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Abstract 

The objective of this work is to provide experimental validation of the graph theory approach 

for predicting the thermal history of additively manufactured parts. The graph theory approach for 

thermal modeling in additive manufacturing was recently published in these transactions. In the 

present paper the graph theory approach is validated with in-situ infrared thermography data in the 

context of the laser powder bed fusion (LPBF) additive manufacturing process. We realize the 

foregoing objective through the following four tasks. First, two kinds of test shapes, namely, a 

cylinder and cone, are made in two separate builds on a production-type LPBF machine (Renishaw 

AM250); the material used for these tests is stainless steel (SAE 316L). The intent of both builds 

is to influence the thermal history of the part by controlling the cooling time between melting of 

successive layers, called the interlayer cooling time. Second, layer-wise thermal images of the top 

surface of the part are acquired using an in-situ a priori calibrated infrared camera. Third, the 

thermal imaging data obtained during the two builds is used to validate the graph theory-predicted 

surface temperature trends. Fourth, the surface temperature trends predicted using graph theory 

are compared with results from finite element analysis.  The results substantiate the computational 

advantages of the graph theory approach over finite element analysis. As an example, for the 

cylinder-shaped test part, the graph theory approach predicts the surface temperature trends to 

within 10% mean absolute percentage error, and approximately 16 Kelvin root mean squared error 

relative to the surface temperature trends measured by the thermal camera. Furthermore, the graph 

theory-based temperature predictions are made in less than 65 minutes, which is substantially 

faster than the actual build time of 171 minutes. In comparison, for an identical level of resolution 

and prediction error, the finite element approach requires 175 minutes.      

Keywords: Additive Manufacturing, Thermal Modeling, Graph Theory, Validation,  Finite 

Element (FE), Laser Powder Bed Fusion (LPBF), Infrared Thermal Measurements, Interlayer 

Cooling Time (ILCT).  
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1 Introduction 

1.1 Motivation and Objective  

Fast and accurate computational approaches to predict the temperature distribution  (thermal 

history) in additive manufactured parts are valuable for the understanding and prevention of flaw 

formation, among other critical functions exemplified in Figure 1 [1-4].  

 

Figure 1: Fast and accurate modeling of the thermal history is central to quality assurance of additive 

manufactured parts, ranging from physics-based process optimization; monitoring and control; and 

prediction of part functional properties.  

In a previous paper, we proposed a graph theory-based computational heat transfer approach 

for predicting the thermal history in additive manufactured parts in near real-time [5]. In that paper, 

the graph theory-predicted temperature trends were verified with: (a) exact analytical Green’s 

function-based solutions, (b) finite element (FE) implementation of Goldak’s double ellipsoid 

moving heat source model [6, 7], and (c) a commercial software for thermal simulation in additive 

manufacturing (Autodesk Netfabb).  Results from our prior work showed that the graph theory 

approach was about ten times faster than the benchmark Goldak’s model implemented in a 
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commercial FE software (Abaqus) [5]. The mean absolute percentage error of the graph theory-

derived predictions relative to FE analysis was less than 10%.   

The objective of this paper is to validate the graph theory approach in the specific context of 

the laser powder bed fusion (LPBF) additive manufacturing (AM) process using in-situ infrared 

thermal measurements. In LPBF, metal powder is deposited on a bed (build plate) and selectively 

melted layer-upon-layer with a laser. The temperature gradients induced in the part during LPBF 

is one of the main causes for flaws such as cracking and distortion in shape [2, 4].    

1.2 Approach and Novelty 

To realize the foregoing objective, we frame the following four tasks: 

(1) Two test part geometries are made in two separate builds on a Renishaw AM250 production-

grade LPBF system. The two test parts are described below.  

(i) A cylinder of diameter 8 mm and height 60 mm. The test cylinder is sintered alongside 

eight other identical cylindrical-shaped parts on the build plate. The total time for the build 

is 171 minutes (1200 layers).  

The build plan for the test cylinder has three phases. First, for the first 20 mm vertical height of 

the test cylinder, it is scanned simultaneously with the rest of the eight cylinders. In the second 

phase, the test cylinder is processed to a total height of 40 mm, while the scanning of the rest of 

the eight other cylinders is paused. The third and concluding phase is identical to the first phase 

– the test cylinder is processed to its final height of 60 mm along with the rest of the eight 

cylinders.   

The preceding build strategy, where some parts are intermittently scanned, leads to a variation 

in the time required by the laser to process a layer, because, the laser takes longer to complete a 

layer in the first and third phases when more parts are scanned, compared to the second phase. 
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Accordingly, the time elapsed between the processing of two successive layers – called the 

interlayer cooling time (ILCT) – varies across the build. The layer-to-layer variation in ILCT leads 

to microstructural heterogeneity in LPBF parts [8].   

(ii) Inverted cone shape with a bottom diameter of 2 mm, top diameter of 20 mm, and vertical 

build height of 11 mm. The build time is nearly 51 minutes (220 layers). The gradual 

increase in the surface area of the cone as a function of its vertical build height causes a 

variation in the ILCT.  

Simple cylinder and cone-shaped test parts is used because the ILCT can be readily 

determined compared to complex-shaped parts; the ILCT is a critical input parameter for model 

validation.   

(2) Surface temperature measurements for the two test parts are acquired layer-by-layer using an 

in-situ longwave infrared thermal camera. The surface temperature measurements is recorded 

over their entire build duration consisting of 1200 and 220 layers for the cylinder and inverted 

cone shapes, respectively. To the best of the authors’ knowledge, model validation efforts 

documented in the literature use in-situ temperature measurements from at most 25 layers. 

(3) The steady state surface temperature for the two test parts is predicted using the graph theory-

based approach and subsequently validated layer-by-layer relative to the experimental 

measurements acquired using the thermal camera.  

(4) The layer-by-layer thermal history predictions from the graph theory predictions are compared 

with a previously published FE model [9]. The comparison of FE and graph theory approach 

includes predictions of the steady state surface temperature, as well as the temperature at a 

point in the interior of each of the two test parts.  
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1.3 Organization of the paper 

The rest of this paper is structured as follows. In Section 2, we review the prior literature and 

delineate the challenges involved in the acquisition of thermal history in LPBF. Section 3 describes 

the experimental methodology, and adaption of the graph theory and FE approaches to predict the 

surface temperature. Section 4 reports results concerning the validation of the graph theory with 

experimental measurements, and comparison with FE analysis. Lastly, conclusions and avenues 

for future work are summarized in Section 5. 

2 Review of Prior Work and Challenges in Temperature Measurement in Metal AM  

Articles by Yan et al. [10], and Tapia and Elwany [11] review in-situ thermal measurement 

approaches in AM. There are two approaches to obtain part-level in-situ temperature in LPBF. The 

first approach is to embed thermocouple(s) inside the part or in the substrate. The second approach 

uses thermal imaging to measure part surface temperature [12, 13]. This work applies the second 

strategy. In the next two sub-sections, Sec. 2.1 and Sec. 2.2, we highlight the key challenges in 

both the thermocouple and infrared thermography approaches, respectively, and justify the use of 

infrared thermography as a viable means to validate the graph theory-based thermal model.  

2.1 Measurement of the Temperature Distribution in LPBF using Contact-Based Thermocouples. 

The temperature profile at discrete points in LPBF parts is obtained by embedding 

thermocouple(s) (i): inside the substrate, (ii) incorporating thermocouples inside a pre-built part(s) 

and then building the test part(s) over the pre-built part(s). To the best of the our knowledge, there 

are no examples in the literature that describe stopping the LPBF process to instrument 

thermocouples inside the test part.  
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Researchers have acquired the temperature trends at the underside of the part by brazing 

thermocouples on the surface of the build plate in a manner such that the head of the thermocouple 

is barely exposed [12, 13]. However, it is observed that the temperature signals obtained by the 

thermocouple inside the substrate is considerably attenuated as the part grows in size.   

For example, Dunbar et al. embedded both a thermocouple and strain gage array within the 

build plate of an EOS M270 machine to validate their predicted distortion trends [12, 13]. In their 

setup, the sensor array is coupled to a battery-powered data acquisition system incorporated 

underneath the build plate. Thermocouples are drilled through the build plate, such that the tip of 

a thermocouple is exposed (≈ 0.25 mm) above the build plate, and care is taken to insulate the 

underside of the thermocouple(s).  The build dimensions for the test coupons used by Dunbar et 

al. are 6.25 mm × 6.25 mm × 2.33 mm (vertical build height), and the experiment lasts 10 minutes, 

in which temperature data is acquired for a maximum of three layers.  

Promoppatum et al. [14] used a setup similar to that of Dunbar to acquire temperature data for 

a large 165 mm × 60 mm × 70 mm (vertical build height) stainless steel part. Temperature trends 

at five discrete points on the underside of the part is tracked using thermocouples. The temperature 

readings recorded by the thermocouples at the underside of the part reduced to a steady state 

temperature of 200 °C within 25 layers.  

Similar attenuation of the temperature signature acquired by a thermocouple embedded in the 

substrate is also observed in a recent work of Hoelzle et al. [15]. Experiments were conducted on 

a custom experimental open architecture LPBF setup at Edison Welding Institute. Prebuilt cuboid-

shaped stainless steel coupons of ~12 mm × 12 mm × 12 mm size were embedded with four 

thermocouples at different layer heights, and one thermocouple was embedded into the build plate. 

In one of their tests, Hoelzle et al. [15] deposit a total of five layers (200 μm total thickness) on 
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the prebuilt coupons. Thermocouple data was acquired for roughly 7 seconds per layer. The 

thermocouple embedded in the build plate did not register any temperature variation.  

Researchers have obtained the temperature trends at discrete points inside the part and 

substrate in the directed energy deposition (DED) AM process. In DED, because the part is not 

surrounded by powder,  a thermocouple can be readily embedded onto the substrate or  spot welded 

on the surface of the part by stopping the process as demonstrated in the work of Heigel et al [16]. 

In one of our prior works, we validated the graph theory approach for the DED process with 

temperature data obtained from thermocouples embedded inside the substrate for titanium alloy 

test parts [17].  

The preceding literature review highlights the difficulty in obtaining the thermal history at 

discrete points via contact-based thermocouples embedded inside the LPBF substrate or part as the 

temperature signature attenuates after a few layers.   

2.2 Measurement of the Temperature Distribution in LPBF using Infrared Thermography. 

Given the challenge in measurement of temperature trends in the inside of the part with 

thermocouples in LPBF, researchers frequently use a thermal camera to obtain the relative 

temperature trends on the top surface of the part before the next layer of powder material is 

deposited [11, 18-21]. The infrared camera is typically mounted either inside or outside the 

chamber at an angle to the powder bed – called staring configuration.  However, the surface 

temperature data acquired by the thermal camera is a relative measurement and not the absolute 

surface temperature [18, 19, 22-24]. Hence, the temperature readings captured by the thermal 

camera must be calibrated a priori under practical LPBF conditions so that they can be scaled to 

absolute temperature measurements. 



8 

 

Researchers at the National Institutes of Standards and Technology (NIST) report different 

approaches to calibrate thermographic measurements in LPBF [18, 19, 22]. One such approach 

uses the concept of a black body emitter to calibrate the thermal camera measurements [18]. This 

approach is exemplified by Rodriguez et al. [25]. The key idea is to embed a thermocouple inside 

a deep cavity drilled in an AM test part. When the part is heated, the cavity inside the object 

behaves as a black body emitter per Planck’s law. As the part is heated in a controlled manner to 

a steady state temperature, the absolute temperature readings measured by the thermocouple are 

used to scale (calibrate) the surface temperature readings measured by a thermal camera.  In this 

work, we use the black body emitter approach to calibrate the thermal camera. The calibration 

procedure is summarized in Sec. 3.2 and described in detail in Ref. [8]. 

3 Methods 

3.1 Experimental Setup  

The schematic of the experimental setup is shown in Figure 2; further details are reported in 

Ref. [8]. A longwave infrared (LWIR) thermal camera (FLIR A35X) with a spectral range of 7.5 

μm to 13 μm is incorporated within the build chamber of a Renishaw AM250 LPBF machine. The 

thermal camera is sealed inside a vacuum-tight box with a germanium window and focused onto 

the build plate inclined at an angle of 66° from the horizontal. The configuration of the infrared 

thermal camera allows the measurement of surface temperature of the entire top surface of the part.  

Thermal images are captured at a resolution of 320 × 256 pixels, providing a pixel resolution 

of approximately 1 mm2, and recorded at a rate of 60 frames per second. The response time for the 

sensor is approximately 12 milliseconds. the calibration process used in our previous works is 

briefly described in the forthcoming section (Sec.  3.2) [8]. 
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Figure 2: The schematic of the experimental setup used in this work; surface temperature data is 

acquired by a longwave infrared camera inclined at an angle of 66° to the horizontal plane.  

3.2 Calibration of the Thermal Camera Measurements to Absolute Temperature 

To calibrate the temperature trends captured by the thermal camera, a cylinder-shaped test 

artifact is made using LPBF. The calibration test artifact is identical in geometry, material (SAE 

316L), and LPBF processing parameters used for the two experimental builds (Sec. 3.3). The 

calibration setup is shown in Figure 3 is adapted from Ref. [8]. 

The temperature of the calibration artifact is controlled using a 200 W cartridge heater 

embedded in a recess in the bottom. The calibration artifact is heated, and its resulting surface 

temperature is recorded using two thermocouples located in two respective recesses milled on its 

top surface. One of these thermocouples (TC1 in Figure 3) is used as a feedback control for the 

cartridge heater, while the other (TC2) records the temperature trends used for calibration. 

The thermal camera is calibrated in the range of 300 K to 800 K because the maximum 

temperature to which the cartridge heater is operational is 800 K. A 9-pixel × 9-pixel (9 mm2) 

sample of thermal intensity values in the center of the top surface of the calibration artifact are 

extracted from the thermal camera data.  
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Figure 3: The calibration procedure used for the thermal camera (adapted from Ref. [8]). (a) two 

thermocouples are located inside a slot in an LPBF part which is identical to the cylindrical part 

from Build 1. (b) the heating of the part with a cartridge heater to simulate the rise in temperature. 

(c) the calibration function of actual temperature measured by the thermocouple vs. the data 

recorded by the IR camera.  

A calibration function (Figure 3(c)) is obtained by fitting the average intensity over the 9-

pixel × 9-pixel sample area recorded by the thermal to the mean temperature recorded by the 

thermocouple TC2. To ascertain the uncertainty in the thermal camera readings the calibration 

procedure is repeated ten times (n = 10). The 95% confidence interval in temperature readings in 

the interval of 300 K to 800 K ranged from 0.1% to 1% of the mean temperature reading [8].  For 

temperature readings beyond 800 K, we expect the calibration function to remain valid, as it is 

derived from Planck’s law and the emissivity would not change significantly until melting occurs 

(viz., 1643 K).  

The calibration procedure is repeated with a thin layer of unmelted powder deposited on top 

of the calibration artifact, and the test data is used to derive another calibration curve. Such a two-

part calibration procedure, with a solid part, and with unmelted powder layered on top, ensures 

that the temperature readings account for the change in material emissivity in LPBF after a layer 

is fused (but before a new layer is recoated), and after a new layer is added (but before it is melted).   
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3.3 Experimental Builds 

In this work, we make two LPBF test parts in two different builds that are designed to 

influence the surface temperature in the part through variation in the ILCT. The scan pattern, 

process parameters and material properties for the two builds are reported in Table 1.  

3.3.1 Build 1 – Inducing variation in the interlayer cooling time by altering the build plan.  

The test part is a cylinder of diameter 8 mm and height 60 mm in the center of the build plate. 

This cylindrical test part is built in three phases, as depicted in Figure 4. The test part is built with 

a laser power of 200 W, while the rest of the eight other cylinders are built at 5 W; all parts are 

built without anchoring supports. As we will explain shortly, building the rest of the eight cylinders 

prevents their collapse during Phase 3 of Build 1. 

 

Figure 4: The three phases in building the cylinder-shaped part. The total build time is 171 minutes 

and consists of 1200 layers; each phase has 400 layers. The test part (sample) is the central 

cylinder. Shown in the top is the front view, with the change in the interlayer cooling time (ILCT) 

depending on the number of parts being processed in a layer. Shown in the bottom is the 

corresponding infrared image of the test part (central cylinder) captured by the thermal camera. 

All the cylinders are built without supports. The center cylinder is built at a laser power of 200 W, 

the rest of the eight cylinders are built at 5 W.  
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In Phase 1, the test part is built along with eight other identical cylinders arranged in a grid 

pattern. The ILCT in Phase 1 is roughly 10.5 seconds. After a build height of 20 mm is reached 

(400 layers, each layer is 50 μm), the processing of the rest of the cylinders is stopped, marking 

the end of Phase 1, and start of Phase 2.  In Phase 2, only the test sample, i.e., the center cylinder 

is processed until a total build height of 40 mm is reached (800 layers). Because only one cylinder 

is processed, the ILCT reduces to nearly 6.6 seconds from 10.5 seconds in Phase 1. Lastly, in Phase 

3, all nine cylinders are again processed for a total build height of 60 mm (1200 layers). 

Accordingly, in Phase 3, the ILCT again increases from 6.6 seconds to approximately 10.5 

seconds. The total build time is about 171 minutes.  

In Phase 3, because there is un-melted powder underneath the rest of the eight cylinders – 

there are no anchoring supports below the part, the parts will tend to move and cause a build failure. 

Hence, the laser power for melting of the eight cylinders around the periphery of the test sample 

is always set at a minimum of 5 W. In other words, the scanning of the rest of the eight cylinders 

at low power allows them to be built without supports.  

Table 1: Summary of the material and processing parameters used in this work for Build 1 and 2.  

Process Parameter Values [units] 

Laser type and wavelength. 200 W fibre laser, wavelength 1070 nm 

Laser power, point distance, exposure time  200 W, 60 um, 80 us 

Inner border parameters - power, point distance, 

exposure time for the test part (center cylinder) 

200 W, 40 um, 90 us 

Outer border parameters - power, point 

distance, exposure time (center cylinder) 

110 W, 20 um, 100 us 

Hatch spacing 110 um 

Layer thickness 50 um 

Spot diameter of the laser 65 um 

Scanning strategy for the bulk section of the 

part 

Meander-type scanning strategy without 

rotation of scan path between layers.  

Build atmosphere Argon 

Material Properties Values [units] 

Material type 316L stainless steel 

Particle size 10-45 um 
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3.3.2 Build 2 – Inducing variation in the interlayer cooling time through the part geometry. 

The test part devised for this build is shown in Figure 5; it is an inverted cone whose diameter 

gradually increases from 2 mm to a diameter 20 mm over a vertical build height of 11 mm (50 μm 

layer thickness, 220 layers). The build time is about 51 minutes.  

In this test part, the ILCT increases almost linearly in proportion to the build height from 10 

seconds at the start of the build to 16 seconds at the final 11 mm build height. Furthermore, the 

temperature of the top surface increases progressively with the deposition of new layers as the 

narrower cross-section of the part in the preceding layers impedes the diffusion of heat.  

 

Figure 5: The schematic of the inverted cone geometry implemented in Build 2. The total build 

time is 51 minutes, and consists of 200 layers of 50 μm. 

3.4 Procedure for obtaining the steady state surface temperature from the thermal camera images. 

We process the surface temperature data (T(t)) acquired by the thermal camera to obtain the 

steady state surface temperature between two immediate layers. The steady state temperature 

between layers k and k+1 is represented as T̅𝑘
𝑘+1. The steady state temperature T̅𝑘

𝑘+1 is derived 

from the time-varying surface temperature T(t) acquired from the thermal camera using the 

following steps.  
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As explained in Sec. 3.2, the surface temperature T(t) is the temperature averaged over the  9 

mm2 area encompassing the center of the part, which corresponds to a 9-pixel × 9-pixel region of 

the thermal camera image (Figure 3). Referring to Figure 6, the surface temperature signal T(t) is 

distilled into three steps common to both Build 1 and Build 2. The y-axis of Figure 6 is T(t) in 

Kelvin. The x-axis is time in seconds; each data point is processed from a frame of the thermal 

camera (frame rate 60 Hz).    

Step 1: Large upward spike denoting the beginning and end of melting 

In this stage of the process, the laser is active (ON), and is currently scanning the powder bed. 

A large upward peak is observed when the laser is directly sintering the 9 mm2 area sampled from 

the thermal image. The large upward spike lasts less than 0.5 seconds (30 thermal image frames). 

The time from the end of the large upward spike to the start of the next upward spike is the ILCT.  

Precise quantification of the ILCT is critical for model validation purposes; the time t = ILCT 

in Eqn.(1), Sec. 3.5.  However, the ILCT is not constant, but can change between layers depending 

on the build plan and shape of the part. As we will show in Sec. 4.1, for Build 1 the ILCT for Phase 

1 and Phase 3 is approximately 10.5 sec, which is considerably longer than the ILCT for Phase 2 

which is 6.6 sec. In Build 2 the ILCT increases continually over the build from 10 sec to 16 sec. 

In this work the ILCT is tracked using an spike detection procedure in Matlab.  

Step 2: First downward spike due to the recoater blocking the field-of-view of the IR camera when it returns 

to the powder reservoir.  

After the end of melting of a layer, the recoater returns to fetch fresh powder. During Step 2, the 

bed is lowered so that the recoater can pass freely over the powder bed and avoid contact with the 

part. As the recoater returns to fetch fresh powder, the IR camera field-of-view is momentarily 

blocked leading to a large downward spike in temperature lasting less than a 1/50th of a second. 
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Step 3: Second downward spike due to new powder being deposited on the powder bed when the 

recoater rakes a new layer of powder on the surface of build plate.  

As the recoater makes another pass to deposit a fresh layer of powder, it again momentarily 

blocks the field-of-view of the IR camera causing a large downward spike in the signal. Because 

the recoater speed is considerably slower than in the previous Step 2, hence the downward peak 

lasts for close to 1/5th of a second.  

 

Figure 6: The physical process-related reasons for the spikes observed in the thermal camera 

images. (a) The three large periodic spikes in the temperature and the schematic representation of 

why these spikes occur. (b) zoomed in portion of the thermal camera signature. This signal is for 

Phase 1 of Build 1, according the ILCT is 10 seconds.   
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When the powder is initially spread it is at ambient temperature (300 K). Therefore, the powder 

will extract heat from the solidified part surface which is still at a higher temperature. The heat 

required to raise the powder temperature will cause the surface temperature of the part to decrease. 

This drop in the surface temperature of the part due to the deposition of fresh powder is accounted 

in the separate powder-related step in the calibration of the infrared camera as described in Sec. 

3.2.  The corrected temperature signature is overlaid on the surface temperature signal in Figure 

7(a). The steady surface temperature readings for layer k and k+1, T̅𝑘
𝑘+1, is the temperature in the 

relatively flat portion of the curve in Figure 7(b) before layer k+1 is processed. Described another 

way T̅𝑘
𝑘+1 is the minimum temperature recorded just before melting of the new layer.  

 

Figure 7: (a) The surface temperature signature (dotted line) obtained before applying the 

calibration to account for deposition in powder. Note the slight increase in temperature after Step 

3. The solid line shows the temperature after calibration of the thermal camera to account for 

deposition of the powder (note the ≈ 40 K difference between the powder calibrated, and un-

calibrated measurements). (b) The steady state temperature is obtained just prior to the sintering 

of the fresh layer.  
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3.5 Procedure for Application of the Graph Theory Approach 

The graph theory approach is illustrated schematically in Figure 8 in the context of Build 1. 

These steps are discussed in detail in our previous works [5, 26].  The graph theory approach, as 

explained in our previous work, converts the part geometry into a set number of discrete nodes [5]. 

 

Figure 8: The four steps in the graph theory approach as applied to the cylindrical part described in Build 

1. The mathematical details are described in [5].  

A network graph is constructed over these nodes, and heat diffusion over the graph is studied 

layer-by-layer. If the temperature at each node is arranged in matrix form, the instantaneous 

temperature T after time t (=ILCT) is obtained as a function of the Laplacian eigenvectors (𝛟) and 

eigenvalues (𝚲), with T0 (= 1600 K) as the melting point of the material (SAE 316L), 

𝐓 = 𝛟𝑒−𝛼g𝚲𝑡𝛟′T0 (1) 

We reiterate that in this work, only the surface temperature is available for validating the 

predictions from the graph theory approach. Further, the temperature predictions for every node in 

the interior of the part at each time step is readily obtained at no additional computation cost. To 

demonstrate this possibility, we track the temperature trends for a point in the interior of the test 

parts, and verify these trends with FE analysis in Sec. 4.3.     
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To maintain consistency with the calibrated thermal data, the temperature distribution 

predictions for the graph theory model are validated against the same 9 pixel × 9 pixel sample 

region on the surface of the test part shown in Figure 3.  While validation of the graph theory 

predictions with temperature measurements nearer to the edges of the test part would be valuable, 

we are constrained by the limited 1 mm2 resolution of the thermal camera used in this work. The 

part-powder boundary involves complex phenomena encompassing convective and conductive 

heat transfer modes, compared to the dominance of conduction-based heat loss near to the center 

of the part, therefore, the measurement uncertainty at the edges of the part would become 

overwhelmingly large.   

3.5.1 Simulating deposition of multiple layers at once (super layer or meta-layer approach) to 

reduce the computation time.  

To mitigate the computation time, instead of simulating the deposition one individual layer 

(layer height 50 μm) at a time, we adapt the graph theory approach to simulate the deposition of 

several layers at a time. Such a layer consolidated from two or more individual layers is called a 

super layer or meta layer, and is commonly used in coarse FE modeling of the AM process to 

reduce the computation time [9].  

Using the super layer approach is particularly well suited to the graph theory method as the 

precision is independent of the simulated time step. This is because the time 𝑡 for which the heat 

is diffused in the part in Eqn. (1) can be set to one large time step without computing the 

temperature at intermediate discrete steps as in FE analysis. In this work, the time t is set to the 

interlayer cooling time (ILCT) accrued over super layers. In this work, the super layer is varied 

from 3 mm (consisting of 60 individual layers of 50 μm each) to 0.3 mm (6 individual layers). 
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3.5.2 Tuning the graph theory model parameters  

 The graph theory simulation studies require tuning of two types of factors.  

(1) Number of Nodes (N) 

Selecting the total number of nodes (N) into which the part is discretized involves a tradeoff in 

computation time and accuracy [5]. In our previous work for a complex geometry part, selecting a 

higher number of nodes results in a smaller error in comparison to benchmark FE studies, while 

degrading the computational efficiency [5]. In this work, we evaluated the effect of varying the 

number of nodes from 1000 to 5000 in steps of 1000.  

(2) Model Parameters related to heat diffusion.  

In the graph theory approach two model parameters related to the heat diffusion must be 

determined, namely, the gain factor (g) Eqn. (1), and the neighborhood distance (ε) which governs 

the connectivity of the nodes [5]. There is an interaction between these two parameters. To mitigate 

this complexity, and need for extensive tuning, in this work we have made one change to the graph 

theory model, instead of setting ε to an absolute distance in mm, we now connect the nearest 50 

neighbors of a node with edges. The number 50 is selected based on extensive offline studies. 

We report the mean absolute percentage error (MAPE) and root mean square error (RMSE, 

Kelvin) for each tested combination of super layer thickness and number of nodes. To obtain the 

gain factor (g), we fix the total number of nodes at 1000, and conduct a grid search with respect to 

the infrared thermal measurements obtained for Phase 1 of Build 1. To make the calibration more 

rigorous, the layer height set in the simulation for the calibration of g studies is 50 μm, which is 

the same as the layer height of the build – i.e., the super layer is set equal to actual layer height for 

model calibration.  
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The value of g is changed with the number of nodes (N) fixed at 1000 and layer thickness 50 

μm.  The graph theory approach is applied for the first 20 mm of the build height, i.e., the graph 

theoretic model is calibrated for the temperature readings from Phase 1 of Build 1. The results 

from the model calibration procedure are shown in Figure 9(a). The value of g that minimizes the 

MAPE and RMSE is selected. The results from the grid search are shown in Figure 9(b). The value 

of g that minimizes MAPE and RMSE is 1.5 × 104; this value is set constant for all subsequent 

simulation studies, including Phase 2 and Phase 3 of Build 1, and entirety of Build 2.   

The rest of the material-related constants and simulation parameters are described in Table 2. 

The simulations are conducted in the MATLAB environment on a desktop personal computer with 

an Intel Core i7-6700 CPU, clocked at 3.40 GHz with 32 gigabytes of onboard memory. 

 
Figure 9: (a) Representative steady state surface temperature trends obtained for Phase 1 of Build 1 by 

varying the gain factor (g). (b) The mean absolute percentage error (MAPE) and root mean squared error 

(RMSE, in Kelvin). 
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Table 2: Summary of the simulation parameters used in this work. 
Simulation Parameters Values 

Super layer thickness [mm]  
Varies from 3 to 0.3 mm for Build 1 (Cylinder) and from 1 to 

0.2 mm for Build 2 (Inverted Cone) 

Total number of nodes in the part (N) Varies from 1000 to 5000 in steps of 1000 

Node Density (N per mm3) 
Varies from 0.3 to 1.6 for Build 1 (Cylinder) and from 0.8 to 

4.3 for Build 2 (Inverted Cone) 

Number of neighbors which is 

connected to each node. 
50 

Gain factor (g) 1.3 × 104 

Convection coefficient wall to powder, 

hw [W·m-2· K] 
1 × 10-5 

Convection coefficient substrate (sink), 

hs [W·m-2· K]  
1 × 10-2 

Thermal diffusivity (α), [m2/s]  3 × 10-6 

Density, 𝜌 [kg/m3] 8,440 

Melting Point (T0) (K) 1,600 

Ambient temperature, T∞ (K) 300 

Processing hardware Intel Core i7-6700 CPU, @3.40 GHz with 32 GB RAM. 

3.6 Procedure for Verification with Finite Element (FE) Analysis 

The FE approach used for predicting the thermal history in LPBF parts is detailed in our 

previous publication [9]. To maintain parity, the FE model uses the identical meta-layer or super 

layers implemented for the graph theory approach. In our prior work, we obtained both the 

temperature distribution and distortion in an LPBF part by simulating the deposition of super 

layers. The FE predicted thermal-induced distortions are within 10% of offline measurements [9].  

To ensure equitable comparison of FE and graph theory approaches the following steps are 

taken: (i) for both the FE and graph theory implementations MAPE and RMSE are quantified in 

for the same number of nodes and resolution (super layer thickness); (ii) we compare the 

computation time required by the FE predictions to converge to approximately the same MAPE 

and RMSE of the graph theory predictions at an identical level of resolution.  Lastly, we 

qualitatively compare the FE and graph theory predictions for a point in the interior of the two test 

parts; there is no additional computation cost associated with calculating the temperature 

distribution at an interior point. 
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4 Results 

4.1 Results for Build 1 

4.1.1 Thermal signatures acquired from the thermal camera. 

The surface thermal signatures recorded for Build 1 are shown in Figure 10. The y-axis in 

Figure 10(a) is the surface temperature T(t).  In Figure 10(b) the steady state surface temperature 

between two successive layers (T̅𝑘
𝑘+1) is tracked on the y-axis. Changes in the temperature trend 

across the three phases of Build 1 are more clearly evident in Figure 10(b) on processing the 

temperature signatures T(t) from Figure 10(a). 

A gradual increase in the steady state surface temperature is observed during Phase 1, 

succeeded by a sharp increase observed at the start of Phase 2, and finally followed by a drop at 

the start of Phase 3. These changes in the temperature correspond to the change ILCT; the reason 

for the sharp increase in temperature in Phase 2 is the decrease in ILCT to roughly 6.6 seconds 

(Figure 10(d)), compared to 10.5 seconds in Phase 1 and Phase 3 (Figure 10(c)).  

To summarize these observations, in Build 1, the ILCT, and consequently, the surface 

temperature distribution of the cylindrical test part changes considerably from Phase 1 through 3. 

These temperature  trends from Build 1 have two practical implications, as shown in our previous 

work [8]. First, tasks that require stopping the build, e.g., replenishing the power, re-filling the 

chamber with inert gas, that entail a change in the ILCT are liable to cause microstructural 

heterogeneity. Second, it is not viable to optimize the process parameters for one type of geometry, 

and consider this knowledge as transferable to other situations – the process parameters must be 

demarcated through in-silico thermal experiments for every build if there is any change in the part 

geometry, orientation, build layout, number of parts, and scanning strategy. 



23 

 

 

Figure 10: Data obtained from Build 1. (a) the surface temperature readings recorded by the long 

wave infrared (LWIR) camera, (b) smoothened trends obtained after considering the steady state 

temperature in the interlayer cooling time (ILCT). (c) and (d) the ILCT decreases from 10.5 

seconds in Phase 1 to 6.6 seconds in Phase 2 leading to a large increase in the steady state 

temperature seen in (b). 

4.1.2 Comparing the graph theory temperature predictions with experimental observations. 

In Figure 11(a) maps the effect of changing the super layer thickness (SLT) on the steady state 

surface temperature distribution predicted by the graph theory approach for number of nodes N= 

3000. In Figure 11(b), the converse case, i.e., the SLT is maintained constant (0.3 mm, 6 individual 

layers of 50 μm each) and the steady state surface temperature distribution with varying N is 

predicted. A more detailed sensitivity analysis determining the effect of N and SLT on the MAPE, 

RMSE, and computation time is reported in-depth in Appendix 1.  
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Figure 11: Representative steady state temperature trend predictions for Build 1 (cylinder). (a) The 

effect of the super layer thickness on the temperature trends predicted using graph theory with 

number of nodes fixed at N = 3000. (b) The effect of varying the number of nodes N at a fixed 

super layer thickness of 0.3 mm (consisting of 6 actual layers of 50 μm each).  

In general, the prediction accuracy improves (MAPE and RMSE reduces) as the SLT is 

decreased, and N is increased.  However, the relationship is not linear. An amicable balance in 

both accuracy and computation time is obtained by setting SLT = 0.3 mm (6 individual layers) and 

N = 3000. The error under these conditions (MAPE) is close to 13%, and the results are obtained 

in approximately 26 minutes (≈ 1/6th of the actual build time of 171 minutes). The MAPE reduces 

to ~9% for N = 4000 and SLT = 0.3, however, the computational time increases to 65 minutes.  

4.1.3 Comparison of graph theory temperature predictions with finite element analysis 

The predictions from the graph theory approach are compared with finite element (FE) 

analysis in Figure 12 and Table 3. As explained in Sec. 3.6, to ensure equitable comparison, we 

implemented the super layer approach in a FE in a commercially software (Abaqus), the detailed 

implementation of the FE analysis is described in Ref. [9].  
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Figure 12. The FE and graph theory results compared for different super layer thicknesses (SLT) for Build 

1. (a) FE and graph theory analysis with 3000 nodes, (b) FE and graph theory analysis with 5000 nodes. 

In Figure 12(a), representative thermal trends for two super layer settings 0.3 mm (6 individual 

layers) and 0.5 mm (8 individual layers), with N = 3000 for the graph theoretic approach are 

compared with FE analysis under identical conditions relative to the experimental temperature 

measurements. Likewise, Figure 12(b) shows the analysis repeated for N = 5000.  The comparison 

between FE and graph theory results is quantified in Table 3.  

Table 3: Comparison of finite element (FE) and graph theory approaches with experimental data 

for Build 1 (cylinder). The actual build time is 171 minutes (10,260 seconds) 
 Finite 

Element 

Graph 

Theory 

Graph Theory Finite 

Element 

Graph Theory 

Nodes (N) 3000 3000 4000 5000  

Super Layer 

Thickness 

(SLT) [mm] 

0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5 

Computation 

Time [s] 
2,048 1,347 1,655 949 3,912 2,209 10,446 6,053 7,270 4,176 

MAPE (%) 16.7 29.4 13.8 18.2 8.7 11.5 9.1 9.4 8.6 10.4 

RMSE 

(Kelvin, [K]) 
36.8 90.1 16.2 54.1 15.7 16.8 17.2 18.4 15.2 25.1 
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With N =3000, and super layer thickness (SLT) 0.3 mm, the MAPE for the FE analysis is 

approximately 16%, and the results are obtained within 2,048 seconds (34 minutes). Using the 

graph theory approach, the MAPE is 14%, and the trends are obtained in 1,655 seconds (27 

minutes) of computation.  

Next, we fix the MAPE of ~ 9% , and RMSE 16.5 ± 1 K and compare the computational time 

for graph theory and FE approach for an identical resolution (SLT = 0.3).  For the graph theory 

approach the MAPE and RMSE reduced to less than 9% and 16 K on increasing N = 4000 with 

corresponding computation time of 65 minutes.  To achieve the same level of prediction error it 

requires the FE approach 5000 nodes, and nearly 175 minutes. Effectively, the graph theory 

approach requires 40% of the computation time of FE to reach approximately similar level of 

MAPE and RMSE with an identical level of resolution (super layer thickness). The computational 

advantage of the graph theory approach is retained when the number of nodes N = 5000 for both 

FE and graph theory; the graph theory approach converges ~30% faster than FE.  

The graph theory approach is currently implemented in Matlab (an interpreted computer 

language) which does not allow multi-core processing, and the code is not optimized for 

parallelization. In contrast, the FE analysis is conducted in a commercial package (Abaqus). 

Porting the graph theory approach to a compiled language, such as C++ with code optimization 

will further increase its computational efficiency. 
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4.2 Results for Build 2 

4.2.1 Thermal signatures acquired from the thermal camera. 

The procedure described earlier in Sec. 3.4 is used to pre-process the thermal signatures 

obtained for Build 2. As shown in Figure 13(a), in Build 2, a gradual increase in the steady state 

surface temperature is observed. The ILCT increases with the build height (Figure 13(b)), because, 

as the top surface area increases, the time required to scan successive layers also increases. 

Consequently, while the temperature increases for layers near the top, there is also more time 

for the layer to cool because it takes longer time for the laser to scan a larger surface area. Hence, 

there is a gradual increasing trend in surface temperature as the accumulation of heat near the top 

surface occurs concurrently with an increase in ILCT. The steady state surface temperature nearly 

reaches the liquidous temperature of 316L stainless steel (1600 K) The practical implication of 

Build 2 is that the process parameters must be adapted layer-by-layer as opposed to a fixed 

parameter set so that the part temperature remains consistent. This can be achieved by varying the 

scan pattern, laser power, and ILCT (by pausing the process between layers for a longer time). 

 
Figure 13: (a) The gradual increase in the surface temperature, as well as (b) the interlayer cooling time 

with the build height.  
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4.2.2 Comparison of graph theory temperature predictions with experimental observations. 

The inverted cone shape is more complex than the cylinder as its cross-section area changes 

with the build height, and hence more number of nodes are required to capture the heat flux. As 

before, a smaller super layer thickness (SLT) and larger number of nodes both improve the 

accuracy of the solution.  

Sensitivity analysis tracking the effect of number of nodes (N) and super layer thickness on 

MAPE, RMSE, and computation time is reported in Appendix 2. Representative results are shown 

in Figure 14.  For instance, in Figure 14(a) when the number of nodes (N) is set at 4000, and the 

SLT is 0.2 mm the MAPE ~ 6%, and computation time is close to 41 minutes. In Figure 14(b) the 

SLT is held equal to 0.3 mm and N = 4000, which results in MAPE ~ 7%, and computation time 

~33 minutes; the  actual build time for Build 2 is close to 51 minutes.  

 
Figure 14: (a) Representative temperature trend predictions for Build 2 (inverted cone) the build time is 51 

minutes. The effect of the super layer thickness on the temperature trends predicted using graph theory with 

number of nodes fixed at N = 4000. (b) The effect of varying the number of nodes N at a fixed super layer 

thickness of 0.3 mm (6 actual layers of 50 μm each).  



29 

 

4.2.3 Comparison of graph theory temperature predictions with finite element analysis 

The graph theory-derived predictions for Build 2 are compared with the FE analysis in Figure 

15 and Table 4. For equitable comparison, the FE analysis is set to a super layer thickness of 0.2 

mm and 0.3 mm, and the number of nodes (N) is set at 4000. As apparent from Figure 15(a), both 

the FE and graph theory approaches track the increasing surface temperature trends evident in the 

experimental data. Furthermore, for the results shown in Figure 15(b) we increased number of 

nodes (N) for the FE analysis until it converged to a nearly identical accuracy level of accuracy in 

terms of MAPE and RMSE observed for graph theory.   

 

Figure 15: The temperature trends predicted using the FE and graph theory approach compared for different 

super layer thicknesses (SLT) and number of nodes (N) for Build 2. Abaqus is used for simulating the 

deposition of super layers in the FE analysis. (a) N=4000 for both the graph theory and FE approaches. (b) 

N = 6800 for FE, and N = 5000 for graph theory. 

As exemplified in Figure 15, and quantitatively in Table 4, for a fixed resolution (SLT), and 

for an RMSE of 28.5 ± 1 K, and MAPE ~ 6%, the  FE analysis required N = 6800 and 96 minutes 

of computation time.  By contrast, for the foregoing degree of prediction error, the graph theory 



30 

 

approach required N = 4000, and converged in 41 minutes. In other words, the graph theory 

required 40% fewer nodes and converged within 40% of the time required by FE. These results 

affirm the computational advantages of the graph theory approach over FE. 

Table 4: Comparison of finite element and graph theoretic approaches for Build 2 (inverted cone). 

 Finite 

Element 

Graph Theory Graph 

Theory 

Finite 

Element 

Number of nodes (N) 4000 4000 5000 6800 

Super Layer Thickness (mm) 0.2 0.3  0.2  0.3 0.2 0.3 0.2 0.3 

Computation Time [s] 3,274 2,948 2,471 2,081 4,784 4,045 5,982 5,034 

MAPE (%) 9.6 15.9 5.73 6.8 3.72 4.54 6.2 10.9 

RMSE  [K] 42.1 76.4 26 32.8 12.15 20.7 27.6 43.8 

4.3 Comparison of graph theory predictions with FE analysis for point in the interior of the part 

We compare the graph theory and FE predictions for a point in the interior volume of the two 

builds. The results, shown in Figure 16, substantiate that both the graph theory and FE approaches 

capture the cyclical heating and cooling characteristic of LPBF as material is deposited and melted 

layer-upon-layer. 

 
Figure 16: Comparison of the FE and graph theory predictions in the interior of the build volume (a) Build 

1, the measurement point is on the axis, 4 mm from the bottom. The number of nodes N = 3000 and 
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superlayer thickness (SLT) is 0.3 mm (b) Build 2, the measurement point is on the axis, 2 mm from the 

bottom; N =  4000 and  SLT is 0.2 mm. 

In the case of Build 1, Figure 16(a), the measurement (sample) location for testing both FE 

and graph theory models is on the central axis cylinder, 4 mm from the bottom (viz., 1/5th of the 

height of Phase 1 build of 20 mm; the total build height over the three layers is 60 mm). In Build 

2, we observe the temperature at a location on the central axis of the cone, and at a distance of 2 

mm from the bottom (~1/5th of the build height of 11 mm).The x-axis of Figure 16 corresponds to 

the build height, in the context of time. Closer examination of the plots, particularly Figure 16(b), 

shows a close alignment in the peaks and valleys of the temperature predictions from the graph 

theory approach and FE predictions.  

Close examination of Figure 16(a), in the context of Build 1, reveals that there is a slight 

increase in the temperature corresponding to start of Phase 2, and decrease at the start of Phase 3. 

The change in temperature at the interior point shown in Figure 16(a), corresponding to the phases 

of Build 1 is not as prominent as in the steady state surface temperature plots in Figure 10 due to 

attenuation of the temperature signature as the part grows in size. The attenuation of the thermal 

signature harkens to the limitations in acquiring the temperature data by embedding a 

thermocouple inside of the substrate discussed in Sec. 2.1.  

Concerning Build 2, in Figure 16(b) the attenuation again affects the cyclical pattern as the 

build progresses. However, the temperature at the measurement point for Build 2 does not decrease 

as in Build 1, because, as explained in the context of Figure 13, Sec. 0, the surface temperature for 

the conical test part increases continually throughout the process.   
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5 Conclusions 

This work provides experimental evidence to substantiate the computational efficiency and 

accuracy of the graph theoretic approach proposed in our previous work [5]. We arrive at the 

following conclusions through two experimental builds conducted in the specific context of the 

laser powder bed fusion (LPBF) AM process. 

(1) In Build 1, a cylindrical part 8 mm diameter, 60 mm vertical build height is processed with a 

phased build plan, such that other parts are intermittently added and removed during the build. 

Consequently, the interlayer cooling time varies over the 1200 layers of the build, which in 

turn influences the thermal history and microstructure.  

The graph theoretic approach predicts the resulting complex thermal history within 65 minutes 

with a mean absolute percentage error (MAPE) less than 10% and 16 K root mean squared 

error (RMSE), which is substantially the actual build time of 171 minutes. For a comparable 

level of MAPE and RMSE a coarse finite element approximation requires 177 minutes. 

From a practical perspective, Build 1 shows that the graph theory approach is capable of 

emulating a complex multi-part build plan with test parts being removed and added during the 

process.  

(2) In Build 2, a conical part of diameter 20 mm and vertical build height 11 mm is processed in a 

way such that the diameter of its circular end progressively increases with the build height (an 

inverted cone). The actual build time is 51 minutes. The steady state surface temperature for 

this test part gradually increases with the addition of new layers, despite processing under 

constant LPBF parameters. The graph theory approach predicts this increasing steady state 

temperature trends within 41 minutes the surface temperature distribution with MAPE less 



33 

 

than 7% and RMSE of 32 K relative to the experimental observations. In contrast, for nearly 

identical level of MAPE and RMSE, the finite element approach requires 96 minutes. 

The graph theory approach has the potential to facilitate physics-based optimization of process 

parameters (laser power, hatch pattern, etc.), build strategy, support placement, etc., to minimize 

warping and distortion. In our forthcoming works we will validate the graph theory approach for 

complex geometry parts.   However, the prediction of microstructural evolution with graph theory 

remains a challenging problem. This is because the microstructure evolution is a function of both 

the part-level temperature and the meltpool-level thermal-fluid flow phenomena. The graph theory 

approach currently does not incorporate meltpool-level phenomena.    

Acknowledgments  

One of the authors (PKR) thanks the NSF for funding his research through the following grants 

CMMI-1719388, CMMI-1739696, CMMI-1752069, and OIA-1929172 at University of 

Nebraska-Lincoln. Specifically, the concept of using graph theory for modeling in metal additive 

manufacturing applications is funded through CMMI-1752069. 

References Cited 

[1] Francois, M. M., Sun, A., King, W. E., Henson, N. J., Tourret, D., Bronkhorst, C. A., Carlson, 

N. N., Newman, C. K., Haut, T., Bakosi, J., Gibbs, J. W., Livescu, V., Vander Wiel, S. A., Clarke, 

A. J., Schraad, M. W., Blacker, T., Lim, H., Rodgers, T., Owen, S., Abdeljawad, F., Madison, J., 

Anderson, A. T., Fattebert, J. L., Ferencz, R. M., Hodge, N. E., Khairallah, S. A., and Walton, O., 

2017, "Modeling of additive manufacturing processes for metals: Challenges and opportunities," 

Current Opinion in Solid State and Materials Science, 21(4), pp. 198-

206.doi:https://doi.org/10.1016/j.cossms.2016.12.001 

[2] DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., Beese, A. 

M., Wilson-Heid, A., De, A., and Zhang, W., 2018, "Additive manufacturing of metallic 

components – Process, structure and properties," Progress in Materials Science, 92, pp. 112-

224.doi:https://doi.org/10.1016/j.pmatsci.2017.10.001 

[3] Foteinopoulos, P., Papacharalampopoulos, A., and Stavropoulos, P., 2018, "On thermal 

modeling of Additive Manufacturing processes," CIRP Journal of Manufacturing Science and 

Technology, 20, pp. 66-83.doi:https://doi.org/10.1016/j.cirpj.2017.09.007 



34 

 

[4] Sames, W. J., List, F., Pannala, S., Dehoff, R. R., and Babu, S. S., 2016, "The metallurgy and 

processing science of metal additive manufacturing," International Materials Reviews, 61(5), pp. 

315-360 

[5] Yavari, M. R., Cole, K., and Rao, P., 2019, "Thermal Modeling in Metal Additive 

Manufacturing using Graph Theory," ASME Transactions, Journal of Manufacturing Science and 

Engineering, 141(7), pp. 071007-071027.doi:10.1115/1.4043648 

[6] Goldak, J., Chakravarti, A., and Bibby, M., 1984, "A new finite element model for welding 

heat sources," Metallurgical Transactions B, 15(2), pp. 299-305.doi:10.1007/bf02667333 

[7] Goldak, J. A., and Akhlaghi, M., 2005, "Computer simulation of welding processes," 

Computational Welding Mechanics, pp. 16-69 

[8] Williams, R. J., Piglione, A., Rønneberg, T., Jones, C., Pham, M.-S., Davies, C. M., and 

Hooper, P. A., 2019, "In-situ thermography for laser powder bed fusion: effects of layer 

temperature on porosity, microstructure and mechanical properties.," Additive Manufacturing, 

(Accepted, Under 2nd Review) 

[9] Williams, R. J., Davies, C. M., and Hooper, P. A., 2018, "A pragmatic part scale model for 

residual stress and distortion prediction in powder bed fusion," Additive Manufacturing, 22, pp. 

416-425.doi:https://doi.org/10.1016/j.addma.2018.05.038 

[10] Yan, Z., Liu, W., Tang, Z., Liu, X., Zhang, N., Li, M., and Zhang, H., 2018, "Review on 

thermal analysis in laser-based additive manufacturing," Optics & Laser Technology, 106, pp. 427-

441.doi:https://doi.org/10.1016/j.optlastec.2018.04.034 

[11] Tapia, G., and Elwany, A., 2014, "A Review on Process Monitoring and Control in Metal-

Based Additive Manufacturing," Journal of Manufacturing Science and Engineering, 136(6), pp. 

060801-060801-060810.doi:10.1115/1.4028540 

[12] Dunbar, A. J., Denlinger, E. R., Gouge, M. F., Simpson, T. W., and Michaleris, P., 2017, 

"Comparisons of laser powder bed fusion additive manufacturing builds through experimental in 

situ distortion and temperature measurements," Additive Manufacturing, 15, pp. 57-

65.doi:https://doi.org/10.1016/j.addma.2017.03.003 

[13] Dunbar, A., Denlinger, E., Heigel, J., Michaleris, P., Guerrier, P., Martukanitz, R., and 

Simpson, T., 2016, "Development of experimental method for in situ distortion and temperature 

measurements during the laser powder bed fusion additive manufacturing process," Additive 

Manufacturing, 12, pp. 25-30 

[14] Promoppatum, P., Yao, S.-C., Pistorius, P. C., Rollett, A. D., Coutts, P. J., Lia, F., and 

Martukanitz, R., 2018, "Numerical modeling and experimental validation of thermal history and 

microstructure for additive manufacturing of an Inconel 718 product," Progress in Additive 

Manufacturing, 3(1), pp. 15-32.doi:10.1007/s40964-018-0039-1 

[15] Wood, N., Mendoza, H., Boulware, P., and Hoelzle, D. J., 2019, "Interrogation of mid-build 

internal temperature distributions within parts being manufactured via the powder bed fusion 

process," 30th Solid Freeform Fabrication Conference, Austin, TX, pp. 1445-1481 

[16] Heigel, J. C., Michaleris, P., and Reutzel, E. W., 2015, "Thermo-mechanical model 

development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V," 

Additive Manufacturing, 5, pp. 9-19.doi:https://doi.org/10.1016/j.addma.2014.10.003 



35 

 

[17] Yavari, R., Severson, J., Gaikwad, A., Cole, K., and Rao, P., 2019, "Predicting Part-Level 

Thermal History in Metal Additive Manufacturing Using Graph Theory: Experimental Validation 

With Directed Energy Deposition of Titanium Alloy Parts," ASME 2019 14th International 

Manufacturing Science and Engineering Conference, doi:10.1115/msec2019-3034. 

[18] Lane, B., Moylan, S., Whitenton, E. P., and Ma, L., 2016, "Thermographic measurements of 

the commercial laser powder bed fusion process at NIST," Rapid Prototyping Journal, 22(5), pp. 

778-787.doi:doi:10.1108/RPJ-11-2015-0161 

[19] Moylan, S., Whitenton, E., Lane, B., and Slotwinski, J., 2014, "Infrared thermography for 

laser-based powder bed fusion additive manufacturing processes," AIP Conference Proceedings, 

1581(1), pp. 1191-1196.doi:10.1063/1.4864956 

[20] Everton, S. K., Hirsch, M., Stravroulakis, P., Leach, R. K., and Clare, A. T., 2016, "Review 

of in-situ process monitoring and in-situ metrology for metal additive manufacturing," Materials 

& Design, 95, pp. 431-445.doi:https://doi.org/10.1016/j.matdes.2016.01.099 

[21] Krauss, H., Zeugner, T., and Zaeh, M. F., 2015, "Thermographic process monitoring in 

powderbed based additive manufacturing," AIP Conference Proceedings, 1650(1), pp. 177-

183.doi:10.1063/1.4914608 

[22] Mani, M., Lane, B. M., Donmez, M. A., Feng, S. C., and Moylan, S. P., 2017, "A review on 

measurement science needs for real-time control of additive manufacturing metal powder bed 

fusion processes," International Journal of Production Research, 55(5), pp. 1400-

1418.doi:10.1080/00207543.2016.1223378 

[23] Usamentiaga, R., Venegas, P., Guerediaga, J., Vega, L., Molleda, J., and Bulnes, F. G., 2014, 

"Infrared Thermography for Temperature Measurement and Non-Destructive Testing," Sensors, 

14(7), pp. 12305-12348 

[24] Murphy, R. D., and Forrest, E. C., 2016, "A Review of In-situ Temperature Measurements 

for Additive Manufacturing Technologies," Sandia National Lab.(SNL-NM), Albuquerque, NM 

(United States). 

[25] Rodriguez, E., Mireles, J., Terrazas, C. A., Espalin, D., Perez, M. A., and Wicker, R. B., 2015, 

"Approximation of absolute surface temperature measurements of powder bed fusion additive 

manufacturing technology using in situ infrared thermography," Additive Manufacturing, 5, pp. 

31-39.doi:https://doi.org/10.1016/j.addma.2014.12.001 

[26] Yavari, M. R., Cole, K. D., and Rao, P. K., 2019, "Design Rules for Additive Manufacturing 

– Understanding the Fundamental Thermal Phenomena to Reduce Scrap," Procedia 

Manufacturing, 33, pp. 375-382.doi:https://doi.org/10.1016/j.promfg.2019.04.046 

 

  



36 

 

Appendix 1 

Build 1 – Cylinder built in multiple phases. 

60 mm build height, 1,200 layers, 50 μm layer thickness, 171 minutes (10,260 sec) build time 

Number 

of Nodes 

Super-Layer 

Thickness 

Number of 

Super-

layers 

RMSE  

(K) 

(Std. Dev. Over 

three repetitions) 

MAPE  

(Std. Dev. Over three 

repetitions) 

Mean Computation 

Time in seconds. (Std. 

Dev over three 

repetitions) 

5000 

3 20 68.57 (8.3) 30.48 (2.2) 289 (2.6) 

2 30 46.78 (7.9) 22.45 (2.4) 699 (7.3) 

1 60 37.22 (6.3) 17.24 (1.3) 1323 (11.4) 

0.8 75 37.47 (7.2) 14.85 (1.5) 2086 (15.7) 

0.6 100 33.08 (7.0) 14.52 (1.2) 3037 (18.3) 

0.5 120 25.18 (6.3) 10.42 (1.1) 4176 (20.4) 

0.4 150 20.75 (3.7) 9.48 (0.8) 5500 (24.2) 

0.3 200 15.27 (1.3) 8.67 (0.4) 7270 (29.5) 

4000 

3 20 79.06 (13.6) 29.46 (3.2) 169 (1.4) 

2 30 69.15 (12.3) 21.44 (3.0) 384 (2.2) 

1 60 44.07 (9.5) 18.21 (2.1) 727 (5.4) 

0.8 75 42.55 (8.5) 16.46 (1.6) 1125 (10) 

0.6 100 35.41 (8.4) 15.88 (1.4) 1636 (14.2) 

0.5 120 16.87 (8.5) 11.54 (1.4) 2209 (16.8) 

0.4 150 15.29 (7.9) 9.67(1.2) 2971 (17.2) 

0.3 200 15.73 (2.4) 8.75 (0.8) 3912 (23) 

3000 

3 20 74.44 (14.5) 27.64 (3.4) 75 (0.4) 

2 30 64.38 (13.7) 22.54 (2.8) 166 (1.2) 

1 60 63.76 (13.6) 21.48 (2.8) 311 (2.4) 

0.8 75 57.94 (12.9) 20.55 (2.5) 481 (3.2) 

0.6 100 56.93 (7.3) 20.24 (1.5) 696 (6.3) 

0.5 120 54.1 (7.9) 18.2 (1.9) 949 (7.8) 

0.4 150 26.18 (5.5) 15.89 (1.3) 1254 (9.4) 

0.3 200 16.28 (2.3) 13.81 (0.9) 1655 (13.8) 

2000 

3 20 77.52 (16.0) 31.82 (4.7) 27 (0.2) 

2 30 52.69 (15.4) 30.75 (4.2) 56 (0.3) 

1 60 51.28 (12.1) 25.17 (3.1) 98 (0.7) 

0.8 75 49.38 (12.5) 23.22 (3.6) 152 (1) 

0.6 100 48.34 (12.2) 20.85 (3.2) 217 (1.4) 

0.5 120 41.68 (10.8) 18.72 (2.7) 298 (1.7) 

0.4 150 38.64 (10.5) 17.37 (2.5) 383 (1.9) 

0.3 200 30.96 (11.2) 16.38 (3.1) 501 (2.7) 

1000 

3 20 88.64 (19.4) 35.24 (5.9) 9 (0.1) 

2 30 54.16 (18.8) 35.63 (6.5) 14 (0.1) 

1 60 54.58 (16.3) 30.58 (4.2) 22 (0.2) 

0.8 75 52.54 (14.7) 24.35 (3.5) 31 (0.2) 

0.6 100 45.06 (13.5) 21.52 (3.3) 42 (0.3) 

0.5 120 37.52 (16.7) 20.38 (4.5) 53 (0.4) 

0.4 150 37.10 (17.4) 19.09 (5.2) 71 (0.5) 

0.3 200 34.24 (14.6) 19.38 (4.8) 92 (0.7) 
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Figure 17: Sensitivity analysis for Build 1. (a)The effect of the super layer thickness (SLT) in mm 

and number of nodes (N) used in the graph theory approach on the error vis-à-vis experimental 

data. (b) The ratio of the simulation time to build time as a percentage, versus N and SLT. The 

decrease in super layer thickness and increase in number of nodes improves the prediction 

accuracy, but at the cost of computation time. 
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Appendix 2 

Build 2 – Inverted Cone. 

11 mm build height, 220 layers, 50 μm layer thickness, 51 minutes (3060 sec) build time 

Number of 

Nodes 

Super-

Layer 

Thickness 

Number 

of Super-

layers 

RMSE (K) 

(Std. Dev. Over 

three repetitions) 

MAPE (Std. Dev. 

Over three 

repetitions) 

Mean Computation Time 

in seconds (Std. Dev over 

three repetitions). 

5000 

1 11 267.07 (30.6) 38.54 (4.5) 434 (2.4) 

0.9 12 231.71 (27.4) 37.45 (4.2) 913 (6.4) 

0.8 14 134.86 (15.2) 27.21 (3.4) 1420 (10.3) 

0.7 15 94.52 (10.4) 24.64 (2.5) 1981 (15.5) 

0.6 18 64.94 (8.4) 11.77 (1.7) 2374 (18) 

0.5 22 39.18 (4.2) 10.87 (1.5) 2865 (19.1) 

0.4 28 26.54 (4.4) 9.21 (1.5) 3436 (21.7) 

0.3 36 20.71 (2.2) 4.54 (0.6) 4045 (25.7) 

0.2 55 12.15 (1.4) 3.72 (0.7) 4784 (26.3) 

4000 

1 11 302.97 (35.2) 49.43 (5.2) 237 (1.6) 

0.9 12 231.03 (26.4) 41.09 (4.6) 470 (3.5) 

0.8 14 175.75 (19.2) 35.93 (3.4) 720 (5.3) 

0.7 15 101.07 (11.8) 25.84 (2.4) 1003 (7.7) 

0.6 18 93.28(12.0) 20.97 (2.6) 1198 (8.2) 

0.5 22 75.47 (7.8) 15.46 (1.4) 1442 (9.9) 

0.4 28 50.49 (7.2) 11.03 (1.2) 1752(12.2) 

0.3 36 35.43 (2.4) 6.84 (0.5) 2081 (14.2) 

0.2 55 26.00 (2.8) 5.73 (0.6) 2471 (15) 

3000 

1 11 357.36 (38.5) 41.76 (4.9) 136 (1) 

0.9 12 351.88 (37.1) 40.64 (4.6) 258 (1.5) 

0.8 14 226.31 (23.4) 35.24 (3.6) 387 (2.8) 

0.7 15 127.97 (14.4) 28.21 (2.4) 521 (3.1) 

0.6 18 154.19 (16.2) 24.19 (2.7) 615 (4.2) 

0.5 22 128.79 (13.8) 20.64 (2.5) 729 (4.8) 

0.4 28 108.46 (12.0) 18.72 (1.6) 870 (5.5) 

0.3 36 101.20 (11.4) 17.13 (1.5) 1017 (6.8) 

0.2 55 94.56 (11.5) 12.21 (2.1) 1192 (7.3) 

2000 

1 11 343.17 (41.2) 51.46 (6.3) 41 (0.3) 

0.9 12 265.67 (29.7) 34.51 (4.2) 79 (0.5) 

0.8 14 201.36 (23.2) 34.88 (3.5) 119 (0.8)  

0.7 15 148.04 (18.6) 31.54 (3.1) 162 (0.9) 

0.6 18 154.16 (17.3) 30.46 (4.3) 193 (1.1) 

0.5 22 128.77 (11.3) 28.40 (3.5) 231 (1.5) 

0.4 28 125.54 (10.3) 26.84 (2.5) 278 (1.6) 

0.3 36 120.45 (9.5) 24.48 (2.7) 325 (2.4) 

0.2 55 98.48 (9.2) 21.37 (2.1) 381 (2.7) 

1000 

1 11 348.57 (48.1) 57.41 (7.3) 35 (0.2) 

0.9 12 327.99 (41.9) 51.20 (5.7) 45 (0.3) 

0.8 14 261.20 (32.3) 50.49 (5.4) 55 (0.4) 

0.7 15 253.21 (19.8) 48.34 (4.2) 65 (0.5) 

0.6 18 246.07 (23.4) 43.24 (4.5) 73 (0.6) 

0.5 22 203.12 (26.4) 35.11 (4.2) 82 (0.6) 

0.4 28 167.88 (18.4) 30.24 (4.2) 93 (0.7) 

0.3 36 165.79 (18.5) 27.71 (4.8) 104 (0.8) 

0.2 55 111.53 (17.4) 26.21 (4.2) 116 (0.8) 
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Figure 18: Sensitivity analysis for Build 2. (a) The effect of the super layer thickness (SLT) in mm and 

number of nodes (N) used in the graph theoretic approach on the error vis-à-vis experimental data. (b) The 

ratio of the simulation time to build time as a percentage, versus N and SLT. The decrease in super layer 

thickness and increase in number of nodes improves the prediction accuracy, but at the cost of computation 

time.  

 

  


