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Nonreciprocal propagation of acoustic waves is often achieved by magnetoelastic coupling with spin

waves (SWs) and is limited to a narrow magnetoelastic gap (approximately 10–100 MHz) near the crossing

point of the acoustic and SW dispersions. We propose a different method to achieve a giant frequency band

of the surface acoustic wave (SAW) nonreciprocity in an artificial structure, where a nonmagnetic acoustic

crystal is magnetoelastically coupled to a synthetic antiferromagnet—a pair of thin ferromagnetic layers

the static magnetizations of which are held opposite by Ruderman-Kittel-Kasuya-Yoshida interaction.

Strongly nonreciprocal and approximately linear dispersion of SWs in this system makes it possible to

match dispersions of SAWs and SWs in a wide frequency band for one direction of the wave propagation.

Example calculations performed for the LiNbO3/Co/Ru/Co structure confirm the giant nonreciprocity of

the SAW propagation in a frequency band exceeding 6 GHz.

DOI: 10.1103/PhysRevApplied.12.054061

I. INTRODUCTION

Wave nonreciprocity—the dependence of the wave-

propagation characteristics (the dispersion and/or the

damping rate) on the reversal of the propagation direc-

tion—is a fascinating fundamental phenomenon, which is

also of great practical interest for the development of isola-

tors and circulators. The existence of wave nonreciprocity

requires a simultaneous breaking of the time- and space-

reversal symmetries [1–3], which is difficult to realize in

both natural and artificial materials. In particular, the sym-

metry of the fundamental laws of mechanics prohibits the

nonreciprocity of pure acoustic waves (AWs) in unmoving

media. Nonreciprocal propagation of AWs can be realized

in the presence of moving or rotating media [4,5] or by

utilizing time-reversal-breaking nonlinear effects [6–8], all

of which have severe limitations for practical applications.

Wave propagation in diffractive media could also appear as

unidirectional [9] but, in fact, is neither nonreciprocal nor

useful for applications [10].

Alternatively, nonreciprocal propagation of AWs can

be induced by interaction with other subsystems of a

medium [11]. Usually, one considers magnetoelastic inter-

action with a magnetic subsystem of a ferromagnetic crys-

tal as a source of acoustic nonreciprocity [12–14]. Indeed,

the time-reversal symmetry of the magnetic moment

motion is inherently broken—its natural precession is

always right-handed. The lack of inversion symmetry in
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magnetic crystals [15,16] or in artificial structures [17–19]

allows one to realize the nonreciprocity of spin excita-

tions—spin waves (SWs)—in many different cases.

A schematic illustration of the nonreciprocal propaga-

tion of AWs, induced by magnetoelastic coupling with

SWs, is given in Fig. 1. In the simplest and most well-

studied case [Fig. 1(a)], the AWs and SWs themselves

(i.e., without magnetoelastic coupling) are reciprocal and

both the wave dispersion and the propagation losses are

the same for opposite propagation directions. In the vicin-

ity of the crossing points of the AW and SW disper-

sion characteristics, magnetoelastic interaction leads to

the coupling between these waves and to the opening of

magnetoelastic gaps (the effect of wave hybridization or

“avoided crossing”). The main experimental manifestation

of this coupling is the increased damping (decreased trans-

mission rate) of the AWs near the gaps, caused by the

magnetic losses, which are usually much larger than the

acoustic ones. Since the size of the magnetoelastic gap

depends on the vector structure of the interacting waves,

the gaps for opposite wave vectors ±k may be differ-

ent. Consequently, the AW propagation losses at a given

frequency also become different for opposite propagation

directions, being, however, large in both directions (so

that the relative difference in the losses is typically rather

small) [14]. This simple scheme has previously been stud-

ied in ferromagnetic single crystals [12,13] and artificial

structures [14].

An alternative method of inducing AW nonreciprocity

has been proposed in Ref. [20]. In this case, the SWs
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(a)
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(c)

FIG. 1. An illustration of methods of inducing nonreciprocity

of an AW by magnetoelastic coupling with a SW: left column,

spectra of AWs and SWs—the inset in (a) shows the opening

of the magnetoelastic gap of size �f ; right column, AW trans-

mission rates in opposite directions (schematically). Here, (a)

and (b) show the narrow-band nonreciprocity with coinciding

and frequency-separated hybridization bands, respectively, and

(c) illustrates the method of creation of wide-band nonreciprocity

proposed in the current work.

have inherently nonreciprocal spectra (e.g., due to the

Dzyaloshinskii-Moriya interaction), which results in the

frequency separation of magnetoelastic gaps for opposite

propagation directions [Fig. 1(b)]. Thus, the high-damping

(low-transmission) bands are also separated in frequency,

which allows one to substantially decrease the insertion

losses of a nonreciprocal device in one of the opposite

propagation directions.

It should be noted that in both of the above-described

schemes, the nonreciprocal propagation of AWs is limited

to a frequency range of the order of the magnetoelastic

hybridization gap �f near the crossing points of the dis-

persion characteristics, which typically does not exceed

10–100 MHz [20]. It creates certain limitations for prac-

tical applications, such as a limited operation band and the

necessity to fabricate different structures for different fre-

quency ranges (or their fine tuning by an external magnetic

field). In addition, if the magnetoelastic gaps are smaller

than the SW linewidth and/or the frequency band of trans-

ducers for the AW excitation and reception (which is a

common case for many magnetic and acoustic systems),

the full potential of the AW nonreciprocity induced by

magnetoelastic interaction cannot be realized [20].

II. PRINCIPLE OF WIDE-BAND

NONRECIPROCITY OF ACOUSTIC WAVES

In this work, we propose a method to realize wide-

frequency-band AW-SW nonreciprocity. It is based on an

artificial material, in which the nonreciprocal properties of

AWs [specifically, the surface acoustic wave (SAW)] exist

over a much wider frequency range that can exceed sev-

eral gigahertz and, therefore, covers the full band of the

SAW applications. The main idea is illustrated in Fig. 1(c).

Namely, we propose to couple a SAW with a SW, which is

strongly nonreciprocal, and, for one direction of propaga-

tion, has a dispersion characteristic that is similar to that

of the SAW. In such a case, the effective coupling between

the SW and the SAW takes place in a wide frequency

region, where the SAW and SW dispersions are similar,

instead of a relatively narrow AW-SW hybridization band

near the dispersion crossing points, as in the previously

used hybridized systems [see Figs. 1(a) and 1(b)].

We consider the possibility of nonreciprocal propagation

of SAWs, which are the AWs that are used most often in

modern signal-processing techniques [21–23]. In addition,

the localization of SAWs near the crystal surface makes

them sensitive to the properties of thin films adjacent to

the acoustic crystal and, in particular, to ferromagnetic lay-

ers placed on the surface of a crystal [14,24]. Nevertheless,

the above-described approach of induced AW-SW nonre-

ciprocity could be used for AWs other than the SAW (e.g.,

Lowe’s waves) through a proper choice of the adjacent

magnetic structure.

The spectrum of the SAW is linear and gapless [see

Fig. 2(d)], ωSAW = cSAW|k|, where cSAW is the SAW veloc-

ity. Therefore, for the realization of the proposed approach

of wide-band nonreciprocity, one needs to find a ferromag-

netic structure in which the SW spectrum is nonrecipro-

cal, gapless, and linear (at least, over a certain range of

wave numbers). The structure that satisfies these require-

ments is a synthetic antiferromagnet—a ferromagnetic

bilayer with opposite directions of the static magnetization

of layers, which can be stabilized by Ruderman-Kittel-

Kasuya-Yoshida (RKKY) indirect exchange via a spacer

of a proper thickness. The SW spectrum of a synthetic

antiferromagnet consists of two branches having differ-

ent phase relations between the magnetization precession

in the layers [Fig. 2(c)] and a set of higher-frequency

nonuniform-thickness modes [not shown in Fig. 2(c)].

Both SW branches are strongly nonreciprocal as long as

the static magnetization of the layers lies in plane (or has

a nonzero in-plane component) and the SW propagates

in plane at a finite angle to the static magnetization, i.e.,

φ �= 0, π [see Fig. 2(a)] [25,26]. In the ideal case of iden-

tical layers and a zero external field, the lowest SW branch

is gapless and, at sufficiently small values of the SW wave

number k, has linear dispersion. These spectral proper-

ties of SWs in a synthetic antiferromagnet are exactly the
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FIG. 2. (a) The layout of the proposed artificial structure.

(b) The directions of the wave propagation, the bias field, and

the magnetizations of the ferromagnetic layers in the x-y plane.

(c) The SW spectra of the synthetic antiferromagnet in the case

of identical layers in a zero bias field [Co(15)/Ru(0.9)/Co(15),

thicknesses in nanometers] for different SW propagation direc-

tions. (d) The dispersion of the lowest SW branch at φ = 36◦

in the ideal case of identical magnetic layers in a zero bias field

(dashed line) and in the case of slightly different magnetic layers

[Co(16)/Ru(0.9)/Co(15)] in a Be = 1 mT bias field. The green

line shows the spectrum of the SAW in LiNbO3. Details of the

spectral calculation are presented in the Appendix.

properties that are needed to match the spectral properties

of SAWs.

III. CALCULATION OF WAVE SPECTRA AND

PROPAGATION LOSSES

The layout of a structure in which the above-described

nonreciprocal SWs can be efficiently coupled with a SAW

is shown in Fig. 2(a). It consists of a nonmagnetic acous-

tic single crystal that supports propagation of the SAW

(e.g., LiNbO3, LiTiO3, etc.) and the adjacent thin synthetic

antiferromagnet that has magnetostrictive ferromagnetic

layers. If the ferromagnetic layers are thin compared to the

SAW localization depth (of the order of the SAW wave-

length), their presence hardly affects the SAW mechani-

cally. The strain induced by the SAW penetrates freely into

the magnetic layers, where it couples to SWs due to the

magnetostriction effect.

In all the calculations below, we use the parameters of a

Co/Ru/Co/LiNbO3 structure, with Co being in the fcc or

bcc phase; notes on the choice of materials are presented

below (Sec. IV). Namely, we use the following parameters:

saturation magnetization of Co µ0Ms = 1.76 T, gyromag-

netic ratio γ = 2π × 29 GHz/T [27], exchange stiffness

Aex = 2.5 × 10−11 J/m [28], and Gilbert damping con-

stant αG = 0.006 [29]. The thickness of the Ru spacer,

which corresponds to a local maximum of the RKKY

antiferromagnetic exchange, is chosen to be ts = 0.9 nm.

The corresponding constant of the antiferromagnetic inter-

layer exchange is J = 0.8 mJ/m2 [30]. The magnetoelastic

coupling constants of Co are B1 = −9.2 MJ/m3, B2 =
7.7 MJ/m3 [31,32]. The parameters of the LiNbO3 are as

follows: Y-cut, Z-propagation axis of SAW, density ρ =
4650 kg/m3, longitudinal and transversal sound velocities

cl = 7350 m/s and ct = 3600 m/s [33], respectively, and

corresponding SAW velocity cSAW = 3361 m/s.

SW dispersion in a synthetic antiferromagnet has been

considered in Refs. [25] and [26]. In the case of iden-

tical ferromagnetic layers and a zero external bias field,

the long-wave (small k) approximation of the lowest SW

branch yields the following dispersion relation:

ωk = ωM tFM

[
√

λ2

t2FM

+ 1

3
sin2 φ + 1

2
sin φ sign k

]

|k|,

(1)

where ωM = γµ0Ms, Ms is the saturation magnetization,

tFM = t1 = t2 is the thickness of the ferromagnetic layers,

and λ is the exchange length. It is clear that this dispersion

is gapless, ω0 = 0, which reflects the continuous rotational

symmetry in the plane of the layers. The SW spectrum

is also linear, ωk = cφ|k|, with the velocity cφ dependent

on the angle φ of SW propagation relative to the static

magnetization. Finally, the SW spectrum is nonreciprocal,

ωk �= ω−k (except for φ = 0). The angular dependence of

the SW velocity cφ greatly simplifies the design of the arti-

ficial structure, as it allows one to easily match the group

velocities of SW and SAW, cφ ≈ cSAW, by the selection of

a proper propagation angle φ (see below). The linearity of

the SW dispersion holds up until |k| � 1/h, 1/λ. At higher

wave numbers, the SW dispersion deviates from the linear

law, as shown in Fig. 2(d).

In practice, one cannot use this idealized case, since

the continuous degeneracy of the magnetic state does not

allow one to fix the angle between the k and M—it will

fluctuate under thermal noise. A possible solution is to

use slightly different ferromagnetic layers (in saturation

magnetization Mi and/or in thickness ti) and apply a weak

in-plane magnetic field Be. If the bias field does not exceed

the critical value |Be| < J
∣

∣(M2t2)
−1 − (M1t1)

−1
∣

∣ (see the

Appendix), where J is the constant of the interlayer antifer-

romagnetic exchange (RKKY), the antiferromagnetic state
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remains stable and the magnetizations of the layer align

with the direction of the bias field Be, so that the net mag-

netic moment of the bilayer is parallel to Be. Alternatively,

one can utilize a weak in-plane anisotropy caused by the

crystal structure of the ferromagnetic material or by the

sample shape (see the notes on acceptable anisotropy val-

ues in Sec. IV). This in-plane anisotropy would create the

same stabilizing effect as the in-plane bias magnetic field.

The presence of a weak magnetic field or anisotropy does

not drastically change the SW spectrum. It leads to the

appearance of a small spectral gap, ω0 > 0, but, apart from

a small region near k = 0, the SW spectrum still follows

the linear law [see Fig. 2(d)].

The coupling between the SW and the SAW is cal-

culated using the perturbation approach developed in

Ref. [20]. The coupling coefficient is as follows:

κk = 2 cos φ√
AkQk

∫

µ(z)
[

B1uxxm∗
IP sin φ + B2uxzm

∗
z

]

dz.

(2)

Here, µ(z) defines the direction of static magnetization of

the layers relative to the direction of the bias field [i.e.,

µ = 1 within the upper (thicker) layer and µ = −1 within

the lower layer; otherwise, µ = 0], mIP(z) and mz(z) are

the in-plane and out-of-plane components of the dynamic

magnetization in the SW mode, û(z) is the strain tensor

of the SAW, and B1 and B2 are the coefficients of the

magnetoelastic coupling tensor. Finally, Ak and Qk are the

normalization constants of the SW and the SAW (see the

Appendix).

In the vicinity of the surface, the components of the

SAW strain tensor satisfy the condition |uxz| � |uxx|,
so that the coupling strength is mainly determined by

the first term in the brackets, which is proportional to

sin(2φ)µ(z)m∗
IP(z). For the lowest SW mode, the in-plane

components of the dynamic magnetization in the layers are

in opposite phases, mIP,1 = −mIP,2 [see Fig. 2(c)]. Since

µ1 = −µ2, it is clear that the contributions from the two

layers have the same sign and enhance each other. Thus,

both layers can be made from the same ferromagnetic

material, i.e., have the same magnetostriction. In contrast,

for the coupling of the SAW to the higher SW mode, the

synthetic antiferromagnet should be asymmetric in magne-

tostriction, e.g., one layer should not be magnetostrictive

at all.

The magnetoelastic coupling between the SW and the

SAW is a maximum at the magnetization angle φ ≈ 45◦

for a fixed layer thickness, as is common for interactions

of SAWs with thin ferromagnetic layers [14,24]. Also, the

coupling is, as expected, proportional to the thickness ti
of the layers (at a given φ), as with the increase of ti the

overlapping volume of the SW and the SAW is increased.

If the layer thickness increases, the match of the SW and

SAW dispersion happens at a smaller angle φ, because the

SW velocity cφ is proportional to the layer thickness. In

general, an increase of the layer thickness with a simul-

taneous decrease of the angle φ (to satisfy the matching

condition cφ ≈ cSAW) leads to a small increase of the cou-

pling strength. However, one should be aware that a large

thickness of the ferromagnetic layers reduces the range

of linearity of the SW dispersion, which extends until

kti � 1. Thus, the optimal thickness of the ferromagnetic

layers is determined by an interplay between the desirable

strength of nonreciprocity (proportional to the coupling)

and the size of the nonreciprocal frequency band (the range

of linearity of the SW dispersion) and will be different for

different possible applications.

In Fig. 3, we present the calculated characteristics of

the Co(16)/Ru(0.9)/Co(15)/LiNbO3 artificial structure.

For this structure, the match of the SW and SAW disper-

sion characteristics takes place at the angle φ = 36◦. It

is clear from Fig. 3(a) that the distance between the SW

and SAW frequencies in the positive propagation direction

(kx > 0) is smaller than, or comparable to, the coupling

rate κ over a wide range of wave numbers, meaning that

(a) (b) (c)

FIG. 3. (a) The frequency distance between the dispersion branches of the uncoupled SAW and SW and the coupling strength κ as

functions of the wave number. (b) The damping rates of coupled magnetoelastic waves (�1 and �2) and uncoupled SW (�SW) and SAW

(�SAW). (c) The frequency dependence of the propagation losses of the SAW, coupled to the SW, in opposite propagation directions.

The yellow shaded area in all panels shows the same region, where the propagation losses for the opposite propagation directions differ

by a factor of 10 or more. The calculations are made for Co(16)/Ru(0.9)/Co(15)/LiNbO3, Be = 1 mT, φ = 36◦.

054061-4



WIDE-BAND NONRECIPROCITY OF SURFACE ACOUSTIC... PHYS. REV. APPLIED 12, 054061 (2019)

the magnetic layers have a strong influence on the SAW

propagation within all of this frequency range. In con-

trast, for the negative propagation direction, the frequency

distance between the SW and SAW dispersion branches

is much larger than the coupling and the SW and SAW

propagate almost independent of each other.

The magnetoelastic coupling between the SAW and

the SW leads to the formation of hybrid magnetoelastic

waves. Their frequencies ω1,2 and damping rates �1,2 are

determined by the standard relation for coupled waves,

namely

ω1,2 − i�1,2

= ωSW − i�SW + ωSAW − i�SAW

2

±

√

[

(ωSW − i�SW) − (ωSAW − i�SAW)

2

]2

+ |κk|2,

(3)

As has been pointed out earlier, the coupling significantly

affects the damping rates of the SAW, since a part of the

energy of a magnetoelastic wave is dissipated in the mag-

netic subsystem. This effect is evident from Fig. 3(b) as,

for a positive propagation direction, the damping rate �1

of the coupled wave increases drastically in comparison to

the damping rate of a pure SAW. In the negative propaga-

tion direction, for which the spectra of the pure SW and

SAW are well separated, �1 is much smaller than for the

positive propagation direction and approaches �SAW much

more quickly.

Transmission losses in a SAW transmission line with

a synthetic antiferromagnet are mainly determined by the

coupled magnetoelastic wave with lower damping rate �1,

since the second coupled wave, which has much larger

damping rate �2, decays completely (below the thermal

level) at the length of a typical SAW line. In our artifi-

cial material, the variation of the damping rate �1 with the

wave number is much smaller than the width of the exci-

tation spectrum of a typical interdigital SAW transducer.

This allows one to get rid of the nonresonant excitation

and to realize the full potential of the SAW nonreciprocity,

induced by the magnetoelastic coupling, which is impos-

sible to achieve in other schemes [Figs. 1(a) and 1(b)].

The propagation losses can be estimated simply as L =
10 log(�1l/v), where v ≈ cSAW is the group velocity of

the coupled wave and l is the length of the SAW trans-

mission line. As is clear from Fig. 3(c), the propagation

losses are significantly nonreciprocal in a giant frequency

band. They differ by more than one order of magnitude

for opposite propagation directions in the frequency range

of 6.1 GHz (from 0.6 to 6.6 GHz). This giant frequency

band of the SAW nonreciprocity is almost 100 times wider

than the nonreciprocity regions that can be obtained using

the traditional methods with a pointlike spectral cross-

ing. It is important to note that this giant frequency band

of the SAW nonreciprocity covers almost all the range

of the possible SAW applications in microwave signal

processing [21].

It is also important to note that the effect of the wide-

band SAW nonreciprocity is quite robust with respect to

the angle φ between the static magnetization and the wave-

propagation direction and that perfect alignment of the

magnetization direction is not necessary for the experimen-

tal observation and utilization of the effect. For example, a

decrease of the angle φ by 5◦ results in the reduction of

the highly nonreciprocal frequency range (highlighted in

Fig. 3) to 4.5 GHz. Moreover, a moderate increase of this

angle does not lead to a reduction of the nonreciprocity

range but only to a more complex dependence of the prop-

agation losses within it; a significant reduction takes place

only at φ > 45◦.

IV. NOTES ON MATERIAL CHOICE

In this section, we briefly discuss the requirements for

the ferromagnetic material in the synthetic antiferromag-

net multilayer, which should be satisfied for the realization

of wide-band nonreciprocity of SAW. Naturally, as is usual

for magnetoelastic devices, the requirements of a high

magnetostriction and sufficiently low magnetic damping

(if the magnetic damping significantly exceeds the magne-

toelastic coupling κ , the SAW and SW become effectively

uncoupled) [20] hold in our case too. The specific require-

ments follow from Eqs. (1) and (2). The SW group velocity

is proportional to the saturation magnetization and the

layer thickness. It is clear that the maximal value of the

group velocity, which is realized at φ = 90◦, should be

larger than the SAW velocity, maintaining, simultaneously,

a reasonably small bilayer thickness in order to not signifi-

cantly affect the SAW propagation mechanically. The SAW

velocity in LiNbO3 is quite high, cSAW = 3361 m/s, so the

saturation magnetization of the ferromagnetic should be

sufficiently high too. In particular, nickel, which is com-

monly used as a magnetostrictive material, is not a good

choice in combination with LiNbO3 due to its relatively

low static magnetization Ms. If Ni is used as a ferromag-

netic material, the thicknesses of the ferromagnetic layers

should exceed 40 nm each to match the SAW dispersion.

Instead, Co, Fe, or CoFe alloys are suitable magnetic mate-

rials in combination with LiNbO3. The use of acoustic

crystals that have slower SAWs increases the variety of

acceptable ferromagnetic materials.

Another important requirement concerns the anisotropy

of the ferromagnetic layers. It is desirable to have vanish-

ing anisotropy in the plane of the layers. The presence of

anisotropy sufficiently increases the SW spectrum gap (fre-

quency at k = 0) and it becomes impossible to match the
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SW and SAW dispersions at low frequencies. The sensitiv-

ity of the SW spectrum gap to the anisotropy field is much

higher than to the external field, since the anisotropy has

the same effect in both layers (increase of the frequency),

while the external field acts oppositely. For example, an in-

plane anisotropy of 2 mT in the studied structure increases

the SW spectrum gap to ω0 = 1.7 GHz and reduces the

range over which the SAW propagation losses differ by

at least a factor of 10 (shown in Fig. 3) from 6.1 GHz

to 4 GHz (range 3.3 to 7.3 GHz). An in-plane anisotropy

of 5 mT or more leads to a standard dispersion crossing

[shown in exemplary form in Fig. 1(b)] instead of the dis-

persion matching necessary for wide-band nonreciprocity.

Thus, if one uses in-plane anisotropy for the stabiliza-

tion of the magnetization state instead of an external field,

the anisotropy should be really weak, characterized by

an effective anisotropy field below 1 mT. Simultaneously,

perpendicular magnetic anisotropy does not have such a

critical impact. It simply reduces the SW group velocity;

this reduction can be roughly estimated by the substitution

ωM → (ωM − 2γ K⊥/Ms), where K⊥ is the constant of the

perpendicular anisotropy.

If it is impossible to get rid of a relatively high in-

plane anisotropy in the fabrication process, its undesirable

effect can be eliminated by the simultaneous application

of a sufficient in-plane magnetic field. Indeed, a sufficient

bias field results in the instability of the antiferromagnetic

state and in-plane anisotropy simply increases this criti-

cal value compared to the isotropic case [Eq. (A10)]. Near

this point, the SW spectrum gap is vanishingly small and

the SW spectrum can approximately fit the SAW disper-

sion, although it becomes more complex than the linear

spectrum in the isotropic case [Eq. (1)].

V. CONCLUSIONS

In summary, we demonstrate a way to realize nonrecip-

rocal propagation of a SAW in a giant frequency band by

coupling of the SAW to the SWs in a synthetic antifer-

romagnet that has magnetostrictive ferromagnetic layers.

In the proposed approach, the SW spectrum is nonrecip-

rocal and is similar to the SAW spectrum: it has a small

spectral gap and it is approximately linear over a wide fre-

quency range. These features lead to the coalescence of the

SW and SAW spectra for one propagation direction, mak-

ing magnetoelastic interaction between these waves very

efficient over a wide frequency band, which could exceed

several gigahertz. This efficient magnetoelastic interaction

leads to increased losses of SAWs due to the energy dis-

sipation in the magnetic subsystem. The calculations for

a Co/Ru/Co/LiNbO3 structure, presented as an example,

demonstrate a large nonreciprocity of the SAW propaga-

tion losses in the frequency band exceeding 6 GHz. We

believe that our results open a way for the development of a

new generation of wide-band nonreciprocal SAW devices.
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APPENDIX: CALCULATION OF SPIN-WAVE

SPECTRUM OF SYNTHETIC

ANTIFERROMAGNET

The spectrum and spatial profile of SWs in a synthetic

antiferromagnet can be found, as usual, by solving the

linearized Landau-Lifshitz equation [26,34]:

−iωkmk,i =
∑

j =1,2

µj × �̂ij · mj ,k. (A1)

Here, ωk is the SW frequency, k = kx is the SW wave vec-

tor, assumed to be aligned with the x axis [see Fig. 2(a)

in the main text], µ1 = −µ2 = cos φ ex + sin φ ey are

the unit vectors of the static magnetizations in the fer-

romagnetic layers forming a synthetic antiferromagnet,

Mi = −mIP,i sin φ ex + mIP,i cos φ ey + mzez,i are the distri-

butions of the dynamic magnetization (SW profile), and

the index i = 1, 2 denotes the ferromagnetic layers. The

operator �̂ is defined as

�̂ij =
[

ωH ,i + ωMλ2

(

k2 − d2

dz2

)]

Î�ij

+ ωM

∫

dz′Ĝk(z − z′), (A2)

where ωH ,(1,2) = ±γ Be is proportional to the static inter-

nal magnetic field Be in the layers, ωM = γµ0Ms, λ is the

exchange length of the ferromagnetic material, �ij is the

Kronecker delta, and Î is the unit matrix. The kernel Ĝk of

the integral in (A2) is the magnetostatic Green’s function

for a ferromagnetic film [34]:

Ĝk =

⎛

⎝

Gxx 0 Gxz

0 0 0

Gxz 0 δ(z − z′) − Gxx

⎞

⎠ , (A3)

where Gxx = (|k|/2) exp[−|k(z − z′)|] and Gxz =
(ik sign[z − z′]/2) exp[−|k(z − z′)|].

Equation (A1), which contains the exchange differential

operator of the second order, should be accompanied by the

corresponding boundary conditions for the dynamic mag-

netization. At the outer surfaces of the ferromagnetic layers

054061-6



WIDE-BAND NONRECIPROCITY OF SURFACE ACOUSTIC... PHYS. REV. APPLIED 12, 054061 (2019)

z
(o)
i , these conditions are

±dmi

dz
− dzmzez

∣

∣

∣

∣

z
(o)
i

= 0, (A4)

while at the inner surfaces z
(i)
i these conditions have the

form

±dmi

dz
− dzmzez

∣

∣

∣

∣

z
(i)
i

− J

µ0M 2
s

(

mi|z(i)
i

− mj |z(i)
j

)

= 0.

(A5)

The + and − signs in the boundary conditions correspond

to the upper and lower surfaces of the ferromagnetic layers

and dz = Ks/(2µ0M 2
s ) is the standard pinning parameter

determined by the surface anisotropy Ks, while J is the

constant of the antiferromagnetic RKKY coupling. All

the SW spectra presented in the main text are calculated

as numerical solutions of Eq. (A1). The SW norm Ak is

calculated, using numerical SW profiles, as

Ak = i
Ms

γ

∫

m∗
k(z) · µ(z) × mk(z) dz. (A6)

The normalization constant Qk of the SAW, mentioned in

Eq. (2), is equal to [20]

Qk = 2ωkρ

∫

ξ∗
k(z) · ξk(z) dz, (A7)

where ξ(z) and û(z) are the profile (displacement) and

strain tensor of the SAW [35] and ρ is the density of the

acoustic crystal.

The analytical dispersion equation (1) obtained in the

long-wave approximation and presented in the main text

is derived under the following assumptions: there is a

zero external bias field, the antiferromagnetic coupling

between the ferromagnetic layers is neglected, and the fer-

romagnetic layers are identical, thin (kti � 1), and have

negligible surface anisotropy, so that the thickness dis-

tribution of the dynamic magnetization in both layers is

assumed to be uniform.

For the derivation of the condition of stability of the

synthetic antiferromagnet under the applied external bias

field, we calculate the frequency of the lowest SW branch

at k = 0, which is the lowest frequency in all the SW spec-

trum. The only approximation in this calculation is the

assumption of a uniform dynamic magnetization distribu-

tion along the thickness of the layers, which is valid for

k = 0 for thin layers and/or weak surface anisotropy. The

calculated SW frequency at k = 0 is as follows:

ω2
0 = ω2

⊥1 + ω2
⊥2

2
− ωJ 1ωJ 2 −

[

(ω2
⊥1 − ω2

⊥2)
2/4

+ ωJ 1ωJ 2 (ωM1 + ωH1 − ωH2)

× (ωM2 + ωH2 − ωH1)

]1/2

, (A8)

where ω⊥i = ωHi + ωMi, ωH1 = γ Be + ωJ 1, ωH2 =
−γ Be + ωJ 2, and ωJi = γ J/(Ms,iti). This frequency is real

(ω2
0 ≥ 0) if

γ Be (γ Be + ωJ 1 − ωJ 2) ≤ 0, (A9)

which constitutes the condition of stability of the antifer-

romagnetic state. In other words, for the antiferromagnetic

state to be stable, the external field should be smaller than

|Be| ≤ J

∣

∣

∣

∣

1

Ms,2t2
− 1

Ms,1t1

∣

∣

∣

∣

, (A10)

and the magnetization direction of the layer with a larger

total magnetic moment (approximately Ms,iti) should be

aligned parallel to the bias-field direction. This condition

is presented explicitly in the main text.
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