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In one dimension (1D), a general decaying long-range interaction can be fit to a sum of expo-
nential interactions e™*"% with varying exponents \, each of which can be represented by a simple
matrix product operator (MPO) with bond dimension D = 3. Using this technique, efficient and
accurate simulations of 1D quantum systems with long-range interactions can be performed using
matrix product states (MPS). However, the extension of this construction to higher dimensions is
not obvious. We report how to generalize the exponential basis to 2D and 3D by defining the basis
functions as the Green’s functions of the discretized Helmholtz equation for different Helmholtz
parameters A, a construction which is valid for lattices of any spatial dimension. Compact tensor
network representations can then be found for the discretized Green’s functions, by expressing them
as correlation functions of auxiliary fermionic fields with nearest neighbor interactions via Grass-
mann Gaussian integration. Interestingly, this analytic construction in 3D yields a D = 4 tensor
network representation of correlation functions which (asymptotically) decay as the inverse distance
(rfjl), thus generating the (screened) Coulomb potential on a cubic lattice. These techniques will
be useful in tensor network simulations of realistic materials.

I. INTRODUCTION

To understand the electronic properties of realistic
materials, it is important to account for the effects of
the long-range Coulomb interaction between electrons.
However, solving the many-electron Schrédinger equation
(SE) including the Coulomb potential Vine = 3=, ; 1/7i;
is challenging and typically involves uncontrolled ap-
proximations. A promising approach where there is a
systematic control of accuracy is provided by the den-
sity matrix renormalization group (DMRG) algorithm?!:2
and its higher-dimensional extensions such as projected
entangled-pair states (PEPS)3®, which reduce the ef-
fective dimensionality of the SE by exploiting the lo-
cality typically found in physical systems. In fact, the
DMRG has already been widely applied to solve the SE
for molecules®® within a finite basis expansion. How-
ever, to exploit the power of higher dimensional tensor
network states (TNS)?, the standard orbital (or spectral)
basis!? expansion for the SE is not ideal. This is because
whereas the variational freedom in the TNS parametriza-
tion scales only linearly with system size A, the repre-
sentation of the Coulomb operator has a large number of
terms that scales like O(A%).

In our earlier work!'!, we proposed to combine higher-
dimensional TNS with a real-space lattice discretization
of the SE, which reformulates the SE as an extended
Hubbard model with density-density type long-range in-
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teractions Vim = ZZ < vfj‘?nmj, where 4,5 label lattice
sites, vif = 1/rij, rij = |[ri — 1| = i — I, 1 is the lattice
spacing, and n; is the number operator. In this form,
the discretization error can be systematically controlled
by reducing the lattice spacing I. The representation of
the Hamiltonian is also improved for TNS simulations,
as there are now O(A?) interaction terms between the
electron sites. Nonetheless, even with this reduction, a
term-by-term evaluation of the Coulomb interaction en-
ergy (¥|Vipt|¥) (in which the values of the potential are
explicitly computed for each term) still leads to an unde-
sirable quadratic computational scaling with system size.

In the one dimensional (1D) case, the above problem
can be overcome by fitting the Coulomb interaction 1/7;;
to a sum of exponentials Ziv:tl cre M 1213 ywhere the
number of terms N; depends only on the target fitting
accuracy rather than the system size A. Each exponen-
tial interaction V' = Zi<j e *iin;n; can then be rep-
resented by a matrix product operator (MPO)*2 17 with
bond dimension D = 3,

V=WQAW[2]--- W[N],
1 e‘Al/Qni 0
W[il=|0 e NI N2y, |. (1)
0 0 I

In this way, computing (¥|Viy|¥) with |¥) represented
by a matrix product state (MPS)!” with bond dimen-
sion D scales as O(N;AD?), that is, linearly with the
system size. In combination with DMRG, this represen-
tation has been used to simulate interacting 1D models
in the continuum limit'® 2! with controllable accuracy by
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systematically reducing the spacing [ and increasing the
bond dimension D.

Generalizing such a construction for long-range inter-
actions to higher dimensions is, however, nontrivial. In
2D or 3D, the exponential e~ cannot be formed as a
product of weight factors e~ along the path from i to j,
as it is done in 1D. In our previous work!'! on the 2D case,
we used the spin-spin correlation functions of the 2D clas-
sical Ising model (0;0;)3, (where 0;,0; € {+1,—1} and
B¢ is the inverse temperature) as a basis to numerically
fit the Coulomb interaction on a square lattice to a sum
of the correlation functions (o;0,)s, at different temper-
atures, viz., 1/r;; ~ Zi\il ct{0i0j)p,. However, an im-
portant difference between the 1D and 2D cases is that
(0i0;)p, at short lattice distances is not a smooth and
radially isotropic function of r;;. To control these errors
in 2D, we embedded the physical lattice into a larger un-
derlying Ising lattice, for details, see Ref.!'. [NB: In the
experimental setting, a related recent proposal uses aux-
iliary particles on a larger underlying lattice to mediate
the Coulomb interaction between physical particles for
the purposes of building an analog quantum simulation
of Hamiltonians with long-range interactions??.] Then,
since the Ising correlation function (o;0;)s, can be rep-
resented by a classical PEPS with D = 223, by using
the finite automata construction!31424 to couple opera-
tors n;n; with weights (0,0;)g,, the long-range interac-
tion ), _;(0i0;)p,nin; can be represented by a projected
entangled-pair operator (PEPO) with maximal bond di-
mension D =2 x3 =6or D =2 x4 =8, depending
on the choice of finite automata rules'! to represent the
operator sum 5 T Consequently, the long-range
interaction Vi, can be approximated as a sum of PEPOs
with constant bond dimension, which is analogous to the
1D case.

Nonetheless, using a numerically defined basis (o;0;) g,
to expand the interaction in 2D complicates matters sig-
nificantly as compared to using the analytic basis e ="
in 1D. For example, in Ref.!! the performance of the fit in
various limits could only be assessed numerically, and the
analysis was restricted to the 2D square lattice. In this
work, we define an analytic framework which contains the
exponential basis construction in 1D and provides a natu-
ral generalization to lattices in any spatial dimension, al-
though we will focus explicitly only on 2D and 3D. Impor-
tantly, this formulation produces a set of long-range basis
functions with explicit tensor network (TN) representa-
tions with small, constant bond dimensions such that de-
caying long-range interactions can be approximated by a
sum of tensor network operators (TNO) efficiently.

Specifically, in Sec. II, we introduce the framework by
defining appropriate basis functions (in any dimension)
as the Green’s function of the discretized Helmholtz equa-
tion. Then, using Grassmann Gaussian integration, the
discretized Green’s functions can be expressed as corre-
lation functions of auxiliary fermionic fields (c¢;é;). This
allows us to show in what sense the 1D geometry is spe-

cial: there are fundamental differences between exponen-
tials in 1D and their higher dimensional extensions. In
1D, both the discretization and finite size errors can be
removed analytically, resulting in a TN representation of
the continuum exponential function, while in 2D and 3D
they cannot be removed in a way compatible with a sim-
ple TN representation of low bond dimension. In Sec. III,
the MPO representation in Eq. (1) is re-derived within
the proposed framework. In Sec. IV and V, we show that
the discretized Green’s functions in 2D and 3D, respec-
tively, also have very compact TN representations. Most
interestingly, the analytic construction in 3D yields a TN
representation of correlation functions decaying as r;jl
asymptotically, which generates the (screened) Coulomb
potential on the cubic lattice. The subroutines for con-
structing TN representations and examples for numerical
contractions of the resulting TN are available online?°.
Finally, conclusions are drawn in Sec. VI.

II. FITTING BASIS IN ANY DIMENSION

One way to view the exponential e~ M=l in 1D is that
it is the Green’s function of the Helmholtz equation in
free space (up to a constant ),

(=VZ2 4+ A)G(r,v') = 6(r — 1), (2)

or in other words, it is the Fourier transform of the
momentum-space kernel (|k|? + A?)7. In 2D and 3D,
the solution to Eq. (2) is given by the modified Bessel
function 5= Ko(A|r — r’[) and the screened Coulomb po-

tential %7 respectively, both of which decay expo-
nentially at large distance for A > 0. Therefore, similarly
to in the 1D case, if we are able to find the corresponding
TN representation of these interactions, we can use them
as a basis of functions with which to represent decaying
long-range interactions.

To begin, we consider the discretized version of Eq.
(2) on a d-dimensional cubic lattice with spacing a (see
Figures 1(a) and 1(b)),

r—r/

(Kgq + \2a*T)V =1, (3)

where K,/a? is the discretized version of (—V?), which
in the simplest case can be represented by the central
difference scheme with open-boundary conditions (OBC),

2 -1.0 --- 0 O
-1 2 -1 -+ 0 O
o -1 2 --- 0 O0
Ki=| . . . . . . (4)
o o o0 --- 2 -1
0O 0 O - =1 2

NXxN

Here the length of the lattice is L = (N+1)a, Ko = K1 ®
I+I®K;, and K3 = K QIQI+IQK QI+I®I®K;. The
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(c) Graphical representation of local tensors

FIG. 1. Lattice discretization in d-dimensional case (a,b) and
rules for writing down local tensors (c) for representing V;;
in Eq. (6). The blue dots refer to the underlying discretized
lattice with spacing a for mediating long-range interactions,
and the red dots refer to the physical lattice with spacing [.

matrix V; is related to the continuum Green’s function
by

G(ri,r;) = lim a™*[(Kq/a® + 1) '], _ei ;s
= lima 9V _., . _x, (5)
a—0 ==

where the factor a~¢ in the first identity comes from
scaling?®. In order to analytically relate V;; to a ten-
sor network, we can use Gaussian integration to express
Vij as the correlation function of an auxiliary bosonic or
fermionic system with nearest neighbor couplings. We
will use Grassmann variables such that V;; can be writ-
ten as

1 T 22T e, - B
Vii=~ /D[Ev ce”¢ RatA e (ce5) £ (ciey),
Z:/Dmdaf“ﬁﬂfm, (6)

where a pair of Grassmann variables {¢;, ¢;} is associated
with each lattice site. The advantage of using auxiliary
fermions instead of bosons is that the resulting tensor
network representations for Z and V;; will have finite as
opposed to infinite?” bond dimension (vide post).

The special nature of the 1D geometry can now be ex-
amined: As depicted in Figure 1(a), the physical lattice
(red) with spacing [ can be placed on an infinite under-
lying lattice with spacing a with associated Grassmann

variables at each site. The infinite boundary sites can
then be integrated out analytically (N — oo while keep-
ing a fixed) to remove boundary effects, and the same
can be done for the infinite interior sites (¢ — 0 while
keeping [ fixed) in order to remove the discretization er-
ror. We then obtain an effective matrix K/ defined only
on the physical lattice that replaces (K; + A2a?I) in Eq.

(6),

ky k. O -0 0

ke ki ke -+ 0 0

, 0 k. k; --- 0 0
Ki=1. . .. .. ’

0 0 O -k ke

0 0 O ke kp

nxn

1 1
kb = 5(1 + COthf)a kc = _§CSCh§7 kl = COthgv 5 = AL
(7)

It can be easily verified that the inverse of K/ indeed
gives the exponential interaction on the n-site physical
lattice with spacing [, ie., (K});;' = e ¢I"=7l. How-
ever, in 2D and 3D (as shown in Figure 1(b)), integrating
out the boundary and interior sites to obtain continuum
limit interactions between the physical sites introduces
couplings among all the physical sites. This results in
a dense matrix K/, which does not lead to a simple ex-
act TN representation with constant bond dimension, be-
cause every tensor would require a bond to every other
tensor. Therefore, in the following discussion, we will fo-
cus on finding a TN representation for the discrete analog
Vi; (6) of the continuum Green’s function in 2D and 3D.
Once this is done, the discretization error and finite size
error in representing continuum interactions can be re-
duced by choosing a suitably large or infinite underlying
Grassmann lattice and embedding the physical sites (red)
in it (blue) as shown in Figure 1(b) to effectively work
with a smaller lattice spacing a in a‘d“‘zVi:ﬁ’j:ﬁ (5),

which is similar in spirit to our previous work'! where
we used an underlying larger Ising lattice to mediate in-
teractions. Interestingly, this construction in 3D yields
a TN representation of correlation functions that decays
as r;l asymptotically for A = 0.

In order to explicitly represent V;; as a tensor net-
work, we note that the partition function Z introduced
in Eq. (6) is similar to that of the Ising model, which
is easily written as a TN®23 in any dimension. Here,
however, Grassmann variables are used rather than the
spins o; € {+1,—1}, and Grassmann integration replaces
the summation over spins. Similarly to in the TN repre-
sentation of the Ising Z, by factorizing €% into local
quantities coupled by a virtual bond!!, we can rewrite
the nearest neighbor coupling term in Eq. (6) as

4
eITYIN = 14 Cicj + ey + TicjTie; = E % m 3j,n{ 8)
m=1

The termination of the series for the exponential in the



first equality is due to the nilpotency of Grassmann vari-
ables, which is the advantage of using fermionic rather
than bosonic Gaussian integration in (6). The decompo-
sition in the second equality can be performed in various
ways. For simplicity, we use the following form for the
local factors o; and 3;,

a; = (1,¢;, ¢, Cicq),

B = (1,¢5, =¢j, =¢¢5). 9)
Thus, instead of D = 2 for the bond dimension of the
TN representation of Z for the Ising model, we will have
a D = 4 construction here. Now the partition function

Z (6) can be expressed as a product of local “projectors”
and terms for each bond between two sites, e.g., in 3D it

reads
z= [veal]ex I1 # 11 2 11 50

<i,j> <m,n> <p,q>

where Q) = e~ ®atXa*Ducdeer — 1 — (2d 4 A\2a2)ecy
with d = 3 here, and B, Blyj7 and Bj; represent the
decomposed pairs in Eq. (8) in different directions. To
distinguish the pairs in different directions, in the follow-
ing discussion we will use different pairs of Greek letters
for different directions even though they denote the same
vectors as in Eq. (9): «, 8 for pairs in the X direction;
v,6 for pairs in the Y direction; and o, 7 for pairs in
the Z directions, see Figure 1(c). That is, Bf; = a;f3;,
B, = 7idj, and Bf; = 0;7;, where the summations over
components have been omitted for simplicity.

The partition function for the Ising model can be writ-
ten in the same form as Eq. (10), and by collecting the
local factors belonging to the same site together, Z can
be represented as a tensor network, and the same strat-
egy applies for the correlation function (o;0;). However,
in our case, due to the anti-commuting property of Grass-
mann variables, additional sign factors will appear in
moving variables in Eq. (10) to their respective local
site. We note that Eq. (10) for 2D is structurally sim-
ilar to the fermionic PEPS (fPEPS)2%29 and it can be
viewed as a “classical” fPEPS without a physical index.
In Sec. IV and Sec. V we will show how to express Z and
Vi; as TN in 2D and 3D, and in particular, how to deal
with the sign factors that appear in different dimensions
by developing graphical rules similar to that for fPEPS30.
However, before this, we will first show how the present
construction in 1D reproduces the MPO in Eq. (1).

III. REVISITING THE 1D MPO
REPRESENTATION

An important simplification in 1D is that the product
[ ;> B in Eq. (10) is already in the desired form,
viz., H<i,j> Bix] = Hz _1 (O‘zﬁz—&-l) = o1 HZ 2 (Bzaz)ﬁ]\“
where the subscripts for components in a and 8 have
been omitted for simplicity.  Similarly, for correla-
tion functions (c;¢;) (¢ < j), the necessary product

4

(I1<r> Biy)(cicj) can be arranged into local prod-
ucts ai(faaz) - - (Bicias) - - (B¢ ) - - (Bn—1an—-1)BN
without introducing any sign factors, because in mov-
ing ¢; or ¢, the terms (a;Bi+1) that must be passed
over correspond to a bond and are always of even parity,
i.e., products of an even number of Grassmann variables.
Therefore, by defining the following local tensors for Ky

(4),

(2d+ X2a2) 0 0 —1
- 0 10 0
(Ak)lr:/dckdck QiBr 10k, = 0 01 0
1 00 O
0100
. 0000
(Bk)h«:/dckdck @Braler)er = |4 g g O] |
0000
00 —-10
. i 100 0
k)lrz/dede QuBriCr)arr =140 o o
(00 0 0

the correlation function V;; (i < j) can be written as

1
Vij = E(Al"'Bi"'Cj"'AN)lla Z = (A1 - AN12)
When coupled with the operators m;n; via the finite
automata construction!®1424 this form of V;; gives an

MPO representation for »; _; Vijn;n; with bond dimen-

sion D = 3 x 4 = 12, that is, the factor W/[i] appearing
in the analog of Eq. (1) reads

. A; @1 B;®@n; 0
0 0 A1

This MPO construction for 1D is not optimal in the sense
that it is very sparse and compressible in view of the
sparse structure of By and Cj. We illustrate this com-
pression for K} (7) in order to eventually recover the
MPO in Eq. (1).

In this case, we can replace ¢ in Eq. (9) by —k.C to
factorize e~ Fe(GicitEici)  Then, the local tensors read

-kb,i 0 0 k
0 —k. 0 0
(Ak)l’r: 0 0 kc 0 )
~ke 0 0 0
0 —k. 00
0 0 00
Bw=1_k, 0 00|
L0 0 00
700 —10
100 0
Cr =100 0 0] (14)
00 0 0

where (Ak)ll = kl (
on a lattice with n sites.

) for interior (boundary) sites
It can be found that the

(1)



products (Ay---A;—1)11 = (feschéed)’™ (2 < i < n),
(Aj+1 "'An)ll = (%CSChfeg)n_j (1 S j S n — 2), and
Z = (A1---Ay)11 = (3cschée)" 1. Due to the spar-
sity of the local tensors, we can observe that for V;;
(12), only the element (B;);2 can contribute and (B;)s3;
cannot, because at the boundary (A;);3 = 0 such that
(A1...A4;_1)13 = 0. Similar observations apply to Cj.
Thus, V;; in Eq. (12) can be rewritten as

1
Vij = E(Al"'Ai—l)ll(Bi)12(Ai+1"'Aj_l)gg
(OJ)21(AJ+1 e Ap)n
(Jeschged) (—k.)7 " (Jeschget)m
(1cschget)n—1
= efg(jfi), (15)

such that the resulting e=$U=% can be re-factorized into
a product of factors e ¢ between i and j. Therefore, the
bond dimension for representing V;; is reduced from 4 to
1, which, when coupled with the operators n;n;, leads to
the MPO (1) with D = 3.

In 2D and 3D, such a simplification is unlikely to be
possible, thus our construction will lead to a TNO with
bond dimension D = 4Dy. The factor 4 comes from the
present TN construction for the correlation functions V;;,
while Do depends on the way that V;; is coupled with the
product n;n; to form ZK]. Vijninj. It has been shown
that in 2D, Dp = 3 for the snake MPO construction
for ZKj n;n;, and Do = 4 using a 2D finite automata
construction™1%24 In Sec. V, we will show in 3D, Do
can be 3, 4, or 5, depending on whether an explicitly 1D,
2D, or 3D finite automata representation for »_._.n;n;

: i<j
is used.

IV. 2D FORMULATION

The problem of rewriting Eq. (10) and the correlation
functions in 2D as products of local terms is more com-
plicated than in 1D. To avoid immediately delving into
algebraic details, we will first present the obtained results
in terms of graphical rules, for which Figure 1(c) defines
the local tensor configuration and Figure 2 defines the
correlation functions. Then a sketch of the derivation of
these rules will be given via a simple example.

A. Rules for writing down TN representations

By analogy to Eq. (11) for 1D, the local tensors for
2D are defined in the following way,

(Or)diur = /dékdck Qu0k,dBr, 10k Yk, ulk,r, (16)

where of can be one of {1,cg,cr} for Ay, By, or Cy,
respectively. While performing the integration manu-
ally as we did in 1D quickly becomes tedious for the

FIG. 2. Tensor network representation of correlation func-
tions {c¢;¢;) in 2D: (a) basic representation with parity ten-
sors (green dots) shown explicitly; (b,c) fermionic paths are
deformed from (a) and parity tensors (not shown explicitly
for simplicity) need to be inserted at each cross between the
fermionic line (red) and the lattice. TN representation (d)
differs from (c) by -1 due to the jump over the site containing
Cj.

different combinations of subscripts (d,{,u,r), the nec-
essary integrals (16) can be easily evaluated using a
simple program?®. We can give Eq. (16) a graphical
representation as shown in Figure 1(c), where the fac-
tors (4, 3,0,7,a) appear in a clockwise order starting
from §. With this definition, the 2D partition function
Z (10) can be demonstrated to be given by the PEPS
Z = Tr(]], Ax). However, unlike in the 1D case, the cor-
relation function Vj; is not simply Tr([],, ; AxBiCj).
Due to the anti-commutation of Grassmann variables,
some additional sign factors will appear when moving ¢;
or ¢; to its local site. Assuming the site at position (z,y)
on an N-by-N lattice shown in Figure 2 is indexed by
(y — 1)N + x, one finds that there are additional sign
factors such as (—1)P(%) (or equivalently (—1)P(0x+n))
appearing at the position shown by the green dot in Fig-
ure 2(a). Here, p(vyx) is the parity of the bond 74 and
is 0 if % contains an even number of Grassmanns and 1
otherwise. It is then seen that when representing V;; as
a Grassmann correlation function some parity tensors,

(P)ab = Oap(—1)PO%e) = diag(1, -1, -1,1), (17)

need to be inserted on the upward bonds for the sites to
the left of each fermionic site (red dot). The final TN
representation for V;; is given by Figure 2(a) (omitting
the red lines).

From this basic representation, we can derive various
equivalent TN representations for V;; by using the parity
conserving properties of the tensor Oy, (16), which means



that if one of its virtual bonds is odd in parity, then
the total parity of the other virtual bonds must also be,
p(or) + 1 mod 2, otherwise the Grassmann integration
vanishes. This property allows us to define a jump move
similar to that in fPEPS??. Graphically, we can view
the parity tensors as a result of the crossing between a
fermionic line (red) connecting sites ¢ and j and the bonds
between local tensors, see Figure 2(a). Then, starting
from this graph, one is free to deform the fermionic line
freely, as long as the necessary parity factors are inserted
at the crossings. This degree of freedom can be used
to make the fermionic line coincide with the path used
in the finite automata construction!! to derive rules for
coupling with operators n;n;, thus allowing the parity
factors to be inserted by the automata construction itself.
Figures 2(b) and 2(c) are examples of a simple path and
snake path, respectively. This eventually allows for the
construction of the PEPO for », . Vj;n;n;, as shown in
our previous work!!.

Finally, it should be noted that Figure 2(c) and
Figure 2(d) differ by a minus sign. This is because
when moving from (c¢) to (d), the jump through C;
(16) introduces a minus sign as ¢; is odd, such that
(—1)POia)+p(B0+p(vu)+p(eir) = 1 for nonvanishing
Grassmann integrations. In summary, we can express
both Z and Vj; in 2D as PEPS, with the latter requiring
additional parity factors on certain virtual bonds given
by Figure 2(a).

1<J

B. Sketch of the derivations

To illustrate how the above rules for 2D are actually
derived, we consider a simple 4 x 4 example. From Eq.
(10), the partition function Z can be rewritten as

z~ [DledT ol ins) ]
k

- / DI, d] ([Qra1 (165)][Q2Ba0(1205)] - - ) (18)

where a more instructive way to write the right hand side
is the following 2D representation:

Q13 ,6’14a14 ,6’15a15 ,316

a9(Y9013) Proaro(y10014) Sriaii(y1101s) 512(’712516)( )
as(509)  Beas(v6010) Braz(y7611) Bs(y8d12)
a1(7105)  Baaz(y206) Baaus(v3d7) Ba(vads)

with the even-parity factors (0 and the indices for com-
ponents omitted for simplicity. In Eq. (19), one should
read from the bottom-left factor a; to the upper-right
factor 16 for Z (18). In this representation, it is clear
that in order to move all the factors to their local sites, we
only need to move all §;, one row up in Eq. (19) along the
1D sequence for Z. One way we found to be convenient
is to move them column-by-column from left to right.
That is, we first move d13, dg, and 5 sequentially to the
respective upper rows, and then consider moving 14, 919,

and Jg, etc. We illustrate this explicitly for d;3. When
moving this past (19 in the second column, the factor
(—1)P(013)P(B10) appears due to the exchange of §;3 with
B10. Using the fact that the bond pairs (8) are always
even, i.e., p(79d13) = 1 and p(agBio) = 1, this factor can
be made local (—1)P(913)P(B10) — (—1)P(19)P(@9) 'which can
be further cancelled out by a local exchange from g7y
to Yo in the product (19). This is how the ordering
of factors in Figure 1(c) is derived. After exchanging d13
with B9, we move d13 past a10(Y10014), Sr1a11(711015),
B12(712016), but these can be regrouped into complete
bonds, (a10811)(710014) - .. which are all even, thus no
more signs accrue in moving d13. Once the § factors in
the first column have been moved to their local sites,
these sites are in their final forms as shown in Eq. (18),
where the product of factors at each site is even and par-
ity preserving. Thus, when moving the factors in the
second column, we can jump over the sites in the first
column without incurring any sign factor. By repeating
this procedure, we can express Z as a PEPS with local
tensors defined in Figure 1(c).

The same process applies to the correlation functions.

In this case, taking (c7¢19) as an example, the counter-
part of Eq. (19) is

Q13 5140114 5150415 516
a9(v9013) BioCioaio(y10014) Bricai(y11015) Bia( 7125162
as(v509)  Beas(v6010) Brerar(y7611)  Bs(ysdi2)
ai(7105)  P202(v206) Bzaz(y3d7) Ba(743s)

The task is again to move the § factors to their local
sites, and we can apply the same procedure for Eq. (20).
However, one can see that moving ;3 will involve an ad-
ditional exchange with ¢1g, which results in an additional
sign factor (—1)P(®13). A similar situation occurs when
moving dg and d1g due to the exchanges with ¢;. These
additional sign factors give the rule for parity tensors
(Pr)ab (green dots) in Figure 2(a). Thus, the long-range
interaction V;; = (c;¢;) is given by the quotient of the
TN diagram in Figure 2(a) and that for Z.

V. 3D FORMULATION
A. Rules for writing down TN representations

Similar to the 2D graphical representation, the local
tensors in 3D can be written down according to Figure
1(c), viz.,

(Ok) dbiutr = /dékdck Q10k,dTh,b Bk, 10k Vie,u Tk 1 Ok 4 21)

where oy, € {1, ¢k, ¢} for Ak, By, or Cy, respectively, and
where the Grassmann integral can be conveniently eval-
uated via the same program?®. However, the partition
function Z in 3D (10) is not simply given by Tr([], Ax)
as in 1D and 2D. The correct TN representation is given
in Figure 3(a), where a swap tensor (black dot, see also



Figure 4),
S;ff _ (ng(gmy(,1)17(111)1)(«70)7 (22)

needs to be introduced at each crossing between a verti-
cal bond and a horizontal bond, when the 3D network is
viewed as a projection onto 2D. The necessity for these
swap tensors is explained in Sec. VB 1. [NB: The special
case of an N x N x 2 3D network is structurally iden-
tical to the network for the overlap (¥|¥) between two
fPEPS®.] For correlation functions, the rule for the TN
representation can still be summarized by the fermionic
line (red) in Figure 3(a). We will discuss the derivation
of this rule given by Figure 5 in the next section.

Before closing this section for the 3D rules, we mention
that the resulting N x N x N 3D network can also be
viewed equivalently as a N2 x N2 2D network, see Fig-
ure 3(b), which can be readily contracted using standard
algorithms for 2D PEPS. This mapping also implies that
to construct the 3D TNO for ZKJ- Vijnin;, we can use
the same finite automata rules used in 2D!! (either the
explicitly 2D rules with Do = 4 or the 1D snake MPO
rules with Do = 3) to construct the tensor network rep-
resentation of the operator sum ZKj n;n;. This can be
seen by indexing the physical site at the position (z,y, 2)
by (2 — 1)N? + (y — 1)N + x, such that the relative or-
dering of physical sites is unchanged when mapped into
2D. In addition to these rules for the operators, one can
also use a set of “3D” rules with Do = 5 to construct the
TNO representation of ), ; ning, which explicitly uses
the 3D lattice structure, see Appendix. Thus, the final
3D TNO representation for ), < Vijnin; will have bond
dimension D = 4Dg, where Do can be chosen to be 3,
4, or 5.

B. Sketch of the derivations

While the above rules for expressing V;; as a TN may
look familiar to readers who have previously worked with
fPEPS, in this section, for a more general audience, we
will give a pedagogical explanation of two of the main in-
gredients in the derivations: (1) in the TN representation
of Z in 3D (10) (Figure 3(a)), how we obtain the order
of factors in Eq. (21) for the local tensors, and how the
swap tensors arise, (2) in the TN representation of V;;,
how the rule for the fermionic line (red) is derived.

1. Partition function, local tensors, and swap tensors
For simplicity, we consider a simple 3 x 3 x 2 lattice

shown in Figure 4. From Eq. (10), the partition function
Z can be rewritten as

7 = / ple, ([T @0)(@1B2) - 1[(163) - J[(1710) ]

= /D[Ea c] ([Qra1(y1(01710)04)B2] -+ +) (23)

(b) One way to contract 3D TN as PEPS

FIG. 3. Tensor network representation of correlation func-
tions (¢;¢;) in 3D: (a) 3D TN representation for V;;, (b) An
N x N x N 3D network can be mapped to an N2 x N2 2D net-
work with N = 5 for contractions using algorithms for PEPS,
where the diagonal bonds between physical sites have been
folded into the square lattice as highlighted by the bold black
lines.

where the integrand can be written simply as

16 /8170617 518

(X13(’Y13516) /3140614(714517) ﬂ15(715518)
a10(Y10013) Briaii(y11014) B12(y12015) (24)
ar(o7T16) Bsas(osTi7) Bo(ooT18)

044(’74(047'13)57) /35045(75(057'14)58) 56(76(067'15)59)
a1(v1(o1710)04) Baaa(y2(02711)d5) B3(v3(o37112)d6)

which, similarly to Eq. (19), should be read from bottom-
left to upper-right. Now to move all factors to local sites,
apart from the need to move § up one row as in the
2D case, the 7 factors also need to be moved up one
layer, which increases the complexity of finding the TN
representation of Z in 3D.

Similarly to in the 2D case, we found the most conve-
nient way to move factors in 3D to be face-by-face from
left to right. The § factors (d4, d7, 013, d16) can first be
moved to their respective local site in the same way as in



FIG. 4. Example for the partition function Z of a simple
3 X 3 x 2 lattice, including the swap tensors (black dots). The
swap tensors near the bottom-left corner tensors, which are
elaborated on in Sec. VB1, are represented by larger black
dots.

2D, viz.,
d16Ct16 Biroar Bis
0137130013 Bracia(y14017) B15(715018)
V10010 Briaa1(v11014) B12(712015) (25)
drar(ormie)  Psas(osTir) Bo(o9T18)
0ayaca(oami3) Bsas(ys5(05714)08) Be(ve(06T15)09)

’Y1a1(U1T10) /BQCYQ(’YQ(O'QTH)(SE)) 53(73(037'12)56)

where we have exchanged the v and « factors in the first
column to compensate for the introduced sign factors.
Next, we move the 7 factors in the order 7, 713, and
T10, which is essential for simplifying the manipulations,
to the upper layer, leading to

T16016(16 Biraars Bis

T13513’713a13 5140414(’714517) /315(’715518)

T107Y100¢10 Briaa1(v11014) B12(712015) (26)
draror 58048(08T17) 59(097'18)

04400404 Bsas (s (05714)08) Be(Ve(06T15)d9)
Y1101 Baaz(v2(02711)d5) B3(vs(osT12)d6)

Note that after moving 714 to the upper row, the
factors in site 7 are complete, such that when
moving 713, no additional sign factors due to the
jump over this site need to be considered. Thus,
the net sign factors introduced are (—1)P(T16)P(Bs)
(—1)p (7'13)[17(55)“1‘17(/68)]’ and (—1)? (Tlo)[l)(ﬂ2)+1?(35)+p(58)]
respectively. Again by noting the even parity of bonds,
the factors such as (—1)P(M6)P(5) can be made lo-
cal (—1)P(me)p(Bs) — (_1)plen)p(er) = and further ab-
sorbed locally by exchanging a7 and o7 in the local
product d7a7o7. These local exchanges to compen-
sate the local sign factors determine the order of fac-
tors in Eq. (21) or equivalently Figure 1(c). The re-
maining signs that cannot be absorbed are given by
(—1)P(r18)p(Bs) (—1)P(T10)P(B5) (_1)P(710)P(Bs)  These non-
local terms can be exactly represented/decomposed in
terms of swap tensors (black dots) shown in Figure 4.
The whole process for moving § and 7 factors can be re-
peated for the other faces/columns such that the final TN
representation of Z is given by a 3D network composed
of local tensors A; and swap tensors.

2. Correlation functions and fermionic line

For the correlation functions (c;¢;) in 3D, the intro-
duced parity factors can be found in the same manner
following the logic for 2D. Thus, we only describe the ba-
sic idea here, assuming ¢;¢; (even parity and ¢ < j) is first
placed on site ¢, which means ¢; needs to be moved to site
7. One can show that the additional parity factors intro-
duced by the fermionic variables ¢; (¢;) can be classified
into three groups for ¢; (¢;), as shown in Figures 5(a,b,c),
for crossings with different bonds. Specifically, the in-
plane parity factors for ¢; (¢;) in Figure 5(a) are the
same as those in 2D, see Figure 2(a), while Figures 5(b,c)
are new due to the existence of bonds in the z-direction.
Summarizing all parities and swaps together leads to Fig-
ure 5(d), which can be greatly simplified into a single
rule of a fermionic line (red) in Figure 5(f) by moving
certain parities upwards using the exchange rule shown
in Figure 5(e), viz., Y .. wa/Sw’x = (-1 )p(“’)S’” =
(—nrespe = 37, S¥s P, following from the defini-
tions in (17) and (2 ) Therefore, the final rule shown
in Figure 5(f) for half of the fermionic pair and Figure
3(a) for the whole pair ¢;¢; is the same as that for 2D,
see Figure 2(a).

ﬁ4

(a)
A ﬁg # |
()

(d)
‘L& J\& ‘i& [l ‘
z z "E ‘\ \
W = xY \
w w T 7
(e) (f)

FIG. 5. Illustration of the derivation of rules for representing
correlation functions in 3D: (a,b,c) three sets of parity ten-
sors appear in the 3D case due to the odd parity of ¢; (or
¢;); (d) all parity tensors together with swap tensors on the
line intersections (not explicitly shown for simplicity); (e) the
exchange of swap and parity tensors; (f) the transformation
of (d) into an equivalent rule for fermionic crossing by moving
certain parity tensors upwards using the exchange rule (e).



VI. CONCLUSIONS

In this work we have presented an analytic construc-
tion of the tensor network representations of the dis-
cretized Green’s function Vj; of the Helmholtz equation
in 2D and 3D using Grassmann Gaussian integration.
The resulting TN representation is very compact, with
bond dimension D = 4. Interestingly, in 3D it gives an
analytic TN representation of correlation functions de-
caying as rfjl asymptotically, which yields the discretized
(screened) Coulomb interaction on the simple cubic lat-
tice. The TN representation can be made compatible
with the rules for finite automata by properly deforming
the associated fermionic lines, such that we can construct
a TNO representation for ZKj Vijnin;. These interac-
tions with different Helmholtz parameters can be used as
basis functions to fit decaying long-range interactions in
higher dimensions, as an analog of the exponential fitting
procedure used in TN algorithms in 1D.

The resulting TN operators can readily be used in sim-
ulations of continuum systems, such as the uniform elec-
tron gas (UEG), via the combination of a discretized lat-
tice representation and tensor network algorithms. An-
other possible direction is the simulation of the effective
low-energy sectors of lattice gauge theory3! using higher
dimensional TNS. Integrating out gauge degrees of free-
dom leads to Hamiltonians with non-local or long-range
terms. In fact, this is precisely how the Coulomb inter-
action in Nature arises.
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APPENDIX: FINITE AUTOMATA RULES FOR
COUPLING WITH OPERATORS IN 3D

In this section, we discuss how to construct a 3D PEPO
representation for the distance-independent interaction
operator,

V=> 4B, (27)

with a bond dimension Do = 5. In other words, we will
build V as V = TI“(Hk Pk) with (Pk)Lk,Uk,Dk,Rk,Tk,Bk =
Ogﬁ] , being a local operator on site k. This PEPO repre-

LGN
sentation can be combined!! with the 3D PEPS represen-
tation for correlation functions V;; described before (Sec.
V), resulting in a PEPO representation of } -, . V;; A;B;
with D =4D¢o = 20.

The finite automata (also known as finite state ma-
chine) picture!®1424 of a PEPO views each tensor as a
node in a graph, and each virtual bond of dimension Do
as a directed edge in the graph that can pass Do different
signals (or has Do different possible states). By conven-
tion we have chosen our directed edges to point in the 4z,
4y, and +2 directions, where the axes are defined in Fig-
ure 6. This allows us to impose an ordering of the sites,
where we traverse the x direction most quickly, then y,
then z, starting from the bottom left corner. With this
convention, the tensor at position k has its Uy, R, and
T} indices (corresponding to +g, +&, and +Z respec-
tively) pass “outgoing” signals while its Ly, Dy and By
indices (corresponding to —&, —g¢, and —2) receive “in-
coming” signals (see the first tensor in Fig. 6(b)). When
a tensor has certain specific combinations of incoming
and outgoing signals, that tensor’s two physical indices
ni and nj, (not shown in Fig. 6 for simplicity) encode a

local operator Oka]n, , which is either a physical operator
g k

(A, B) or the identity operator (I). These special com-
binations of index values precisely correspond to the set
of rules which generate a finite state machine (PEPO)
which encodes all the terms in the sum (27). In order
to avoid encoding any additional unwanted terms, the

value of Ogﬂ , is the zero operator 05 when the states of

n
the six virtual indices do not match any rule which gen-
erates the desired machine. In other words, unwanted
configurations of the state machine (and thus unwanted
configurations of the local operators) are prevented by
causing such a configuration to trigger the action of 0,
on at least one site of the machine, rendering the entire
term null.

The complete list of the rules that define the full
3D PEPO which generates all pairwise interactions in
Eq. (27) with bond dimension Do = 5 is given in Ta-
ble I. The presentation is in the style of Ref.24. In the
following, we will provide an intuitive explanation for
the derivation of these rules, assuming some familiarity
with the simpler constructions in 1D and 2D'11424, The
present 3D construction can be viewed as a generaliza-
tion of the 2D rules by incorporating an additional set
of rules to include interactions between sites in different
layers.

A. Basics

A useful way to reason about the construction of finite
state machines is to assign some verbal meaning to each
of the Do possible signals that can be passed between
the nodes. In the present case we have Do = 5, meaning
that each virtual bond of a tensor can take index values of
(0, 1, 2, 3, and 4). The meanings that we assign to these
signals are used to describe the different “messages” of
information that they pass to the adjacent tensor that
the bond is connected to. The “0” signal is the default
signal, which generally means that the machine is in its



Index values (k]
Rule number (L, Us, Di, R, Th, Br) Onkn;

1 (0,0,0,0,0,0) I
2 (0,2,2,0,1,0) I
3 (2,1,0,2,1,0) I
4 (0,0,0,0,2,2) I
5 (1,1,0,1,1,0) I
6 (0,1,1,0,1,0) I
7 (0,0,0,0,1,1) I
8 (0,2,0,0,0,0) Ay,
9 (0,1,0,2,0,0) Ay,
10 (0,0,0,0,2,0) Ay,
11 (0,1,2,1,1,0) By
12 (2,1,0,1,1,0) By
13 (0,1,0,1,1,2) By
14 (0,1,2,2,1,0) Tx
15 (0,2,0,0,1,2) I
16 (0,1,0,2,1,2) I
17 (3,1,0,3,1,0) Tx
18 (3,1,2,1,1,0) I
19 (0,1,0,3,1,0) By,
20 (3,1,0,1,1,2) I
21 (0,1,4,0,1,2) T
22 (0,4,4,0,1,0) I
23 (3,4,0,1,1,0) I
24 (0,4,0,2,1,0) I
25 (0,4,0,1,1,0) By,
26* P(;lgpoe’ror(i)gé]t top corner Ok

TABLE I. The rules for the full 3D PEPO that generates all
pairwise interactions in Eq. (27) with Do = 5. All com-
binations of indices not listed in this table correspond to
ol | = Ok, while I, is simply the identity operator. Note

nEny
that the local operators Ay and By do not have to be the
same, although in our case from the main text they would
both be the number operator ny.

initial state along that signal path and no physical op-
erators have been applied yet. “1” is the “stop” signal
which, when received, generally tells a tensor to avoid
acting with a physical operator but instead to act with
the identity operator. This is used when another tensor
along that signal path has applied a physical operator
and does not want an interaction to be generated along
the direction that it sends the “1” message. “2” is the
“start” signal, which is passed along the directed edges
starting with the action of A on site 7 and terminating
with the action of B on site j. The path of this signal
can be thought of as the “interaction path.”

With these signals, we can encode all the terms in
Eq. (27) for which j lies in the +&/4¢/+% direction (or
along the edges of this sector, for which Az, Ay, or Az
can be zero) with respect to site i. The rules which gen-
erate these terms are 1-16. Rules 1-7 encode the propa-
gation of the “0”, “1”, and “2” signals along the directed
edges in straight lines. Rules 8-13 encode the action of
the physical operators, which begin and terminate “1”

10

and “2” signals. Rules 14-16 allow for the “2” signal to
“turn” in allowed directions. Specifically, 14 allows a “2”
which is travelling in the +g direction (and is thus re-
ceived by the Dy index) to turn and propagate along the
42 direction. Rule 15 encodes a turn from +Z to +g
and 16 allows a turn from +2 to +2z. Note that other
turns which do not violate the directions of the edges,
such as +2 to +y and +y to +2, are not allowed in or-
der to prevent double counting. This illuminates a more
subtle convention that we have chosen: for interactions
A;Bj in which sites ¢ and j do not lie along a straight
line, the “2” signal first propagates in the +Z direction,
then 4§, then +& (when 7 and j are in the same plane
but not along a straight line, one of the directions in this
ordering is skipped). Figure 6 provides a characteristic
example of a set of tensor configurations which encodes
one “basic” interaction term.

B. Remaining terms

There are additional terms in the sum (27) for which
site j does not lie in the +&/+¢/42 direction with respect
to site 4. Specifically, there are six additional cases:

1. {4—j74k@,13£ ::0}5
2. {—3, A =0,+%},

w

. {__£74_g5_%2}a

I

NG =0,—7,+2),
5. {%_j ::O’——Q,—Fé}’
6. {—2,—g, +4}.

Since j lies in at least one negative direction with respect
to i, the “2” signal that starts at site ¢ cannot propagate
all the way to j because at some point it will need to go
against the direction of a directed edge. To account for
these terms, the “3” and “4” signals can be introduced
to propagate from site j towards site ¢ along the +& and
+yg directions, respectively. To complete the interaction,
these new signals can then meet up with the “2” that
began propagating from site i towards site j along the
+&/49/+% directions via the introduction of new state
machine rules. Below we will explain case-by-case how
this is done.

Case 1: —%,+¢,Az =0 direction (see Figure 7)
In this case, the “2” signal starts at site ¢ and propagates
in the 4y direction according to some of the basic rules
(8 and 2). Since j lies in the —% direction, the “3” sig-
nal starts at site j (rule 19) and propagates in the +&
direction (rule 17). These two signals meet at their inter-
section point, and the interaction is completed by a new
type of “turning” tensor given by rule 18.

Case 2: —i,Aj =0,+2 direction (see Figure 8)
In this case, the “2” signal starts at site ¢ and propagates
in the 42 direction according to basic rules 10 and 4.



Since j lies in the —& direction, the “3” signal starts
at site j (rule 19) and propagates in the +& direction
(rule 17). These two signals meet at their intersection
point, and the interaction is completed by a new type of
“turning” tensor given by rule 20.

Case 3: —%,+3,+2 direction (see Figure 9) In
this case, the “2” signal starts at site ¢ and first propa-
gates in the +2 direction (rules 10 and 4). It then “turns”
to the +¢ direction (rule 15) and propagates (rule 2).
Since j lies in the —Z% direction, the “3” signal starts at
site j (rule 19) and propagates in the +& direction (rule
17). These two signals meet at their intersection point,
and the interaction is completed by the “turning” tensor
given in rule 18.

Case 4: Az =0,—7,+2 direction (see Figure 10)
In this case, the “2” signal starts at site ¢ and propagates
in the +2 direction according to basic rules 10 and 4.
Since j lies in the —g direction, the “4” signal starts
at site j (rule 25) and propagates in the 4§ direction
(rule 22). These two signals meet at their intersection
point, and the interaction is completed by a new type of
“turning” tensor given by rule 21.

Case 5: +i,—y,+2 direction (see Figure 11)
Since our convention is to propagate the “interaction
path” first in the Z direction, then ¢, then Z, this case is
a bit less intuituve than the preceding ones. In our previ-
ous analysis, we have pictured the “4” as originating from
site j and propagating in the 4+ direction. However, the
present case is more easily understood if we adopt a dif-
ferent (but equivalent) picture in which the “4” signal is
a special component of the interaction signal propagating
from site ¢ to site j which is allowed to travel in the —g
direction, against the directed edge.

Using this new picture, we start as usual with the “2”
signal originating at site ¢ and propagating in the +2
direction according to basic rules 10 and 4. Next, the
signal “turns” from the +Z direction to the —g direc-
tion, becoming a “4” (rule 21, as in the previous case).
The “4” then propagates in the —g direction (rule 22, as
above). Finally, the “interaction signal” must turn and
travel in the 42 direction and end at site j. Since the
“2” can already go in the +2 direction and terminate
at j according to basic rules 3 and 12, it can be reused
instead of introducing additional rules. Thus, the “4”
propagating along —¢ “turns” to 4+ and becomes a “2”
again according to rule 24, and then basic rules 3 and 12
complete the interaction.

Case 6: —&,—4,+2 direction (see Figure 12) In
this final case, we combine the two pictures for the “3”
and “4” signals used in previous cases. First, the “2”
signal starts at site ¢ and propagates in the +2 direc-
tion according to basic rules 10 and 4. Next, the signal
“turns” from the 42 direction to the —g direction, be-
coming a “4” (rule 21) and then propagates in the —¢
direction (rule 22). Since j lies in the —% direction, the
“3” signal starts at site j (rule 19) and propagates in the
+& direction (rule 17). The “3” and “4” then meet at
their intersection point, and the interaction is completed
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by a new type of “turning” tensor given by rule 23.
Final rule: Up to this point, all the rules in Table I
have been utilized except rule 26. This is a special rule
that only applies to the tensor in the top right corner
of the top plane of the network, where the finite state
machine terminates. This rule is included to disallow the
state of the machine where all tensors have virtual index
values (0,0,0,0,0,0) and a spurious 1 is added to Eq. (27)
so that the final operator is 1+ 5. _ . A, B instead of the
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FIG. 6. This figure and those that follow are examples of
the set of rules needed to construct the operator-valued 3D
finite automata that encodes the pairwise interaction PEPO
>_i<; AiBj for arbitrary operators A and B. The color of the
tensor in (a) corresponds to the index configuration of the
equivalently colored tensor in (b). In (b), the local operator
corresponding to the given index configuration is given to the
top-right of each tensor, and the rule number of each tensor is
given to its bottom-left. For tensors along the boundary, the
relevant legs are simply removed from the corresponding dia-
gram in (b). This specific case shows an interaction between
A; (red) and Bj; (dark blue), where the signal path between
the two sites is shown in red.
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