
Evaluating Voice Interaction Pipelines at the Edge
Smruthi Sridhar and Matthew E. Tolentino

Intelligent Platforms & Architecture Lab
University of Washington

Tacoma, WA, USA
{ssmruthi, metolent} @uw.edu

Abstract—With the recent releases of Alexa Voice Services
and Google Home, voice-driven interactive computing is quickly
become commonplace. Voice interactive applications incorpo-
rate multiple components including complex speech recognition
and translation algorithms, natural language understanding and
generation capabilities, as well as custom compute functions
commonly referred to as skills. Voice-driven interactive systems
are composed of software pipelines using these components. These
pipelines are typically resource intensive and must be executed
quickly to maintain dialogue-consistent latencies. Consequently,
voice interaction pipelines are usually computed entirely in the
cloud. However, for many cases, cloud connectivity may not be
practical and require these voice interactive pipelines be executed
at the edge.

In this paper, we evaluate the impact of pushing voice-driven
pipelines to computationally-weak edge devices. Our primary
motivation is to enable voice-driven interfaces for first responders
during emergencies, such as building fires, when connectivity to
the cloud is impractical. We first characterize the end-to-end per-
formance of a complete open source voice interaction pipeline for
four different configurations ranging from entirely cloud-based
to completely edge-based. We also identify potential optimization
opportunities to enable voice-drive interaction pipelines to be
fully executed at computationally-weak edge devices at lower
response latencies than high-performance cloud services.

Index Terms—Server, IoT, Speech Interaction, Cloud, Fog

I. INTRODUCTION

Voice-driven interfaces have become commonplace in recent
years. The introduction of Alexa Voice Services from Amazon
[1] and Google Home [2] has transformed devices at the edge
of the network into dialogue-driven gateways to access data
and services. While the edge devices users interact with consist
primarily of microphones, speakers, and a network controller,
the complex voice interactivity, which constitute the heart of
these voice-driven devices, is provided by cloud-based servers
via remote invocations across the network [3][4] [5]. Given
sufficient compute power, memory capacity, and end-to-end
network optimizations these pipelines can operate at latencies
that approach traditional human-to-human dialogue.

Voice interaction systems are resource intensive. For every
simple voice command, a software pipeline is invoked and
executed. This pipeline starts by detecting a command and then
translating the audio-based command to text [6][7][8]. As part
of this translation, the audio signal is initially filtered for noise
using digital signal processing techniques. The filtered signal
is then converted to text using a trained language and acoustic
model that requires significant memory. Once translated to

text, the query is decoded to determine the action, or skill, to
invoke. Finally, to render verbal responses to the users request,
generated textual responses are converted back to an audio
signal using a second language model and played back on the
edge device.

Due to the computational resources required, most
voice interaction pipelines are executed on the cloud
[1][2][9][10][4][5]. While this reduces the resources needed on
edge devices, this also creates a hard dependency that prevents
the use of voice-driven services or capabilities without a
connection to the cloud. For use cases in which network
connections are unreliable or unavailable, this precludes the
use of voice-driven interfaces. At the University of Washington
we are working with the fire department to integrate Internet of
Things (IoT) sensing platforms as well as voice interaction into
fire fighter gear to provide hands-free access to information.
Because cloud connectivity can not be guaranteed during
emergency scenarios, current cloud-based voice interaction
platforms are impractical.

Motivated by our fire fighting use case, the goal in this
work is to evaluate the feasibility of pushing voice interactive
pipelines to the edge. We seek to answer the question of
whether it is possible to use voice interaction systems with
only edge devices. We start by analyzing the performance
characteristics of all stages of voice interactive systems. Be-
cause most voice-interactive platforms, such as Alexa Voice
Services, are proprietary and impractical to instrument, we
leveraged the open source Mycroft platform [11]. We instru-
mented the Mycroft pipeline from audio capture to response
rendering and characterized the response latency of all stages.
Based on our initial experiments, this paper makes the follow-
ing contributions:

1) We characterize the performance of an end-to-end voice
interaction pipeline. Analyzing the performance of each
stage, we find that the speech-to-text and text-to-speech
stages are the primary bottlenecks, posing the more sig-
nificant challenges to pushing voice interactivity entirely
to the edge.

2) Voice interaction at conversational latencies can be
pushed to the edge on weak devices; however, language
and acoustic model optimizations are necessary.

2017 IEEE 1st International Conference on Edge Computing

978-1-5386-2017-5/17 $31.00 © 2017 IEEE

DOI 10.1109/IEEE.EDGE.2017.46

248

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2020 at 00:49:59 UTC from IEEE Xplore. Restrictions apply.

II. SYSTEM ARCHITECTURE

Voice interaction platforms consist of several stages. First,
speech audio is captured by microphone and processed through
a series of filters to filter out ambient noise. The filtered
audio is then translated to text using acoustic language models.
Acoustic models can vary significantly based on the extent
of the vocabulary, language, parts of speech, etc. Once the
speech is translated to text, the request is decoded and mapped
to a specific skill. The skill typically consists of a function
that returns response data which is used to generate a natural
language response. The generated response is then translated
to an audio signal and delivered to the user via speakers.

This section describes the overall architecture of this
pipeline as codified in the open source Mycroft platform.
Mycroft was developed as an open source alternative to the
Alexa Voice Service, but follows a similar design. Figure1
shows the end-to-end view of the Mycroft voice interaction
pipeline. The platform comprises of five integral components:
Speech Client, Speech to Text converter, Intent Parser, Skills
service and Text to Speech converter.

Fig. 1: System Architecture of Voice Interaction System

A. Speech Client

The speech client is the first stage of the pipeline and
initiates the interaction process. As shown in Figure 1, all
requests and responses flow through the speech client. Using
the microphone the speech client constantly listens for audio
cues. The speech client consists of three components - a
listener, a producer, and a consumer, which use a shared queue
for communication. The listener is activated on a ’wake word’
and records the request based on phrase heuristics and noise
levels. The producer pushes this recording into a processing
queue which is retrieved by the consumer and passed to the
the speech recognition service.

B. Speech to Text (STT)

This speech recognition service converts audio recordings
into textual representations. The speech segments are inter-
preted as feature vectors which are passed to a decoder. The
decoder, composed of an acoustic model, language model, and
phonetic dictionary are used to derive phones and identify
the utterances. The key to identifying the utterances lies in
a mapping process. A naive approach is to try all possible
combination of words from a vocabulary. However, this puts
a heavy load on the acoustic processing when the volume of
vocabulary is large. The accuracy of the speech recognition
relies on an optimized acoustic model that restricts the search
space and reduces latency.

C. Intent Parser (Natural Language Understanding)

The text from the STT engine is sent to the intent parser to
determine the appropriate intent. An entity is a named value
that constitutes a parameter for an intent. For instance, the
request ’Get current weather in Seattle’ refers to a weather in-
tent which requires a location parameter. The parser interprets
each request and generates a JSON-based data structure con-
taining the intent, probability match, and list of entities. The
intent determination engine uses this information to generate
tagged parses containing tagged entities. Each tagged entity
is assigned a confidence score that represents a percentage
match between the entity and the utterance. A valid parse is
determined by a high confidence score without containing any
overlapping entities.

D. Skills

Skills are user defined and constitute capabilities the system
should perform when a user issues a voice command. The
skills service abstracts the underlying logic and triggers a
skill identified by the respective intent. For example, a skill
can range anywhere between responding to a simple date/time
request to directing complex robotic actions. Skills typically
produce text that must be translated into audio responses.

E. Text to Speech (TTS)

The Text to Speech component translates skill responses
to synthesized audio signals. In contrast to the STT decoder,
the synthesizer consists of a language model, lexicon, and
voice definitions including prosody models. The language
model within the TTS stage is not to be confused with
the one referred to in the speech recognition process. This
model adapts a set of tokenization rules and textual analysis
techniques to synthesize the audio output.

F. Inter process Communication

The message bus serves as the communication channel
between the pipeline stages. This bus is based on web sockets
and uses event emissions to trigger data transmission. A
message type identifies an event and every event is mapped
to a component. Thus component functions can be invoked
by emitting the appropriate message type. This enables each
component t pick up data from the message bus when its
corresponding event is emitted.

III. EVALUATION METHODOLOGY

The experiments described in this section were designed
specifically for our real-time fire fighter use case. For this ini-
tial evaluation, we conducted a performance characterization
using an end-to-end voice interaction system using the open
source Mycroft platform [11]. Our goal was to characterize
whether a resource-constrained edge device could adequately
perform the operations of the voice interaction pipeline. We
used a Raspberry Pi3 coupled with a microphone and speaker
as our edge device. The Raspberry Pi3 consists of a quad-core,
1.2Ghz ARM Cortex A53 CPU, 1GB DRAM, and a 802.11n
wireless network controller. We deployed Mycroft on the Pi to

249

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2020 at 00:49:59 UTC from IEEE Xplore. Restrictions apply.

measure the initial performance of the prototype. Developed
as a python project, Mycroft uses a combination of libraries
of open source components as well as its own set of libraries
to process and manage responses to voice commands.

A. Performance Characteristics
To characterize performance, we instrumented each of My-

croft’s pipeline stages, or components, to measure latency. We
initially recorded the latency of the prototype pipeline without
making any configuration changes. The parameters captured
during our experiments included:

Component Execution Time : This metric measured the
time taken to execute a component. This is recorded by
calculating the difference in timestamps, before and after the
execution of every component : STT, Intent Parser, Skill and
TTS.

Transmission time : This is measured as the time taken
to trigger each component through event emissions. This is
recorded as the time delay before a component invocation.

Round trip Time : Round trip time is the total time
taken by the system to record voice commands, process audio
requests, execute skills and generate audio responses. Simply
put, it is equal to the sum of component execution time and
transmission time. It is calculated by recording the time stamp
difference between the moment the user stops speaking and
the moment the speech client begins response play back. The
Round trip time does not include the audio recording and the
audio play back.

Given these performance metrics, we characterized the
performance of each stage on the Raspberry Pi and compared
this to the execution time using the cloud for STT and TTS
stages. We issued several voice commands to the system and
expect a relevant audio response. An experiment is considered
successful only if we receive a relevant audio response for
every query triggered by the user.

Skill Complexity
What time is it Small

What is my IP Address Medium
What is the weather now Large

Table 1: Examples of skills of different complexity

For our initial experiments we used a common skill that
could be executed across all pipeline configurations. This
ensured a fair performance measure and enabled us to eval-
uate how each of the four configurations performed holding
skill complexity constant. Having said that, different queries
require different levels of computation depending on the skill
executed. Consequently, we also ran experiments using skills
of varying complexities to compare overall performance in
terms of execution latency. Table 1 shows three different skills
with different complexities. Each experiment is carried out
independently and the results are recorded as the average of
five experiments.

B. Configurations
To evaluate the potential impact of pushing voice interaction

pipelines towards the edge, we evaluated the skills across four

different configurations: Cloud (one extreme), Edge (the other
extreme), as well as Fog-Edge and Fog-Cloud-Hybrid (the
two intermediate configurations). These configurations ranged
from execution of the voice interaction pipeline entirely on the
edge device to cloud-based. We also captured two intermediate
configurations that leverage an intermediate fog server. This
has the benefit of providing additional performance over the
edge at lower latency than the cloud and act as a high-
performance proxy to the cloud.

1) Cloud: The cloud configuration employs RESTful APIs
for the STT and TTS. By default Mycroft uses Google’s
Speech API [12] service which we used in this setup. The
intent parser is Mycroft’s own open source library called Adapt
[11] and resides locally on the Pi. The TTS component is
replaced by a RESTful service from API.ai [13].

2) Edge: This model executes every pipeline stage locally
on the Pi-based edge device eliminating the need for a net-
work connection. A widely known open source project for
speech recognition, PocketSphinx [7] is used in place of the
STT component. Mycroft’s own version of TTS, Mimic [11]
developed based on CMU’s FLITE[14] is used for the text to
speech conversion. The intent parser Adapt is retained from
the previous model.

3) Fog Edge: Motivated by fog computing, the above
models are shifted to a remote server to characterize the impact
of network latency. For the fog server, we used a laptop that
consisted of a 2.3Ghz Intel i5 CPU, 8GB of DRAM, and
802.11n wireless controller. Mycroft was deployed on the fog
server and all incoming audio requests to the Pi are routed
to the fog server, usingPocketSphinx, Adapt, and Mimic to
process speech commands generaged by the Pi.

4) Fog-Cloud (Hybrid): This hybrid Fog-Cloud model is
similar to the Fog-Edge model except that the fog server uses
cloud services for every component. The fog model uses the
same cloud components Google STT and APi.ai and thus the
Pi communicates with the cloud via the fog server.

IV. RESULTS

Figure 2 compares the total execution time for each of the
pipeline configurations including edge, cloud, fog-edge, and
fog-cloud for a small complexity skill. We found that the cloud
based configuration is 44% faster than the edge configuration.
The overall response latency was lower using Cloud resources
than executing locally. Unlike the cloud configuration, the fog-
edge and the fog-cloud configurations exhibited higher latency,
resulting in 17.5% and 2% higher response latencies than the
edge configuration respectively. These results demonstrate a
trend in favor of hosting voice interaction pipelines on the
cloud.

We also studied the configurations for varying level of skill
complexities. Figure3 shows the overall performance for each
configuration using different skill complexities. These results
reveal the cloud model performance is consistent irrespective
of skill complexity, whereas the performance of the edge
model is proportional to skill complexity. In the case of a
medium and large skills, the fog model proves to be more

250

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2020 at 00:49:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Performance characterization by configuration

promising than the Edge and could be a prove beneficial for
applications that perform complex operations.

Fig. 3: Performance characterization based on skill complexity

We also observed a difference in translation accuracy for
different phrases. Low translation accuracy may require users
to repeat phrases several times before accurately identifying
the skill to execute. Thus accuracy may increase latency if
the acoustic model is overly general for the use case. For the
fire fighter scenario, this could translate to user frustration. We
intend to focus on this key metric in future work to further
improve the use of these pipelines on edge devices.

V. RELATED WORK

There has been considerable work related to leverage voice
interaction within Intelligent Personal Assistants (IPA). JPL
has developed a cloud-based solution called Audrey[15] for
law enforcement, firefighters and other first responders to
adapt to situational awareness and personal safety. Lucida is
an open-source end-to-end IPA service that combines speech
recognition, computer vision, natural language processing and
a question-and-answer system [16]. Other recent open source
IPA projects include Jasper [17] and Matrix [18]. Jasper

offers similar support features like MyCroft, whereas Matrix
is a cloud-based model with voice integration support using
limited open source libraries. In this initial characterization, we
chose to use Mycroft in our experiments given the modular
architecture that is easily decomposable.

VI. CONCLUSION

In this paper, we characterize the performance impact of
pushing the execution of voice interaction pipelines to edge
devices. Based on this early characterization, we found cloud
services outperform edge device hosted pipelines on average.
However, we found that skill complexity is key and edge
devices can outperform the cloud for low-complexity skills.
Perhaps more importantly, we discovered the acoustic model
used by a pipeline is critical as well and we plan to further
investigate the impact of the acoustic model for our emergency
responder use case where connection to cloud-based voice
interaction services is unreliable. We plan to further evaluate
the impact of these insights in future work.

REFERENCES

[1] Alexa. [Online]. Available: https://developer.amazon.com/alexa-voice-
service

[2] Google home. [Online]. Available: https://madeby.google.com/home/
[3] Y.-S. Chang, S.-H. Hung, N. J. Wang, and B.-S. Lin, “Csr: A cloud-

assisted speech recognition service for personal mobile device,” in
Parallel Processing (ICPP), 2011 International Conference on. IEEE,
2011, pp. 305–314.

[4] H. Christensen, I. Casanueva, S. Cunningham, P. Green, and T. Hain,
“homeservice: Voice-enabled assistive technology in the home using
cloud-based automatic speech recognition,” in 4th Workshop on Speech
and Language Processing for Assistive Technologies, 2013, pp. 29–34.

[5] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, “Advancing the
state of mobile cloud computing,” in Proceedings of the third ACM
workshop on Mobile cloud computing and services. ACM, 2012, pp.
21–28.

[6] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi
speech recognition toolkit,” in IEEE 2011 workshop on automatic speech
recognition and understanding, no. EPFL-CONF-192584. IEEE Signal
Processing Society, 2011.

[7] D. Huggins-Daines, M. Kumar, A. Chan, A. W. Black, M. Ravishankar,
and A. I. Rudnicky, “Pocketsphinx: A free real-time continuous speech
recognition system for hand-held devices,” Proceedings of IEEE Inter-
national Conference on Acoustics Speech and Signal Processing, 2006,
2006.

[8] D. Rybach, S. Hahn, P. Lehnen, D. Nolden, M. Sundermeyer, Z. Tüske,
S. Wiesler, R. Schlüter, and H. Ney, “Rasr-the rwth aachen university
open source speech recognition toolkit,” in Proc. IEEE Automatic Speech
Recognition and Understanding Workshop, 2011.

[9] Apple siri. [Online]. Available: http://www.apple.com/ios/siri
[10] J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba, M. Co-

hen, M. Kamvar, and B. Strope, “your word is my command: Google
search by voice: A case study,” in Advances in Speech Recognition.
Springer, 2010, pp. 61–90.

[11] (2016) Mycroft core. [Online]. Available: http://mycroft.ai
[12] Google speech api. [Online]. Available:

https://cloud.google.com/speech/
[13] (2015) Api.ai. [Online]. Available: http://api.ai
[14] A. W. Black and K. A. K. A. Lenzo, “Flite: a small fast run-time synthe-

sis engine,” ISCA Tutorial and Research Workshop (ITRW)on Speech
Synthesis, 2001, 2001.

[15] Nasa AI, audrey. [Online]. Available:
https://www.nasa.gov/feature/jpl/ai-could-be-a-firefighter-s-guardian-
angel

[16] Lucida ai. [Online]. Available: http://lucida.ai
[17] Jasper. [Online]. Available: http://jasperproject.github.io
[18] Matrix ai. [Online]. Available: http://matrix.ai/

251

Authorized licensed use limited to: University of Washington Libraries. Downloaded on August 04,2020 at 00:49:59 UTC from IEEE Xplore. Restrictions apply.

