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ABSTRACT
With the releases of Alexa Voice Services and Google Home, voice-
driven interactive computing has quickly become commonplace.
Voice interactive applications incorporate multiple components
including complex speech recognition and translation algorithms,
natural language understanding and generation capabilities, as well
as custom compute functions commonly referred to as skills. Voice-
driven interactive systems are composed of software pipelines using
these components. These pipelines are typically resource intensive
and must be executed quickly to maintain dialogue-consistent la-
tency; consequently, voice interaction pipelines are usually com-
puted in the cloud. However, for many cases, cloud connectiv-
ity may not be practical and thus require these voice interactive
pipelines be executed at the edge.

In this paper, we evaluate the feasibility of pushing voice inter-
action pipelines to resource constrained edge devices. Driven by
the goal of enabling voice-driven interfaces for �rst responders
during emergencies when connectivity to the cloud is impractical,
we characterize the end-to-end performance of a complete open
source voice interaction pipeline for four di�erent con�gurations
ranging from entirely cloud-based to completely edge-based. We
then identify and evaluate several optimizations, such as caching
and customized acoustic models that enable voice-driven interac-
tion pipelines to be fully executed at computationally-weak edge
devices at lower response latencies than using high-performance
cloud resources.

CCS CONCEPTS
•Computer systems organization→Embedded systems;Real-
time systems; • Hardware → Analysis and design of emerg-
ing devices and systems;

KEYWORDS
Edge Computing, IoT, Systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
CF ’18, May 8–10, 2018, Ischia, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5761-6/18/05. . . $15.00
https://doi.org/10.1145/3203217.3203242

ACM Reference Format:
Smruthi Sridhar and Matthew E. Tolentino. 2018. Evaluating the Impact of
Pushing Voice-Driven Interaction Pipelines to the Edge. In CF ’18: CF ’18:
Computing Frontiers Conference, May 8–10, 2018, Ischia, Italy. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3203217.3203242

1 INTRODUCTION
Voice-driven interfaces have gained signi�cant traction in recent
years. The introduction of Alexa Voice Services from Amazon [1]
and Google Home [3] has transformed devices at the edge of the
network into dialogue-driven gateways to access data and services.
While voice interactivity initially supported simple commands,
these systems continue to grow in sophistication. However, the
edge devices users interact with consist primarily of microphones,
speakers, and a wireless network controller. Support or complex
voice interactivity, which constitute the heart of these voice-driven
devices, is provided via remote invocations across the network to
cloud-based servers with su�cient computational capacity [14][15]
[11]. Given su�cient compute power and memory capacity, these
pipelines can operate at latencies that approach traditional human-
to-human dialogue.

Voice interaction pipelines are resource intensive. For every sim-
ple voice command, a software pipeline is invoked and executed.
This pipeline starts by detecting a command and then translating
the audio-based command to text [18][17][19]. As part of this trans-
lation, the audio signal is �ltered for noise using compute-bound
digital signal processing techniques. The �ltered signal is then
converted to text using a trained acoustic model that requires sig-
ni�cant memory. Once translated to text, the pipeline decodes the
query to determine which action, or skill, to invoke that executes
in-memory or worse, relies on additional calls to remote servers
across the network. Finally, to render verbal responses to the user,
generated textual responses are converted back to an audio signal,
using a second acoustic model, and rendered by the edge device.

Due to the computational resources required, most voice inter-
action pipelines are executed on the cloud [1][3][2][20][15][11].
While this alleviates the need for computational resources at edge
devices, it also creates a hard dependency that prevents proper
operation of voice-driven services or capabilities without a direct
connection to the cloud. For use cases inwhich network connections
are unreliable or unavailable, this precludes the use of voice-driven
interfaces. As an example, there has been recent work with �re
departments to integrate Internet of Things (IoT) sensing platforms,
indoor positioning systems, and augmented reality displays into
�re �ghter gear to provide real-time information during emergency
events. Because navigating touch-based displays while �ghting �res
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is impractical, voice-driven systems enable hands-free interactivity.
However, given that cloud connectivity can not be guaranteed dur-
ing these scenarios, current cloud-based voice interaction platforms
are impractical.

The goal in this work is to evaluate the feasibility of push-
ing voice interactive pipelines to edge devices while maintain-
ing response latencies consistent with cloud-hosted pipelines. We
start by analyzing the performance characteristics of the di�erent
stages of typical voice interactive pipelines. Given that many voice-
interactive platforms, such as Alexa Voice Services, are proprietary,
these are di�cult to instrument. Thus, we leveraged several widely
used open source tools such as pocketsphinx [17] as well as com-
ponents from the Mycroft platform [9] and assembled a complete,
functional voice interaction pipeline. We then instrumented every
stage of this pipeline from audio capture to response rendering and
characterized the response latency.

In addition to comparing the performance of executing the
pipeline solely on an edge device relative to the cloud, we com-
pared the performance of leveraging a local fog server [13] [22]
[10] [21]. The idea was to characterize the response latency using
a local server with higher performance and greater resources than
the edge, but at lower network latency than the cloud. We also
explored techniques to minimize needed resources such as using
alternative acoustic models, ranging from general models to tuned
acoustic models without compromising translation accuracy. Fi-
nally, we investigated techniques to leverage caching in an e�ort
to further reduce the computational load for use on edge devices.

Using our instrumented voice interaction pipeline, we performed
an in-depth investigation into the viability of the pushing voice
interaction pipelines to the edge. Based on these experiments, this
paper makes the following contributions:

(1) We instrument and characterize the performance of an end-
to-end voice interaction pipeline and compare the perfor-
mance impact of three distinct con�gurations ranging from
edge-only to cloud-based.

(2) The acoustic model matters. Using general acoustic mod-
els at the edge impacts response latency on even simple
voice-driven requests. Additionally, using general acoustic
models can signi�cantly impact translation quality. In our
experiments the default acoustic model only properly trans-
lated the requests properly less than 25% of the time. After
generating new, tuned acoustic models, we increased the
recognition rate from 33% to 87%.

(3) Through tuning, voice interaction pipelines can be executed
on commodity edge devices at lower response latencies than
using the cloud.

2 ARCHITECTURE OF VOICE INTERACTION
PIPELINES

Voice interaction platforms provide a dialogue-based interface for
responding to user-generated requests and queries. Responding
to queries requires several speci�c stages as shown in �gure 1.
First, speech audio is captured by a microphone and preserved in
memory or as a �le. The recorded audio is then processed through a
series of �lters to minimize ambient noise. The �ltered audio is then
translated to text using a prede�ned acoustic model which can vary

signi�cantly based on the extent of the vocabulary, language, and
parts of speech. Once the recorded speech is translated to text, the
request is decoded and mapped to a speci�c skill. A skill consists
of a function that completes the request and generates a response
which then translated into natural language response. The natural
language generated response is then translated to an audio response
and transmitted to the user via speakers. The following sections
describe the details of these pipeline stages.

Figure 1: Architecture of a Voice Interaction Pipeline

2.1 Speech Client
The speech client constitutes the �rst stage of the pipeline and ini-
tiates the interaction process. As shown in �gure 1, all requests and
responses �ow through the speech client. Using a microphone and
a speaker, the speech client is responsible for constantly listening
and detecting audio cues. The speech client consists of three com-
ponents: a listener, a producer, and a consumer which use a shared
queue to manage the processing of the speech input. The listener
is activated on a wake word and records the spoken instructions
based on phrase heuristics and noise levels. The producer pushes
this recording into a processing queue and the consumer retrieves
the audio data chunks o� the queue and passes on to the next stage
of the pipeline, the speech recognition service.

2.2 Speech to Text (STT)
This speech recognition service picks up the audio bytes sent by the
speech client and converts the audio into text. The speech segments
are interpreted as feature vectors and passed to a decoder. The de-
coder, composed of an acoustic model and a phonetic dictionary,
work in conjunction to derive phones and identify utterances. The
key to identifying utterances lies in a mapping process. A naive
approach is to try all possible combination of words from a vocab-
ulary. However, this puts a heavy load on the acoustic model for
large vocabularies. This is undesirable as searching large acoustic
models increases the overall response latency - a critical metric
for dialogue-based interfaces. Hence it is crucial to use a tuned
acoustic model that restricts the word search space and improves
the mapping process. The accuracy of the speech recognition relies
on an optimized acoustic model.

2.3 Intent Parser (Natural Language
Understanding)

The rule-based natural language parser is an intent de�nition and
determination framework. The text from the STT engine is sent to
the parser to determine the appropriate intent. An entity is a named
value that speci�es a requirement against an intent. For instance, the
command ’Get current weather in Seattle’ refers to a weather intent
which requires the entities’ location and weather keyword. The
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parser interprets the natural language text and translates this into a
JSON-based data structure containing the intent, probability match
and a list of entities. The intent determination engine uses this
parsing information to generate tagged parses containing tagged
entities. Each tagged entity is assigned a con�dence score that
represents a percentage match between the entity and the utterance.
A valid parse is thus determined by a high con�dence score without
containing any overlapping entities.

2.4 Skills
Skills are sets of functions to be performed when users issue voice
commands. Skill services abstract the underlying selection logic and
trigger skills based on the identi�ed intent. Skills are user-de�ned
and can range from responding to a simple date/time request to
directing complex robotic actions. Skills typically produce textual
dialog that must be then rendered as verbal responses.

2.5 Text to Speech (TTS)
To complete an interaction, textual responses generated by the
skills service must be converted to audio responses. The text to
speech (TTS) client generates a synthesized audio response based
on the skill response. As opposed to the STT decoder, the synthe-
sizer is composed of a acoustic model as well as lexicon and voice
de�nitions, including prosody models. The acoustic model within
the text to speech stage is not to be confused with the one referred
to in the speech recognition process. This model adapts a set of
tokenization rules and textual analysis techniques to synthesize the
audio output.

3 VOICE INTERACTION PIPELINE
EXECUTION

The need for low-latency compute has led most voice interactive
pipelines to be hosted in the cloud. This enables simple devices such
as Amazon’s Echo and Google Home to be built inexpensively with
limited local compute capacity; however, these devices must be
connected to the cloud to function. Unfortunately, this dependence
on cloud-based compute resources limits the use of voice inter-
activity when network connectivity is unavailable. For example,
during emergency events, �rst responders have limited access to
the internet. For such cases, enabling these pipelines to be hosted
and executed within local edge devices is necessary.

In this paper, we evaluate the impact of deploying voice interac-
tion pipelines on three types of resources: 1) cloud, 2) edge devices,
and 3) fog servers. These three deployment options constitute a
wide range. At one extreme, we evaluate our voice interactive
pipeline hosted within the cloud where all computation occurs
on remote, network-accessible resources. At the other extreme,
we evaluate the same pipeline hosted entirely on an inexpensive,
compute-limited edge device, namely a Raspberry Pi. Finally, we
also evaluate the impact of leveraging local servers proximate to our
location, which we refer to as a Fog or Edge Server. This server has
greater computational capacity than our edge device and fewer re-
sources than the cloud, but at lower network latency than the cloud.
Our goal is to identify the feasibility of executing these pipelines on
computationally weaker devices without compromising dialogue-
consistent response latency.

3.1 Cloud
The cloud con�guration captures how most voice interactive sys-
tems,including Alexa Voice Servies and Google Home work today.
This con�guration executes the entire voice interactive pipeline we
described earlier using cloud resources and constitutes the other
extreme con�guration relative to the edge. Consequently, when
a user issues a command, all processing to decipher and respond
to queries are processed in the cloud. The edge device in this case
simply captures the audio command in the speech client, passes the
audio to the cloud via REST APIs across the network, and renders
the audio response generated by the text-to-speech client in the
cloud. This con�guration bene�ts from the use of high performance
compute resources and high capacity memory resources, but su�ers
from unpredictable and potentially high network latencies.

3.2 Edge
The Edge con�guration executes the entire voice interaction pipeline
locally on the edge device. All pipeline stages are local to the device
and communication between stages operate at memory latency
given there is no need to invoke pipeline stages across the net-
work. However, the edge con�guration has limited computational
power and memory capacity. While the edge con�guration does not
su�er from unpredictable network latencies, the limited compute
and memory resources can be problematic when using generalized
acoustic models or complex interactions that require signi�cant
processing.

3.3 Fog
For the Fog con�guration, we evaluate the impact of moving the
execution of the voice interaction pipeline closer in terms of network
distance and hence latency. Fog servers are often used to localize
computation that would otherwise be performed on a cloud. In our
case, we assume we have a high-performance fog server on which
we can execute the voice interactive pipeline. Consequently, for
performance-constrained edge devices, the cost of leveraging fog
servers could potentially outweigh the round trip delay. For this
study, we o�oad the voice interactive pipeline to a server on the
same local network.

Although not a cloud invocation, the components still depend
on a remote call for executing pipeline stages. Similar to the cloud
topology, this adds latency for communication. However, given the
components are closer in proximity to the edge than cloud services,
this can signi�cantly reduce transmission time.

4 EVALUATION METHODOLOGY
In this section we describe the experiments we performed and the
con�gurations we used to evaluate the impact of pushing voice
interaction to the edge. The experiments were designed to compare
the impact across di�erent levels of interactions, ranging from
those that require simple responses to others that involve multiple
requests to generate an appropriate response. First, we developed
and evaluated a prototype demonstrating voice interaction. We
started by evaluating the total execution time for executing a full
end-to-end voice interaction pipeline across the cloud, edge, and
fog con�gurations. We then instrumented the end-to-end voice
interaction pipeline to characterize the performance of each stage
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for the three con�gurations. Even though overall response latency
is critical, any improvement is inconsequential if the user must
repeat the request several times. Consequently we also evaluated
the quality of speech to text translation using alternative acoustic
models.

4.1 Evaluation Systems
For all of our experiments, we used a Raspberry Pi3 coupled with
a microphone and speaker as our edge device. The Raspberry Pi3
consists of a quad-core, 1.2Ghz ARM Cortex A53 CPU, 1GB DRAM,
and 802.11n wireless network controller. To ensure consistency
with our use case, we used the Wi� network interface for all of
our experiments. Our goal was to characterize whether a resource-
constrained edge device could adequately perform the operations
of the voice interaction pipeline. For the edge con�guration, we ex-
ecuted the entire voice interaction pipeline on the Raspberry Pi. For
the other three con�gurations, the Raspberry Pi served as the end-
point device users would interact with similar to the Amazon Echo.
The di�erence between our evaluation of the con�gurations was
where each of the components, or pipeline stages, were executed.

For the cloud con�guration, we employed an AWS EC2 instance
type t2.micro consisting of 1 GB memory coupled with a Intel Xeon
processor that bursts up to a turbo frequency of 3.3Ghz. Based
on our initial calibration experiments, the compute time required
was notably reduced relative to hosting the complete interaction
pipeline on the Raspberry Pi, even when the round trip delay across
the network was included. For the fog server, we used a laptop
that consisted of a 2.3Ghz Intel i5 CPU, 8GB of DRAM, and 802.11n
wireless controller. Similar to the edge con�guration, we used the
Wi� network interface for all con�gurations that used the fog
server. For the voice interaction pipeline, we leveraged open source
components including PocketSphinx as well as several from the
open source voice interaction platform, Mycroft [9]. Using open
source components enabled us to instrument the entire pipeline to
characterize the performance across all three con�gurations.

4.2 Pipeline Con�guration
Another crucial aspect of the set up was to ensure that we executed
the exact same pipeline components for every edge, cloud, and
fog con�guration. We found that may voice interactive pipelines,
such as Mycroft, use a cloud-based service (e.g. Google) for the
Speech to Text stage and local library for the Text to Speech stage.
Unfortunately, using cloud-based services prevents an accurate
characterization and analysis. Consequently, for our experiments
we used the same components for every stage of our voice inter-
active pipeline to enable a reasonable comparison between the
cloud, edge, and fog con�gurations. More speci�cally, we used the
following components within our pipeline:

Speech To Text.We used PocketSphinx [17], a widely known
open source project for speech recognition from CMU. Pocket-
Sphinx comes with a default language and acoustic model. For
cloud and fog con�gurations, a simple REST endpoint was created
to make PocketSphinx accessible as a service.

Intent Parser and Skills Engine. We used an open source
intent parse library called Adapt [7] and Mycroft Skills Engine
executed locally on the Raspberry Pi for all three con�gurations.

This means this stage is not technically cloud-based or fog-based.
However, during our initial experiments we observed that neither
the Adapt component nor the Skills Engine consume signi�cant
time or resources given our queries.

Text to Speech. Although there are many open source text to
speech options, we used a lightweight version of Text to Speech
called Mimic [8] which is based on CMU’s FLITE [12].

4.3 Performance Instrumentation
To characterize performance we instrumented each stage by adding
time stamps on the entry and exit paths for every component to
record the execution latency of each stage. During our initial exper-
iments, we recorded the latency of the prototype pipeline without
making any signi�cant con�guration changes. In other words, we
used the default components within the speech pipeline as well
as the default acoustic model. Listed below are key parameters
captured during our experiments and used within our performance
characterization and analysis:

Component Execution Time. This metric is used to measure
the time taken to execute a component, or pipeline stage. This is
recorded by calculating the di�erence in time stamps, before and
after the execution of every component: STT, Intent Parser, Skill
Engine and execution, and TTS.

Transmission Time. This is measured as the time taken to trig-
ger each component through event emissions, in most cases across
the network. This is recorded as the time delay before component
invocation.

Round Trip Time. Round trip time is the total time taken by
the system to record voice commands, process incoming audio
requests, execute skills and generate an audio response. This is
calculated by recording the time di�erence between the moment
the user stops speaking and the moment the speech client starts the
response play back. The round trip time does not include the audio
recording and the audio play back, as the input and the output are
dependant on the user query and its corresponding response.

Given these performance metrics, we ran experiments for each
of the three con�gurations described earlier. These experiments
consisted of issuing several voice commands to the system and
then waiting for the relevant audio response. An experiment is
considered successful only if we receive the correct, or relevant,
audio response for every query triggered by the user. For each
invocation, our instrumentation records the time stamps for each
stage for analysis.

Table 1: Examples of di�erent skill complexities

Skill Complexity
What time is it Small

What is my IP Address Medium
What is the weather now Large

For our initial experiments we used a common skill that could be
executed across the di�erent pipeline con�gurations. This ensured
a fair performance measure and enabled us to evaluate how each of
the four con�gurations handled the same level of skill complexity.
Having said that, di�erent queries require di�erent levels of com-
putation depending on the skill executed. Consequently, we also
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ran experiments using skills of varying complexities to compare
overall performance in terms of execution latency.

Table 1 shows examples of di�erent skills categorized by com-
plexity. We categorize "small" complexity skills as those that per-
form basic operations like fetching the current date and time; these
do not have external dependencies on libraries or external, network-
accessible services and are executed locally on the edge device. A
"medium" level skill requires additional execution time relative to
the small complexity skills, but do not perform compute-intensive
operations. We classify "large" skills as those that require exter-
nal service calls to perform the necessary task and may require
more extensive memory references and compute resources. For
instance, the weather skill relies on external services to capture
current weather information.

Since the skill and intent parser are tightly coupled, we use the
same intent parser for all con�gurations. Each experiment is carried
out independently on each con�guration. All results described are
recorded as the average of �ve experiments for each con�guration.

4.4 Quality of Speech Recognition
For voice interaction systems, speech recognition quality is critical
to provide a relevant response. PocketSphinx comes with an exten-
sive, generic language and acoustic model to interpret diverse types
of user queries. Given our focus on use cases that �eld a bounded
set of requests, using a generalized acoustic model with a large
volume of vocabulary is unnecessary.

Our initial experiments used the default vocabularies and general
acoustic models; however, we also experimented with reducing
the scope to be domain speci�c with a limited vocabulary. To do
so, we trained new acoustic models to be more adaptive to users’
accents by recording condition and audio transmission channel.
To quantify the relevancy of the results, we designed 15 exclusive
phrases used by emergency responders and compared the speech
recognition rate against both the models. The recognition rate is the
number of accurate STT conversion against the the total number
of recognitions.

4.5 Response Caching & Skill Complexity
Once the performance of each con�guration was characterized,
we experimented with response caching. To minimize latency, we
wanted to determine if caching responses could be used for repeated
requests. We experimented with caching the audio response from
the text to speech module to enable reuse on subsequent queries.
We populated a simple key value store with previous textual and
audio responses. For every skill interaction, each textual response
is compared against entries within the key value store before re-
generating new audio responses.

For each skill, we compared execution latency for non-cached
execution and cached execution. A non-cached pipeline execution
constitutes the worst case latency for a skill as the voice interac-
tion pipeline must be fully executed to render a audio response.
A cached response on the other hand eliminates the execution of
the TTS conversion and retrieves the response from a key value
store to render a speech response. Finally, we also further evaluate
the con�gurations based on skill complexities by comparing their
performance over a diverse set of six di�erent queries.

5 RESULTS
5.1 Initial Performance Characterization
The results of our initial performance experiments are shown in
Figure 2a. This chart compares the total execution time for each of
the pipeline con�gurations including edge, cloud, and fog for a skill
level of small complexity. The x-axis represents the con�gurations
used in our evaluation and the y-axis describes the execution time
in seconds for each con�guration. The results are showcased as a
bar chart representing the overall round trip time for each pipeline
con�guration and each stacked column for each con�guration,
shows the execution time of individual system components and
their total transmission time.

The values highlighted above each column group indicate the
absolute execution time taken by the system for that speci�c con�g-
uration. For instance, the edge con�guration has an overall round
trip time of 4.53 seconds. Since our objective is to evaluate the
performance of the edge model, we also compared all other con�g-
urations against the edge and showed the speed-up or slow-down
of the three other con�gurations relative to the edge con�guration.
We found that the execution time using the cloud con�guration
decreased by 19% compared to the edge con�guration. This means
that for this simple query, the overall response latency was lower
using Cloud resources than executing locally. Surprisingly, the fog
con�guration realized improved performance, resulting in a 53%
decrease in execution time compared to the edge con�guration. To
better understand where the bottlenecks were for each con�gura-
tion, Figures 2b and 2c further break down the di�erence between
the compute times and the transmission times respectively. For all
con�gurations, the total compute time dominated the total response
time, ranging from 98.6% for the cloud con�guration to 95% for the
fog con�guration. These results show the best case scenario for
hosting voice interaction pipelines on the cloud. Moreover, these
results also show how the limited compute capabilities at the edge
impact response latency when executed solely on resource-limited
edge devices. As expected, the intermediate fog-based con�gura-
tions did incur additional transmission delays and consequently
su�ered from network latencies.

5.2 Quality of Speech Recognition
The results observed in the �rst performance characterization (�g-
ure 2a) constitute the best case scenario, when every single user
request is accurately captured and processed by the system on the
�rst request. In other words, the voice interaction pipeline was able
to decipher our requests on the �rst try. Since we are evaluating a
speech interaction pipeline for �rst responders, time is critical, but
accuracy is also crucial to avoid the need for repeating requests.
Accurately providing the correct response depends on many fac-
tors including hardware components, recording environment, user
accents, and acoustic models. A misinterpreted request could cost
time and can turn disastrous. Thus, an improper speech recognition
could a�ect the overall performance of the system.

In order to assess the accuracy of the entire speech interaction
pipeline at the edge, we evaluated the recognition rate of the speech
to text component. We ran an experiment of 15 di�erent phrases
for �ve iterations. Table 2 lists the 15 phrases used as part of this
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(a)

(b)

(c)

Figure 2: Performance Characterization of Pipeline Con�gura-
tions: Edge, Cloud and Fog. (a) compares the total execution time
for each con�guration, (b) shows the total compute time for each
con�guration, and (c) shows the total communication time for each
con�guration. These results indicate the edge con�guration has the
lowest latency of the con�gurations, while the cloud con�guration
requires nearly double the latency.

experiment along with the results of the experiment. The column la-
belled "Old acoustic model" shows the number of successful phrase
recognitions out of 5 attempts. For instance, the �rst phrase, "What
time is it" was interpreted accurately 4 out of 5 attempts, whereas
the third phrase, "What location is this" was interpreted accurately
only 1 out of 5 attempts. Averaged across all requests, we observed
a relatively poor recognition rate of only 33%. This means that on
average, users would have to repeat the requests nearly three times,
further increasing the latency by factor of three. In the case of our
edge con�guration this would further motivate the use of the cloud
con�guration.

Table 2: Speech Recognition Rate

Number of
successful
outcomes

Phrase
Number

Phrase Old
acoustic
model

New
acoustic
model

1 What time is it 4 5
2 Where am I 4 5
3 What location is this 1 4
4 What is my oxygen

level
2 5

5 What is the pump pres-
sure

2 4

6 What is the tempera-
ture

3 4

7 Call control room 2 5
8 Request ambulance 1 3
9 Report a casualty 0 4
10 Register an incident 3 4
11 Turn o� the screen 1 4
12 Send distress call 0 4
13 Broadcast message 1 5
14 Locate �re hydrant 0 4
15 Share my location 1 5

Recognition Rate 33% 87%

Speech recognition primarily relies on the n-gram model which
interprets speech by observing word sequences in a text corpus or
a dictionary. However, for the given prototype, an exceptionally
large vocabulary of words constitutes an additional computational
overhead on resource-constrained edge devices. For the speci�c
�re�ghter use case discussed earlier, such a corpus is not essential
as the objective is not to build a general purpose intelligent personal
assistant, but rather a device that serves domain-speci�c queries.
Hence, we optimized the vocabulary to contain only a set of 20
phrases(15 phrases speci�c to the �re�ghter use case and 5 generic
phrases) and retrained the acoustic model for better adaptation.

We reevaluated the recognition rate of the system for the new
acoustic model for the same set of phrases. Column "New acoustic
model" in table 2 lists the results of our reevaluation. The newmodel
greatly reduced perplexity and we observed a signi�cant improve-
ment in the recognition rate from a 33% to 87%. This comparison
is further detailed in �gure 3 which illustrates the execution times
taken to convert a speech instruction into textual representation
by the speech-to-text component for a set of 15 phrases that were
speci�c to the �re�ghter use case. The x-axis on the chart indicates
the phrase numbers from the table 2 and the y-axis indicates the cor-
responding execution time in seconds for each phrase. Each phrase
plots two columns that highlight the value of completion time us-
ing the generic old acoustic model and the optimized new acoustic
model. The percentages shown above each set of columns quan-
tify the performance improvement in using the modi�ed acoustic
model relative to the original acoustic model. Although we did not
achieve 100% recognition accuracy, the optimized model reduces
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Figure 3: Speech Recognition Performance

Figure 4: PerformanceComparison ofAcousticmodel across
Pipeline Con�gurations : Edge, Cloud, Fog

memory requirements and look-up time, further reducing latency
for resource-constrained edge devices. Moreover, on average, we
observed a 41% increase in accuracy for the same set of 15 di�erent
phrases.

5.3 Performance Characterization Revisited
After adapting the acoustic model, we re-evaluated the performance
of the three con�gurations and repeated the same experiments that
led to the performance results in Figure 2a. The new results sum-
marized in Figure 4, compares the round trip time between the
old and the new model for each of the three pipeline con�gura-
tions. Execution time results are grouped based on the pipeline
setup and each column in the group re�ects the absolute execution
time needed to execute the same skill. The stacked column (on
the left) highlights the individual component execution times and
transmission times for the old model. The right column highlights
the same for the new model. The new acoustic model improved
response latency for all 3 con�gurations with an average of 46%
reduction in execution time compared to earlier experiments. The
absolute execution time of the edge con�guration was reduced from

4.5 seconds to approximately 2.7 seconds, nearly a 39% reduction.
Similarly we observed a 47% decrease in the cloud con�guration,
which was reduced from 3.6 seconds to 1.9 seconds. The biggest
improvement was observed using the fog con�guration, where the
computation time is reduced from an earlier result of 2.1 seconds
to 1 second. The fog con�guration de�nitely bene�ts from the fact
that the computational capacity of the fog server is greater than
the edge with lower network latency compared to the cloud.

Figure 5: Overall Performance Characterization with Opti-
mized acoustic model across Pipeline Con�gurations : Edge,
Cloud, Fog

While the new acoustic model did improve performance, its also
gives us an opportunity to further investigate each con�guration
performance based on the new model. Figure 5 shows the overall
performance of the con�gurations based on the new acoustic model.
Unlike our earlier results using the original acoustic model, the
cloud con�guration round trip latency is 31% lower than the edge
con�guration. Recall in our earlier initial experiments, the cloud
con�guration was only 19% lower than the edge con�guration. This
new improvement in performance is due to the integration of the
optimized acoustic model, which reduces the compute and memory
requirements. On the other hand, the fog model performed 42%
better than the edge which is still consistent although it falls 10%
short.

An important take away from the above observations is the
reduction in compute time of the speech to text module as additional
compute resources are utilized. The blue bars in �gure 5 captures
the execution time of the STT component, revealing the source of
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the improvement. The compute time for di�erent between the three
con�gurations: 1.37 seconds for the edge, 0.9 seconds for the cloud,
and 0.5 seconds for the fog. The fog con�guration is 63% better
than edge due to the increased compute capacity. This suggests
that integrating acceleration hardware or edge-optimized speech
to text libraries may prove bene�cial.

5.4 Impact of Caching
As discussed in the earlier sections, the other biggest bottleneck
in the pipeline was the text to speech conversion for the audio
response. The results after employing caching strategies are show-
cased in �gure 6, which compares the latency impact of response
caching versus non-caching. More speci�cally, the chart shows
the 3 con�gurations across the X-axis and the execution times in
seconds on the y-axis. The yellow stack highlighted on the left
columns(non-cached) exposes the execution time of the text to
speech (TTS) module. When employing caching techniques, the
compute time is nearly eliminated, having been reduced from 1.34
seconds to 0.004 seconds. For the edge con�guration this is a 99.7%
reduction. By minimizing the TTS time, this has a dramatic im-
pact on the overall response latency, resulting in a 53% reduction
in execution time. By using simple response caching techniques,
the average execution time for all 3 con�guration is reduced by
45%-53%.

Figure 6: Performance Characterization of the Pipeline con-
�gurations based on Caching

During these caching experiments, we observed the performance
improvements were consistent across all three con�gurations. The
response latency was highest on the edge minimized using the fog.
In fact, after integrating an optimized acoustic model as well as
caching strategies, the fog con�guration outperforms the cloud both
in terms of computation and latency. As the edge and fog con�gura-
tions constitute the book-ends of our performance characterization,
going forward we focus the remainder of our comparisons between
the fog and edge con�gurations.

5.5 Performance Characterization of Skill
Complexity

We further evaluated the fog and edge con�gurations for varying
skill complexities. Figure 7 shows the performance distribution of

the edge and the fog con�gurations over six di�erent skill com-
plexities. The goal of this comparison is to understand how the
con�gurations perform under a diverse set of queries. We start by
evaluating the con�gurations for 6 di�erent queries under two con-
ditions: cached interaction and non-cached interaction. The values
observed against each experiment is shown in terms of absolute
execution time.

The �rst four queries are of small to medium complexity where
the skill resides locally on the device. Hence it doesn’t account for
transmission time. The total execution time of these skills range
is minimal, between 0.004 seconds to 0.009 seconds. The last two
queries in the set signi�es a complex skill that requires an external
REST call to cloud resources, adding transmission time. The exe-
cution time ranged from 1.3 seconds for the weather skill and 0.5
seconds for the news skill. In these cases, the network latency of
accessing remote resources for executing pipeline stages introduces
additional overhead relative to executing simple skills locally. This
is particularly important when the acoustic model is considered,
which reduces the memory and compute overhead for look-ups. In
this case, the fog con�guration outperforms the edge irrespective
of the complexity skill despite the additional transmission time for
the large complexity skills. On average across these 6 skills, the
fog con�guration performed 38.72% better than the edge. Under a
highly complex skill condition, the fog still outperformed the edge
case by 36%.

Figure 7: Performance Characterization across diverse
query set - Non cached(Worst case)

Based on our observations over the six queries, caching con-
sistently reduced response latency across the set of queries. On
average, the fog con�guration further decreased by 50%. While the
large queries still consume extra time for the skill execution, the
overall performance considerable declined by a minimum of 44% .

6 RELATEDWORK
There has been considerable work related to Intelligent Personal
Assistants. NASA’s Jet Propulsion Laboratory has been working on
an AI-powered solution called Audrey[6] that is designed to help
local law enforcement, �re�ghters, and other �rst responders to
augment situational awareness and personal safety. Audrey works
in combination with other wearable sensors to collect information
on temperature, GPS location and other surrounding environmental
conditions. NASA claims that Audrey would be able to guide and
provide a more personalized response based on predictive learning.
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Figure 8: Performance Characterization across diverse
query set - Cached(Best case)

In contrast to our objective, Audrey is a cloud-based model and is
focused on deep learning and prediction strategies.

Lucida, previously known as Sirius, is an open-source end-to-
end intelligent personal assistant (IPA) service from the University
of Michigan [5]. Lucida integrates several well-established open-
source platforms including for speech recognition, computer vision,
natural language processing and a question-and-answer system. It
was built to investigate the cost and performance implications of
speech and visual recognition systems on large-scale server systems
and identify server-based acceleration opportunities.

There are many emerging personal assistant platforms. Jasper is
a personal assistant service that o�ers voice-interactive features [4].
The Deep Speech project leverages deep neural networks for speech
recognition [16]. We leveraged part of the open-source Mycroft
platform for some of our experiments as we found its architecture
to be modular and simpler to decouple [9].

Unlike previous work which has focused on leveraging large-
scale, server or cloud based resources for providing dialogue-quality
voice interaction capabilities, our goal is to push these pipelines
to resource-constrained edge devices. Additionally, this work fo-
cuses on characterizing the performance of full voice interaction
pipelines and identifying optimization opportunities to enable, full
interaction without requiring cloud connectivity.

7 CONCLUSION
In this paper, we identi�ed an important use case where voice-
driven applications can play a vital role if we can push the required
pipeline execution onto edge devices. We also analyzed various
pipeline con�gurations that can accommodate such a voice inter-
action system to function e�ectively based on skill complexities.
Our results showed that resource-limited edge devices can perform
well when aligned with the right skill complexity and an optimized
acoustic model. Using an optimized acoustic model, we were able
to push the full voice interaction pipeline onto a computationally-
constrained edge device and execute with lower latency than using
a compute-rich cloud con�guration. We’ve also shown that em-
bedding additional compute capabilities near the edge can further
reduce latency relative to cloud con�gurations, for voice interac-
tions with higher resources requirements.

Although these results show promise for pushing resource inten-
sive pipelines to current edge computing devices, there are many
opportunities to further improve edge computing. We’ve shown
that by simply tuning the acoustic model we were able to compute
at the edge faster than using cloud resources. However, for more

complex pipelines, we intend to explore the use of speci�c accelera-
tion functions within the edge such as including the use of FPGAs.
Additionally, our results using fog-server con�guration variants
opens up the possibility of distributing complex pipeline stages
amongst multiple nodes within a local environment. We plan to
further explore such con�gurations in the future.
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