SplinterDB: Closing the Bandwidth Gap for NVMe Key-Value Stores

0

=]

Alex Conway* Abhishek Gupta' Vijay Chidambaran* Martin Farach-Colton®
Rick Spillanell Amy Taill Rob Johnson!!
July 16, 2020
! B SplinterDB BBRocksDB B PebblesDB
Abstract -~ 5 i
Q % ==l g"
Modern NVMe solid state drives offer significantly higher é’ § & <
bandwidth and lower latency than prior storage devices. Cur- 282 8 2 v
.- . c<=s 3 =
rent key-value stores struggle to fully utilize the bandwidth £ - =
of such devices. This paper presents SplinterDB, a new key-

value store explicitly designed for NVMe solid-state-drives.

SplinterDB is designed around a novel data structure (the
STBEé-tree) that exposes I/O and CPU concurrency and re-
duces write amplification without sacrificing query perfor-
mance. STBE-tree combines ideas from log-structured merge
trees and B®-trees to reduce write amplification and CPU
costs of compaction. The SplinterDB memtable and cache are
designed to be highly concurrent and to reduce cache misses.

We evaluate SplinterDB on a number of micro- and
macro-benchmarks, and show that SplinterDB outperforms
RocksDB, a state-of-the-art key-value store, by a factor of
6-10x on insertions and 2-2.6X on point queries, while
matching RocksDB on small range queries. Furthermore,
SplinterDB reduces write amplification by 2 x compared to
RocksDB.

1 Introduction
Key-value stores form an integral part of system infrastruc-
ture. Google’s LevelDB [22] and Facebook’s RocksDB [8] are
widely used, both within their companies and outside. Their
importance has spurred research into several aspects of key-
value store design, such as increasing write throughput, reduc-
ing write amplification, and increasing concurrency [1-3,6,8—
17,19,21,22,26,30-32,34,35,37,39,42,43,45-47,50-52].

Existing key-value stores face new challenges with the in-
creasing use of high-performance NVMe solid state drives
(SSDs). NVMe SSDs offer high throughput (S00K-600K
IOPS) and low latency (10-20 microseconds).

LevelDB and RocksDB struggle to utilize all the available
bandwidth in modern SSDs. For example, we find that for
the challenging but common case of small key-value pairs,

*Rutgers University and VMware Research Group; *Dropbox,
Inc.; ¥The University of Texas at Austin and VMware Research
Group; SRutgers University; 1VMware, Inc.; lVMware Research
Group; {aconway, vchidambaram, robj, rspillane, taiam} @ vmware.com;
abhi.gupta0290 @ gmail.com; martin @farach-colton.com

Figure 1: YCSB load throughput and write amplification benchmark
results with 24-byte keys and 100-byte values.

RocksDB is able to use only 30% of the bandwidth supplied
by an Optane-based Intel 905p NVMe SSD (even when using
20 or more cores).

We find that the bottleneck has shifted from the storage
device to the CPU: reading data multiple times during com-
paction, cache misses, and thread contention cause RocksDB
to be CPU-bound when running atop NVMe SSDs. Thus,
there is a need to redesign key-value stores to avoid these
CPU inefficiencies.

We present SplinterDB, a key-value store designed for high
performance on NVMe SSDs. On workloads with small key-
value pairs, SplinterDB is able to fully utilize the device band-
width and achieves almost 2x lower write amplification than
RocksDB (see Figure 1). We show that compared to state-of-
the-art key-value stores such as RocksDB and PebblesDB,
SplinterDB is able to ingest new data 628 x faster (see Fig-
ure 1) while using the same or less memory. For queries,
SplinterDB is 1.5-3x faster than RocksDB and PebblesDB.

Three novel ideas contribute to the high performance of
SplinterDB: the STBE-tree, a new compaction policy that
exposes more concurrency, and a concurrent memtable and
user-level cache that removes scalability bottlenecks. All three
components are designed to enable the CPU to drive high
IOPS without wasting cycles.

At the heart of SplinterDB is the STBE-tree, a novel data
structure that combines ideas from log-structured merge trees
and BE-trees. The STBE-tree adapts the idea of size-tiering
(also known as fragmentation) from key-value stores such as
Cassandra and PebblesDB and applies them to BE-trees to
reduce write amplification by reducing the number of times a
data item is re-written during compaction. The STB®-tree also
introduces a new flush-then-compact policy that increases

compaction concurrency across the entire tree and exploits
locality in the insertion workload to accelerate insertions.
By enabling fine-grained, localized compactions, STB®-trees
push ideas from PebblesDB to their logical conclusion.

Concurrency at the data structural level could be wasted
if the data structure is accessed through a cache with poor
concurrency. We designed a new user-level concurrent cache
for SplinterDB that uses fine-grained, distributed reader-writer
locks to avoid contention and ping-ponging of cache lines, as
well as a direct map to enable lock-free cache operations. All
the data read and written by SplinterDB flows through this
concurrent cache.

SplinterDB is not without limitations. Like all key-value
stores based on size-tiering, SplinterDB sacrifices the perfor-
mance of small range queries, although less than one might
expect. For large range queries, SplinterDB can use the full
device bandwidth. Similarly, size-tiering is known to tem-
porarily increase space usage until multiple versions of a sin-
gle data item are compacted together. Finally, SplinterDB was
designed for the most stringent requirements: small key-value
pairs and restricted memory. In cases where key-value pairs
are large or memory is plentiful, other choices may prove as
good as SplinterDB, and we make some of those comparisons
below.

In summary, the contributions of SplinterDB are as follows:

e We introduce the STBE-tree, which reduces write ampli-
fication and enables fine-grained concurrency in com-
paction operations (sections 2 to 3).

e We design and build a highly-concurrent memtable that
is able to drive enough operations to the underlying
STBE-tree (section 5).

e We combine the STBE-tree, memtable, and user-level
cache in SplinterDB, a key-value store that can fully
utilize NVMe SSD bandwidth. (section 6).

2 High-Level Design of STB®-trees

The basic STB?-tree design has three high-level goals:

e Handle inserts using bulk I/O, so that inserts are
bandwidth-bound.

e Minimize the number of times each key-value pair gets
read or written, so as to reduce write amplifiction, I/O am-
plification (i.e. read and write amplification), and CPU
costs of inserts.

e Maintain sufficient indexing information so that, under
normal conditions, each query requires at most one I/O.

In section 3 and section 4, we explain how we refine tree

operations to support high concurrency.

The STBE-tree shares many ideas with LSM trees, Bé-trees,

and external-memory hash tables from the theory literature.
See section 7 for details.

2.1 Overall Structure

The STBE-tree is a tree-of-trees, as shown in fig. 2. The back-
bone of the STBE-tree is the trunk tree (or just trunk). Each
node of the trunk has pointers to a collection of B-trees, called

A memtable

o,
A
/ETO
—o-CA ——,
1M EPA A2 e A D HnElPA A
K ¥ X K ¥ X K ¥ X

Figure 2: The structure of a STB®-tree. The rectangles repre-
sent trunk nodes and the triangles represent branch trees and the
memtable. The inset boxes indicates the first active branch for each
pivot, referencing the pointer labels to the branches.

branch trees (or just branches). The branches store all of the
actual key-value pairs in the dataset. Each branch also has
an associated quotient filter, which serves the same purpose
as Bloom filters in LSM trees. Trunk nodes have a fanout
of up to F (typically 8 to 16), which is also an upper bound
on the number of branch trees. Branch trees have a fanout
determined by the number of pivot keys that can be packed
into a 4KB node.

The overall STBé-tree also has a memtable, which is used
to buffer insertions, as explained below. The memtable is also
a B-tree, just like the branches.

Within a trunk node, the branches are numbered from old-
est to youngest, i.e. all the key-value pairs in branch i were
inserted before any of the key-value pairs in branch i + 1.
The number of branches For example, in fig. 2, the root of
the trunk tree has four branches, numbered O through 3, with
branch 0 being the oldest.

Furthermore, stored with each child pointer ¢ in a trunk
node is an integer a, indicating the oldest branch that is active
for that child. Inactive branches are ignored during queries,
as explained below. So, for example, in fig. 2, only branches
2 and 3 are active for the root trunk node’s leftmost child,
branches 1, 2, and 3 are active for its middle child, and all
branches (0 through 3) are active for its rightmost child.

2.2 Queries

Queries begin by searching in the memtable. If the queried
item is not found in them memtable, then the query proceeds
down the trunk tree. Recall that all the data is stored in the
branches, and trunk nodes only contain metadata and pointers
to branches and filters.

When a query for a key k arrives at a trunk node ¢, it first
searches the pivots of ¢ to determine the correct child ¢ for k.
It then iterates over the active branches for ¢, from youngest
to oldest. For each branch b, it first queries b’s associated quo-
tient filter. If the quotient filter indicates that & is definitely not
in b, then the query moves on to the next branch. Otherwise,
is queries for k in b. If it finds a hit, it returns the result to the
caller. Otherwise, it moves on to the next branch. If none of
the branches contain k, then the query recurses to c.

Analysis. We now explain why queries take at most one /0O
in common configurations: those which use at least 32-byte

key-value pairs and have RAM which is at least 10% of the
dataset size.

The memory used by filters and branch tree indices is
bounded as follows. Quotient filters use about 1-2 bytes per
key, so the overhead of quotient filters is greatest when key-
value pairs are small. With 32-byte key-value pairs, quotient
filters will be about 6% of the total database size. Branch trees
will have a very high fanout, e.g. ~ 128 for 4KB nodes, so the
interior of the branch trees will be less than 1% of the total
database size. Trunk nodes contain only metadata about the
branches and filter, and so use negligiable RAM. Therefore
all the indexing information will fit comfortably in a RAM
that is = 7% of the total database size. For larger keys, e.g.
256 bytes, the branch trees will have a fanout of only about
16, and hence the interior nodes could be up to 6% of the total
database size. However, the quotient filters will be less than
1% of the data size, so the indexing data will still be less than
10% of the database size.

Thus the only I/Os during a query will be to load leaves
of branch trees. However, the false positive rate of quotient
filters with two bytes per key is < 1%, which is low enough to
ensure that most queries do not encounter any false positives
from the quotient filters that they query. Hence most queries
will query exactly one branch tree, which will contain the
desired key-value pair. Queries for keys that are not present
in the database will usually require no I/Os at all.

2.3 Insertions

When an item is inserted, it is first buffered in the memtable.
‘When the memtable is full, it is added to the root as a new
branch, say branch i. We also construct a quotient filter for
the memtable at this time. We call the process of adding the
memtable to the root of the trunk an incorporation.

The size of the memtable affects performance in the fol-
lowing ways. If the memtable gets too large, then some of its
nodes will get evicted from RAM and, once enough nodes
spill, a workload of random inserts would require essentially
one random I/O per insert, contradicting our goal of han-
dling inserts using bulk I/O. For most systems, this means the
memtable should be kept substantially smaller than RAM, e.g.
at most a few gigabytes for typical hardware configurations.

On the other hand, the memtable will eventually become a
branch, and we want branches to be large enough that scan-
ning a branch can use bulk I/O (i.e. if a branch consisted of
only a handful of nodes, then reading the entire branch would
be bottlenecked on I/O overheads, rather than bandwidth).
Branch scanning performance is critical for compactions and
range queries (see Sections 2.4 and 2.6). For most storage
devices, it is sufficient to ensure the branches (and hence the
memtable) are at least a few megabytes in size.

Thus, for most systems, the memtable can be anywhere
from a few megabytes to a few gigabytes in size. Since we are
specifically interested in building a system that is robust to
low-memory situations, and since making the memtable larger

has diminishing returns in terms of scanning throughput, we
select a maximum memtable size m that is just comfortably
large enough to ensure efficient scanning performance. In our
prototype, m = 24MB.

2.4 Flushing and Compaction

We cannot keep adding new branches to the root trunk in-
definitely. Eventually, the root will fill up and have no more
room for branch pointers. This solved by compacting data
and flushing it to its children.

This section describes a basic version of flushing and com-
paction which captures the basic underlying mechanics of
a STBE-tree. In section 3, we describe SplinterDB’s more-
involved flush-then-compact policy which leverages its B&-
tree structure to expose more compaction concurrency and
optimize non-random insertion workloads.

In this simplified version, when a trunk node is full, data
is removed from it by repeatedly compacting some of its
branches into a single branch and flushing the resulting
branch to a child until the parent is no longer full (see fig. 3).
As in LSM trees, compaction is necessary to keep queries
fast. Without compaction, the number of branches that must
be queried would grow without bound.

A node p is considered to be full when its branches contain
F x m bytes of active key-value pairs, where F is the fanout
and m is the memtable capacity in bytes. When p becomes
full, the child ¢ with the most active key-value pairs is chosen
and p is flushed into ¢. We construct a new branch b by
compacting all the branches in p that are active for c. Note
that the branches in p may contain keys for any of p’s children,
not just ¢, so when we compact the branches for a flush to c,
we scan over only the portions of each branch that contain
keys destined for c. We then add b to ¢ as ¢’s youngest branch.
We also build a quotient filter for b and store a pointer to the
filter in c. Finally, we mark all the branches in p as inactive
for ¢, so they will not be flushed to ¢ again. Any branches of
p that were active only for ¢ are no longer active for any of
p’s children and can be garbage collected.

Since branches are large, compacting the branches for ¢
can proceed at disk bandwidth. Furthermore, we always flush
to the child with the most pending items in the parent. This
ensures that the resulting branch b will have at least m items
in it, and hence will be efficient to scan when we, at some
point in the future, flush it from the child to one of its children.

Analysis. Each time a key-value pair participates in a com-
paction, it moves one level down the trunk tree. Thus the
worst-case write amplification of the STB®-tree is O(logy N),
which is the same as in a size-tiered LSM tree. Level-tiered
LSM trees and (normal) Bé-trees have a substantially larger
write amplification of O(F logy N). In Section 3, we describe
our flush-then-compact strategy, which enables some key-
value pairs to skip compaction at some levels, particularly
when the workload exhibits locality.

il i

()

>

Figure 3: In a STB®-tree, a flush to a pivot P consists of compacting
its active key-value pairs (from its branches) into a new branch in
the child. The dashed arrow indicates compaction.

2.5 Splitting

When a trunk leaf is full, it is split, and similarly when a
trunk internal node has more than F pivots, it is split. As in
standard B-trees and B®-trees, the I/O costs of splitting and
merging do not asymptotically change the costs of inserts. See
Section 4 for how we make splitting and merging compatible
with hand-over-hand locking in STBE-trees.

2.6 Iterators and Scans

To construct an iterator starting from key k, we walk the trunk
search path for k, constructing B-tree iterators (also starting at
k) for each active branch along the path. We then construct a
merge iterator on top of the B-tree iterators, which simply re-
turns the smallest key from among all of the underlying B-tree
iterators. The merge iterator can be efficiently implemented
using a heap.

While constructing the B-tree iterators, we also compute
an upper bound u for the leaf of k’s search path. As soon as
the merge iterator returns a key that is greater or equal to u,
we tear down the merge iterator and all the B-tree iterators
and rebuild them, starting from u.

2.7 Deletions and Updates

Deletions are implemented through tombstone messages, i.e.
a key-value pair with special value indicating that the key has
been deleted. More generally, the STBE-tree supports update
messages that encode a function to be applied to the value
associated with a key.

3 Flush-then-Compact

This section describes the flush-then-compact algorithm,
which improves the I/O and CPU concurrency of compactions
during flushing and improves the performance of update work-
loads with locality, such as sequential workloads. The idea
behind flush-than-compact is to decouple the flushing step
from the compaction step, as shown in fig. 4.

In a flush, the references to the child’s active branches are
copied from the parent to the child, along with references
to their quotient filters, as shown in fig. 4. The child’s active
branch counter in the parent is updated to reflect the flush, just
as before. At this point the parent and child are in a consistent
state and any locks can be released. Since a flush is just a

A\
TACA
[OA" A

| 1
@ i)
compaction
A S | L_'@—ATA P
i

Figure 4: With the flush-then-compact policy, flushes are broken
into two steps. First references to the active branches are flushed
to the child and removed from the parent (by setting the pivot’s
active branch number). Then those branches are compacted by an
asychronous process. The compaction stage is performed without
holding a lock on the node, and during this time it can still flush, be
flushed into, split and by queried.

pointer swing, write locks are held very briefly.

Note that branches can now be referenced by multiple trunk
nodes, so branches are reference counted.

From here, if the child is full, we will perform a flush from
the child to its children, before initiating any compactions
(hence the name “flush-then-compact”™). This flush will copy
the newly arrived branches from the child to one or more of its
children, exactly the same way that the branches were flushed
to the child. This process can repeat recursively.

Once all the flushes have completed, we schedule back-
ground jobs to compact all the new branches at each node
that received a flush. The background jobs will construct the
new branches and need to acquire write locks only to replace
the old branch pointers with a pointer to the newly created
branch.

Flush-then-compact accelerates non-random workloads.
Since we perform flushes before compactions, some of the
branches involved in a compaction at node p may already
be inactive for some of p’s children when we perform the
compaction. This means we can skip over those keys when
we compact those branches. And, since branches are stored as
B-trees, we can skip over those key ranges efficiently. Thus
we effectively avoid compacting those keys at p’s level in the
STBE-tree.

To see why this accelerates non-random insertion work-
loads, consider an extreme case: a workload of insertions all
for a single trunk leaf, £. For simplicity, assume also for the
moment that all the nodes on the path from the root to ¢ have
zero branches. The memtable will repeatedly fill with key-
value pairs for £ and get incorporated into the root. Once the
root fills, it will flush to its child ¢ along the path to ¢. This
will cause ¢ to immediately become full and flush to its child.
This process will repeat until all the branches arrive at £.

At that point, the system will schedule background com-
pactions for each trunk node along the path from the root to £.
However, at each node other than ¢, there will be no live data
in any of the branches. The compactions will thus skip all the
data in the branches, resulting in empty branches at each inte-
rior node. Consequently the interior nodes will again be left
with zero branches. Thus only ¢ will have a non-degenerate

compaction. As a result, the new key-value pairs will partic-
ipate in only one compaction, and hence the STB®-tree will
have a write amplification of 1 for this workload.

Now consider the case when the nodes along the path to £
do not have zero branches. The first few times the root fills,
it may choose to flush to some child ¢’ that is not along the
path to ¢. This would happen if the root happened to contain
more items for ¢’ than c. However, as long as the workload
consists only of items for ¢, eventually the root will contain
more items for ¢ than for any of its other children. From that
point forward, it will always flush to c¢. Then the same process
will repeat at c. Eventually, each time the root fills, the system
will flush all the new branches to ¢, as described above.

Thus this flushing protocol automatically adapts to the
insertion workload without knowing a priori what that work-
load is. Furthermore, if the workload changes then, after some
time, the flushing decisions will adapt to the new workload
automatically.

Furthermore, this flushing algorithm exploits less-than-
perfect locality automatically. For example, suppose the inser-
tion workload consists almost entirely of key-value pairs for
£, but a few random items for other leaves. Almost every time
the root fills, it will flush to ¢, and the process described above
will occur. However, each flush will leave a few new items in
the root. This cruft will accumulate, eventually causing the
root to flush to a child other than c, cleaning out some cruft.
After that, the root will resume flushing to ¢ until enough cruft
accumulates again. Thus most data will get flushed directly
to ¢, and hence have a write amplification of 1, but a small
amount of data will get compacted at every level.

As these examples show, the flush-then-compact algorithm
is much more robust than the special-case optimizations fre-
quently implemented for sequential insertions. Special-case
optimizations can be foiled by a few random insertions sprin-
kled into a sequential workload. Flush-then-compact, on the
other hand, exploits locality rather than sequentiality. In sec-
tion 6.3 we show empirically that flush-then-compact enables
SplinterDB to outperform other systems on near-sequential
workloads.

Flush-then-compact exposes concurrency. Flush-then-
compact improves concurrency by setting up several com-
pactions and then launching them simultaneously, which im-
proves both CPU and I/O parallelism. The hierarchical nature
of the BE-tree structure makes it trivially safe to perform com-
pactions concurrently at different trunk nodes. In a standard
compact-then-flush approach, each time the root is flushed,
it initiates a single compaction. The system would not start
another compaction until the root is filled (and flushed) again.

4 Preemptive Splitting for STB:-trees

Splits and merges pose problems for hand-over-hand locking
in B-trees (and B®-trees). Hand-over-hand locking proceeds
from root to leaf, but splits and merges proceed from the
leaves up.

An approach to solving this issue in B-trees is to use pre-
emptive splitting and merging [40]. During a B-tree insert, if
a child already has the maximum number of children, then
it is split while the insertion thread still holds a lock on its
parent. Then the insertion can release the parent’s lock and
proceed down the tree, assured that the child will not need
to split again as part of this insertion. Analogously, deletions
merge a child with one of its neighbors if the child has the
minimum number of children. This works because insertion
and deletions can increase or decrease the number of children
of a node by at most 1.

This approach does not work in B&-trees, because a flush
to a leaf could cause that leaf to split multiple times. In STB®-
trees with flush-then-compact, we can move all pending mes-
sages along a root-to-leaf path to the leaf before performing
any compactions, splits, or merges. The total number of mes-
sages moved to the leaf is bounded by O(Fmlogg N), i.e. the
capacity of a trunk node times the height of the tree. The leaf
can therefore split into as many as O(logy N) new leaves of
size B. Similarly, a collection of flushes full of delete mes-
sages to several leaves of a single parent can reduce the par-
ent’s number of children by O(log, N). In practice, logp N is
less than 10 for typical fanouts F ~ 8 and dataset size N < 280
key-value pairs.

We extend preemptive splitting and merging to STB®-trees
as follows. We reserve space in each node to accommodate
up to F + H children, where H is an upper bound on the
tree height, e.g. H = 10. We then apply preemptive splitting,
except we preemptively split a node during a flush if its fanout
is above F'. For merges, we take a similar approach. If, during
a flush, we encounter a node with less than F'/2 children, then
we merge or rebalance it with one of its siblings.

Thus all operations on the STBE-tree—flushes, com-
pactions, splits, and merges—proceed from root to leaf and
can therefore use hand-over-hand locking.

The mechanisms for flush-then-compact make it easy to
handle branches during splits. Recall that each branch can
be marked dead or alive for each child, and branches are
refcounted and hence can be shared by multiple trunk nodes.
Thus we can split a trunk node by simply giving its new sibling
references to all the same branches as the node had before
the split. In the new node, we copy the liveness information
for each branch along with the children that are moved to the
new sibling.

5 From STB®-trees to SplinterDB

In this section, we discuss the details of SplinterDB’s im-
plementation, which addresses the concurrency and memory
bottlenecks associated with driving NVMe devices to full
bandwidth.

5.1 Branch Trees and Memtables

SplinterDB uses the same B-tree implementation for both its
branches and its memtables, although there are some differ-
ences to optimize for their use cases.

Branch trees, extents, and pre-fetching. When a branch is
created from a compaction, its key-value pairs are packed
into the leaves of the B-tree, and the leading edge of internal
nodes are created to index them. The nodes in each level
are allocated in extents of 32 pages, and the header of each
node stores the address of the following node, but also of the
next extent. In this way, the nodes of each level form a singly
linked list.

Iteration through a branch is performed by walking the
linked list formed by its leaves. Whenever the iterator reaches
the beginning of a new extent, it issues an asynchronus
prefetch request for the next extent. The extent length is con-
figurable to tune to the latency of the storage device.

Memtables. The basic design of the memtables mirrors that
of the branch B-trees, but includes some optimizations to
increase their insertion performance and concurrency.

As in the case of the static branch trees, the nodes on each
level of the memtable form a singly-linked list, and nodes
are allocated in extents. However, because nodes are created
on demand as nodes split, we do not try to guarantee that
successive nodes reside in the same extent. Furthermore, since
memtables are almost always in RAM, we do not perform
prefetching during memtable traversals.

The memtable uses hand-over-hand locking together with
preemptive splitting, as described by Rodeh [40]. To increase
concurrency, write locks are only obtained on internal nodes
when a split is required.

To ensure locks are held briefly, especially on nodes near
the top of the tree, the tree uses a new technique called shadow
splitting. To split a node c, a write lock is obtained on ¢ and
the parent p. We allocate a physical block number (PBN) n
for the new sibling, ¢’ and add it as part of a new pivot in p.
However, in the cache, we initially point n to c. At this point,
we can release all locks on p. Now, we fill in the contents
of ¢/, update the PBN # to point to ¢’ in the cache, and then
release all locks on ¢’. Finally, we upgrade to a write lock on
¢, truncate its child list (via a metadata operation) and then
release all locks on c.

5.2 User-level Cache and Distributed Locks

SplinterDB has a single user-level cache which keeps recently
accessed pages in memory. Almost all the memory that Splin-
terDB uses comes from this cache, so pages from all parts
of the data structure—trunk node pages, branch pages, filter
pages and memtable pages—are all stored there. Only cache
and file-system metadata, as well as small allocations used to
enqueue compaction tasks are allocated from system memory.

This design allows nearly all the free memory to be used
for whichever operations are being performed, so that parts
of the data structure which are not in use can be paged out.

The cache at a high level is a clock cache, but with several
features designed to improve concurrency.

Each thread has a thread-local hand of the clock, which
covers 64 pages. The thread draws free pages from the hand,

and if it has exhausted them, it acquires a new hand from a
global variable using a compare-and-swap. It then writes out
dirty pages from the hand which is a quarter turn ahead, and
evicts any evictable pages in its new hand. Thus threads clean
and evict pages from distinct cache lines within the cache
metadata, avoiding contention and cache-line ping-ponging.

SplinterDB uses distributed reader-writer locks [24] to
avoid cache-line thrashing between readers. Briefly, a dis-
tributed reader-writer lock consists of a per-thread reader
counter and a shared write bit. Each reader counter is on
a separate cache line to avoid cache-line ping-ponging when
readers acquire the lock. Writers set the write bit (using com-
pare and swap) and then wait for all the read counters to
become zero. Readers acquire the lock by incrementing their
read counter and then checking that the writer bit is 0. If it is
not, they decrement their reader counter and restart.

Distributed reader-writer locks allow readers to scale es-
sentially perfectly linearly, at the cost that acquiring a write
lock is expensive. However, the design of SplinterDB makes
writing rare enough that this is a good trade-off.

We make distributed reader-writer locks space efficent by
storing each thread’s reader counters in an array indexed by
cache-entry index. Each reader counter is one byte, so the
total space used by locks is ¢ X ¢ bytes, where 7 is the number
of threads and c is the number of cache entries.

SplinterDB supports three levels of lock: read locks,
“claims”, and write locks. A claim is a read lock that can be
upgraded to a write lock. Only one thread can hold a claim at
a time. After obtaining a read lock, a thread may try to obtain
a claim by trying to set a shared claim bit with a test-and-set.
If this fails, they must drop the read lock and start over. Oth-
erwise, they can upgrade their claim to a write lock by setting
a shared write bit and waiting for all the read counters to go
to zero.

5.3 Quotient filters

Bloom filters [7] are the standard filter for most LSMs [8,22,
39]. However, the cost of Bloom filter insertions can dominate
the cost of sorting the data in a compaction. Therefore modern
key-value stores often use more efficient filters; for example,
RocksDB uses blocked Bloom filters [38];

Similarly, SplinterDB uses quotient filters [4, 5, 36] instead
of Bloom filters. A full presentation of quotient filters is out
of scope for this paper, but we review their salient features
for SplinterDB. See Pandey, et al. for a full presentation on
quotient filters [36]. The key feature of quotient filters is that,
like blocked Bloom filters, each insert or query accesses O(1)
cache lines (and hence O(1) page accesses). Quotient filters
are roughly as space efficient as Bloom filters—for the range
of parameters used in SplinterDB, quotient filters use between
0.8x and 1.2x the space of a blocked Bloom filter. We view
the space as essentially a wash. Quotient filter inserts and
lookups also require only one hash function computation. In
past work, quotient filter insertions and queries were shown

to be 2-4x faster than in a Bloom filter.

A quotient filter for set S stores, without error, i(S) =
{h(x) | x € S}, where & is a hash function. Since the quo-
tient filter stores /(S) exactly, all false positives are the result
of collisions under 4. Thus each insertion or lookup requires
only one hash function computation. Furthermore, a quotient
filter stores the elements of A(S) in sorted order in a hash
table using a variant of linear probing. Thus most inserts and
lookups in a quotient filter access only 1 or 2 adjacent cache
lines. As a result, insertions and lookups in quotient filters are
typically 2-4 x faster than in a Bloom filter. Finally, quotient
filters are space efficient, using slightly less space than Bloom
filters whenever the false positive rate € is less than 1/64,
which is typical. For example, a quotient filter with € = 0.1%
uses about 10% less space than a Bloom filter [36].

SplinterDB further reduces the CPU costs of filter building
during compaction by using a bulk build algorithm. During
the merging phase of compaction or when inserting into a
memtable, SplinterDB builds an unsorted array of all the
hashes of all the tuples compacted or inserted. The array is
then sorted (by hash value) and the quotient filter is built.
Since the quotient filter also stores the hashes in sorted order,
this means that the process of inserting all the hashes is a
linear scan of the sorted array and of the quotient filter. Hence
it has good locality and can benefit from cache prefetching.

5.4 Logging and Recovery

SplinterDB uses per-thread write-ahead logical logging for
recovery. By using per-thread logs, we avoid contention on
the head of a single, shared log.

The challenge is to resolve the order of operations across
logs after a crash. For this, we use a technique similar to
“cross-referenced logs” [25]. Our scheme works as follows.
Each leaf of the memtable has a generation number. Whenever
a thread inserts a new message into the memtable, it records
and increments the generation number of the memtable leaf
for the inserted key. It then appends the inserted message to
its per-thread log, tagged with the leaf’s generation number.
During recovery, the generation numbers in the logs give a to-
tal order on the operations performed on each leaf (and hence
on all the keys for that leaf), so that the recovery procedure
can replay the operations on each key in the proper order.
When a leaf of the memtable splits, the new leaf gets the same
generation number as the old leaf.

6 Evaluation

We evaluate the performance of SplinterDB on several mi-
crobenchmarks and on the standard YCSB application bench-
mark [20]. We compare this performance against that of two
state-of-the-art key-value stores, RocksDB and PebblesDB.
The following questions drive our evaluation:

e How much does SplinterDB improve insertion perfor-
mance? To what extent is improvement achieved through
reduced write amplification and other factors?

e Despite being size-tired, how much does SplinterDB

mitigate [range] query performance? Can SplinterDB
utilize device bandwidth for large range queries?

e How much faster are sequential (or otherwise local) in-
sertions in SplinterDB? Do they have lower write ampli-
fication?

e Do point lookups scale with the number of threads?

6.1 Setup and Workloads

All results are collected on a Dell PowerEdge R720 with a
32-core 2.00 GHz Intel Xeon CPU, 256 GiB RAM and a
960GiB Intel Optane 905p PCI Express 3.0 NVMe device.
The block size used was 4096 bytes.

In general, we use workloads derived from YCSB traces
with 24B keys. We generally use 100B values, but also include
a set of YCSB benchmarks for 1KiB values. We instrumented
dry runs of YCSB in order to collect workload traces for the
load and A—F YCSB workloads and replay them on each of
the databases evaluated. In order to eliminate the overhead
of reading from a trace file during the experiment, the trace
replayer mmaps the trace file before starting the experiment.
We use the same traces for each system.

In general, we limit the available memory to 10% of the
dataset size or less. In order to perform the benchmarks on
reasonably sized datasets, we restrict the available system
memory with a type 1 Linux cgroup, sized to the target mem-
ory size plus the size of the trace, which we pin so that it
cannot be swapped out. Unless otherwise noted, the target
memory size is 4GiB. PebblesDB has an apparent memory
leak, which causes it to consume the available memory, so we
allow it to use the full system memory. On the YCSB load
benchmarks, this causes it to swap for a small portion at the
end, but this was less than 10% of the run time.

Unless otherwise noted, SplinterDB uses a max fanout
of 8, a memtable size of 24MiB and a total cache size of
3.25GiB. The difference between this cache size and the target
memory size of 4GiB is to accommodate other in-memory
data structures maintained by SplinterDB.

Each system is run with the thread count which yields the
highest throughput. RocksDB is configured to use background
threads equal to the number of cores minus the number of
foreground threads, with a minimum of 4. PebblesDB uses
its default number of background compaction threads. Splin-
terDB is configured without background compaction threads.

6.2 YCSB

We measure application performance using the Yahoo Cloud
Services Benchmark (YCSB). The core YCSB workloads
consist of load phases and run phases. The load phases create
a dataset by inserting uniformly random key-value pairs. The
run phases emulate various workload mixes. Workload A
is 50% updates, 50% reads, workload B is 95% reads, 5%
updates), workload C is 100% reads, workload D is read latest
(95% reads, 5% insertions), workload E is short range scans
(95% scans, 5% insertions) and workload F is read-modify-
writes (50% reads, 50% RMWs).

BnSplinterDB BB RocksDB BB PebblesDB

771

235!

855
861
614

1000 2000

460
485

Operations/Second
(Thousands)

305

3
113

0

Load A B C D E

YCSB Workload (24B keys, 100B values)

(a) Throughput on YCSB workloads with 24B keys and 100B values. Load is 673M
operations, E is 20M operations and others are 160M operations. Higher is better.

1032

498

683
699

396
407

(Thousands)
0 200 400 600 800
125
258

Operations/Second

145

Load A B

C D E F

YCSB Workload (24B keys, 1KiB values)
(b) Throughput on YCSB workload with 24B keys and 1KiB
values. Load is 84M operations, E is 1.3M operations and others
are 10M operations. Higher is better.

Figure 5: YCSB throughput and I/O benchmark results.

g
~§ 30 292
% 20 I N 15.8 R
g 10 562182 3. [ls3
S 0
Load: Load: Run C:
Write Amp Total /O Amp Read Amp

YCSB IO Amplification (24B keys, 100B values)

Figure 6: 10 amplification on YCSB load and Run C workloads, as
measured with iostat. Lower is better.

The results with 100B values and 1KiB values are shown
in Figure 5 (both workloads use 24B keys). Figure 6 shows
the write and I/O amplification in the 100B-value benchmark.

On the load phase, SplinterDB is faster than RocksDB by
almost an order of magnitude. Because of size-tiering and
its compaction/flushing policy SplinterDB has about 1/2 the
write amplification of the other systems. Note PebblesDB
performs almost no reads because it was given unlimited
memory. Surprisingly PebblesDB does not show substantially
lower write amplification than RocksDB.

On the run phases, which the exception of E, SplinterDB
is 40-150% faster than RocksDB, the next fastest system. On
E, SplinterDB is roughly 15% slower than RocksDB in the
100B-value case, and about 15% faster than RocksDB in the
1KiB-value benchmark.

Latency. SplinterDB maintains high throughput without
sacrificing latency. Table | reports insertion latency for Splin-
terDB and RocksDB. Unsurprisingly, the latency of RocksDB
is at least 3x that of SplinterDB on all metrics. This is because
mechanisms such as flush-and-compact (Section 3) improve
concurrency and eliminate stalls on the write path.

Table 2 reports read latency for SplinterDB and RocksDB.
SplinterDB read latency is comparable to RocksDB, because
the quotient filters (section 5.3) in SplinterDB behave simi-
larly to Bloom filters in RocksDB.

KVell. KVell [33] is a key-value store also designed to
utilize full NVMe bandwidth. It has an in-memory B-tree
index that maps all keys to disk page offsets. It does well on

system mean median P95 P99

SplinterDB 7.0 3.1 124 277

RocksDB 40.2 29.7 505 86.7
Table 1: Insertion latency (us) for the workload in fig. Sa.

system mean median P95 P99
SplinterDB ~ 46.4 133 126.3 216.1
RocksDB 51.1 28.8 108 221.1
Table 2: Read latency (us) for the workload in fig. 5a.

2 looocBln22cslm 24GiB
B 0 26GiB I 0 23GiB I 1 SplinterDB 20GiB | |

1540
1430
1475
1260
1696

1075

Operations/Second
(Thousands)
1000 2000 3000

P

SHlcinici=

0

Load A B C D E F
YCSB Workload (24B keys, 100B values)
Figure 7: Throughput of Kvell on YCSB workloads with varying
amounts of available RAM, 100B values. Throughput of SplinterDB
with 20GiB RAM shown for comparison. Load consists of 673M
operations, E consists of 20M operations and all other workloads
consist of 160M operations. Higher is better.

large (4KiB) key-value pairs, but on small key-value pairs,
the overhead of the in-memory index becomes a significant
fraction of the dataset size. In particular, it was impossible
to run KVell in a memory cgroup of 4GiB. Figure 7 shows
KVell’s performance on the YCSB workload with 100B val-
ues, for different memory sizes. At 22GiB, which is around
the size of the in-memory index, KVell’s performance starts
to drop. At 20GiB, KVell becomes unusable. Therefore in
realistic memory settings, KVell is not a viable option for the
small key-value sizes that SplinterDB targets.

SplinterDB is designed to work well even under low-
memory scenarios (less than 10% of total data size). However,
we also run the YCSB experiment with higher memory, 20
GiB, to compare with KVell in a regime where KVell per-

1538
1548

‘ lnscisInscis G

1000 1500

500
526
543
547
581

350
354

Operations/Second
(Thousands)

59

Load A B C D E F
YCSB Workload (24B keys, 1KiB values)
Figure 8: Throughput of Kvell on YCSB workloads with varying
amounts of available RAM, 1 KiB values. Load consists of 84M
operations, E consists of 1M operations and all other workloads
consist of 10M operations. Higher is better.

3.46

5

0

forms well. As shown in fig. 7, we find that SplinterDB al-
most matches KVell on insertions, but outperforms KVell by
roughly a factor of 2.5 on queries.

For larger values, the memory cliff for KVell is much lower.
We run the same YCSB workload on both systems, but with
1KiB values. In this case, KVell’s memory cliff is between
3GiB and 4GiB, as shown in fig. 8. For these larger values,
KVell outperforms SplinterDB insertions (see Figure 5b) due
to a low write amplification, but still can only achieve 55-
77% query throughput of SplinterDB on the other YCSB
workloads. KVell’s range-query performance (workload E) is
particularly lower than SplinterDB’s because KVell does not
keep key-value pairs sorted. Thus each 1KiB key-value pair
in the range requires a separate, random 4KiB I/O, resulting
in a read amplification of about 4x. Splinter, on the other
hand, sorts and packs key-value pairs into 4KB blocks, for a
read amplification close to 1 during range queries.

As soon as the memory cliff hits, KVell exhibits the same
performance drop as in the previous experiment. However,
when values are so large, this may not be so important, since
indexing information can easily fit in RAM.

6.3 Sequential Insertion Performance

Because of the flush-then-compact policy, we expect Splin-
terDB’s performance will improve substantially on insertion
workloads with a high degree of locality (see section 3). We
demonstrate this by performing 20GiB of single-threaded in-
sertions from a trace composed of interleaved sequential and
random keys in different proportions. For comparison, we
perform the same workload on RocksDB.

As shown in fig. 9a, SplinterDB’s performance improves
smoothly from 349K insertions per second for a purely ran-
dom workload to 614K insertions per second for a purely
sequential workload, which is 76% faster. This improvement
is partially obscured by the log, which adds a constant additive
IO overhead. If we disable the log, SplinterDB improves from
430K insertions per second on a purely random workload
to 866K operations per second on a purely sequential work-
load, 100% faster. Note that we would expect the intermediate

‘ —o— SplinterDB == SplinterDB (no log) == RocksDB

o - 866
g 799
S

£ I i
E: g Slun 595 614 |
Sao "
£ =
55 | % 171 155 103
OQ" B ———— —il— —

o
0 50 90 99 100
Percentage Sequential Insertions
(a) Insertion throughput, higher is better.
T T

=

g

=

Q

h=

=

g

<

©)

=

Percentage Sequential Insertions
(b) Write amplification (solid) and total IO amplification (dashed) as
measured with iostat. Lower is better.
Figure 9: Single-threaded insertion throughput by varying mixed
sequential/random locality percentage. X-axis not to scale.

throughputs in the best case to be the [weighted] harmonic
mean of the pure cases, because they are rates. At 50% ran-
dom, 50% sequential for SplinterDB with no log this is 575K
insertions/second, so its actual performance of 521K inser-
tions/second captures a substantial amount of the potential
improvement.

RocksDB also improves as the workload becomes more
sequential, but this effect is much smaller, a 35% speedup.
Furthermore, RocksDB shows less than 20% speedup until
the workloads becomes 99% sequential.

Figure 9b shows that as predicted, SplinterDB incurs less
IO amplification on more sequential workloads. With the
log disabled, its write amp approaches 1 as the workload
approaches purely sequential. In contrast, while RocksDB
also has less 10 amplification on more sequential workloads,
it still incurs write amplification of 4.1 even when 99% of the
keys are sequential. It is only when the workload becomes
100% sequential that the write amplification becomes close
to 1 (because of caching it even falls below 1).

6.4 Concurrency Scaling

SplinterDB is designed to scale with the number of available
cores up to the performance limits of the storage device. This
is especially true for reads, where the use of distributed reader-
writer locks and a highly concurrent cache design, together
with a careful avoidance of dirtying cache lines, can avoid
almost all contention between threads.

Read Concurrency. We test the read concurrency scaling
of SplinterDB by running YCSB workload C with 160M key-
value pairs, where, as in fig. 5a each instance of the test divides

—— SplinterDB
—— RocksDB
—&— PebblesDB

G 9 /> /\?y ‘95

04,24 78 ™12 16 20 24 28 32
Number of Concurrent Threads

Figure 10: Read concurrency: read throughput (YCSB workload C)

by number of threads. Each instance performs 160M reads divided

evenly between threads. Higher is better.

Operations/Second (Thousands)
0 200 400 600 800

the keys evenly into N batches, which are then performed in
parallel by N threads. The results are in fig. 10.

The results show nearly linear scaling—throughput with
24 threads is 18.5x the single-threaded throughput. Between
roughly 24 and 32 threads, the scaling flattens out, but at that
point the measured throughput is 2.07-2.24 GiB/sec, which
is 88-95% of the device’s advertised random read capability.

While RocksDB also scales well, its throughput with 24
threads is 17.4x its single-threaded throughput, and with
32 threads it uses 91% of the device’s advertized random
read capability. Therefore, even though SplinterDB can per-
form more operations per second, RocksDB is still making
nearly full use of the device for reads. We conclude here
that SplinterDB is making better use of the available memory
for caching, since it has noticeably lower read amplification.
Finally, PebblesDB is unable to scale with more threads, flat-
tening out at around 300K reads/sec.

Insertion Concurrency We test the insertion concurrency
scaling of SplinterDB by running the YCSB load workload
with 673M key-value pairs divided into N batches, each of
which is inserted in parallel by a different thread. fig. 11
reports throughput for various N.

The results show that SplinterDB scales almost linearly
up to 10 threads. With 10+ threads, it performs 2.0-2.4M
insertions per second with IO amplification around 7.5, which
implies that it uses 1.9-2.2GiB/sec of bandwidth, which is at
or near the device’s sequential bandwidth of 2.2GiB/sec.

RocksDB’s insertion performance also scales as the number
of threads increase up to 14 threads, by a factor of 2.7. At
its peak, it uses 754GiB/sec of bandwidth. PebblesDB scales
slightly as well. For both RocksDB and PebblesDB, as many
background threads as available are used for flushing and
compaction during this benchmark.

6.5 Scan Performance

An inherent disadvantage of size-tiering is that short scans
must search every branch along the root-to-leaf path to the
starting key. Each of these searches is likely to incur an 10
to the device. As a result, as seen in fig. 5a, SplinterDB with
124B key-value pairs has scan throughput on small ranges

ol]

o Sl 2,0y, N

s > g

Sz o

] s —e— SplinterDB

S g >

S8 g ‘s, —ii— RocksDB

= Q9 3

= ﬁ =3 = PebblesDB

M — _

T w2 T 2R 22 Y e

° :97.2’.—.:: : .m j r'i } m;é%m;(M!%Z 80 79 83 82 84

= 09 69 72) 83 82 &

o Y e o o . e 3

0 4 8 12 16 20 24 28 32

Number of Concurrent Threads
Figure 11: Insertion concurrency: insert throughput (YCSB Load)
by number of threads. Each instance performs 673M writes divided
evenly between threads. Higher is better.

[—o SplinterDB " device read throughput”
E o || —® RocksDB 2375 ; 2554
20 =~ &||—@— PebblesDB
ERE 1872
=4
22 8
b5 S
O o
=
M 171

12.2 187 ;

o L LI L1l il LIl il

100 “fol 102 100 10t 10°
Scan Length in Number of Key-Value Pairs
Figure 12: Scan throughput in MiB/sec as a function of scan length.
For small scans, the start up cost dominates, but as the scans get
longer, the throughput approaches the device’s advertised bandwidth
(2.6GiB/sec). The x-axis is on a log scale. Higher is better.

that is about 85% that of RocksDB. During that workload,
SplinterDB performed 2.26 GiB/sec of 10, which is within
96% of the devices advertised random read capability (short
scans of small key-value pairs are essentially random reads).

However, once the initial search for the successor to the
starting key has completed, the root-to-leaf path within each
relevant branch will be in memory. Together with prefetching,
this allows subsequent keys to be fetched at near disk band-
width. Therefore, we expect that scans have a relatively high
startup cost for the search to the starting key, followed by a
very low iteration cost of obtaining subsequent keys.

Thus, when the amount of data requested grows to mul-
tiple pages, the disadvantage begins to dissipate. One way
this happens is with larger key-value pairs: with 1kib values,
SplinterDB is about 16% faster than RocksDB.

Another way this can happen is with scans of more key-
value pairs. We modify YCSB workload E to have only fixed-
length scans of N key-value pairs, where N is 1, 10, 100, 1K,
10K or 100K. We perform runs of 10M scans of length 1,
10 and 100, 1M scans of length 1000, 100K scans of length
10000 and 10K scans of length 100000. Each run is performed
on a dataset of 80GiB (with 24B keys and 100B values) and
4GiB memory.

The result is shown in fig. 12. Short scans on SplinterDB
have low effective bandwidth, and in fact the bandwidth scales

close to linearly with the scan length for scans of up to 100
key-value pairs. This suggests that for scans of this length,
the startup cost dominates the iteration cost, which is as ex-
pected. As the scan length increases, the effective bandwidth
of the scans approaches the device’s advertised sequential
read bandwidth, delivering 91% at scans of 1,000 key-value
pairs. At scans as small as 100 key-value pairs, SplinterDB
returns data at nearly half the bandwidth of the device.

7 Related Work

The STBé-tree is based on a Bé-tree, a data structure that has
been used in several file systems and databases [18,27-29,
44,48,49]. The closest work to ours is Tucana [37], a BE-tree
optimized for SSDs. They also focus on CPU cost, concur-
rency, and write amplification. Our work pushes this to the
even more demanding case of NVMe devices. SplinterDB im-
proves on techniques that have been applied to log-structured
merge (LSM) trees and key-value stores to reduce write am-
plification and increase concurrency.

Size-Tiering. Cassandra [19], Scylla [42] PebblesDB [39],
and RocksDB [8] (in “universal compaction” mode) use size-
tiering to reduce write amplification. Size tiering delays com-
paction of sorted runs in order to reduce write amplifica-
tion. This can harm query performance because queries must
search more runs to find the queried item. Fluid LSMs [16],
Dostoevsky [16], LSM bushes [17], and Wacky [17] use
hybrids between size-tiering and level-tiering to tune the
trade-off between write amplification and query performance.
See [39] for a survey of LSM-compaction schemes.

Size-tiering also decreases write amplification in Splin-
terDB. Because of the design of the STB®-tree, SplinterDB
further leverages size-tiering for flush-and-compact, which
greatly increases the concurrency of background operations.

Write amplification vs. range queries. Several systems
sacrifice range-query performance in order to reduce write am-
plification in other ways. Wisckey [34] reduces write amplifi-
cation by declustering their key-value store: they log values
and only store keys in the LSM-Tree. Since values are stored
on disk in arrival order, a range query must gather values from
the log. On NVMe, this is not a problem once the values are
4KB or larger. However, for smaller values, this can induce
huge read amplification, limiting range query performance to
a tiny fraction of device bandwidth. HashKV [10] builds on
Wisckey by introducing hash-based data-grouping to further
reduce write amplification, but inherits Wisckey’s range query
performance limitations.

Other approaches improve write amplification by sacrific-
ing range queries altogether. Conway et al. [14] describe a
write-optimized hash table, called the BOA, that also uses
size-tiering with an LSM. They also introduce the concept of
a routing filter, which extends the functionality of Bloom fil-
ters, in order to speed up queries. The principle advantage of
routing filters is that performance does not degrade as much
when they don’t fitin RAM. The BOA meets a provable lower

bound on the I/O costs of insertions and queries [26]. The
downside is that the BOA does not support range queries,
which are crucial to many key-value-store applications. LSM-
tries [46] organize the LSM tree using tries, resulting in re-
duced write amplification. However, LSM-tries do not support
range queries.

Other approaches. Researchers have also attempted to
reduce write amplification by exploiting special hardware
features such as flash translation layers [35] and vector in-
terfaces [45]. VT-Tree [43] uses indirection to avoid copy-
ing data that is already sorted, similar to “trivial moves” in
RocksDB and PebblesDB. TRIAD [1] reduces write amplifi-
cation by holding hot keys in memory, delaying compaction
until different runs have significant key overlap, and by reduc-
ing redundancy between log and LSM tree writes. All these
techniques are orthogonal to our work and can be used in
conjunction with our techniques.

Concurrency is also an important aspect of key-value store
performance. One of the first works in increasing concurrency
in LSM-based stores was cLSM [21] which introduces a new
compaction algorithm. Zuo et al. [52] show how to tune a
cuckoo hash for NVM. Such a scheme suffers from high write
amplification, since each insertion must re-write all keys in
a data block. Zuo et al. do not report write amplification
numbers but instead focus on concurrency.

Kourtis, et al. describe several systems-level optimizations
for improving key-value-store throughput on NVMe, such as
efficient use of user-level asynchronous I/O and low-latency
scheduling [31]. Their techniques are largely orthogonal to
the work in this paper.

8 Analysis

We begin with a disk-space analysis, showing that, in STB®-
tree, size-tiered compaction and flush-then-compact do not
blow up the on-disk space usage by more than a constant fac-
tor. We then use this to analyze memory usage from indexes
and filters, and finally summarize STB®-tree’s asymptotic per-
formance.

Disk-space. Like level-tiered and size-tiered LSM trees and
BE-trees, the STB®-tree can have a space overhead when there
are updates to existing keys. This is because all of these data
structures buffer updates and apply them lazily. We begin
by showing that the space used by the STB®-tree is O(N),
where N is the number of distinct keys in the database. This
compares quite favorably to the space of a size-tiered LSM,
which can be as bad as @(FN).

Theorem 1. Let N be the number of distinct keys in a STBE-
tree. Then the STBE-tree uses O(N) space on disk.

Proof. We give only a sketch. The four key observations in
the proof are that (1) every leaf must be at least half full of
distinct keys due to the splitting and compaction policy, (2)
each branch has size at most mF due to the flushing policy,
(3) each non-leaf trunk node references at most 3F branches

due to the flushing policy, and (4) the number of non-leaf
trunk nodes is at most O(1/F) times the number of leaves.
Together, these prove that the total amount of data referenced
in the interior of the tree is at most a constant factor times the
number of distinct keys in the leaves.

O

For a workload of random updates to existing keys, we
estimate that the space blowup would be roughly a factor of
3. If the workload also contains insertions of new keys, then
the blowup would be even lower.

Asymptotic analysis. The height of the trunk is
O(logy N/Fm), and each item gets compacted at most
once per level, so the I/O complexity of random insertions are
O(W), which is the same as in a size-tiered LSM tree.

Assuming that all index nodes and filters fit in RAM, the
I/0 complexity of random point queries is O(1) I/Os, since
the filters will eliminate all but the correct branch from being
searched.

Long sequential insertion workloads will cost O(1/B) I/Os
per item. The I/O efficiency comes from the fact that, once
the first batch of items gets flushed to a leaf, the root-to-leaf
path for future insertions will be in cache, so no more I/O
will be needed, except to write out the new data. This also
workload has O(1) pass complexity because our flush-then-
compact policy will skip compactions at intermediate layers.
A straightforward implementation of a size-tiered LSM, on
the other hand, will have the same I/O and pass complexity
for both random and sequential insertion workloads.

Range queries returning k items cost O(F logz N/Fm) 1/Os
to get started (since the range query must perform a query
in every branch along the root-to-leaf path of the query key).
Thereafter, they cost O(k/B) 1/Os to return all the items. This
is comparable to the I/O cost of range queries in a size-tiered
LSM tree.

9 Conclusion

Our work shows that, by combining ideas from LSM trees
and BE-trees, we can build a key-value store that outperforms
current key-value stores by up to an order of magnitude on
insertions, matches or outperforms on lookups, and is com-
petitive on range queries.

SplinterDB targets the common case of small key-value
pairs and non-uniformly random workloads. Many real-world
key-value workloads come from different clients, some of
which might be performing very localized operations, while
others are performing relatively random operations. Splin-
terDB exploits whatever locality is available.

SplinterDB makes contributions to both the data-structural
and systems design of high-performance key-value stores. We
show how to get the low write amplification of size-tiered data
structure while maintaining the high query throughput and
workload-adaptivity of a BE-tree. We also describe several
systems issues, such as cache, lock, and memtable design,

that one must address to extract the full performance of high-
performance NVMe devices.

10 Acknowledgements
We would like to thank Ittai Abraham for his insight and
contribution to this project.
We would also like to thank the anonymous reviewers and
our shepherd, Ashvin Goel, for their insightful comments.
Vijay Chidambaram was partially supported by an NSF
CAREER Award #1751277.

References

[1] Oana Balmau, Diego Didona, Rachid Guerraoui, Willy
Zwaenepoel, Huapeng Yuan, Aashray Arora, Karan
Gupta, and Pavan Konka. TRIAD: creating synergies
between memory, disk and log in log structured key-
value stores. In Dilma Da Silva and Bryan Ford, editors,
USENIX ATC, pages 363-375. USENIX Association,
2017.

[2] Michael A. Bender, Jonathan W. Berry, Rob Johnson,
Thomas M. Kroeger, Samuel McCauley, Cynthia A.
Phillips, Bertrand Simon, Shikha Singh, and David
Zage. Anti-persistence on persistent storage: History-
independent sparse tables and dictionaries. In Tova
Milo and Wang-Chiew Tan, editors, SIGMOD, pages
289-302. ACM, 2016.

[3] Michael A. Bender, Martin Farach-Colton, Jeremy T.
Fineman, Yonatan R. Fogel, Bradley C. Kuszmaul, and
Jelani Nelson. Cache-oblivious streaming b-trees. In
Phillip B. Gibbons and Christian Scheideler, editors,
SPAA, pages 81-92. ACM, 2007.

[4] Michael A. Bender, Martin Farach-Colton, Rob John-
son, Russell Kraner, Bradley C. Kuszmaul, Dzejla
Medjedovic, Pablo Montes, Pradeep Shetty, Richard P.
Spillane, and Erez Zadok. Don’t thrash: How to cache
your hash on flash. Proc. VLDB Endow., 5(11):1627-
1637, 2012.

[5] Michael A. Bender, Martin Farach-Colton, Rob John-
son, Bradley C. Kuszmaul, Dzejla Medjedovic, Pablo
Montes, Pradeep Shetty, Richard P. Spillane, and Erez
Zadok. Don’t thrash: How to cache your hash on flash.
In Irfan Ahmad, editor, HotStorage. USENIX Associa-
tion, 2011.

[6] Michael A. Bender, Martin Farach-Colton, Rob John-
son, Simon Mauras, Tyler Mayer, Cynthia A. Phillips,
and Helen Xu. Write-optimized skip lists. In Emanuel
Sallinger, Jan Van den Bussche, and Floris Geerts, edi-
tors, SIGMOD, pages 69-78. ACM, 2017.

[7] Burton H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422-426,
1970.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Dhruba Borthakur. Rocksdb github wiki — performance
benchmarks, 2013.

Gerth Stglting Brodal and Rolf Fagerberg. Lower
bounds for external memory dictionaries. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, January 12-14, 2003, Baltimore,
Maryland, USA, pages 546-554. ACM/SIAM, 2003.

Helen H. W. Chan, Yongkun Li, Patrick P. C. Lee, and
Yinlong Xu. Hashkv: Enabling efficient updates in KV
storage via hashing. In Gunawi and Reed [23], pages
1007-1019.

Alex Conway, Ainesh Bakshi, Yizheng Jiao, Yang Zhan,
Michael A. Bender, William Jannen, Rob Johnson,
Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and
Martin Farach-Colton. How to fragment your file sys-
tem. login Usenix Mag., 42(2), 2017.

Alex Conway, Eric Knorr, Yizheng Jiao, Michael A. Ben-
der, William Jannen, Rob Johnson, Donald E. Porter,
and Martin Farach-Colton. Filesystem aging: It’s more
usage than fullness. In Daniel Peek and Gala Yadgar,
editors, HotStorage. USENIX Association, 2019.

Alexander Conway, Ainesh Bakshi, Yizheng Jiao,
William Jannen, Yang Zhan, Jun Yuan, Michael A. Ben-
der, Rob Johnson, Bradley C. Kuszmaul, Donald E.
Porter, and Martin Farach-Colton. File systems fated for
senescence? nonsense, says science! In Geoff Kuenning
and Carl A. Waldspurger, editors, USENIX FAST, pages
45-58. USENIX Association, 2017.

Alexander Conway, Martin Farach-Colton, and Philip
Shilane. Optimal hashing in external memory. In Ioan-
nis Chatzigiannakis, Christos Kaklamanis, Daniel Marx,
and Donald Sannella, editors, 45th International Col-
loquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Repub-
lic, volume 107 of LIPIcs, pages 39:1-39:14. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2018.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos.
Monkey: Optimal navigable key-value store. In Sali-
hoglu et al. [41], pages 79-94.

Niv Dayan and Stratos Idreos. Dostoevsky: Better space-
time trade-offs for Ism-tree based key-value stores via
adaptive removal of superfluous merging. In Gautam
Das, Christopher M. Jermaine, and Philip A. Bernstein,
editors, SIGMOD, pages 505-520. ACM, 2018.

Niv Dayan and Stratos Idreos. The log-structured merge-
bush & the wacky continuum. In Peter A. Boncz, Stefan
Manegold, Anastasia Ailamaki, Amol Deshpande, and
Tim Kraska, editors, SIGMOD, pages 449-466. ACM,
2019.

(18]

[19]
(20]

(21]

(22]
(23]

(24]

(25]

(26]

[27]

(28]

[29]

John Esmet, Michael A. Bender, Martin Farach-Colton,
and Bradley C. Kuszmaul. The tokufs streaming file sys-
tem. In Raju Rangaswami, editor, HotStorage. USENIX
Association, 2012.

Apache Software Foundation. Apache Cassandra, 2019.

Steffen Friedrich and Norbert Ritter. YCSB. In Ency-
clopedia of Big Data Technologies. Springer, 2019.

Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and
Idit Keidar. Scaling Concurrent Log-structured Data
Stores. In Proceedings of the Tenth European Confer-
ence on Computer Systems (Eurosys 15), page 32. ACM,
2015.

Inc. Google. Leveldb, 2019.

Haryadi S. Gunawi and Benjamin Reed, editors. 2018
USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018. USENIX
Association, 2018.

W. C. Hsieh and W. E. Weihl. Scalable reader-writer
locks for parallel systems. In IPPS, 1992.

Yihe Huang, Matej Pavlovic, Virendra J. Marathe,
Margo Seltzer, Tim Harris, and Steve Byan. Closing the
performance gap between volatile and persistent key-
value stores using cross-referencing logs. In Gunawi
and Reed [23], pages 967-979.

John Iacono and Mihai Patrascu. Using hashing to solve
the dictionary problem (in external memory). CoRR,
abs/1104.2799, 2011.

William Jannen, Michael A. Bender, Martin Farach-
Colton, Rob Johnson, Bradley C. Kuszmaul, and Don-
ald E. Porter. Lazy analytics: Let other queries do the
work for you. In Nitin Agrawal and Sam H. Noh, editors,
HotStorage. USENIX Association, 2016.

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. Betrfs: A right-
optimized write-optimized file system. In Jiri Schindler
and Erez Zadok, editors, USENIX FAST, pages 301-315.
USENIX Association, 2015.

William Jannen, Jun Yuan, Yang Zhan, Amogh Akshin-
tala, John Esmet, Yizheng Jiao, Ankur Mittal, Prashant
Pandey, Phaneendra Reddy, Leif Walsh, Michael A. Ben-
der, Martin Farach-Colton, Rob Johnson, Bradley C.
Kuszmaul, and Donald E. Porter. Betrfs: Write-
optimization in a kernel file system. TOS, 11(4):18:1—
18:29, 2015.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam,
Sam H. Noh, and Young ri Choi. Slm-db: Single-
level key-value store with persistent memory. In /7th
USENIX Conference on File and Storage Technologies
(FAST 19), pages 191-205, Boston, MA, 2019. USENIX
Association.

Kornilios Kourtis, Nikolas Ioannou, and Ioannis Kolt-
sidas. Reaping the performance of fast NVM storage
with udepot. In /7th USENIX Conference on File and
Storage Technologies (FAST 19), pages 1-15, Boston,
MA, 2019. USENIX Association.

Bredley Kuszmaul. Tokutek White Paper: A Compari-
son Of Log-Structured Merge (LSM) And Fractal Tree
Indexing, 2014.

Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy
Zwaenepoel. Kvell: the design and implementation of a
fast persistent key-value store. In Tim Brecht and Carey
Williamson, editors, SOSP, pages 447-461. ACM, 2019.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Wisckey: Separating keys from values in ssd-conscious
storage. In Proceedings of the 14th USENIX Confer-
ence on File and Storage Technologies (FAST 16), pages
133-148, 2016.

Leonardo Marmol, Swaminathan Sundararaman, Nisha
Talagala, and Raju Rangaswami. Nvmkv: a scalable,
lightweight, ftl-aware key-value store. In 2015 USENIX
Annual Technical Conference (USENIX ATC 15), pages
207-219, 2015.

Prashant Pandey, Michael A. Bender, Rob Johnson, and
Robert Patro. A general-purpose counting filter: Making
every bit count. In Salihoglu et al. [41], pages 775-787.

Anastasios Papagiannis, Giorgos Saloustros, Pilar
Gonzdlez-Férez, and Angelos Bilas. Tucana: Design and
implementation of a fast and efficient scale-up key-value
store. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), pages 537-550, Denver, CO, 2016.
USENIX Association.

Felix Putze, Peter Sanders, and Johannes Singler. Cache-
, hash-, and space-efficient bloom filters. ACM Journal
of Experimental Algorithmics, 14, 2009.

Pandian Raju, Rohan Kadekodi, Vijay Chidambaram,
and Ittai Abraham. Pebblesdb: Building key-value
stores using fragmented log-structured merge trees. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, Shanghai, China, October 28-31, 2017,
pages 497-514. ACM, 2017.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Ohad Rodeh. B-trees, shadowing, and clones. Transac-
tions on Storage, 2008.

Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun
Yang, and Dan Suciu, editors. Proceedings of the 2017
ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-
19, 2017. ACM, 2017.

Inc. Scylla. ScyllaDB: The real-time big data database,
2019.

Pradeep J. Shetty, Richard P. Spillane, Ravikant R. Mal-
pani, Binesh Andrews, Justin Seyster, and Erez Zadok.
Building workload-independent storage with vt-trees. In
Proceedings of the 11th USENIX Conference on File and
Storage Technologies (FAST 13), pages 17-30, 2013.

Tokutek, Inc. TokuDB, 2014. http://www.tokutek.
com.

Vijay Vasudevan, Michael Kaminsky, and David G. An-
dersen. Using vector interfaces to deliver millions of
iops from a networked key-value storage server. In
Proceedings of the Third ACM Symposium on Cloud
Computing (SOCC 12), page 8. ACM, 2012.

Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-
trie: An Ism-tree-based ultra-large key-value store for
small data items. In Shan Lu and Erik Riedel, editors,
2015 USENIX Annual Technical Conference, USENIX
ATC 15, July 8-10, Santa Clara, CA, USA, pages 71-82.
USENIX Association, 2015.

Ting Yao, Jiguang Wan, Ping Huang, Yiwen Zhang, Zhi-
wen Liu, Changsheng Xie, and Xubin He. Geardb: A
gc-free key-value store on HM-SMR drives with gear
compaction. In Arif Merchant and Hakim Weather-
spoon, editors, USENIX FAST, pages 159-171. USENIX
Association, 2019.

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Optimizing every operation in a
write-optimized file system. In Angela Demke Brown
and Florentina I. Popovici, editors, USENIX FAST, pages
1-14. USENIX Association, 2016.

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey,
Amogh Akshintala, Kanchan Chandnani, Pooja Deo,
Zardosht Kasheff, Leif Walsh, Michael A. Bender, Mar-
tin Farach-Colton, Rob Johnson, Bradley C. Kuszmaul,
and Donald E. Porter. Writes wrought right, and other
adventures in file system optimization. 70S, 13(1):3:1—
3:26, 2017.

[50] Yang Zhan, Alexander Conway, Yizheng Jiao, Eric

[51]

Knorr, Michael A. Bender, Martin Farach-Colton,
William Jannen, Rob Johnson, Donald E. Porter, and
Jun Yuan. The full path to full-path indexing. In Nitin
Agrawal and Raju Rangaswami, editors, USENIX FAST,
pages 123—-138. USENIX Association, 2018.

Yang Zhan, Alexander Conway, Yizheng Jiao, Nirjhar
Mukherjee, lan Groombridge, Michael A. Bender, Mar-
tin Farach-Colton, William Jannen, Rob Johnson, Don-

ald E. Porter, and Jun Yuan. How to copy files. In
Sam H. Noh and Brent Welch, editors, USENIX FAST,
pages 75-89. USENIX Association, 2020.

[52] Pengfei Zuo, Yu Hua, and Jie Wu. Write-optimized
and high-performance hashing index scheme for persis-
tent memory. In Andrea C. Arpaci-Dusseau and Geoff
Voelker, editors, OSDI, pages 461-476. USENIX Asso-

ciation, 2018.

	Introduction
	High-Level Design of STB^e-trees
	Overall Structure
	Queries
	Insertions
	Flushing and Compaction
	Splitting
	Iterators and Scans
	Deletions and Updates

	Flush-then-Compact
	Preemptive Splitting for STB^e-trees
	From STB^e-trees to SplinterDB
	Branch Trees and Memtables
	User-level Cache and Distributed Locks
	Quotient filters
	Logging and Recovery

	Evaluation
	Setup and Workloads
	YCSB
	Sequential Insertion Performance
	Concurrency Scaling
	Scan Performance

	Related Work
	Analysis
	Conclusion
	Acknowledgements

