The decrease in super layer
thickness and increase in number of nodes improves the prediction accuracy, but at the cost of computation
time.
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