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Today in the age of advanced ceramic civilization, there are a variety of applications for26

modern ceramics materials with specific properties. Our up-to date research recognizes27

that ceramics have a fractal configuration nature on the basis of different phenomena.28

The key property of fractals is their scale-independence. The practical value is that the29

fractal objects’ interaction and energy is possible at any reasonable scale of magnitude,30

including the nanoscale and may be even below. This is a consequence of fractal scale31

independence. This brings us to the conclusion that properties of fractals are valid on32

any scale (macro, micro, or nano). We also analyzed these questions with experimental33

results obtained from a comet, here 67P, and also from ceramic grain and pore morpholo-34

gies on the microstructure level. Fractality, as a scale-independent morphology, provides35

significant variety of opportunities, for example for energy storage. From the viewpoint36

of scaling, the relation between large and small in fractal analysis is very important. An37

ideal fractal can be magnified endlessly but natural morphologies cannot, what is the38

new light in materials sciences and space.39
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1. Introduction1

We are confident, that the exciting story about the fractals must begin from some2

substantial point as a part of nature and matter. Anyhow, there is the bridging3

correspondence between the fractal nature and the nature recognized by fractals.4

From these two points of view, the source and meeting point is the same, like it5

is the thermodynamically philosophical point of view. Sometimes we can begin by6

the end. The Fractals’ world is everywhere around us and we are substantial part7

of such fractal space nature. The mathematical fractal world has been inspired by8

nature and Euclidean geometrical shapes. The fractal nature independently exists9

everywhere within structures, contact surfaces, practically, from microstructures,10

even on nano level and below, up to the global bulk and massive shapes.11

The fractal analytic method of structural reconstruction of materials, grains and12

pores, in order to make possible an advanced microstructural property prognosis,13

is a new procedure in materials microstructural characterization.1 Electronic mi-14

croscopy methods,2 regardless of resolution and magnification, enables one getting15

micrographs. This was applied on barium-titanate,3 silicate, refractory and other16

ceramics, but can be applied also to any material. Based on the grains and perime-17

ters fractal analysis, their reconstruction is made by using the Richardson method18

of variable yardstick.4 It gives a more realistic picture as obtained with a Euclidean19

geometry frame, which replaces the role of modeling, because it gives the real mi-20

crographs shapes. The obtained micrographs, through shape reconstruction, lead21

to the prognosis possibility of the designed microstructural properties.1,522

From this point of view, all modern and maximal optimized microstructure23

methods are faced with open questions, how to provide more flexibility in the field24

of the structural units (grains and pores). Their reconstruction and interrelations25

have the final goal to be in function of future high-level integrations and better26

packaging of microelectronic components, devices, and integrated circuits. This is27

on the way to understand that the fractal nature exists everywhere independently of28

distances. This opens a new view, namely that the shapes of the objects on Earth,29

under the telescope from space, are like the microstructures seen with the aid of a30

microscope.31

From that aspect, the large-small relation in the light of fractal analysis is very32

important. An ideal fractal can be magnified endlessly while natural morphologies33

cannot. This is the reason why natural objects cannot be ideal fractals. The excep-34

tion is maybe the Universe as whole. Our microstructures do not differ regarding35

fractality from macrostructures. The practical question is: What is the measure-36

ment range in which fractality can be identified? By rule, the minimum information37

reported by literature must be ranged in at least three orders of measured quantity38

magnitude.39

With the development of modern physics in the early 20th century, it became40

clear that the Euclidean geometry, which was the successful basis of Newtonian41

physics is by far not sufficient to describe all visible phenomena in nature, in42
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quantum physics or in the physics of deep space.6 New areas are accompanied by1

the development of new geometries: The Riemann and Lobachevsky geometry, and2

finite projective geometry. It turned out, however, that neither of the mentioned ge-3

ometries are sufficient to describe some seemingly common macro-phenomena such4

as chaotic, turbulent and colloidal motions, crystal growth, and so on. Here and5

there some partial solutions have appeared in the eighties of the 20th century. These6

attempts were systematized by Benoit Mandelbrot in his epochal book,7 which cast7

a new light on the order of things in nature. It was in Ref. 7 that the term “fractal”8

appeared for the first time as mathematical object. The term fractal is a neologism9

derived from the Latin adjective fracins meaning fragmented, irregular. Due its10

complexity, fractal objects cannot be successfully defined without involving infin-11

ity. In Ref. 7, many examples of fractal phenomena in nature are given: they are all12

amorphous or hyper-complex structures such as the formation of clouds, swirling13

water, the movement of ocean currents, polarized light, the arrangement of stars in14

galaxies, vegetation, irregular forms of relief, the contours of coastlines, the alveolar15

configuration of lung tissues, and the like. In addition to the morphological sphere,16

fractals appear also in the functional sphere. For example, noise in telecommunica-17

tions, free market price fluctuations, the variation in biomass of different plants and18

animal species or statistical performance of spoken language have fractal structure.19

The complete definition of fractal cannot be given outside the framework of20

functional analysis and measure theory. Instead, the following weaker definition21

can suffice for applications in material science:22

A fractal A is a subset of the complete metric space, which is invariant in23

relation to the union of contractive W mappings, i.e. W (A) = A. Thereupon, the24

Hausdorff dimension of this subset DH(A), as a rule, is a non-integer real number.25

The mapping w is “contractive” if it maps the bounded original set into a set26

that is “smaller” in the sense of Hausdorff metric. Unlike the Euclidean metric,27

which determines linear distance d(x,y) between two points, the Hausdorff metric28

h gives the distance between two non-empty sets, A and B as29

h(A,B) = max{max{min(d(y,a),a ∈ A),y∈B}, max{min(d(x,b),b∈B),x∈A}} ,30

If A and B collapses to points, the Hausdorff distance becomes Euclidean. In this31

sense, the Hausdorff distance h is the generalization of the Euclidean distance d.32

In a similar sense, the Hausdorff or fractal dimension is the generalization of usual33

Euclidean dimension (also called geometric or topological dimension DT).34

Figure 1 shows two sequences of geometric planar figures. The top part shows the35

sequences of polygons inscribed in the same circle. By doubling the number of sides,36

they represent increasingly in terms of the Hausdorff distance the circle (the same37

conclusion holds if the polygons are considered as 2D figures sequence approach-38

ing the circular disk). The bottom shows the sequence of polygons approaching a39

parabolic curve, which is the usual situation in approximating functions.40

Another, more descriptive definition says that fractals are geometric objects41

having broken, fragmented, wrinkled or amorphous forms or being highly irregular42
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fractals appear also in the functional sphere. For example, noise in telecommunications, free market price 

fluctuations, the variation in biomass of different plants and animal species or statistical performance of 

spoken language have fractal structure. 

 

Figure 1. Convergence in Hausdorff metric in the plane. 
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Figure 2.  Cantor dust and Koch curve. 

Fig. 1. Convergence in Hausdorff metric in the plane.

in some other way. In addition, some object S is fractal if its fractal (Hausdorff)1

dimension strictly exceeds its topological dimension, i.e. if DT(S) < DH(S).2

Also, as the topological dimension DT is always a whole number (0 for points,3

1 for curves, 2 for surfaces, 3 for solids, etc.), DH can be both integer and non-4

integer. For example the ideally calm pond water surface has DT = DH = 2, i.e. the5

superficial layer of liquid molecules is (approximately) a mathematical plane. Any6

disturbance for example caused by a slight breeze, will make the surface geometry7

more complicated, still with DT = 2, but with DH > 2. As the wind grows stronger8

DH will increase until it becomes equal to 2.5. This state of water surface can be9

characterized as an object between a surface and a body. After a certain moment,10

an extremely strong wind will spread out the water droplets everywhere in the11

surrounding atmosphere. The form of the pond surface becomes chaotic, reaching12

the upper limit, DH = DT = 3, transforming the planar water layer into a part of13

3D space.14

Mathematicians used to discover early fractals (without having the faintest idea15

what they got) as unusual particular examples. Probably the first one was published16

in 1883 by Georg Cantor.8 Known as (a middle third) Cantor set or Cantor dust, it17

is one of the simplest, although a typical fractal set. In Fig. 2, the approximation of18

a Cantor set is denoted by C. The fractal dimension of C can be evaluated exactly;19
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it is DH(C) = log 2/ log 3 ∼= 0.63092. So, C is an object between a point and a line.1

This is an explanation of the paradoxal properties of Cantor’s 1883 construction:2

This monster has “structure” of continuum and still has zero length!3

Cantor’s classic set can be constructed using the so-called Iterated Function4

System (IFS)9 with two transformationsw1(x) = 1
3x, w2(x) = 1

3x + 2
3 , joined into5

one single set operator W = w1 ∪ w2,starting by the unit interval X = [0, 1], so6

that7

W ([0, 1]) = w1 ([0, 1]) ∪ w2 ([0, 1]) =

[
0,

1

3

]
∪
[

2

3
, 1

]
,8

 

Fig. 3. Cantor set (Cantor dust) generation using IFS.

Then, by iterating,9

W 2([0, 1]) = W

([
0,

1

3

]
∪
[

2

3
, 1

])
= w1

([
0,

1

3

]
∪
[

2

3
, 1

])
∪ w2

([
0,

1

3

]
∪
[

2

3
, 1

])
10

=

[
0,

1

9

]
∪
[

2

9
,

1

3

]
∪
[

2

3
,

7

9

]
∪
[

8

9
, 1

]
,11

W 3([0, 1]) =

[
0,

1

27

]
∪
[

2

27
,

1

9

]
∪
[

2

9
,

7

27

]
∪
[

8

27
,

1

3

]
∪
[

2

3
,

19

27

]
∪
[

20

97
,

7

9

]
12

∪
[

8

9
,

25

27

]
∪
[

26

27
, 1

]
,13

and so on (Fig. 3).14

In 1875, Weierstrass came up with an example of a continuous nowhere differen-15

tiable curve. The most popular variety of such a curve is the Koch 1904 construction,16

the “snowflake” curve K (Fig. 2) having DH(K) = log 4/ log 3 ∼= 1.2618. Thus, it17

is not a clear curve, it is partly a surface, and despite of the fact that K occupies18

limited part of the plane, it has infinite length. It is given by the four member IFS19
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The fractal dimension is now DH(K) = ln4/ln3 ≈ 1.2618595071429146159… 
 

 
 

Figure 4.  Construction of Koch „snowflake“ curve K.  
 

Fractal models, even the simple ones, give a much more natural approximation of real physical structures 

than classic Euclidean geometry does.  This fractal short overview inspire the ideas for fractal analysis 

within the whole space scale, as a joint characteristic of total nature in all sizes reality in the matter. This 

characteristic is the same everywhere. 

2.  Experimental  

Our experimental data are based on the results collected by some instruments of the ESA spacecraft 

Rosetta and Philae of the Rosetta mission [10, 11, 12] obtained on comet 67P/Churyumov–Gerasimenko, 

and on our results on the characterization of grains and pores of ceramics microstructure morphologies. 

In both cases we applied fractal analysis which demonstrates common characteristics on space bodies 

and down to the level nano and sub-nano structures. Figure 5 demonstrate the variety of different space 

bodies structures down to the level of sub-micro structures, which are part of the general scale of features 

of the universe.  
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acting in the (x, y)-plane:1

w1

([
x

y

])
=

[
1/3 0

0 1/3

][
x

y

]
, w2

([
x

y

])
=


1/6 −

√
3

6
√

3

6
1/6


[
x

y

]
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[
1/3

0

]
,

w3
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x

y

])
=
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√
3
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−
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6
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]
+
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x

y

])
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.

2

The fractal dimension is now DH(K) = ln 4/ ln 3 ≈ 1.2618595071429146159 . . .3

Fractal models, even the simple ones, give a much more natural approximation4

of real physical structures than classic Euclidean geometry does. This fractal short5

overview inspires the ideas for fractal analysis within the whole space scale, as6

a joint characteristic of the total nature in all sizes reality in the matter. This7

characteristic is the same everywhere.8

2. Experimental9

Our experimental data are based on the results collected by some instruments of10

the ESA spacecraft Rosetta and Philae of the Rosetta mission10–12 obtained on11

comet 67P/Churyumov–Gerasimenko, and on our results on the characterization of12

grains and pores of ceramics microstructure morphologies. In both cases we applied13

fractal analysis, which demonstrates common characteristics on space bodies and14

down to the level of nano and sub-nano structures. Figure 5 demonstrate the variety15
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Fig. 5. Universe scales (public databases, comet, Industrial Technology Research Institute

(ITRI), Taiwan).
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Figure 5. Universe scales (public databases, comet, Industrial Technology Research Institute (ITRI), Taiwan). 

A comet may represent the results of morphology structures as typical for our solar system.  We analyzed 

the microstructural shapes at the final landing site Abydos of the Rosetta Mission lander Philae. Also we 

reconstructed and characterized the „grain“ perimeters as shown in Fig. 6 and obtained the fractal 

dimension of the surface material which is discussed in the following section. 

 

Figure 6. Left: Comets surface microstructure at final landing place Abydos; Center and right: Fractal analysis 

related parameters of some structure morphologies (Credit left-hand image: ESA/Rosetta/MPS for Ossiris Team 

MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA). 

From materials science we selected, as a base for a beginning, ceramics materials. Regarding the analysis 

of this extreme on the Solar system scale, grains from ceramics morphologies are studied. The ceramics 

samples are made of BaTiO3 with different additives like Ho which are consolidated by standard 

procedure. As the starting material, commercial BaTiO3 powder (Aldrich, 99.9% purity) was used. It was 

treated in a planetary ball mill (Fritsch Pulverissete 5) for 10, 20, 40 and 60 min in an agate jar with 8 mm 

in diameter agate balls (Al2O3). The ball/sample mass ratio was 20:1 while the tray and vial rotation 

speeds were 317 and 396 rpm respectively. We carried out the microstructure analysis with five different 

magnifications and based on that the perimeter of the grains is shown in Fig. 7. Regarding the data 

collecting for grains perimeters we used small device “run-meter” which was applied for gathering the 

grains perimeters data. Later we used software applications for calculating the perimeters of the grains 

what was more effective. 

Fig. 6. Left: Comets surface microstructure at final landing place Abydos; Center and Right:
Fractal analysis related parameters of some structure morphologies (Credit left-hand image:

ESA/Rosetta/MPS for Ossiris Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA).

of different space bodies structures down to the level of sub-micro structures, which1

are part of the general scale of features of the universe.2

A comet may represent the results of morphology structures as typical for our3

solar system. We analyzed the microstructural shapes at the final landing site Aby-4

dos of the Rosetta Mission lander Philae. Also we reconstructed and characterized5

the “grain” perimeters as shown in Fig. 6 and obtained the fractal dimension of the6

surface material, which is discussed in the following section.7

From materials science we selected, as a base for a beginning, ceramics materi-8

als. Regarding the analysis of this extreme on the Solar system scale, grains from9

ceramics morphologies are studied. The ceramics samples are made of BaTiO3 with10

different additives like Ho, which are consolidated by standard procedure. As the11

starting material, commercial BaTiO3 powder (Aldrich, 99.9% purity) was used. It12

was treated in a planetary ball mill (Fritsch Pulverissete 5) for 10, 20, 40 and 60 min13

in an agate jar with 8 mm in diameter agate balls (Al2O3). The ball/sample mass14
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Fig. 7. Microstructures of BaTiO3-ceramics and fractals reconstructing the perimeter of the
grain.

ratio was 20:1 while the tray and vial rotation speeds were 317 and 396 rpm respec-1

tively. We carried out the microstructure analysis with five different magnifications2

and based on that the perimeter of the grains is shown in Fig. 7. Regarding the data3

collecting for grains perimeters we used small device “run-meter,” which was ap-4

plied for gathering the grains perimeters data. Later we used software applications5

for calculating the perimeters of the grains what was more effective.6

On this way we have the same fractal analysis on the scale of mega bodies’ sizes7

and micro and sub micro structures on the other extreme scale sizes.8

3. Results and Discussion9

Based on microstructure and fractal analysis from experiments, we completed the10

calculations of Hausdorff dimensions and disposed the related graphs. Fractal anal-11

ysis of the comet’s surface structure are shown in Figs. 8 and 9.12

 

Fig. 8. The diagram of contour fractal dimension from the structures at the comet touch-down

site Abydos.
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Figure 9. Left: Comet 67P surface structure near the touch-down site Abydos (cut-out of Fig. 6 left; Right: Related 

surface fractal dimension. 

 

The results analysis from the BaTiO3-ceramics structures, taken as other extreme on the Solar system 

scale, is completed by contour fractal dimension and is shown in Figs. 10 - 12. 

 

Figure 10. The contour fractal dimension based on BaTiO3-ceramics structures. 

 

Figure 11. BaTiO3-ceramics sample and its fractal dimenssion. 

Fig. 9. Left: Comet 67P surface structure near the touch-down site Abydos (cut-out of Fig. 6
left; Right: Related surface fractal dimension.

 

Fig. 10. The contour fractal dimension based on BaTiO3-ceramics structures.

The results analysis from the BaTiO3-ceramics structures, taken as other ex-1

treme on the Solar system scale, is completed by contour fractal dimension and is2

shown in Figs. 10–12.3

Regarding the data for Figs. 10–12, we used the different images of the Barium-4

titanate samples consolidated with different additives quantities, sintering tempera-5

tures and pressures. So, this is principally one of all of these microstructure results,6

which are very similar.7

Based on the sub-micro analysis of the ceramic grain surfaces, we applied Fourier8

analysis of the spectra roughness’s, which definitely confirms the similarity of the9

surface nature on the micro level with surface morphology at the large space bodies10

like on the comet.11

Based on all of these results, it is evident that fractal characteristics are a12

common property, both for the surface structure of small bodies of our solar system13

like comets, and for the microstructure of ceramics taken from SEM micrographs14

analysis.15
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Fig. 11. BaTiO3-ceramics sample and its fractal dimension.

 

Fig. 12. Left: 3D-surface representation of the sample; Right: Level lines.

We stress that the numerical result, we may get for fractal dimension is a di-1

mension of the picture we got and not of the sample itself. So, it may differ from2

the real fractal dimension for the same amount the picture differs from the original.3

Also, one must take into account that numerical approximations also have inherent4

errors. But, in spite of this, the results are quite usable in comparing two different5

samples and is not an obstacle in having an insight in the complicated relationship6

between space consolidation processes as well as on the ceramics micro level.7
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4. Conclusion and Outlook1

The relativization of different structure sizes on large scales is very important in2

regard to microstructural and electrophysical relations for matter properties in3

general. So, the fractal characterization of structures of comets is definitely the4

most effective bridge to the microstructure of materials on Earth, even on a nano5

level.6

The characterization materials data, by SEM, does not have the opportunity7

to play the active role, without, once reconstructed microstructure shapes in the8

function to the microstructure properties prognosis. All available microstructure9

analysis tools are only passive instruments to get characterization data. The fractal10

structure analysis makes all of these methods lively and applicable for developing11

future needs.1312

The fractal nature offers a new approach to the ceramic structure analysis,13

describing prognosis and modeling the grain shapes and the relations between mor-14

phology and electrophysical properties. Also, the existence of the fractal nature of15

ceramic materials is completely confirmed within the electrochemical thermody-16

namic and fluid dynamics parameters in previous research.17

This research has significance from the ceramic’s microstructure consolidation18

prognosis fractal aspect point of view and possibility of having better insight into19

some internal properties. There is existing influence of ceramics grains’ surface20

fractality plus particle dynamics in the material on the overall energy distribution,21

too.22

Through this method and results, we are opening the fractal microstructure23

scale sizes new frontiers and technological processes, especially specific intergranular24

relations within grains surfaces in all matter.25

All of these results confirm microstructure constituent’s grains and pores shapes.26

Also, there are possibilities to analyze the Brownian motion particles phenomena.27

As next step, there is need for long-term scientific research on the relativization of28

different scale size influences within the whole nature. That is because the fractal29

nature is the general characteristic everywhere independently of size.30

In future research, we plan to include the results, which are collected by different31

spacecrafts on the planets like Mars, Venus, Moon, and other solar bodies.32
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