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Abstract—Emergency response teams are charged with en-
suring citizen safety from life-threatening events such as struc-
tural fires, vehicle accidents, and hazardous material spills.
While managing such events is dangerous, the release of haz-
ardous materials, such as toxic chemicals, into the atmosphere
is particularly challenging. Upon arrival at a scene, response
teams must quickly identify the hazardous substance and the
contaminated area to limit exposure to nearby population
centers. For airborne toxins, this assessment is complicated
by environmental conditions, such as changes in wind speed
and direction that can cause hazardous, aerial plumes to move
dynamically. Without a way to dynamically monitor and assess
atmospheric conditions during these events, response teams
must conservatively predict the extent of the contaminated area
and then orchestrate evacuations and reroute traffic to ensure
the safety of nearby populations.

In this paper, we propose outfitting swarms of drones with
Internet of Things (IoT) sensor platforms to enable dynamic
tracking of hazardous aerial plumes. Augmenting drones with
sensors enables emergency response teams to maintain safe
distances during hazard identification, minimizing first re-
sponse team exposure. Additionally, we integrate sensor-based
particulate detection with autonomous drone flight control
providing the capability to dynamically identify and track
the boundaries of aerial plumes in real time. This enables
first responders to visually identify plume movement and
better predict and isolate the impact area. We describe the
composition of our prototype IoT-enhanced drone system and
describe our initial evaluations.
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I. INTRODUCTION

Hazardous material incidents constitute critical emergen-
cies as toxic substance releases can threaten public health,
radically impact the environment, and in the worst case cause
fatalities. When spills occur, emergency response teams must
quickly identify the agents involved and develop a real-time
plan to limit exposure to first responders and surrounding
communities. While all types of hazardous spills are difficult
to manage, airborne releases of toxic chemical agents in
gaseous form, commonly used within industrial processes,
are particularly challenging [1]. The odorless, invisible na-
ture of gaseous toxins make released plumes difficult to as-
sess, track, and manage. Changing environmental conditions,
such as temperature, humidity, wind speed and direction
combined with obstructions such as buildings, vehicles, and
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natural land features further complicate the identification and
tracking of moving toxic plumes. Despite these challenges,
first responders must rapidly identify the spilled substances
and mitigate the impact with limited information.

Emergency response organizations arriving on scene ini-
tially maintain a conservative distance to minimize first
responder exposure. Team members immediately don pro-
tective gear and traverse to the spill site to identify the
contaminant at the source. After identification, the safe dis-
tance threshold is re-calibrated based on the substance. Many
response teams then leverage computational fluid dynamics
(CFD) models using on-scene laptops to input observed
environmental parameters to identify how the airborne plume
may move and which areas are most likely to be affected [2].
Because these models may not take into account every effect
that can impact plume movement, response teams typically
add a buffer zone to the model to widen the predicted
area affected. While this increases the safety margin, such
measures can further exacerbate traffic disruptions, cause
unnecessary evacuations, and temporarily halt operations
critical to the economic health of the region.

Response operations face two significant challenges when
handling airborne hazardous material spills. First, time is
critical. Minimizing the time needed to safely identify spilled
toxins and engaging all available response personnel is
crucial to minimize the threat. Second, the prediction model
used during these emergency events is critical to effectively
managing these events over time. However, while these
models are helpful in managing airborne plumes, validat-
ing on-scene generated models is difficult. Moreover, it is
difficult to convey plume movement to on-scene responders
actively working the scene. Finally, without a way to validate
the model, tracking hazardous plume movement while the
response team mitigates the threat remains unclear.

In this work, we propose employing swarms of un-
manned aerial vehicles, or drones, to address these two
challenges - reducing the time to identify toxic sub-
stance problem and dynamically tracking the movement
of toxic airborne plumes. Drones have been increasingly
deployed to identify changing environmental conditions
[31[41051161[71[81[9]1[10][11][12]. Unlike previous work, we
propose integrating IoT platforms onto drones to augment
their sensing capabilities for detecting and managing air-



borne hazardous plumes. By using a drone for toxin iden-
tification, we enable response teams to initially maintain
safe distances but also minimize identification latency. We
also couple IoT data collection with the drone flight control,
enabling two key new capabilities. First, our drones provide
a visual reference point for plume movement that enables
on-scene first responders to simply look up to gauge their
proximity to the plume as well as its trajectory over time.
To do so, we configure each drone to continually monitor
contaminant density to identify the boundaries of the plume
and autonomously move with the plume. Second, we co-
ordinate the movement of the drones so they continually
move together. Using a swarm of drones, equipped with IoT
platforms enables response teams to quickly visualize areas
with the highest concentration of toxins moving in real time.
Additionally, we transmit all drone-collected sensor data,
including GPS positions, particulate concentration levels,
and time stamps to record plume movement during response
events. This provides the key missing piece to localize the
generic CFD models used today - the data to validate the
predicted path of a hazardous plume.

II. SYSTEM ARCHITECTURE

We built a complete system consisting of IoT platforms,
sensors, and swarms of drones to locate, identify, and track
hazardous plumes in real time. Once located, each drone
transmits data about plume boundaries so it can be tracked
in real time including data points such as wind direction,
speed, location, and the chemical composition and density
measured within the air. In addition, all drones dynamically
coordinate as a swarm and adjust their position to dynam-
ically track the outer perimeter of the plume. This enables
ground-based responders to see a visual representation of
the area occupied by the plume in real time. Over time, this
also enables immediate identification of high risk areas that
should be evacuated.

Figure 1: An overview of the system with a single drone

Our system consists of drones in the form of quad copters
equipped with a microprocessor-based IoT board, onboard
GPS receiver, and air quality sensors. These drones use air
particulate and GPS data to locate hazardous plumes. Using

this data, each drone dynamically adjusts its heading and
position based on current environmental observations. This
data is also transmitted over the wireless network to an on-
scene server, which stores the data for later analysis as well
as displays the data in real time via browser as shown in
figure 1.

A. Drone & IoT Platform Integration

Our current prototype system uses the Parrot rolling spider
drone. Each drone is equipped with a Linkit 7688 Duo
Microprocessor board, MQ135 Air quality sensor, NEO-6M
GPS module and 3.7v 250mAh battery. These components
are coupled using a custom printed circuit board (PCB) that
connects the air quality sensor, GPS, and battery to the
microprocessor. Since the battery is only 3.7 volts there
is a step-up boost circuit on the PCB that enables the
3.7 supply voltage to be converted to 5 volts for use by
the board and sensors. Given the limited lift capacity of
these drones, weight and form factor are critical constraining
factors in our design. We choose to use these drones for our
initial evaluation, although we have specifically designed all
components to be used with larger, more capable models in
future work.

B. System Software

Each of the drone-mounted IoT platforms collect air
quality and GPS data. During flight the drones are oriented
in a four quadrant, grid pattern with one drone serving as
the master drone managing communication with the ground-
based command and control system. The data from slave
drones, such as the left, right, and rear drones in figure 2 are
sent to the main drone using sockets over WiFi and routed to
a central command and control computer. Air quality data is
also routed to the main computer where it is used to control
the swarm through Bluetooth control channels. Each drone’s
position is adjusted, based on a new heading, to modify the
swarm configuration dynamically based on the air quality
data sensed.
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Figure 2: (a) Left drone finding plume. (b) Swarm surround-
ing plume

To illustrate how the drones react to changing conditions
we use a swarm of four drones. Within a swarm, each drone
is assigned a designated position on the horizontal plane -



front, right, rear, and left. When the left drone is in the
highest concentration of smoke as shown in figure 2(a),
this means the swarm should recenter itself such that the
perimeter of the smoke can be identified. Consequently, the
swarm will move left toward the smoke until all drones
surround the smoke as in figure 2(b). The swarm will move
toward the drone that is in smoke until all drones take up
positions within the smoke. Once all the drones are located
within the smoke, the swarm will begin to expand until all
drones are on the edge of the smoke plume. Although we
only use four drones in this example, our approach works
with any number of drones. In fact, with additional drones,
we expect to be able to visually identify aerial plumes in
multiple dimensions.

III. EVALUATION METHODOLOGY

To evaluate our proposed system we first had to identify
which components to use. We started by experimenting to
identify which quad-copters and IoT platforms to use. The
evaluation criteria we used included lift capability, durability,
battery life, positional accuracy, and data communication
integrity. Our first challenge was to ensure our design did
not exceed the lift capacity of the small drones. This turned
out to be a key challenge that heavily influenced the design
of the IoT platform we integrated. All components were
tested individually as well as incrementally as we integrated
components prior to full system testing to ensure that issues
encountered during system evaluations could be easily iden-
tified and repaired. This proved crucial given the inclusion of
multiple components on each drone. This testing is based on
three key areas: physical parameters (size matters), system
inter-operability and latency, as well as integration with each
drone’s autonomous control system.

A. IoT Platform and Drone Integration

Drones. For this work, we used the Parrot Rolling Spider
drone. This drone was selected for several reasons. First, its
size and weight made it an ideal candidate for an indoor
evaluation. The small form factor enabled use in confined
areas, while its weight allowed for nimble movement without
requiring bulky, high output motors. This improved the
stability of our autonomous systems with minimal weight,
however, the small form factor also limited our payload
capacity which impacted the IoT platforms we could use.
The GPS, IoT board, air quality sensor and other sensors
were chosen based on a compromise between weight, size,
and functionality.

Before pairing each drone with sensors and IoT board,
we tested each drone for mobility. Since our swarm system
does not require high speed maneuvering capabilities we
ensured basic flights movements - lift, descent, forward,
reverse, left, right, rotate right and rotate left. We then
tested the battery life of each drone under two scenarios:
1) motionless hovering and 2) minimum battery life with

constant motion. We then identified each drone’s lift capacity
under different battery capacities; in other words, how much
weight each drone could carry while maintaining stable
flight characteristics. We found the combined payload could
not exceed 40 grams without compromising maneuverability.
This constraint proved to be a challenge for the GPS module
as it will not operate without a 7 gram antenna.

Battery selection was also critical to power both the IoT
platform, sensors, and drones. Ideally, drones should remain
in flight for as long as possible to track aerial plumes, but
this requires larger-capacity batteries. Given the small form
factor drones we used in this prototype system, we had to
strike a balance between weight and power capacity. We first
characterized the power load of the drones as well as the IoT
platform during flight. Based on the components data sheet,
each IoT board draws between 200 - 300 milliampere (mA),
the air quality sensors require 150 mA, and the GPS requires
45 mA for a total of 400 - 500 mA per drone. Using a battery
load analyzer we found that a lithium polymer (LiPo) 3.7
volt battery would last for over 20 minutes before needing
to be recharged.

IoT Platform. We used the Linkit Smart 7688 Duo
IoT board given its compact size and weight. Each board
weighed 10 grams and the form factor closely aligned with
the available drone footprint making mounting on the drone
straightforward. This board is a dual platform architecture
supporting both Linux and Arduino as well as file system
memory expansion capabilities via an on-board SD card slot.
The MQ-135 air quality sensor was chosen based on its
ability to provide real time data with minimal latency as
well as its small form factor. After an initial burn-in period
of 10 hours, each air quality sensor was required to run for
at minimum of one hour prior to testing to ensure accurate
readings. Hazardous air quality thresholds were identified
by empirically testing the sensors with various gases and
analyzing the results. As previously mentioned, we used a
250 milliampere, 3.7 volt LiPo battery. We also integrated a
GPS module that we connected to the IoT board via UART
connection.

We designed and developed a custom PCB, shown in
figure 3, to combine all sensors with the IoT board that
could be mounted on each drone. We used the Eagle design
tool for wiring schematics and built a two layer board to
include necessary components including the on-board step-
up circuit to convert the 3.7 volt batteries to the 5 volts
required for all components.

To mount the IoT board, PCB, and sensors on the drone,
we used 3D modeling software and a 3D printer to create a
custom case to use as a base mount as shown in figure 4.
We mounted the base, with all components, to the drone by
taking advantage of the wheel mounts to secure the platform.
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Figure 3: Board Mount Design

Figure 4: Board Mount Prototype

B. Software Configuration

To control the drones, we used the Parrot drone Software
Development Kit (SDK) that is available for Parrot devices.
This enabled us to leverage the built-in motor control
algorithms for hovering and basic movement. We further
developed and integrated our own control algorithms for
the tracking system using the Node.js API to the Parrot
SDK. For primitive functions, such as moving, launching,
and landing the drone, we used standard SDK functions. To
use GPS location data, we used a JavaScript GPS library to
read and interpret NMEA sentences generated by the GPS.
We then used the current position and heading to identify
the speed and heading for drone movement.

For the air quality sensor, the analog-to-digital (ADC)
pins on the IoT board were controlled by the Arduino-based
MCU chip. Communication between the MPU (Linux side
and main processing/communication) and the Arduino based
MCU is obtained via an internal UART connection. This
meant we needed to use a script on the Arduino side that
captured data from the Analog to Digital Converter (ADC)
pins. The benefit of this setup is that the MCU is better
suited for real time software applications such as analog
sensor inputs.

C. Swarm Communication

Communication between drones is necessary to exchange
position information, distribute control commands, and log
sensor readings. We used two levels of communication
within the swarm: inter-drone links and swarm-to-ground
links. All drones used three dedicated communication chan-
nels using distinct ports between drones. Two of the three
channels were used strictly for transmitting air quality data
and GPS positions. These channels used standard socket

communication over the 2.4GHz WiFi network to the master
drone using standard IP addressing. The third channel was a
receive-only channel dedicated for drone control messages
sent from the base station over the Bluetooth Low Energy
(BLE) protocol. These three channels constituted the inter-
drone links.

The second level of communication consisted of swarm-
to-ground channels. One drone was designated as the mas-
ter, which served as an access point through which the
other drones communicated with the base station server. To
support this communication link from air to ground, the
master used one additional WiFi channel for communica-
tion. Commands between the base station server and the
master drone were then relayed to each drone based on
the destination drone identifier. Similarly, the master drone
was responsible for relaying sensor data from all nodes to
the base station server. In our evaluation, we used a laptop
as the main server for sending out control commands over
BLE. The base station was also set up to receive all air
quality data and GPS positions over WiFi links. All received
data and commands were logged on the base station server.
Once communication channels were established, the control
algorithm was then evaluated to ensure all drones were
properly receiving directional commands and all GPS and
air quality data were being received.

D. Aerial Plume Testing

To test our system we needed to safely release airborne
contaminants without compromising our health. Given our
air quality sensor detects carbon monoxide (CO), we used
cans of compressed air. Each release of compressed air emits
small quantities of CO, which is part of the propellant. We
tested our integrated gas sensor and found we were able to
detect the increase in CO from each release of air from the
can. This enabled us to selectively release a new CO plume
during our swarm experiments.

IV. EVALUATION RESULTS

In our initial experiments, our primary goal was to char-
acterize how well our prototype drone swarm detected and
reacted to airborne plumes. As previously described, we
used compressed air canisters to simulate the release of
toxins in the air. Each experiment was conducted within
a large classroom on the UW campus. During testing, we
continually refined the detection and autonomous navigation
logic after each experiment. We also logged the sensor
values and movement commands from our control system
during each flight and analyzed them after each experiment.
We used these results to tune our drone navigation and
control system. Although we have collected results from a
significant number of experiments, figure 5 depicts results
after refining our control system from 30 previous experi-
ments.
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Figure 5: drone movement with sensor input

The upper half of figure 5 shows the the gas concentration
level recorded by the air quality sensors of each drone during
a 25 minute experiment. The lower half of figure 5 shows
how the drone swarm moved when we introduced additional
plumes of simulated toxins within the environment. We
used the same shapes and colors within the upper and
lower graphs to correlate each drone with its respective
sensor readings over time. We have labeled figure 5 with
letters to identify important changes. When the particulate
concentration increases, our system should be able to detect
the release, find the boundaries of the released plume, and
then continue to track that plume over time.

During the first two minutes of each experiment, identified
by label A in figure 5, we launched the drone swarm in
a contaminant-free environment. This was done to ensure
each drone successfully achieved flight and to validate all
sensors were operational. Once the swarm was verified to be
functional, our first test was to inject an aerial plume directly
under the swarm. This contaminant injection is identified
in figure 5 by the label B. As shown, the air particulate
sensors of all drones immediately detect the increase in
gas concentration. However, given the sudden contaminant
release, it’s unclear where the perimeter of the plume is
located. Thus each drone autonomously moves outward from
each other in their respective direction as shown by label
B in the lower half of figure 5. After the initial injection
the gas concentration level decreases after the initial spike,
but then increases in what appears to be a second spike.

This second spike reflects the movement of the drones
back towards each other after finding the plume boundaries.
Although the graphs do not reflect the slow movement over
time, we observed the plume drifted within the room as the
contaminant dispersed.

During real emergencies, additional airborne releases of
toxins often occur while first responders are mitigating
the threat. In these situations, the drone swarm should
immediately detect the new release and once again identify
the new plume boundaries. Consequently, once we validated
the swarm accurately determined the boundaries and could
track it over time, we injected additional contaminants in
select locations near the in-flight swarm such that only a
single drone would sense the injection. In this case, the
entire swarm should dynamically and autonomously readjust
their positions to account for the new boundaries. In the first
test, we injected a new plume near the drone identified as
covering the forward position. This is shown as label C in
figure 5. The air quality sensor for the forward drone spikes,
triggering the swarm to change positions and recenter around
the the newly discovered area with higher CO concentration.
Although not reflected in figure 5, after the initial movement
of the swarm toward the area closest to the drone that
detected the increase, all drones once again searched for
the plume boundaries. This boundary search is reflected by
the secondary increase in CO concentration after the initial
spikes.

We then proceeded to further inject additional CO using



the compressed air canisters near each drone incrementally
as shown by labels D, E, and F. In each case, the nearest
drone accurately detected the increased level of CO within
the air, and the swarm was moved incrementally reflecting
how the plume was moving over time when further releases
occurred.

Limitations. Although these results show that we were
able to accurately move the drone swarm in the horizontal
plane, we intentionally restricted drone flight at the same
elevation during these experiments. During real scenarios
we would also want to know how the plume is moving
vertically along the z-axis. Additionally, we would want to
know how the drones are affecting the plume, particularly
how much the swarm is moving contaminated air downwards
towards first responders. We plan to address these limitations
in future work by increasing the degrees of freedom in flight
movements as well as increasing the size of the swarm to
provide additional cross-sections along the z-axis.

V. RELATED WORK

There has been significant work done recently
to use drones for detecting hazardous gasses
[BI41[51[61[71[81[91[10][11][12]. In [5], a quad copter
was armed with sensors to find and monitor hazardous
gasses in the atmosphere. In [11] a drone was used to
monitor and track the movement of a hazardous cloud
and send the readings to a base computer using the flight
controller for later analysis. A drone was used to monitor
gas concentrations in large underground pipes and caves
while streaming data to a mobile view for real time
reporting in [12]. Each of these studies focused on using
a single drone rather than a swarm. Additionally, while
our swarm system also collects sensor readings for later
assessment and analysis, it also provides a visual indicator
useful for first responders to visually track plume movement
over time.

VI. CONCLUSION

In this paper, we have described the hazardous plume
identification and tracking system we built by combining
sensors on a swarm of autonomous drones. Our early results
reveal that we are able to accurately identify and track
contaminant plumes over time to provide a visual indicator
to on-scene first responders as well as collect data that can
be used to validate and improve plume movement models
over time.
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