
SplitFS: Reducing Software Overhead
in File Systems for Persistent Memory

Rohan Kadekodi
University of Texas at Austin

Se Kwon Lee
University of Texas at Austin

Sanidhya Kashyap
Georgia Institute of Technology

Taesoo Kim
Georgia Institute of Technology

Aasheesh Kolli
Pennsylvania State University and

VMware Research

Vijay Chidambaram
University of Texas at Austin and

VMware Research

Abstract

We present SplitFS, a ile system for persistent memory (PM)

that reduces software overhead signiicantly compared to

state-of-the-art PM ile systems. SplitFS presents a novel

split of responsibilities between a user-space library ile sys-

tem and an existing kernel PM ile system. The user-space

library ile system handles data operations by intercepting

POSIX calls, memory-mapping the underlying ile, and serv-

ing the read and overwrites using processor loads and stores.

Metadata operations are handled by the kernel PM ile sys-

tem (ext4 DAX). SplitFS introduces a new primitive termed

relink to eiciently support ile appends and atomic data op-

erations. SplitFS provides three consistency modes, which

diferent applications can choose from, without interfering

with each other. SplitFS reduces software overhead by up-to

4× compared to the NOVA PM ile system, and 17× com-

pared to ext4 DAX. On a number of micro-benchmarks and

applications such as the LevelDB key-value store running

the YCSB benchmark, SplitFS increases application perfor-

mance by up to 2× compared to ext4 DAX and NOVA while

providing similar consistency guarantees.

CCS Concepts · Information systems → Storage class

memory; · Hardware → Non-volatile memory; · Soft-

ware and its engineering→ File systemsmanagement;

Keywords Persistent Memory, File Systems, Crash Consis-

tency, Direct Access
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1 Introduction

Persistent Memory (PM) is a new memory technology that

was recently introduced by Intel [17]. PM will be placed on

the memory bus like DRAM and will be accessed via proces-

sor loads and stores. PM has a unique performance proile:

compared to DRAM, loads have 2ś3.7× higher latency and

1/3rd bandwidth, while stores have the same latency but

1/6th bandwidth [18]. A single machine can be equipped

with up to 6 TB of PM. Given its large capacity and low la-

tency, an important use case for PM will be acting as storage.

Traditional ile systems add large overheads to each ile-

system operation, especially on the write path. The overhead

comes from performing expensive operations on the criti-

cal path, including allocation, logging, and updating mul-

tiple complex structures. The systems community has pro-

posed diferent architectures to reduce overhead. BPFS [7],

PMFS [24], and NOVA [33] redesign the in-kernel ile system

from scratch to reduce overhead for ile-system operations.

Aerie [28] advocates a user-space library ile system coupled

with a slim kernel component that does coarse-grained allo-

cations. Strata [19] proposes keeping the ile system entirely

in user-space, dividing the system between a user-space li-

brary ile system and a user-space metadata server. Aerie

and Strata both seek to reduce overhead by not involving

the kernel for most ile-system operations.

Despite these eforts, ile-system data operations, espe-

cially writes, have signiicant overhead. For example, con-

sider the common operation of appending 4K blocks to a ile

(total 128 MB). It takes 671 ns to write a 4 KB to PM; thus,

if performing the append operation took a total of 675 ns ,
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File system Append

Time (ns)

Overhead

(ns)

Overhead

(%)

ext4 DAX 9002 8331 1241%

PMFS 4150 3479 518%

NOVA-Strict 3021 2350 350%

SplitFS-Strict 1251 580 86%

SplitFS-POSIX 1160 488 73%

Table 1. Software Overhead. The table shows the software

overhead of various PMile systems for appending a 4K block.

It takes 671 ns to write 4KB to PM. Strict and POSIX indicate

the guarantees ofered by the ile systems (ğ3.2).

the software overhead would be 4 ns . Table 1 shows the soft-

ware overhead on the append operation on various PM ile

systems. We observe that there is still signiicant overhead

(3.5 − 12.4×) for ile appends.

This paper presents SplitFS, a PM ile system that seeks

to reduce software overhead via a novel split architecture: a

user-space library ile system handles data operations while

a kernel PM ile system (ext4 DAX) handles metadata opera-

tions. We refer to all ile system operations that modify ile

metadata as metadata operations. Such operations include

open(), close(), and even ile appends (since the ile size

is changed). The novelty of SplitFS lies in how responsibili-

ties are divided between the user-space and kernel compo-

nents, and the semantics provided to applications. Unlike

prior work like Aerie, which used the kernel only for coarse-

grained operations, or Strata, where all operations are in

user-space, SplitFS routes all metadata operations to the

kernel. While FLEX [32] invokes the kernel at a ine gran-

ularity like SplitFS, it does not provide strong semantics

such as synchronous, atomic operations to applications. At

a high level, the SplitFS architecture is based on the belief

that if we can accelerate common-case data operations, it

is worth paying a cost on the comparatively rarer metadata

operations. This is in contrast with in-kernel ile systems like

NOVA which extensively modify the ile system to optimize

the metadata operations.

SplitFS transparently reduces software overhead for reads

and overwrites by intercepting POSIX calls, memory map-

ping the underlying ile, and serving reads and overwrites via

processor loads and stores. SplitFS optimizes ile appends

by introducing a new primitive named relink that minimizes

both data copying and trapping into the kernel. The appli-

cation does not have to be rewritten in any way to beneit

from SplitFS. SplitFS reduces software overhead by up-to

4× compared to NOVA and 17× compared to ext4 DAX.

Apart from lowering software overhead, the split architec-

ture leads to several beneits. First, instead of re-implementing

ile-system functionality, SplitFS can take advantage of the

mature, well-tested code in ext4 DAX for metadata opera-

tions. Second, the user-space library ile system in SplitFS

allows each application to run with one of three consistency

modes (POSIX, sync, strict). We observe that not all appli-

cations require the same guarantees; for example, SQLite

does not require the strong guarantees provided by NOVA-

strict, and gets 2.5× higher throughput on ext4 DAX and

SplitFS-POSIX than on NOVA-strict owing to their weaker

guarantees. Applications running with diferent consistency

modes do not interfere with each other on SplitFS.

SplitFS introduces the relink primitive to optimize ile

appends and atomic data operations. Relink logically and

atomically moves a contiguous extent from one ile to an-

other, without any physical data movement. Relink is built

on top of the swap_extents ioctl in ext4 DAX, and uses

ext4 journaling to ensure the source and destination iles are

modiied atomically. Both ile appends and data overwrites

in strict mode are redirected to a temporary PM ile we term

the staging ile. On fsync(), the data from the staging ile

is relinked into the original ile. Relink provides atomic data

operations without paging faults or data copying.

SplitFS also introduces an optimized logging protocol. In

strict mode, all data and metadata operations in SplitFS are

atomic and synchronous. SplitFS achieves this by logging

each operation. In the common case, SplitFSwill write a sin-

gle cache line worth of data (64B), followed by one memory

fence (e.g., sfence in x86 systems), for each operation; in

contrast, NOVAwrites at least two cache lines and issues two

fences. As a result of these optimizations, SplitFS logging is

4× faster than NOVA in the critical path. Thanks to relink

and optimized logging, atomic data operations in SplitFS

are 2ś6× faster than in NOVA-strict, providing strong guar-

antees at low software overhead.

We evaluate SplitFS using a number ofmicro-benchmarks,

three utilities (git, tar, rsync), two key-value stores (Redis,

LevelDB), and an embedded database (SQLite). Our evalu-

ation on Intel DC Persistent Memory shows that SplitFS,

though it is built on ext4 DAX, outperforms ext4 DAX by

up-to 2× onmany workloads. SplitFS outperforms NOVA by

10%ś2× (when providing the same consistency guarantees)

on LevelDB, Redis, and SQLite when running benchmarks

like YCSB and TPCC. SplitFS also reduces total amount of

write IO by 2× compared to Strata on certain workloads. On

metadata-heavy workloads such as git and tar, SplitFS suf-

fers a modest drop in performance (less than 15%) compared

to NOVA and ext4 DAX.

SplitFS is built on top of ext4 DAX; this is both a strength

and a weakness. Since SplitFS routes all metadata operations

through ext4 DAX, it sufers from the high software overhead

and high write IO for metadata operations. Despite these

limitations, we believe SplitFS presents a useful new point in

the spectrum of PM ile-system designs. ext4 DAX is a robust

ile system under active development; its performance will

improve with every Linux kernel version. SplitFS provides
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Property DRAM Intel PM

Sequential read latency (ns) 81 169 (2.08×)

Random read latency (ns) 81 305 (3.76×)

Store + lush + fence (ns) 86 91 (1.05×)

Read bandwidth (GB/s) 120 39.4 (0.33×)

Write bandwidth (GB/s) 80 13.9 (0.17×)

Table 2. PM Performance. The table shows performance

characteristics of DRAM, PM and the ratio of PM/DRAM, as

reported by Izraelevitz et al. [18].

the best features of ext4 DAX while making up for its lack

of performance and strong consistency guarantees.

This paper makes the following contributions:

• A new architecture for PM ile systems with a novel

split of responsibilities between a user-space library

ile system and a kernel ile system.

• The novel relink primitive that can be used to provide

eicient appends and atomic data operations.

• The design and implementation of SplitFS, based on

the split architecture. We have made SplitFS publicly

available at htps://github.com/utsaslab/splitfs.

• Experimental evidence demonstrating that SplitFS

outperforms state-of-the-art in-kernel and in-user-space

PM ile systems, on a range of workloads.

2 Background

This section provides background on persistent memory

(PM), PM ile systems, Direct Access, and memory mapping.

2.1 Persistent Memory

Persistent memory is a new memory technology that ofers

durability and performance close to that of DRAM. PM can

be attached on the memory bus similar to DRAM, and would

be accessed via processor loads and stores. PM ofers 8-byte

atomic stores and they become persistent as soon as they

reach the PM controller [16]. There are two ways to ensure

that stores become persistent: (i) using non-temporal store

instructions (e.g., movnt in x86) to bypass the cache hierar-

chy and reach the PM controller or (ii) using a combination

of regular temporal store instructions and cache line lush

instructions (e.g., clflush or clwb in x86).

Intel DC Persistent Memory is the irst PM product that

was made commercially available in April 2019. Table 2 lists

the performance characteristics of PM revealed in a report

by Izraelevitz et al. [18]. Compared to DRAM, PM has 3.7×

higher latency for random reads, 2× higher latency for se-

quential reads, 1/3rd read bandwidth, and close to 1/6th

write bandwidth. Finally, PMs are expected to exhibit limited

write endurance (about 107 write cycles [25]).

2.2 Direct Access (DAX) and Memory Mapping

The Linux ext4 ile system introduced a new mode called

Direct Access (DAX) to help users access PM [21]. DAX ile

systems eschew the use of page caches and rely on memory

mapping to provide low-latency access to PM.

A memory map operation (performed via the mmap() sys-

tem call) in ext4 DAX maps one or more pages in the process

virtual address space to extents on PM. For example, consider

virtual addresses 4K to 8K-1 are mapped to bytes 0 to 4K-1

on ile foo on ext4 DAX. Bytes 0 to 4K-1 in foo then corre-

spond to bytes 10*4K to 11*4K -1 on PM. A store instruction

to virtual address 5000 would then translate to a store to

byte 40964 on PM. Thus, PM can be accessed via processor

loads and stores without the interference of software; the

virtual memory subsystem is in charge of translating virtual

addresses into corresponding physical addresses on PM.

While DAX and mmap() provide low-latency access to

PM, they do not provide other features such as naming or

atomicity for operations. The application is forced to impose

its own structure and semantics on the raw bytes ofered

by mmap(). As a result, PM ile systems still provide useful

features to applications and end users.

2.3 PM File Systems

Apart from ext4 DAX, researchers have developed a num-

ber of other PM ile systems such as SCMFS [31], BPFS [7],

Aerie [28], PMFS [24], NOVA [33], and Strata [19]. Only ext4

DAX, PMFS (now deprecated), NOVA, and Strata are publicly

available and supported by modern Linux 4.x kernels.

These ile systems make trade-ofs between software over-

head, amount of write IO, and operation guarantees. NOVA

provides strong guarantees such as atomicity for ile-system

operations. PMFS provides slightly weaker guarantees (data

operations are not atomic), but as a result obtains better per-

formance on some workloads. Strata is a cross-media ile

system which uses PM as one of its layers. Strata writes all

data to per-process private log, then coalesces the data and

copies it to a shared area for public access. For workloads

dominated by operations such as appends, Strata cannot coa-

lesce the data efectively, and has to write data twice: once to

the private log, and once to the shared area. This increases

the PMwear-out by up to 2×. All these ile systems still sufer

from signiicant overhead for write operations (Table 1).

3 SplitFS: Design and Implementation

We present the goals of SplitFS, its three modes and their

guarantees. We present an overview of the design, describe

how diferent operations are handled, and discuss how SplitFS

provides atomic operations at low overhead. We describe the

implementation of SplitFS, and discuss its various tuning

parameters. Finally, we discuss how the design of SplitFS

afects security.
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Mode Sync.

Data

Ops

Atomic

Data

Ops

Sync.

Metadata

Ops

Atomic

Metadata

Ops

Equivalent to

POSIX ✗ ✗ ✗ ✓ ext4-DAX

sync ✓ ✗ ✓ ✓ Nova-Relaxed,

PMFS

strict ✓ ✓ ✓ ✓ NOVA-Strict,

Strata

Table 3. SplitFSmodes. The table shows the three modes

of SplitFS, the guarantees provided by each mode, and list

current ile systems which provide the same guarantees.

3.1 Goals

Low software overhead. SplitFS aims to reduce software

overhead for data operations, especially writes and appends.

Transparency. SplitFS does not require the application to

be modiied in any way to obtain lower software overhead

and increased performance.

Minimal data copying and write IO. SplitFS aims to re-

duce the number of writes made to PM. SplitFS aims to

avoid copying data within the ile system whenever possible.

This both helps performance and reduces wear-out on PM.

Minimizing writes is especially important when providing

strong guarantees like atomic operations.

Low implementation complexity. SplitFS aims to re-use

existing software like ext4 DAX as much as possible, and

reduce the amount of new code that must be written and

maintained for SplitFS.

Flexible guarantees. SplitFS aims to provide applications

with a choice of crash-consistency guarantees to choose from.

This is in contrast with PM ile systems today, which provide

all running applications with the same set of guarantees.

3.2 SplitFSModes and Guarantees

SplitFS provides three diferent modes: POSIX, sync, and

strict. Each mode provides a diferent set of guarantees. Con-

current applications can use diferent modes at the same time

as they run on SplitFS. Across all modes, SplitFS ensures

the ile system retains its integrity across crashes.

Table 3 presents the three modes provided by SplitFS.

Across all modes, appends are atomic in SplitFS; if a series

of appends is followed by fsync(), the ile will be atomically

appended on fsync().

POSIX mode. In POSIX mode, SplitFS provides metadata

consistency [6], similar to ext4 DAX. The ile system will

recover to a consistent state after a crash with respect to its

metadata. In this mode, overwrites are performed in-place

and are synchronous. Note that appends are not synchronous,

and require an fsync() to be persisted. However, SplitFS

Technique Beneit

Split architecture Low-overhead data operations,

correct metadata operations

Collection of memory-mmaps Low-overhead data operations in

the presence of updates and ap-

pends

Relink + Staging Optimized appends, atomic data

operations, low write ampliica-

tion

Optimized operation logging Atomic operations, low write am-

pliication

Table 4. Techniques. The table lists each main technique

used in SplitFS along with the beneit it provides. The tech-

niques work together to enable SplitFS to provide strong

guarantees at low software overhead.

in the POSIX mode guarantees atomic appends, a property

not provided by ext4 DAX. This mode slightly difers from

the standard POSIX semantics: when a ile is accessed or

modiied, the ile metadata will not immediately relect that.

Sync mode. SplitFS ensures that on top of POSIX mode

guarantees, operations are also guaranteed to be synchro-

nous. An operation may be considered complete and persis-

tent once the corresponding call returns and applications do

not need a subsequent fsync(). Operations are not atomic

in this mode; a crash may leave a data operation partially

completed. No additional crash recovery needs to be per-

formed by SplitFS in this mode. This mode provides similar

guarantees to PMFS as well as NOVA without data and meta-

data checksuming and with in-place updates; we term this

NOVA coniguration NOVA-Relaxed.

Strict mode. SplitFS ensures that on top of sync mode

guarantees, each operation is also atomic. This is a useful

guarantee for applications; editors can allow atomic changes

to the ile when the user saves the ile, and databases can

remove logging and directly update the database. This mode

does not provide atomicity across system calls though; so it

cannot be used to update two iles atomically together. This

mode provides similar guarantees to a NOVA coniguration

we term NOVA-Strict: NOVA with copy-on-write updates,

but without checksums enabled.

Visibility. Apart from appends, all SplitFS operations be-

come immediately visible to all other processes on the sys-

tem. On fsync(), appends are persisted and become visible

to the rest of the system. SplitFS is unique in its visibility

guarantees, and takes the middle ground between ext4 DAX

and NOVA where all operations are immediately visible, and

Strata where new iles and data updates are only visible to
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intent of each operation. Each U-Split instance has its own

operation log that is pre-allocated, mmap-ed by U-Split, and

written using non-temporal store instructions. We use the

necessary memory fence instructions to ensure that log en-

tries persist in the correct order. To reduce the overheads

from logging, we ensure that in the common case, per opera-

tion, we write one cache line (64B) worth of data to PM and

use a single memory fence (sfence in x86) instruction in the

process. Operation log entries do not contain the ile data

associated with the operation (e.g., data being appended to a

ile), instead they contain a logical pointer to the staging ile

where the data is being held.

We employ a number of techniques to optimize logging.

First, to distinguish between valid and invalid or torn log

entries, we incorporate a 4B transactional checksum [23]

within the 64B log entry. The use of checksum reduces the

number of fence instructions necessary to persist and val-

idate a log entry from two to one. Second, we maintain a

tail for the log in DRAM and concurrent threads use the tail

as a synchronization variable. They use compare-and-swap

to atomically advance the tail and write to their respective

log entries concurrently. Third, during the initialization of

the operation log ile, we zero it out. So, during crash re-

covery, we identify all non-zero 64B aligned log entries as

being potentially valid and then use the checksum to identify

any torn entries. The rest are valid entries and are replayed.

Replaying log entries is idempotent, so replaying them mul-

tiple times on crashes is safe. We employ a 128MB operation

log ile and if it becomes full, we checkpoint the state of

the application by calling relink() on all the open iles that

have data in staging iles. We then zero out the log and reuse

it. Finally, we designed our logging mechanism such that

all common case operations (write(), open(), etc.) can be

logged using a single 64B log entry while some uncommon

operations, like rename(), require multiple log entries.

Our logging protocol works well with the SplitFS archi-

tecture. The tail of each U-Split log is maintained only in

DRAM as it is not required for crash recovery. Valid log en-

tries are instead identiied using checksums. In contrast, ile

systems such as NOVA have a log per inode that resides on

PM, whose tail is updated after each operation via expensive

clflush and sfence operations.

Providing Atomic Operations. In strict mode, SplitFS

provides synchronous, atomic operations. Atomicity is pro-

vided in an eicient manner by the combination of staging

iles, relink, and optimized logging. Atomicity for data oper-

ations like overwrites is achieved by redirecting them also to

a staging ile, similar to how appends are performed. SplitFS

logs these writes and appends to record where the latest data

resides in the event of a crash. On fsync(), SplitFS relinks

the data from the staging ile to the target ile atomically.

Once again, the data is written exactly once, though SplitFS

provides the strong guarantee of atomic data operations.

Relink allows SplitFS to implement a form of localized copy-

on-write. Due to the staging iles being pre-allocated, locality

is preserved to an extent. SplitFS logs metadata operations

to ensure they are atomic and synchronous. Optimized log-

ging ensures that for most operations exactly one cache line

is written and one sfence is issued for logging.

3.4 Handling Reads, Overwrites, and Appends

Reads. Reads consult the collection of mmaps to determine

where the most recent data for this ofset is, since the data

could have been overwritten or appended (and thus in a

staging ile). If a valid memory mapped region for the ofsets

being read exists in U-Split, the read is serviced from the

corresponding region. If such a region does not exist, then

the 2 MB region surrounding the read ofset is irst memory

mapped, added to the the collection of mmaps, and then the

read operation is serviced using processor loads.

Overwrites. Similar to reads, if the target ofset is already

memory mapped, then U-Split services the overwrite using

non-temporal store instructions. If the target ofset is not

memorymapped, then the 2MB region surrounding the ofset

is irst memory mmaped, added to the collection of mmaps,

and then the overwrite is serviced. However, in strict mode,

to guarantee atomicity, overwrites are irst redirected to a

staging ile (even if the ofset is memory mapped), then the

operation is logged, and inally relinked on a subsequent

fsync() or close().

Appends. SplitFS redirects all appends to a staging ile, and

performs a relink on a subsequent fsync() or close(). As

with overwrites, appends are performed with non-temporal

writes and in strict mode, SplitFS also logs details of the

append operation to ensure atomicity.

3.5 Implementation

We implement SplitFS as a combination of a user-space

library ile system (9K lines of C code) and a small patch

to ext4 DAX to add the relink system call (500 lines of C

code). SplitFS supports 35 common POSIX calls, such as

pwrite(), pread64(), fread(), readv(), ftruncate64(),

openat(), etc; we found that supporting this set of calls

is suicient to support a variety of applications and micro-

benchmarks. Since PM ile systems PMFS and NOVA are

supported by Linux kernel version 4.13, we modiied 4.13

to support SplitFS. We now present other details of our

implementation.

Intercepting POSIX calls. SplitFS uses LD_PRELOAD to in-

tercept POSIX calls and either serve from user-space or route

them to the kernel after performing some book-keeping tasks.

Since SplitFS intercepts calls at the POSIX level in glibc

rather than at the system call level, SplitFS has to intercept

several variants of common system calls like write().

Relink. We implement relink by leveraging an ioctl pro-

vided by ext4 DAX. The EXT4_IOC_MOVE_EXT ioctl swaps
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extents between a source ile and a destination ile, and uses

journaling to perform this atomically. The ioctl also de-

allocates blocks in the target ile if they are replaced by blocks

from the source ile. By default, the ioctl also lushes the

swapped data in the target ile; we modify the ioctl to only

touch metadata, without copying, moving, or persisting of

data. We also ensure that after the swap has happened, exist-

ing memory mappings of both source and destination iles

are valid; this is vital to SplitFS performance as it avoids

page faults. The ioctl requires blocks to be allocated at

both source and destination iles. To satisfy this requirement,

when handling appends via relink, we allocate blocks at

the destination ile, swap extents from the staging ile, and

then de-allocate the blocks. This allows us to perform relink

without using up extra space, and reduces implementation

complexity at the cost of temporary allocation of data.

Handling ile open and close. On ile open, SplitFS per-

forms stat() on the ile and caches its attributes in user-

space to help handle later calls. When a ile is closed, we do

not clear its cached information.When the ile is unlinked, all

cached metadata is cleared, and if the ile has been memory-

mapped, it is un-mapped. The cached attributes are used to

check ile permissions on every subsequent ile operation

(e.g., read()) intercepted by U-Split.

Handling fork. Since SplitFS uses a user-space library ile

system, special care needs to be taken to handle fork()

and execve() correctly. When fork() is called, SplitFS is

copied into the address space of the new process (as part of

copying the address space of the parent process), so that the

new process can continue to access SplitFS.

Handling execve. execve() overwrites the address space,

but open ile descriptors are expected to work after the call

completes. To handle this, SplitFS does the following: be-

fore executing execve(), SplitFS copies its in-memory data

about open iles to a sharedmemory ile on /dev/shm; the ile

name is the process ID. After executing execve(), SplitFS

checks the shared memory device and copies information

from the ile if it exists.

Handling dup. When a ile descriptor is duplicated, the

ile ofset is changed whenever operations are performed

on either ile descriptor. SplitFS handles by maintaining a

single ofset per open ile, and using pointers to this ile in the

ile descriptor maintained by SplitFS. Thus, if two threads

dup a ile descriptor and change the ofset from either thread,

SplitFS ensures both threads see the changes.

Staging iles. SplitFS pre-allocates staging iles at startup,

creating 10 iles each 160 MB in size. Whenever a staging ile

is completely utilized, a background thread wakes up and

creates and pre-allocates a new staging ile. This avoids the

overhead of creating staging iles in the critical path.

Cache of memory-mappings. SplitFS caches all memory-

mappings its creates in its collection of memory mappings.

A memory-mapping is only discarded on unlink(). This re-

duces the cost of setting up memory mappings in the critical

path on read or write.

Multi-thread access. SplitFS uses a lock-free queue for

managing the staging iles. It uses ine-grained reader-writer

locks to protect its in-memory metadata about open iles,

inodes, and memory-mappings.

3.6 Tunable Parameters

SplitFS provides a number of tunable parameters that can be

set by application developers and users for each U-Split in-

stance. These parameters afect the performance of SplitFS.

mmap() size. SplitFS supports a conigurable size of mmap()

for handling overwrites and reads. Currently, SplitFS sup-

ports mmap() sizes ranging from 2MB to 512MB. The default

size is 2 MB, allowing SplitFS to employ huge pages while

pre-populating the mappings.

Number of staging iles at startup. There are ten staging

iles at startup by default; when a staging ile is used up,

SplitFS creates another staging ile in the background. We

experimentally found that having ten staging iles provides

a good balance between application performance and the

initialization cost and space usage of staging iles.

Size of the operation log. The default size of the operation

log is 128MB for each U-Split instance. Since all log entries

consist of a single cacheline in the common case, SplitFS can

support up to 2M operations without clearing the log and

re-initializing it. This helps applications with small bursts to

achieve good performance while getting strong semantics.

3.7 Security

SplitFS does not expose any new security vulnerabilities as

compared to an in-kernel ile system. All metadata operations

are passed through to the kernel which performs security

checks. SplitFS does not allow a user to open, read, or write

a ile to which they previously did not have permissions. The

U-Split instances are isolated from each other in separate

processes; therefore applications cannot access the data of

other applications while running on SplitFS. Each U-Split

instance only stores book-keeping information in DRAM

for the iles that the application already has access to. An

application that uses SplitFS may corrupt its own iles, just

as in an in-kernel ile system.

4 Discussion

We relect on our experiences building SplitFS, describe

problems we encountered, how we solved them, and surpris-

ing insights that we discovered.

Page faults lead to signiicant cost. SplitFSmemorymaps

iles before accessing them, and uses MAP_POPULATE to pre-

fault all pages so that later reads and writes do not incur

page-fault latency. As a result, we ind that a signiicant por-

tion of the time for open() is consumed by page faults. While
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the latency of device IO usually dominates page fault cost in

storage systems based on solid state drives or magnetic hard

drives, the low latency of persistent memory highlights the

cost of page faults.

Huge pages are fragile. A natural way of minimizing page

faults is to use 2 MB huge pages. However, we found huge

pages fragile and hard to use. Setting up a huge-page map-

ping in the Linux kernel requires a number of conditions.

First, the virtual address must be 2 MB aligned. Second,

the physical address on PM must be 2 MB aligned. As a

result, fragmentation in either the virtual address space or

the physical PM prevents huge pages from being created. For

most workloads, after a few thousand iles were created and

deleted, fragmenting PM, we found it impossible to create

any new huge pages. Our collection-of-mappings technique

sidesteps this problem by creating huge pages at the begin-

ning of the workload, and reusing them to serve reads and

writes. Without huge pages, we observed read performance

dropping by 50% in many workloads. We believe this is a

fundamental problem that must be tackled since huge pages

are crucial for accessing large quantities of PM.

Avoiding work in the critical path is important. Finally,

we found that a general design technique that proved crucial

for SplitFS is simplifying the critical path. We pre-allocate

wherever possible, and use a background thread to perform

pre-allocation in the background. Similarly, we pre-fault

memory mappings, and use a cache to re-use memory map-

pings as much as possible. SplitFS rarely performs heavy-

weight work in the critical path of a data operation. Similarly,

even in strict mode, SplitFS optimizes logging, trading of

shorter recovery time for a simple, low overhead logging

protocol. We believe this design principle will be useful for

other systems designed for PM.

Stagingwrites in DRAM. An alternate design that we tried

was staging writes in DRAM instead of on PM. While DRAM

staging iles incur less allocation costs than PM staging iles,

we found that the cost of copying data from DRAM to PM on

fsync() overshadowed the beneit of staging data in DRAM.

In general, DRAM bufering is less useful in PM systems

because PM and DRAM performances are similar.

Legacy applications need to be rewritten to take max-

imum advantage of PM. We observe that the applications

we evaluate such as LevelDB spent a signiicant portion of

their time (60 − 80%) performing POSIX calls on current

PM ile systems. SplitFS is able to reduce this percentage

down to 46-50%, but further reduction in software overhead

will have negligible impact on application runtime since the

majority of the time is spent on application code. Applica-

tions would need to be rewritten from scratch to use libraries

like libpmem that exclusively operate on data structures in

mmap() to take further advantage of PM.

Application Description

TPC-C [9] on SQLite [26] Online transaction processing

YCSB [8] on LevelDB [15] Data retreival & maintenance

Set in Redis [1] In-memory data structure store

Git Popular version control software

Tar Linux utility for data compression

Rsync Linux utility for data copy

Table 5. Applications used in evaluation. The table pro-

vides a brief description of the real-world applications we

use to evaluate PM ile systems.

5 Evaluation

In this section, we use a number of microbenchmarks and

applications to evaluate SplitFS in relation to state-of-the-

art PM ilesystems like ext4 DAX, NOVA, and PMFS. While

comparing these diferent ile systems, we seek to answer

the following questions:

• How does SplitFS afect the performance of diferent

system calls as compared to ext4 DAX? (ğ5.4)

• How do the diferent techniques employed in SplitFS

contribute to overall performance? (ğ5.5)

• How does SplitFS compare to other ile systems for

diferent PM access patterns? (ğ5.6)

• Does SplitFS reduce ile-system software overhead as

compared to other PM ile systems? (ğ5.7)

• How does SplitFS compare to other ile systems for

real-world applications? (ğ5.8 & ğ5.9)

• What are the compute and storage overheads incurred

when using SplitFS? (ğ5.10)

We irst briely describe our experimental methodology

(ğ5.1 & ğ5.2) before addressing each of the above questions.

5.1 Experimental Setup

We evaluate the performance of SplitFS against other PM

ile systems on Intel Optane DC Persistent Memory Module

(PMM). The experiments are performed on a 2-socket, 96-

core machine with 768 GB PMM, 375 GB DRAM, and 32 MB

Last Level Cache (LLC). We run all evaluated ile systems on

the 4.13 version of the Linux kernel (Ubuntu 16.04). We run

each experiment multiple times and report the mean. In all

cases, the standard deviation was less than ive percent of

the mean, and the experiments could be reliably repeated.

5.2 Workloads

We used two key-value stores (Redis, LevelDB), an embedded

database (SQLite), and three utilities (tar, git, rsync) to evalu-

ate the performance of SplitFS. Table 5 lists the applications

and their characteristics.
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TPC-C on SQLite. TPC-C is an online transaction process-

ing benchmark. It has ive diferent types of transactions

each with diferent ratios of reads and writes. We run SQLite

v3.23.1 with SplitFS, and measured the performance of TPC-

C on SQLite in the Write-Ahead-Logging (WAL) mode.

YCSBonLevelDB. The YahooCloud Serving Benchmark [8]

has six diferent key-value store benchmarks, each with dif-

ferent read/write ratios. We run the YCSB workloads on the

LevelDB key-value stores. We set the sstable size to 64 MB

as recommended in Facebook’s tuning guide [13].

Redis. We set 1M key-value pairs in Redis [1], an in-memory

key-value store. We ran Redis in the Append-Only-File mode,

where it logs updates to the database in a ile and performs

fsync() on the ile every second.

Utilities. We also evaluated the performance of SplitFS for

tar, git, and rsync. With git, we measured the time taken

for git add and git commit of all iles in the Linux kernel

ten times. With rsync, we copy a 7 GB dataset of 1200 iles

with characteristics similar to backup datasets [30] from one

PM location to another. With tar, we compressed the Linux

kernel 4.18 along with the iles from the backup dataset.

5.3 Correctness and recovery

Correctness. First, to validate the functional correctness of

SplitFS we run various micro-benchmarks and real-world

applications and compare the resulting ile-system state to

the ones obtained with ext4 DAX. We observe that the ile-

system states obtained with ext4 DAX and SplitFS are equiv-

alent, validating how SplitFS handles POSIX calls in its user-

space library ile system.

Recovery times. Crash recovery in POSIX and sync modes

of SplitFS do not require anything beyond allowing the

underlying ext4 DAX ile system to recover. In strict mode

however, all valid log entries in the operation log need to

be replayed on top of ext4 DAX recovery. This additional

log replay time depends on the number and type of valid log

entries in the log. To estimate the additional time needed

for recovery, we crash our real-world workloads at random

points in their execution and measure the log replay time. In

our crash experiments, the maximum number of log entries

to be replayed was 18,000 and that took about 3 seconds

on emulated PM (emulation details in ğ5.8). In a worst-case

micro-benchmark where we perform cache-line sized writes

and crash with 2M (128MB of data) valid log entries, we

observed a log replay time of 6 seconds on emulated PM.

5.4 SplitFS system call overheads

The central premise of SplitFS is that it is a good trade-of

to accelerate data operations at the expense of metadata

operations. Since data operations are more prevelant, this

optimization improves overall application performance. To

validate this premise, we construct a micro-benchmark simi-

lar to FileBench Varmail [27] that issues a variety of data and

System call Strict Sync POSIX ext4 DAX

open 2.09 2.08 1.82 1.54

close 0.78 0.69 0.69 0.34

append 3.14 3.09 2.84 11.05

fsync 6.85 6.80 6.80 28.98

read 4.57 4.53 4.53 5.04

unlink 14.60 13.56 14.33 8.60

Table 6. SplitFS system call overheads. The table com-

pares the latency (in us) of diferent system calls for various

modes of SplitFS and ext4 DAX.

metadata operations. The micro-benchmark irst creates and

appends 16KB to a ile (as four appends, each followed by an

fsync()), closes it, opens it again, read the whole ile as one

read call, closes it, then opens and closes the ile once more,

and inally deletes the ile. The multiple open and close calls

were introduced to account for the fact that their latency

varies over time. Opening a ile for the irst time takes longer

than opening a ile that we recently closed, due to ile meta-

data caching inside U-Split. Table 6 shows the latencies we

observed for diferent system calls and they are reported for

all the three modes provided by SplitFS and for ext4 DAX

on which SplitFS was built.

We make three observations based on these results. First,

data operations on SplitFS are signiicantly faster than on

ext4 DAX. Writes especially are 3ś4× faster. Second, meta-

data operations (e.g., open(), close(), etc.) are slower on

SplitFS than on ext4 DAX, as SplitFS has to setup its own

data structures in addition to performing the operation on

ext4 DAX. In SplitFS, unlink() is an expensive operation

because the ile mappings that are created for serving reads

and overwrites need to be unmapped in the unlink() wrap-

per. Third, as the consistency guarantees provided by SplitFS

get stronger, the syscall latency generally increases. This in-

crease can be attributed to more work SplitFS has to do

(e.g., logging in strict mode) for each system call to provide

stronger guarantees. Overall, SplitFS achieves its objective

of accelerating data operations albeit at the expense of meta-

data operations.

5.5 SplitFS performance breakdown

Weexamine how the various techniques employed by SplitFS

contribute to overall performance.We use twowrite-intensive

microbenchmarks: sequential 4KB overwrites and 4KB ap-

pends. An fsync() is issued every ten operations. Figure 3

shows how individual techniques introduced one after the

other improve performance.

Sequential overwrites. SplitFS increases sequential over-

write performance by more than 2× compared to ext4 DAX
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Memory usage. SplitFS using a maximum of 100MB to

maintain its own metadata to help track diferent iles, the

mappings between ile ofsets and mmap()-ed regions, etc.

In strict mode, SplitFS additionally uses 40MB to maintain

data structures to provide atomicity guarantees.

CPU utilization. SplitFS uses a background thread to han-

dle various deferred tasks (e.g.,, stage ile allocation, ile clo-

sures). This thread utilizes one physical thread of the ma-

chine, occasionally increasing CPU consumption by 100%.

6 Related Work

SplitFS builds on a large body of work on PM ile systems

and building low-latency storage systems. We briely de-

scribe the work that is closest to SplitFS.

Aerie. Aerie [28] was one of the irst systems to advocate

for accessing PM from user-space. Aerie proposed a split

architecture similar to SplitFS, with a user-space library ile

system and a kernel component. Aerie used a user-space

metadata server to hand out leases, and only used the kernel

component for coarse-grained activities like allocation. In

contrast, SplitFS does not use leases (instead making most

operations immediately visible) and uses ext4 DAX as its ker-

nel component, passing all metadata operations to the kernel.

Aerie proposed eliminating the POSIX interface, and aimed

to provide applications lexibility in interfaces. In contrast,

SplitFS aims to eiciently support the POSIX interface.

Strata. The Strata [19] cross-device ile system is similar to

Aerie and SplitFS in many respects. There are two main

diferences from SplitFS. First, Strata writes all data to a

process-private log, coalesces the data, and then writes it to

a shared space. In contrast, only appends are private (and

only until fsync) in SplitFS; all metadata operations and

overwrites are immediately visible to all processes in SplitFS.

SplitFS does not need to copy data between a private space

and a shared space; it instead relinks data into the target ile.

Finally, since Strata is implemented entirely in user-space,

the authors had to re-implement a lot of VFS functionality

in their user-space library. SplitFS instead depends on the

mature codebase of ext4 DAX for all metadata operations.

Quill and FLEX. Quill [11] and File Emulation with DAX

(FLEX) [32] both share with SplitFS the core technique of

transparently transforming read and overwrite POSIX calls

into processor loads and stores. However, while Quill and

FLEX do not provide strong semantics, SplitFS can provide

applications with synchronous, atomic operations if required.

SplitFS also difers in its handling of appends. Quill calls into

the kernel for every operation, and FLEX optimizes appends

by pre-allocating data beyond what the application asks for.

In contrast, SplitFS elegantly handles this problem using

staging iles and the relink primitive. While Quill appends

are slower than ext4 DAX, SplitFS appends are faster than

ext4 DAX appends. At the time of writing this paper, FLEX

has not been made open-source, so we could not evaluate it.

PM ile systems. Several ile systems such as SCMFS [31],

BPFS [7], and NOVA [33] have been developed speciically

for PM. While each ile system tries to reduce software over-

head, they are unable to avoid the cost of trapping into

the kernel. The relink primitive from SplitFS is similar to

the short-circuit paging presented in BPFS. However, while

short-circuit paging relies on an atomic 8-byte write, SplitFS

relies on ext4’s journaling mechanism to make relink atomic.

Kernel By-Pass. Several projects have advocated direct

user-space access to networking [29], storage [5, 10, 14, 20],

and other hardware features [3, 4, 22]. These projects typi-

cally follow the philosophy of separating the control path

and data path, as in Exokernel [12] and Nemesis [2]. SplitFS

follows this philosophy, but difers in the abstraction pro-

vided by the kernel component; SplitFS uses a PMile system

as its kernel component to handle all metadata operations,

instead of limiting it to lower-level decisions like allocation.

7 Conclusion

We present SplitFS, a PM ile system built using the split ar-

chitecture. SplitFS handles data operations entirely in user-

space, and routes metadata operations through the ext4 DAX

PM ile system. SplitFS provides three modes with varying

guarantees, and allows applications running at the same time

to use diferent modes. SplitFS only requires adding a single

system call to the ext4 DAX ile system. Evaluating SplitFS

with micro-benchmarks and real applications, we show that

it outperforms state-of-the-art PM ile systems like NOVA on

many workloads. The design of SplitFS allows users to ben-

eit from the maturity and constant development of the ext4

DAX ile system, while getting the performance and strong

guarantees of state-of-the-art PM ile systems. SplitFS is

publicly available at htps://github.com/utsaslab/splitfs.
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