


compaction concurrency across the entire tree and exploits

locality in the insertion workload to accelerate insertions.

By enabling fine-grained, localized compactions, STBε-trees

push ideas from PebblesDB to their logical conclusion.

Concurrency at the data structural level could be wasted

if the data structure is accessed through a cache with poor

concurrency. We designed a new user-level concurrent cache

for SplinterDB that uses fine-grained, distributed reader-writer

locks to avoid contention and ping-ponging of cache lines, as

well as a direct map to enable lock-free cache operations. All

the data read and written by SplinterDB flows through this

concurrent cache.

SplinterDB is not without limitations. Like all key-value

stores based on size-tiering, SplinterDB sacrifices the perfor-

mance of small range queries, although less than one might

expect. For large range queries, SplinterDB can use the full

device bandwidth. Similarly, size-tiering is known to tem-

porarily increase space usage until multiple versions of a sin-

gle data item are compacted together. Finally, SplinterDB was

designed for the most stringent requirements: small key-value

pairs and restricted memory. In cases where key-value pairs

are large or memory is plentiful, other choices may prove as

good as SplinterDB, and we make some of those comparisons

below.

In summary, the contributions of SplinterDB are as follows:

• We introduce the STBε-tree, which reduces write ampli-

fication and enables fine-grained concurrency in com-

paction operations (sections 2 to 3).

• We design and build a highly-concurrent memtable that

is able to drive enough operations to the underlying

STBε-tree (section 5).

• We combine the STBε-tree, memtable, and user-level

cache in SplinterDB, a key-value store that can fully

utilize NVMe SSD bandwidth. (section 6).

2 High-Level Design of STBε-trees
The basic STBε-tree design has three high-level goals:

• Handle inserts using bulk I/O, so that inserts are

bandwidth-bound.

• Minimize the number of times each key-value pair gets

read or written, so as to reduce write amplifiction, I/O am-

plification (i.e. read and write amplification), and CPU

costs of inserts.

• Maintain sufficient indexing information so that, under

normal conditions, each query requires at most one I/O.

In section 3 and section 4, we explain how we refine tree

operations to support high concurrency.

The STBε-tree shares many ideas with LSM trees, Bε-trees,

and external-memory hash tables from the theory literature.

See section 7 for details.

2.1 Overall Structure
The STBε-tree is a tree-of-trees, as shown in fig. 2. The back-

bone of the STBε-tree is the trunk tree (or just trunk). Each

node of the trunk has pointers to a collection of B-trees, called

2 01

1

0

2

3

1

0

1

0

1

0

2

0 201 01 1 00

memtable

Figure 2: The structure of a STBε-tree. The rectangles repre-

sent trunk nodes and the triangles represent branch trees and the

memtable. The inset boxes indicates the first active branch for each

pivot, referencing the pointer labels to the branches.

branch trees (or just branches). The branches store all of the

actual key-value pairs in the dataset. Each branch also has

an associated quotient filter, which serves the same purpose

as Bloom filters in LSM trees. Trunk nodes have a fanout

of up to F (typically 8 to 16), which is also an upper bound

on the number of branch trees. Branch trees have a fanout

determined by the number of pivot keys that can be packed

into a 4KB node.

The overall STBε-tree also has a memtable, which is used

to buffer insertions, as explained below. The memtable is also

a B-tree, just like the branches.

Within a trunk node, the branches are numbered from old-

est to youngest, i.e. all the key-value pairs in branch i were

inserted before any of the key-value pairs in branch i+ 1.

The number of branches For example, in fig. 2, the root of

the trunk tree has four branches, numbered 0 through 3, with

branch 0 being the oldest.

Furthermore, stored with each child pointer c in a trunk

node is an integer ac indicating the oldest branch that is active

for that child. Inactive branches are ignored during queries,

as explained below. So, for example, in fig. 2, only branches

2 and 3 are active for the root trunk node’s leftmost child,

branches 1, 2, and 3 are active for its middle child, and all

branches (0 through 3) are active for its rightmost child.

2.2 Queries

Queries begin by searching in the memtable. If the queried

item is not found in them memtable, then the query proceeds

down the trunk tree. Recall that all the data is stored in the

branches, and trunk nodes only contain metadata and pointers

to branches and filters.

When a query for a key k arrives at a trunk node t, it first

searches the pivots of t to determine the correct child c for k.

It then iterates over the active branches for c, from youngest

to oldest. For each branch b, it first queries b’s associated quo-

tient filter. If the quotient filter indicates that k is definitely not

in b, then the query moves on to the next branch. Otherwise,

is queries for k in b. If it finds a hit, it returns the result to the

caller. Otherwise, it moves on to the next branch. If none of

the branches contain k, then the query recurses to c.

Analysis. We now explain why queries take at most one I/O

in common configurations: those which use at least 32-byte



key-value pairs and have RAM which is at least 10% of the

dataset size.

The memory used by filters and branch tree indices is

bounded as follows. Quotient filters use about 1–2 bytes per

key, so the overhead of quotient filters is greatest when key-

value pairs are small. With 32-byte key-value pairs, quotient

filters will be about 6% of the total database size. Branch trees

will have a very high fanout, e.g. ≈ 128 for 4KB nodes, so the

interior of the branch trees will be less than 1% of the total

database size. Trunk nodes contain only metadata about the

branches and filter, and so use negligiable RAM. Therefore

all the indexing information will fit comfortably in a RAM

that is ≈ 7% of the total database size. For larger keys, e.g.

256 bytes, the branch trees will have a fanout of only about

16, and hence the interior nodes could be up to 6% of the total

database size. However, the quotient filters will be less than

1% of the data size, so the indexing data will still be less than

10% of the database size.

Thus the only I/Os during a query will be to load leaves

of branch trees. However, the false positive rate of quotient

filters with two bytes per key is < 1%, which is low enough to

ensure that most queries do not encounter any false positives

from the quotient filters that they query. Hence most queries

will query exactly one branch tree, which will contain the

desired key-value pair. Queries for keys that are not present

in the database will usually require no I/Os at all.

2.3 Insertions

When an item is inserted, it is first buffered in the memtable.

When the memtable is full, it is added to the root as a new

branch, say branch i. We also construct a quotient filter for

the memtable at this time. We call the process of adding the

memtable to the root of the trunk an incorporation.

The size of the memtable affects performance in the fol-

lowing ways. If the memtable gets too large, then some of its

nodes will get evicted from RAM and, once enough nodes

spill, a workload of random inserts would require essentially

one random I/O per insert, contradicting our goal of han-

dling inserts using bulk I/O. For most systems, this means the

memtable should be kept substantially smaller than RAM, e.g.

at most a few gigabytes for typical hardware configurations.

On the other hand, the memtable will eventually become a

branch, and we want branches to be large enough that scan-

ning a branch can use bulk I/O (i.e. if a branch consisted of

only a handful of nodes, then reading the entire branch would

be bottlenecked on I/O overheads, rather than bandwidth).

Branch scanning performance is critical for compactions and

range queries (see Sections 2.4 and 2.6). For most storage

devices, it is sufficient to ensure the branches (and hence the

memtable) are at least a few megabytes in size.

Thus, for most systems, the memtable can be anywhere

from a few megabytes to a few gigabytes in size. Since we are

specifically interested in building a system that is robust to

low-memory situations, and since making the memtable larger

has diminishing returns in terms of scanning throughput, we

select a maximum memtable size m that is just comfortably

large enough to ensure efficient scanning performance. In our

prototype, m = 24MB.

2.4 Flushing and Compaction

We cannot keep adding new branches to the root trunk in-

definitely. Eventually, the root will fill up and have no more

room for branch pointers. This solved by compacting data

and flushing it to its children.

This section describes a basic version of flushing and com-

paction which captures the basic underlying mechanics of

a STBε-tree. In section 3, we describe SplinterDB’s more-

involved flush-then-compact policy which leverages its Bε-

tree structure to expose more compaction concurrency and

optimize non-random insertion workloads.

In this simplified version, when a trunk node is full, data

is removed from it by repeatedly compacting some of its

branches into a single branch and flushing the resulting

branch to a child until the parent is no longer full (see fig. 3).

As in LSM trees, compaction is necessary to keep queries

fast. Without compaction, the number of branches that must

be queried would grow without bound.

A node p is considered to be full when its branches contain

F ×m bytes of active key-value pairs, where F is the fanout

and m is the memtable capacity in bytes. When p becomes

full, the child c with the most active key-value pairs is chosen

and p is flushed into c. We construct a new branch b by

compacting all the branches in p that are active for c. Note

that the branches in p may contain keys for any of p’s children,

not just c, so when we compact the branches for a flush to c,

we scan over only the portions of each branch that contain

keys destined for c. We then add b to c as c’s youngest branch.

We also build a quotient filter for b and store a pointer to the

filter in c. Finally, we mark all the branches in p as inactive

for c, so they will not be flushed to c again. Any branches of

p that were active only for c are no longer active for any of

p’s children and can be garbage collected.

Since branches are large, compacting the branches for c

can proceed at disk bandwidth. Furthermore, we always flush

to the child with the most pending items in the parent. This

ensures that the resulting branch b will have at least m items

in it, and hence will be efficient to scan when we, at some

point in the future, flush it from the child to one of its children.

Analysis. Each time a key-value pair participates in a com-

paction, it moves one level down the trunk tree. Thus the

worst-case write amplification of the STBε-tree is O(logF N),
which is the same as in a size-tiered LSM tree. Level-tiered

LSM trees and (normal) Bε-trees have a substantially larger

write amplification of O(F logF N). In Section 3, we describe

our flush-then-compact strategy, which enables some key-

value pairs to skip compaction at some levels, particularly

when the workload exhibits locality.



10 010 0

2 0 2 01 4

1

0

2

3

1
0

1
0

2

1

0

2

3

Figure 3: In a STBε-tree, a flush to a pivot P consists of compacting

its active key-value pairs (from its branches) into a new branch in

the child. The dashed arrow indicates compaction.

2.5 Splitting

When a trunk leaf is full, it is split, and similarly when a

trunk internal node has more than F pivots, it is split. As in

standard B-trees and Bε-trees, the I/O costs of splitting and

merging do not asymptotically change the costs of inserts. See

Section 4 for how we make splitting and merging compatible

with hand-over-hand locking in STBε-trees.

2.6 Iterators and Scans

To construct an iterator starting from key k, we walk the trunk

search path for k, constructing B-tree iterators (also starting at

k) for each active branch along the path. We then construct a

merge iterator on top of the B-tree iterators, which simply re-

turns the smallest key from among all of the underlying B-tree

iterators. The merge iterator can be efficiently implemented

using a heap.

While constructing the B-tree iterators, we also compute

an upper bound u for the leaf of k’s search path. As soon as

the merge iterator returns a key that is greater or equal to u,

we tear down the merge iterator and all the B-tree iterators

and rebuild them, starting from u.

2.7 Deletions and Updates

Deletions are implemented through tombstone messages, i.e.

a key-value pair with special value indicating that the key has

been deleted. More generally, the STBε-tree supports update

messages that encode a function to be applied to the value

associated with a key.

3 Flush-then-Compact

This section describes the flush-then-compact algorithm,

which improves the I/O and CPU concurrency of compactions

during flushing and improves the performance of update work-

loads with locality, such as sequential workloads. The idea

behind flush-than-compact is to decouple the flushing step

from the compaction step, as shown in fig. 4.

In a flush, the references to the child’s active branches are

copied from the parent to the child, along with references

to their quotient filters, as shown in fig. 4. The child’s active

branch counter in the parent is updated to reflect the flush, just

as before. At this point the parent and child are in a consistent

state and any locks can be released. Since a flush is just a

10 010 010 0

2 0 2 0 2 01 4 4

compaction

1
0

2
3

1
0

2
3

1
0 1

0

2
3

4

1
0

2

1
0

2
3

flush

Figure 4: With the flush-then-compact policy, flushes are broken

into two steps. First references to the active branches are flushed

to the child and removed from the parent (by setting the pivot’s

active branch number). Then those branches are compacted by an

asychronous process. The compaction stage is performed without

holding a lock on the node, and during this time it can still flush, be

flushed into, split and by queried.

pointer swing, write locks are held very briefly.

Note that branches can now be referenced by multiple trunk

nodes, so branches are reference counted.

From here, if the child is full, we will perform a flush from

the child to its children, before initiating any compactions

(hence the name “flush-then-compact”). This flush will copy

the newly arrived branches from the child to one or more of its

children, exactly the same way that the branches were flushed

to the child. This process can repeat recursively.

Once all the flushes have completed, we schedule back-

ground jobs to compact all the new branches at each node

that received a flush. The background jobs will construct the

new branches and need to acquire write locks only to replace

the old branch pointers with a pointer to the newly created

branch.

Flush-then-compact accelerates non-random workloads.

Since we perform flushes before compactions, some of the

branches involved in a compaction at node p may already

be inactive for some of p’s children when we perform the

compaction. This means we can skip over those keys when

we compact those branches. And, since branches are stored as

B-trees, we can skip over those key ranges efficiently. Thus

we effectively avoid compacting those keys at p’s level in the

STBε-tree.

To see why this accelerates non-random insertion work-

loads, consider an extreme case: a workload of insertions all

for a single trunk leaf, ℓ. For simplicity, assume also for the

moment that all the nodes on the path from the root to ℓ have

zero branches. The memtable will repeatedly fill with key-

value pairs for ℓ and get incorporated into the root. Once the

root fills, it will flush to its child c along the path to ℓ. This

will cause c to immediately become full and flush to its child.

This process will repeat until all the branches arrive at ℓ.

At that point, the system will schedule background com-

pactions for each trunk node along the path from the root to ℓ.
However, at each node other than ℓ, there will be no live data

in any of the branches. The compactions will thus skip all the

data in the branches, resulting in empty branches at each inte-

rior node. Consequently the interior nodes will again be left

with zero branches. Thus only ℓ will have a non-degenerate



compaction. As a result, the new key-value pairs will partic-

ipate in only one compaction, and hence the STBε-tree will

have a write amplification of 1 for this workload.

Now consider the case when the nodes along the path to ℓ
do not have zero branches. The first few times the root fills,

it may choose to flush to some child c′ that is not along the

path to ℓ. This would happen if the root happened to contain

more items for c′ than c. However, as long as the workload

consists only of items for ℓ, eventually the root will contain

more items for c than for any of its other children. From that

point forward, it will always flush to c. Then the same process

will repeat at c. Eventually, each time the root fills, the system

will flush all the new branches to ℓ, as described above.

Thus this flushing protocol automatically adapts to the

insertion workload without knowing a priori what that work-

load is. Furthermore, if the workload changes then, after some

time, the flushing decisions will adapt to the new workload

automatically.

Furthermore, this flushing algorithm exploits less-than-

perfect locality automatically. For example, suppose the inser-

tion workload consists almost entirely of key-value pairs for

ℓ, but a few random items for other leaves. Almost every time

the root fills, it will flush to c, and the process described above

will occur. However, each flush will leave a few new items in

the root. This cruft will accumulate, eventually causing the

root to flush to a child other than c, cleaning out some cruft.

After that, the root will resume flushing to c until enough cruft

accumulates again. Thus most data will get flushed directly

to ℓ, and hence have a write amplification of 1, but a small

amount of data will get compacted at every level.

As these examples show, the flush-then-compact algorithm

is much more robust than the special-case optimizations fre-

quently implemented for sequential insertions. Special-case

optimizations can be foiled by a few random insertions sprin-

kled into a sequential workload. Flush-then-compact, on the

other hand, exploits locality rather than sequentiality. In sec-

tion 6.3 we show empirically that flush-then-compact enables

SplinterDB to outperform other systems on near-sequential

workloads.

Flush-then-compact exposes concurrency. Flush-then-

compact improves concurrency by setting up several com-

pactions and then launching them simultaneously, which im-

proves both CPU and I/O parallelism. The hierarchical nature

of the Bε-tree structure makes it trivially safe to perform com-

pactions concurrently at different trunk nodes. In a standard

compact-then-flush approach, each time the root is flushed,

it initiates a single compaction. The system would not start

another compaction until the root is filled (and flushed) again.

4 Preemptive Splitting for STBε-trees

Splits and merges pose problems for hand-over-hand locking

in B-trees (and Bε-trees). Hand-over-hand locking proceeds

from root to leaf, but splits and merges proceed from the

leaves up.

An approach to solving this issue in B-trees is to use pre-

emptive splitting and merging [40]. During a B-tree insert, if

a child already has the maximum number of children, then

it is split while the insertion thread still holds a lock on its

parent. Then the insertion can release the parent’s lock and

proceed down the tree, assured that the child will not need

to split again as part of this insertion. Analogously, deletions

merge a child with one of its neighbors if the child has the

minimum number of children. This works because insertion

and deletions can increase or decrease the number of children

of a node by at most 1.

This approach does not work in Bε-trees, because a flush

to a leaf could cause that leaf to split multiple times. In STBε-

trees with flush-then-compact, we can move all pending mes-

sages along a root-to-leaf path to the leaf before performing

any compactions, splits, or merges. The total number of mes-

sages moved to the leaf is bounded by O(Fm logF N), i.e. the

capacity of a trunk node times the height of the tree. The leaf

can therefore split into as many as O(logF N) new leaves of

size B. Similarly, a collection of flushes full of delete mes-

sages to several leaves of a single parent can reduce the par-

ent’s number of children by O(logF N). In practice, logF N is

less than 10 for typical fanouts F ≈ 8 and dataset size N ≤ 280

key-value pairs.

We extend preemptive splitting and merging to STBε-trees

as follows. We reserve space in each node to accommodate

up to F +H children, where H is an upper bound on the

tree height, e.g. H = 10. We then apply preemptive splitting,

except we preemptively split a node during a flush if its fanout

is above F . For merges, we take a similar approach. If, during

a flush, we encounter a node with less than F/2 children, then

we merge or rebalance it with one of its siblings.

Thus all operations on the STBε-tree—flushes, com-

pactions, splits, and merges—proceed from root to leaf and

can therefore use hand-over-hand locking.

The mechanisms for flush-then-compact make it easy to

handle branches during splits. Recall that each branch can

be marked dead or alive for each child, and branches are

refcounted and hence can be shared by multiple trunk nodes.

Thus we can split a trunk node by simply giving its new sibling

references to all the same branches as the node had before

the split. In the new node, we copy the liveness information

for each branch along with the children that are moved to the

new sibling.

5 From STBε-trees to SplinterDB
In this section, we discuss the details of SplinterDB’s im-

plementation, which addresses the concurrency and memory

bottlenecks associated with driving NVMe devices to full

bandwidth.

5.1 Branch Trees and Memtables
SplinterDB uses the same B-tree implementation for both its

branches and its memtables, although there are some differ-

ences to optimize for their use cases.



Branch trees, extents, and pre-fetching. When a branch is

created from a compaction, its key-value pairs are packed

into the leaves of the B-tree, and the leading edge of internal

nodes are created to index them. The nodes in each level

are allocated in extents of 32 pages, and the header of each

node stores the address of the following node, but also of the

next extent. In this way, the nodes of each level form a singly

linked list.

Iteration through a branch is performed by walking the

linked list formed by its leaves. Whenever the iterator reaches

the beginning of a new extent, it issues an asynchronus

prefetch request for the next extent. The extent length is con-

figurable to tune to the latency of the storage device.

Memtables. The basic design of the memtables mirrors that

of the branch B-trees, but includes some optimizations to

increase their insertion performance and concurrency.

As in the case of the static branch trees, the nodes on each

level of the memtable form a singly-linked list, and nodes

are allocated in extents. However, because nodes are created

on demand as nodes split, we do not try to guarantee that

successive nodes reside in the same extent. Furthermore, since

memtables are almost always in RAM, we do not perform

prefetching during memtable traversals.

The memtable uses hand-over-hand locking together with

preemptive splitting, as described by Rodeh [40]. To increase

concurrency, write locks are only obtained on internal nodes

when a split is required.

To ensure locks are held briefly, especially on nodes near

the top of the tree, the tree uses a new technique called shadow

splitting. To split a node c, a write lock is obtained on c and

the parent p. We allocate a physical block number (PBN) n

for the new sibling, c′ and add it as part of a new pivot in p.

However, in the cache, we initially point n to c. At this point,

we can release all locks on p. Now, we fill in the contents

of c′, update the PBN n to point to c′ in the cache, and then

release all locks on c′. Finally, we upgrade to a write lock on

c, truncate its child list (via a metadata operation) and then

release all locks on c.

5.2 User-level Cache and Distributed Locks

SplinterDB has a single user-level cache which keeps recently

accessed pages in memory. Almost all the memory that Splin-

terDB uses comes from this cache, so pages from all parts

of the data structure—trunk node pages, branch pages, filter

pages and memtable pages—are all stored there. Only cache

and file-system metadata, as well as small allocations used to

enqueue compaction tasks are allocated from system memory.

This design allows nearly all the free memory to be used

for whichever operations are being performed, so that parts

of the data structure which are not in use can be paged out.

The cache at a high level is a clock cache, but with several

features designed to improve concurrency.

Each thread has a thread-local hand of the clock, which

covers 64 pages. The thread draws free pages from the hand,

and if it has exhausted them, it acquires a new hand from a

global variable using a compare-and-swap. It then writes out

dirty pages from the hand which is a quarter turn ahead, and

evicts any evictable pages in its new hand. Thus threads clean

and evict pages from distinct cache lines within the cache

metadata, avoiding contention and cache-line ping-ponging.

SplinterDB uses distributed reader-writer locks [24] to

avoid cache-line thrashing between readers. Briefly, a dis-

tributed reader-writer lock consists of a per-thread reader

counter and a shared write bit. Each reader counter is on

a separate cache line to avoid cache-line ping-ponging when

readers acquire the lock. Writers set the write bit (using com-

pare and swap) and then wait for all the read counters to

become zero. Readers acquire the lock by incrementing their

read counter and then checking that the writer bit is 0. If it is

not, they decrement their reader counter and restart.

Distributed reader-writer locks allow readers to scale es-

sentially perfectly linearly, at the cost that acquiring a write

lock is expensive. However, the design of SplinterDB makes

writing rare enough that this is a good trade-off.

We make distributed reader-writer locks space efficent by

storing each thread’s reader counters in an array indexed by

cache-entry index. Each reader counter is one byte, so the

total space used by locks is t × c bytes, where t is the number

of threads and c is the number of cache entries.

SplinterDB supports three levels of lock: read locks,

“claims”, and write locks. A claim is a read lock that can be

upgraded to a write lock. Only one thread can hold a claim at

a time. After obtaining a read lock, a thread may try to obtain

a claim by trying to set a shared claim bit with a test-and-set.

If this fails, they must drop the read lock and start over. Oth-

erwise, they can upgrade their claim to a write lock by setting

a shared write bit and waiting for all the read counters to go

to zero.

5.3 Quotient filters

Bloom filters [7] are the standard filter for most LSMs [8, 22,

39]. However, the cost of Bloom filter insertions can dominate

the cost of sorting the data in a compaction. Therefore modern

key-value stores often use more efficient filters; for example,

RocksDB uses blocked Bloom filters [38];

Similarly, SplinterDB uses quotient filters [4, 5, 36] instead

of Bloom filters. A full presentation of quotient filters is out

of scope for this paper, but we review their salient features

for SplinterDB. See Pandey, et al. for a full presentation on

quotient filters [36]. The key feature of quotient filters is that,

like blocked Bloom filters, each insert or query accesses O(1)
cache lines (and hence O(1) page accesses). Quotient filters

are roughly as space efficient as Bloom filters—for the range

of parameters used in SplinterDB, quotient filters use between

0.8× and 1.2× the space of a blocked Bloom filter. We view

the space as essentially a wash. Quotient filter inserts and

lookups also require only one hash function computation. In

past work, quotient filter insertions and queries were shown



to be 2-4× faster than in a Bloom filter.

A quotient filter for set S stores, without error, h(S) =
{h(x) | x ∈ S}, where h is a hash function. Since the quo-

tient filter stores h(S) exactly, all false positives are the result

of collisions under h. Thus each insertion or lookup requires

only one hash function computation. Furthermore, a quotient

filter stores the elements of h(S) in sorted order in a hash

table using a variant of linear probing. Thus most inserts and

lookups in a quotient filter access only 1 or 2 adjacent cache

lines. As a result, insertions and lookups in quotient filters are

typically 2-4× faster than in a Bloom filter. Finally, quotient

filters are space efficient, using slightly less space than Bloom

filters whenever the false positive rate ε is less than 1/64,

which is typical. For example, a quotient filter with ε = 0.1%

uses about 10% less space than a Bloom filter [36].

SplinterDB further reduces the CPU costs of filter building

during compaction by using a bulk build algorithm. During

the merging phase of compaction or when inserting into a

memtable, SplinterDB builds an unsorted array of all the

hashes of all the tuples compacted or inserted. The array is

then sorted (by hash value) and the quotient filter is built.

Since the quotient filter also stores the hashes in sorted order,

this means that the process of inserting all the hashes is a

linear scan of the sorted array and of the quotient filter. Hence

it has good locality and can benefit from cache prefetching.

5.4 Logging and Recovery
SplinterDB uses per-thread write-ahead logical logging for

recovery. By using per-thread logs, we avoid contention on

the head of a single, shared log.

The challenge is to resolve the order of operations across

logs after a crash. For this, we use a technique similar to

“cross-referenced logs” [25]. Our scheme works as follows.

Each leaf of the memtable has a generation number. Whenever

a thread inserts a new message into the memtable, it records

and increments the generation number of the memtable leaf

for the inserted key. It then appends the inserted message to

its per-thread log, tagged with the leaf’s generation number.

During recovery, the generation numbers in the logs give a to-

tal order on the operations performed on each leaf (and hence

on all the keys for that leaf), so that the recovery procedure

can replay the operations on each key in the proper order.

When a leaf of the memtable splits, the new leaf gets the same

generation number as the old leaf.

6 Evaluation
We evaluate the performance of SplinterDB on several mi-

crobenchmarks and on the standard YCSB application bench-

mark [20]. We compare this performance against that of two

state-of-the-art key-value stores, RocksDB and PebblesDB.

The following questions drive our evaluation:

• How much does SplinterDB improve insertion perfor-

mance? To what extent is improvement achieved through

reduced write amplification and other factors?

• Despite being size-tired, how much does SplinterDB

mitigate [range] query performance? Can SplinterDB

utilize device bandwidth for large range queries?

• How much faster are sequential (or otherwise local) in-

sertions in SplinterDB? Do they have lower write ampli-

fication?

• Do point lookups scale with the number of threads?

6.1 Setup and Workloads

All results are collected on a Dell PowerEdge R720 with a

32-core 2.00 GHz Intel Xeon CPU, 256 GiB RAM and a

960GiB Intel Optane 905p PCI Express 3.0 NVMe device.

The block size used was 4096 bytes.

In general, we use workloads derived from YCSB traces

with 24B keys. We generally use 100B values, but also include

a set of YCSB benchmarks for 1KiB values. We instrumented

dry runs of YCSB in order to collect workload traces for the

load and A–F YCSB workloads and replay them on each of

the databases evaluated. In order to eliminate the overhead

of reading from a trace file during the experiment, the trace

replayer mmaps the trace file before starting the experiment.

We use the same traces for each system.

In general, we limit the available memory to 10% of the

dataset size or less. In order to perform the benchmarks on

reasonably sized datasets, we restrict the available system

memory with a type 1 Linux cgroup, sized to the target mem-

ory size plus the size of the trace, which we pin so that it

cannot be swapped out. Unless otherwise noted, the target

memory size is 4GiB. PebblesDB has an apparent memory

leak, which causes it to consume the available memory, so we

allow it to use the full system memory. On the YCSB load

benchmarks, this causes it to swap for a small portion at the

end, but this was less than 10% of the run time.

Unless otherwise noted, SplinterDB uses a max fanout

of 8, a memtable size of 24MiB and a total cache size of

3.25GiB. The difference between this cache size and the target

memory size of 4GiB is to accommodate other in-memory

data structures maintained by SplinterDB.

Each system is run with the thread count which yields the

highest throughput. RocksDB is configured to use background

threads equal to the number of cores minus the number of

foreground threads, with a minimum of 4. PebblesDB uses

its default number of background compaction threads. Splin-

terDB is configured without background compaction threads.

6.2 YCSB

We measure application performance using the Yahoo Cloud

Services Benchmark (YCSB). The core YCSB workloads

consist of load phases and run phases. The load phases create

a dataset by inserting uniformly random key-value pairs. The

run phases emulate various workload mixes. Workload A

is 50% updates, 50% reads, workload B is 95% reads, 5%

updates), workload C is 100% reads, workload D is read latest

(95% reads, 5% insertions), workload E is short range scans

(95% scans, 5% insertions) and workload F is read-modify-

writes (50% reads, 50% RMWs).









close to linearly with the scan length for scans of up to 100

key-value pairs. This suggests that for scans of this length,

the startup cost dominates the iteration cost, which is as ex-

pected. As the scan length increases, the effective bandwidth

of the scans approaches the device’s advertised sequential

read bandwidth, delivering 91% at scans of 1,000 key-value

pairs. At scans as small as 100 key-value pairs, SplinterDB

returns data at nearly half the bandwidth of the device.

7 Related Work

The STBε-tree is based on a Bε-tree, a data structure that has

been used in several file systems and databases [18, 27–29,

44, 48, 49]. The closest work to ours is Tucana [37], a Bε-tree

optimized for SSDs. They also focus on CPU cost, concur-

rency, and write amplification. Our work pushes this to the

even more demanding case of NVMe devices. SplinterDB im-

proves on techniques that have been applied to log-structured

merge (LSM) trees and key-value stores to reduce write am-

plification and increase concurrency.

Size-Tiering. Cassandra [19], Scylla [42] PebblesDB [39],

and RocksDB [8] (in “universal compaction” mode) use size-

tiering to reduce write amplification. Size tiering delays com-

paction of sorted runs in order to reduce write amplifica-

tion. This can harm query performance because queries must

search more runs to find the queried item. Fluid LSMs [16],

Dostoevsky [16], LSM bushes [17], and Wacky [17] use

hybrids between size-tiering and level-tiering to tune the

trade-off between write amplification and query performance.

See [39] for a survey of LSM-compaction schemes.

Size-tiering also decreases write amplification in Splin-

terDB. Because of the design of the STBε-tree, SplinterDB

further leverages size-tiering for flush-and-compact, which

greatly increases the concurrency of background operations.

Write amplification vs. range queries. Several systems

sacrifice range-query performance in order to reduce write am-

plification in other ways. Wisckey [34] reduces write amplifi-

cation by declustering their key-value store: they log values

and only store keys in the LSM-Tree. Since values are stored

on disk in arrival order, a range query must gather values from

the log. On NVMe, this is not a problem once the values are

4KB or larger. However, for smaller values, this can induce

huge read amplification, limiting range query performance to

a tiny fraction of device bandwidth. HashKV [10] builds on

Wisckey by introducing hash-based data-grouping to further

reduce write amplification, but inherits Wisckey’s range query

performance limitations.

Other approaches improve write amplification by sacrific-

ing range queries altogether. Conway et al. [14] describe a

write-optimized hash table, called the BOA, that also uses

size-tiering with an LSM. They also introduce the concept of

a routing filter, which extends the functionality of Bloom fil-

ters, in order to speed up queries. The principle advantage of

routing filters is that performance does not degrade as much

when they don’t fit in RAM. The BOA meets a provable lower

bound on the I/O costs of insertions and queries [26]. The

downside is that the BOA does not support range queries,

which are crucial to many key-value-store applications. LSM-

tries [46] organize the LSM tree using tries, resulting in re-

duced write amplification. However, LSM-tries do not support

range queries.

Other approaches. Researchers have also attempted to

reduce write amplification by exploiting special hardware

features such as flash translation layers [35] and vector in-

terfaces [45]. VT-Tree [43] uses indirection to avoid copy-

ing data that is already sorted, similar to “trivial moves” in

RocksDB and PebblesDB. TRIAD [1] reduces write amplifi-

cation by holding hot keys in memory, delaying compaction

until different runs have significant key overlap, and by reduc-

ing redundancy between log and LSM tree writes. All these

techniques are orthogonal to our work and can be used in

conjunction with our techniques.

Concurrency is also an important aspect of key-value store

performance. One of the first works in increasing concurrency

in LSM-based stores was cLSM [21] which introduces a new

compaction algorithm. Zuo et al. [52] show how to tune a

cuckoo hash for NVM. Such a scheme suffers from high write

amplification, since each insertion must re-write all keys in

a data block. Zuo et al. do not report write amplification

numbers but instead focus on concurrency.

Kourtis, et al. describe several systems-level optimizations

for improving key-value-store throughput on NVMe, such as

efficient use of user-level asynchronous I/O and low-latency

scheduling [31]. Their techniques are largely orthogonal to

the work in this paper.

8 Analysis
We begin with a disk-space analysis, showing that, in STBε-

tree, size-tiered compaction and flush-then-compact do not

blow up the on-disk space usage by more than a constant fac-

tor. We then use this to analyze memory usage from indexes

and filters, and finally summarize STBε-tree’s asymptotic per-

formance.

Disk-space. Like level-tiered and size-tiered LSM trees and

Bε-trees, the STBε-tree can have a space overhead when there

are updates to existing keys. This is because all of these data

structures buffer updates and apply them lazily. We begin

by showing that the space used by the STBε-tree is O(N),
where N is the number of distinct keys in the database. This

compares quite favorably to the space of a size-tiered LSM,

which can be as bad as Θ(FN).

Theorem 1. Let N be the number of distinct keys in a STBε-

tree. Then the STBε-tree uses O(N) space on disk.

Proof. We give only a sketch. The four key observations in

the proof are that (1) every leaf must be at least half full of

distinct keys due to the splitting and compaction policy, (2)

each branch has size at most mF due to the flushing policy,

(3) each non-leaf trunk node references at most 3F branches



due to the flushing policy, and (4) the number of non-leaf

trunk nodes is at most O(1/F) times the number of leaves.

Together, these prove that the total amount of data referenced

in the interior of the tree is at most a constant factor times the

number of distinct keys in the leaves.

For a workload of random updates to existing keys, we

estimate that the space blowup would be roughly a factor of

3. If the workload also contains insertions of new keys, then

the blowup would be even lower.

Asymptotic analysis. The height of the trunk is

O(logF N/Fm), and each item gets compacted at most

once per level, so the I/O complexity of random insertions are

O(
logF N/Fm

B
), which is the same as in a size-tiered LSM tree.

Assuming that all index nodes and filters fit in RAM, the

I/O complexity of random point queries is O(1) I/Os, since

the filters will eliminate all but the correct branch from being

searched.

Long sequential insertion workloads will cost O(1/B) I/Os

per item. The I/O efficiency comes from the fact that, once

the first batch of items gets flushed to a leaf, the root-to-leaf

path for future insertions will be in cache, so no more I/O

will be needed, except to write out the new data. This also

workload has O(1) pass complexity because our flush-then-

compact policy will skip compactions at intermediate layers.

A straightforward implementation of a size-tiered LSM, on

the other hand, will have the same I/O and pass complexity

for both random and sequential insertion workloads.

Range queries returning k items cost O(F logF N/Fm) I/Os

to get started (since the range query must perform a query

in every branch along the root-to-leaf path of the query key).

Thereafter, they cost O(k/B) I/Os to return all the items. This

is comparable to the I/O cost of range queries in a size-tiered

LSM tree.

9 Conclusion

Our work shows that, by combining ideas from LSM trees

and Bε-trees, we can build a key-value store that outperforms

current key-value stores by up to an order of magnitude on

insertions, matches or outperforms on lookups, and is com-

petitive on range queries.

SplinterDB targets the common case of small key-value

pairs and non-uniformly random workloads. Many real-world

key-value workloads come from different clients, some of

which might be performing very localized operations, while

others are performing relatively random operations. Splin-

terDB exploits whatever locality is available.

SplinterDB makes contributions to both the data-structural

and systems design of high-performance key-value stores. We

show how to get the low write amplification of size-tiered data

structure while maintaining the high query throughput and

workload-adaptivity of a Bε-tree. We also describe several

systems issues, such as cache, lock, and memtable design,

that one must address to extract the full performance of high-

performance NVMe devices.

10 Acknowledgements
We would like to thank Ittai Abraham for his insight and

contribution to this project.

We would also like to thank the anonymous reviewers and

our shepherd, Ashvin Goel, for their insightful comments.

Vijay Chidambaram was partially supported by an NSF

CAREER Award #1751277.

References
[1] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy

Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan

Gupta, and Pavan Konka. TRIAD: creating synergies

between memory, disk and log in log structured key-

value stores. In Dilma Da Silva and Bryan Ford, editors,

USENIX ATC, pages 363–375. USENIX Association,

2017.

[2] Michael A. Bender, Jonathan W. Berry, Rob Johnson,

Thomas M. Kroeger, Samuel McCauley, Cynthia A.

Phillips, Bertrand Simon, Shikha Singh, and David

Zage. Anti-persistence on persistent storage: History-

independent sparse tables and dictionaries. In Tova

Milo and Wang-Chiew Tan, editors, SIGMOD, pages

289–302. ACM, 2016.

[3] Michael A. Bender, Martin Farach-Colton, Jeremy T.

Fineman, Yonatan R. Fogel, Bradley C. Kuszmaul, and

Jelani Nelson. Cache-oblivious streaming b-trees. In

Phillip B. Gibbons and Christian Scheideler, editors,

SPAA, pages 81–92. ACM, 2007.

[4] Michael A. Bender, Martin Farach-Colton, Rob John-

son, Russell Kraner, Bradley C. Kuszmaul, Dzejla

Medjedovic, Pablo Montes, Pradeep Shetty, Richard P.

Spillane, and Erez Zadok. Don’t thrash: How to cache

your hash on flash. Proc. VLDB Endow., 5(11):1627–

1637, 2012.

[5] Michael A. Bender, Martin Farach-Colton, Rob John-

son, Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo

Montes, Pradeep Shetty, Richard P. Spillane, and Erez

Zadok. Don’t thrash: How to cache your hash on flash.

In Irfan Ahmad, editor, HotStorage. USENIX Associa-

tion, 2011.

[6] Michael A. Bender, Martin Farach-Colton, Rob John-

son, Simon Mauras, Tyler Mayer, Cynthia A. Phillips,

and Helen Xu. Write-optimized skip lists. In Emanuel

Sallinger, Jan Van den Bussche, and Floris Geerts, edi-

tors, SIGMOD, pages 69–78. ACM, 2017.

[7] Burton H. Bloom. Space/time trade-offs in hash coding

with allowable errors. Commun. ACM, 13(7):422–426,

1970.



[8] Dhruba Borthakur. Rocksdb github wiki – performance

benchmarks, 2013.

[9] Gerth Stølting Brodal and Rolf Fagerberg. Lower

bounds for external memory dictionaries. In Proceed-

ings of the Fourteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, January 12-14, 2003, Baltimore,

Maryland, USA, pages 546–554. ACM/SIAM, 2003.

[10] Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and

Yinlong Xu. Hashkv: Enabling efficient updates in KV

storage via hashing. In Gunawi and Reed [23], pages

1007–1019.

[11] Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,

Michael A. Bender, William Jannen, Rob Johnson,

Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and

Martin Farach-Colton. How to fragment your file sys-

tem. login Usenix Mag., 42(2), 2017.

[12] Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Ben-

der, William Jannen, Rob Johnson, Donald E. Porter,

and Martin Farach-Colton. Filesystem aging: It’s more

usage than fullness. In Daniel Peek and Gala Yadgar,

editors, HotStorage. USENIX Association, 2019.

[13] Alexander Conway, Ainesh Bakshi, Yizheng Jiao,

William Jannen, Yang Zhan, Jun Yuan, Michael A. Ben-

der, Rob Johnson, Bradley C. Kuszmaul, Donald E.

Porter, and Martin Farach-Colton. File systems fated for

senescence? nonsense, says science! In Geoff Kuenning

and Carl A. Waldspurger, editors, USENIX FAST, pages

45–58. USENIX Association, 2017.

[14] Alexander Conway, Martin Farach-Colton, and Philip

Shilane. Optimal hashing in external memory. In Ioan-

nis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,

and Donald Sannella, editors, 45th International Col-

loquium on Automata, Languages, and Programming,

ICALP 2018, July 9-13, 2018, Prague, Czech Repub-

lic, volume 107 of LIPIcs, pages 39:1–39:14. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[15] Niv Dayan, Manos Athanassoulis, and Stratos Idreos.

Monkey: Optimal navigable key-value store. In Sali-

hoglu et al. [41], pages 79–94.

[16] Niv Dayan and Stratos Idreos. Dostoevsky: Better space-

time trade-offs for lsm-tree based key-value stores via

adaptive removal of superfluous merging. In Gautam

Das, Christopher M. Jermaine, and Philip A. Bernstein,

editors, SIGMOD, pages 505–520. ACM, 2018.

[17] Niv Dayan and Stratos Idreos. The log-structured merge-

bush & the wacky continuum. In Peter A. Boncz, Stefan

Manegold, Anastasia Ailamaki, Amol Deshpande, and

Tim Kraska, editors, SIGMOD, pages 449–466. ACM,

2019.

[18] John Esmet, Michael A. Bender, Martin Farach-Colton,

and Bradley C. Kuszmaul. The tokufs streaming file sys-

tem. In Raju Rangaswami, editor, HotStorage. USENIX

Association, 2012.

[19] Apache Software Foundation. Apache Cassandra, 2019.

[20] Steffen Friedrich and Norbert Ritter. YCSB. In Ency-

clopedia of Big Data Technologies. Springer, 2019.

[21] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and

Idit Keidar. Scaling Concurrent Log-structured Data

Stores. In Proceedings of the Tenth European Confer-

ence on Computer Systems (Eurosys 15), page 32. ACM,

2015.

[22] Inc. Google. Leveldb, 2019.

[23] Haryadi S. Gunawi and Benjamin Reed, editors. 2018

USENIX Annual Technical Conference, USENIX ATC

2018, Boston, MA, USA, July 11-13, 2018. USENIX

Association, 2018.

[24] W. C. Hsieh and W. E. Weihl. Scalable reader-writer

locks for parallel systems. In IPPS, 1992.

[25] Yihe Huang, Matej Pavlovic, Virendra J. Marathe,

Margo Seltzer, Tim Harris, and Steve Byan. Closing the

performance gap between volatile and persistent key-

value stores using cross-referencing logs. In Gunawi

and Reed [23], pages 967–979.

[26] John Iacono and Mihai Patrascu. Using hashing to solve

the dictionary problem (in external memory). CoRR,

abs/1104.2799, 2011.

[27] William Jannen, Michael A. Bender, Martin Farach-

Colton, Rob Johnson, Bradley C. Kuszmaul, and Don-

ald E. Porter. Lazy analytics: Let other queries do the

work for you. In Nitin Agrawal and Sam H. Noh, editors,

HotStorage. USENIX Association, 2016.

[28] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-

tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant

Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-

der, Martin Farach-Colton, Rob Johnson, Bradley C.

Kuszmaul, and Donald E. Porter. Betrfs: A right-

optimized write-optimized file system. In Jiri Schindler

and Erez Zadok, editors, USENIX FAST, pages 301–315.

USENIX Association, 2015.

[29] William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-

tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant

Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-

der, Martin Farach-Colton, Rob Johnson, Bradley C.

Kuszmaul, and Donald E. Porter. Betrfs: Write-

optimization in a kernel file system. TOS, 11(4):18:1–

18:29, 2015.



[30] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,

Sam H. Noh, and Young ri Choi. Slm-db: Single-

level key-value store with persistent memory. In 17th

USENIX Conference on File and Storage Technologies

(FAST 19), pages 191–205, Boston, MA, 2019. USENIX

Association.

[31] Kornilios Kourtis, Nikolas Ioannou, and Ioannis Kolt-

sidas. Reaping the performance of fast NVM storage

with udepot. In 17th USENIX Conference on File and

Storage Technologies (FAST 19), pages 1–15, Boston,

MA, 2019. USENIX Association.

[32] Bredley Kuszmaul. Tokutek White Paper: A Compari-

son Of Log-Structured Merge (LSM) And Fractal Tree

Indexing, 2014.

[33] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy

Zwaenepoel. Kvell: the design and implementation of a

fast persistent key-value store. In Tim Brecht and Carey

Williamson, editors, SOSP, pages 447–461. ACM, 2019.

[34] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-

drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Wisckey: Separating keys from values in ssd-conscious

storage. In Proceedings of the 14th USENIX Confer-

ence on File and Storage Technologies (FAST 16), pages

133–148, 2016.

[35] Leonardo Marmol, Swaminathan Sundararaman, Nisha

Talagala, and Raju Rangaswami. Nvmkv: a scalable,

lightweight, ftl-aware key-value store. In 2015 USENIX

Annual Technical Conference (USENIX ATC 15), pages

207–219, 2015.

[36] Prashant Pandey, Michael A. Bender, Rob Johnson, and

Robert Patro. A general-purpose counting filter: Making

every bit count. In Salihoglu et al. [41], pages 775–787.

[37] Anastasios Papagiannis, Giorgos Saloustros, Pilar

González-Férez, and Angelos Bilas. Tucana: Design and

implementation of a fast and efficient scale-up key-value

store. In 2016 USENIX Annual Technical Conference

(USENIX ATC 16), pages 537–550, Denver, CO, 2016.

USENIX Association.

[38] Felix Putze, Peter Sanders, and Johannes Singler. Cache-

, hash-, and space-efficient bloom filters. ACM Journal

of Experimental Algorithmics, 14, 2009.

[39] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,

and Ittai Abraham. Pebblesdb: Building key-value

stores using fragmented log-structured merge trees. In

Proceedings of the 26th Symposium on Operating Sys-

tems Principles, Shanghai, China, October 28-31, 2017,

pages 497–514. ACM, 2017.

[40] Ohad Rodeh. B-trees, shadowing, and clones. Transac-

tions on Storage, 2008.

[41] Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun

Yang, and Dan Suciu, editors. Proceedings of the 2017

ACM International Conference on Management of Data,

SIGMOD Conference 2017, Chicago, IL, USA, May 14-

19, 2017. ACM, 2017.

[42] Inc. Scylla. ScyllaDB: The real-time big data database,

2019.

[43] Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Mal-

pani, Binesh Andrews, Justin Seyster, and Erez Zadok.

Building workload-independent storage with vt-trees. In

Proceedings of the 11th USENIX Conference on File and

Storage Technologies (FAST 13), pages 17–30, 2013.

[44] Tokutek, Inc. TokuDB, 2014. http://www.tokutek.

com.

[45] Vijay Vasudevan, Michael Kaminsky, and David G. An-

dersen. Using vector interfaces to deliver millions of

iops from a networked key-value storage server. In

Proceedings of the Third ACM Symposium on Cloud

Computing (SOCC 12), page 8. ACM, 2012.

[46] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-

trie: An lsm-tree-based ultra-large key-value store for

small data items. In Shan Lu and Erik Riedel, editors,

2015 USENIX Annual Technical Conference, USENIX

ATC ’15, July 8-10, Santa Clara, CA, USA, pages 71–82.

USENIX Association, 2015.

[47] Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhi-

wen Liu, Changsheng Xie, and Xubin He. Geardb: A

gc-free key-value store on HM-SMR drives with gear

compaction. In Arif Merchant and Hakim Weather-

spoon, editors, USENIX FAST, pages 159–171. USENIX

Association, 2019.

[48] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,

Amogh Akshintala, Kanchan Chandnani, Pooja Deo,

Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-

tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,

and Donald E. Porter. Optimizing every operation in a

write-optimized file system. In Angela Demke Brown

and Florentina I. Popovici, editors, USENIX FAST, pages

1–14. USENIX Association, 2016.

[49] Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,

Amogh Akshintala, Kanchan Chandnani, Pooja Deo,

Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-

tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,

and Donald E. Porter. Writes wrought right, and other

adventures in file system optimization. TOS, 13(1):3:1–

3:26, 2017.



[50] Yang Zhan, Alexander Conway, Yizheng Jiao, Eric

Knorr, Michael A. Bender, Martin Farach-Colton,

William Jannen, Rob Johnson, Donald E. Porter, and

Jun Yuan. The full path to full-path indexing. In Nitin

Agrawal and Raju Rangaswami, editors, USENIX FAST,

pages 123–138. USENIX Association, 2018.

[51] Yang Zhan, Alexander Conway, Yizheng Jiao, Nirjhar

Mukherjee, Ian Groombridge, Michael A. Bender, Mar-

tin Farach-Colton, William Jannen, Rob Johnson, Don-

ald E. Porter, and Jun Yuan. How to copy files. In

Sam H. Noh and Brent Welch, editors, USENIX FAST,

pages 75–89. USENIX Association, 2020.

[52] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized

and high-performance hashing index scheme for persis-

tent memory. In Andrea C. Arpaci-Dusseau and Geoff

Voelker, editors, OSDI, pages 461–476. USENIX Asso-

ciation, 2018.


	Introduction
	High-Level Design of STB^e-trees
	Overall Structure
	Queries
	Insertions
	Flushing and Compaction
	Splitting
	Iterators and Scans
	Deletions and Updates

	Flush-then-Compact
	Preemptive Splitting for STB^e-trees
	From STB^e-trees to SplinterDB
	Branch Trees and Memtables
	User-level Cache and Distributed Locks
	Quotient filters
	Logging and Recovery

	Evaluation
	Setup and Workloads
	YCSB
	Sequential Insertion Performance
	Concurrency Scaling
	Scan Performance

	Related Work
	Analysis
	Conclusion
	Acknowledgements

