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We explore the quantum Coulomb problem for two-body bound states, in D = 3 and D = 3 — 2¢ dimensions,
in detail, and give an extensive list of expectation values that arise in the evaluation of QED corrections to
bound-state energies. We describe the techniques used to obtain these expectation values and give general
formulas for the evaluation of integrals involving associated Laguerre polynomials. In addition, we give formulas
for the evaluation of integrals involving subtracted associated Laguerre polynomials, those with low powers of
the variable subtracted off, that arise when evaluating divergent expectation values. We present perturbative
results (in the parameter €) that show how bound-state energies and wave functions in D = 3 — 2¢ dimensions
differ from their D = 3 dimensional counterparts and use these formulas to find regularized expressions for
divergent expectation values such as (V?) and ((V')?) where V is the D-dimensional Coulomb potential. We
evaluate a number of finite D-dimensional expectation values such as (r~2"4€32) and (r*p*) that have € — 0
limits that differ from their three-dimensional counterparts (r~232) and (p*). We explore the use of recursion
relations, the Feynman-Hellmann theorem, and momentum-space brackets combined with D-dimensional
Fourier transformation for the evaluation of D-dimensional expectation values. The results of this paper are

useful when using dimensional regularization in the calculation of properties of Coulomb bound systems.
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I. INTRODUCTION

The Coulomb force provides for the binding of all atoms.
The nature of the Coulomb force is most clearly displayed
in the structure of two-body atoms such as hydrogen, hydro-
genlike ions (He™, Li%t, etc.), positronium (e e™), muonium
(uTe™), true-muonium (™), muonic hydrogen (p*u™),
and many more. Because of its great importance, the quantum
mechanics of the two-body Coulomb problem has been exten-
sively studied. In the course of the calculation of relativistic
and quantum field theory (QFT) corrections to the energy lev-
els of two-body Coulombic bound states, expectation values
of various operators in quantum bound states are eventually
required. Many of these expectation values, for instance that
of 1/r3, are singular due to short-distance divergences, and
some regularization is required. An extremely convenient
scheme for obtaining finite quantities is provided by dimen-
sional regularization. In this work we discuss the dimension-
ally regularized Schrodinger equation for the Coulomb poten-
tial and show how the D-dimensional solution can be used
to find regularized values for otherwise divergent quantities.
Another goal of this work is to present an extensive list of
expectation values, both finite and divergent, that actually
arise in practical calculations. To obtain the finite ones, we
developed a number of general integral formulas involving
associated Laguerre polynomials, logarithms, and powers, and
explored their consequences. To obtain the divergent ones,
we required a detailed understanding of the short-distance
behavior of the D-dimensional wave functions.
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This paper is organized as follows. In Sec. I we discuss
the quantum mechanical Coulomb problem in D =3 — 2¢
dimensions, showing how to find the wave functions and
energy levels and exploring their behavior near € = 0. In
Sec. III we explore the general problem of finding expectation
values in D dimensions with a focus on divergent expectation
values for which dimensional regularization is used. We give
an example of the evaluation of a divergent expectation value
and show when the ¢ — 0 limit of a finite expectation value
calculated in D = 3 — 2¢ dimensions might be different from
the same finite expectation value calculated directly in three
dimensions. We also discuss some implications of the D-
dimensional recursion relations and the Feynman-Hellmann
theorem. In Sec. IV we illustrate the use of divergent Coulomb
expectation values in a practical calculation. In Sec. V we
develop general formulas for the evaluation of integrals in-
volving one or two associated Laguerre polynomials of the
sort that arise in calculations involving Coulomb bound states.
Section VI is a brief conclusion. The main results of this pa-
per, the expectation values themselves, appear in Appendix A,
along with some of the closely related momentum-space
brackets. The formula for D-dimensional Fourier transforms
is given in Appendix B. We have included a review of the
three-dimensional quantum Coulomb problem in Appendix C.
This has a focus on Coulomb bound states, and is included
since the notation for associated Laguerre polynomials is
not standardized, and because it is helpful to have a listing
of useful results in one place and in a consistent notation.
Properties of the special functions used in this work are given
in Appendix D. Useful formulas for gamma, polygamma,
zeta, beta, and hypergeometric functions are included, as is
a discussion of the harmonic and “diharmonic” numbers that
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appear in quantum Coulomb calculations. Finally, we have
given in Appendix E a discussion of a specific momentum-
space bracket (Ing); 5 that is needed in calculations but is a
special case.

Throughout this paper, we use units where 7 =c = 1.
Standard units can be recovered at every stage by inserting the
factors of 7 and ¢ needed to restore conventional dimensions.

This paper contains a mixture of results—some that we have
not seen before in the literature, some that do appear in the
literature but are obscure, and some that are well-known. Re-
sults of all types are included with the goal of giving a unified
and comprehensive presentation as well as useful tables. We
have not seen most of the D = 3 — 2¢ results although many
of the momentum space brackets (see Sec. III) for n = 1 were
obtained in [1]. The application of the generalized power
series solution for the D = 3 — 2¢ wave function was intro-
duced in [2] but is applied more systematically here. Various
expressions for the basic integral fooo dx e’XxSLﬁ (x)ij,' (x)
have appeared in the literature. Our formula for this integral,
found in Sec. V, differs from others we have seen and is quite
convenient for our purposes. Other results that we have not
seen in the literature include the general formulas for the inte-
grals involving associated Laguerre polynomials times powers
of x and logarithms; the formulas for integrals involving
subtracted associated Laguerre polynomials; the summation
formulas derived in Section V; and the definition and derived
properties of the diharmonic sums given in Appendix D.

II. QUANTUM COULOMB PROBLEM
IN D = 3 — 2e DIMENSIONS

In this section we review the quantum mechanics of the
Coulomb problem in D dimensions. Dimensional regulariza-
tion has been extremely useful for atomic physics calculations
[1-11] and for quark-antiquark bound states involving heavy
quarks (reviewed, for example, in [12—14]). The dimension-
ally regularized Coulomb problem serves as an extension of
the usual three-dimensional case that allows us to evaluate
quantities that would be divergent in three dimensions. Central
to our discussion is the Coulomb potential energy between
an electron and a nucleus consisting of Z positive charges. In
momentum space, this interaction energy is

—AnZo e
k2
which can be obtained directly from the Coulomb-gauge
Feynman rules for the interaction between the two charges
with the exchange of a Coulomb photon. The MS mass

parameter that was introduced to keep o dimensionless can
be written as

Vik)= , (1)

2,vE
— 2 _ Me
W= Ms = 4,
where o is another parameter with units of mass and yg is

the Euler-Mascheroni constant. The corresponding coordinate
space potential energy is

, 2)

- K37 (T r(D/2 - D> Za
V(r)= /deek Vik)=— JT/D/Z_IVD_Z = _rlif’
3)

where d"k is the n-dimensional momentum-space integration

measure ¢k = % and g = (D)2 — D2 Za/nP>".

(For the D-dimensional Fourier transform, see [15] and

Appendix B.) This potential energy satisfies the D-
dimensional Gauss’ law
VWV (r) = —4nZapi*sP(%). 4)

The Schrodinger-Coulomb equation in D dimensions is
[16-19]
P I
2—%1//(X)+V(r)lﬂ(x)=Ew(X), (&)

where m, = mymy,/(m; + my) is the reduced mass. Since the
Coulomb potential has no angular dependence, it is possible to
separate radial from angular variables as in three dimensions.
We write

Y(x) = R(rY (2) (6)
and use
-, ., D-1 L?
V2= —d, - )
r r
where
=)L} with Lj=—i(xd; —x;8).  (8)
i<j
We choose Y, (%) to be an eigenfunction of L? with eigenvalue
£(€ + D — 2) [20,21]. For example, the first few of these D-
dimensional angular eigenfunctions are Yp(%) o 1, Y7 ;(X)

Xi, Yoii(R) o< £k — %Si ;. Consequently, the radial function
satisfies

1 D—1 D—-2)]) - _ _
{—x— g+ L 1&M0+vvmmm

2m, r r

= _nKRl1€(r)- (9)

The quantum numbers listed for R include the angular mo-
mentum quantum number £ and a principal quantum number
n that is an integer labeling the states with a given value of ¢
ordered by energy. The energy £, for D # 3 depends on £ as
well as n.

It is useful to factor out the leading short- and long-distance
behavior of the wave function as in three dimensions. The
leading short-distance terms are all part of V2. The 1/r? term
in V2 dominates the 1 /rP=2 of the potential and the constant
in the energy term. So, at short distances, R, satisfies

%3+D_1&—£@+5_21RA0=0. (10)

r

This differential equation is of Euler (or Cauchy-Euler) form
and is satisfied by a power R,;(r) = r™. Insertion of this trial
solution into the equation gives

mm—1)+D—-1)ym—-LHl+D—-2)
=m—-€0m+L+D-2)=0, (11)

som=~£orm=—({+ D —2). For £ > 0 and D near three
the second solution is negative and consequently unaccept-
able. The implied behavior of the radial function near r = 0 is

Ry (r) — rt. (12)
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For long distances the leading terms in (9) are the first and
the last:

{=07JRue(r) = EpeRye(r); (13)
2m,
the solution that falls to zero at large distances is
Ru(r) — e, (14)

where
-2

_ Vi _ —
Ew=—""5, Pu=+v—-2mEy. (15)

2m,

We define a new function L,,(p) according to

(n+0)! }‘/2 p*

eip/anl (/O),

Rue(r) = ¢y, [

nn—4£€—1)! 2¢+ 1!
(16)
where 29, = p, ¢ is a normalization constant such that
én = <13n0 = }g% 1/}nO(r) (17)

is the S-state wave function at the origin (at “contact”), ¢,
with £ > 0 is related to the £th derivative of the wave function
at contact, and

n+l
21 2

Q, = (18)

is the surface area of a unit n sphere. That is, Qp_; is the
total solid angle of D-dimensional space. The new function

L,¢(p) is the analog of the associated Laguerre polynomial
L**! (p) but is normalized differently:

lim L, (p) = 1. (19)
p—0

In the three-dimensional limit one has

. n+4¢ -1
?E%L”‘Z(MZ(MH) LZ%i(p) and
o (m,Za)*]'"?
A e 0

When expressed in terms of L,,(p), the radial equation (9)
becomes

204+D —1 20 4+D — 1)y _
{af+<—+ —2;7)8, _@trb-y —2m,V(r)}
r r

X Lu¢(p) = 0. ey

It seems natural to change the independent variable from r to
the dimensionless variable p. In doing so we will be dividing
Eq. (21) by (27)?. The potential term becomes

—2m, 7 2m,F(1/2—e)/IL2€Za< 0 >2€ i p2€
r) = = -,
(2)7,,[)2 (2)7ni)771/2_6(277n€r) 2)_/n€ 1Y
(22)
where
ZaT(1/2 — i\
nnezu#( I_L ) s (23)
VYne Y /2—€ ZVnZ

which would be an integer n with n > 1 in three dimensions.
The radial equation with a dlmenswnless independent

variable becomes

26+1— £4+1-— e 02
{3§+|:M_11|3p_ + € 4 Tl }
P P P

X Lye(p) = 0. (24)

A bit of trial and error reveals that a power-series expansion
around the origin is more complicated than usual and takes
the form

oo o0
Lu(p) =1+ Y ajop’ + Y ajiiup’

=1 j=1

00

=2 jtde

+ ) api Tt

j=2
00 o0 o
§ E =k j+2ek __ § E —k  j+2ek

ajknnlloj - ajknnlpj (25)

k=0 j=k =0 k=0

with ago = 1 and aj; = O unless 0 < k < j. We insert L,¢(p)
into (24) and assume that all powers p/*2<k are independent.
We isolate the coefficient of p/~2+2¢k which is required to
vanish, and obtain the following recursion relation:

g — aj_1xlj+L€+ek—1] —aj_ii-1 26)
K G 26 + 20+ 1+ 2tk — D]

The recursion relation, along with the boundary conditions
listed above, allows us to find all of the coefficients a .
For example, we find that a;¢p = %, a = m, etc. It
would be easy to write a routine to calculate as many of these
coefficients as desired.

As a quick consistency check, we consider the three-
dimensional limit and calculate the total coefficient A; of a
given power p/. This coefficient is

i
—1 fl'[ —l—k
Aj:Zajknk_( ,), —i(n )
— M/_ 26+ 1+ k)

(= D(m=t =D+ 1)
T iln—t—j— D1+ )

27)

where we have used ¢ — 0, 71,,, — n, and (26). We see that
when n = ¢ 4+ k where k is a positive integer, the series for
Ly (p) terminates with a maximum power of p"~¢~!. By
comparison with (C20), we see that L,¢(p) in this limit is just
proportional to the usual associated Laguerre polynomials.

The differential equation (24) can be solved numerically
(as in [2]) to find the wave function and eigenvalues 7i,,
[which give values for j,, using (23) and then for the energies
using (15)], or a perturbative approach can be employed. The
perturbative method employs a D-dimensional lowest-order
problem with potential V(r) = —Za/r, for which an exact
solution is known [22,23]. Building a perturbation scheme on
the basis of this lowest-order problem, with

H' =V(r)-V(r) = —ZZTa[ln(W) +yele + 0, (28)
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one can obtain expressions for the energies

E. :En{l +e|:4ln <2 1

m,Zo

2 2
> +4Hupe + — | + O )},

(29)

2 .

where E, = —% represents the usual Bohr energies, and
for the “wave function at the origin” factor

12
© ol nn! ee+nt. 1
"’“_901((%6)!) @y b )

D 1/2
:(71) {1+e[3ln( o )
T 2m,Za

+2ndiHy (n + €, —n,) — n(H2,, —H?,)

1
+n(H, +HPY) + 2H,1¢ + 2Haesy + 5 (nw —yg)

_og % _ 2n4(2>] + 0(ez>}, (30)

where n, =n — ¢ — 1 is the radial quantum number, y, =
%, and the harmonic, generalized harmonic, and dihar-
monic numbers H,, Hﬁf), and diHy(n, m) are defined in
Appendix D.

III. COULOMB EXPECTATION VALUES
IND =3 AND D = 3 — 2¢ DIMENSIONS

Expectation values in D dimensions are defined in the usual
way:

(M) =/de1ﬁT()?)M(J?)¢()?), €1V

where M is an operator that may involve derivatives as well
as functions of position. Many of the expectation values we
will need are finite in three dimensions, but others, such
as (V3) oc (r73+%€) and ((V')?) o (r~*+4€), are divergent for
S states. These divergences are controlled by dimensional
regularization, and working in D dimensions we can find their
explicit values. In this section we will give some details of
the evaluation of Coulomb expectation values, with a specific
focus on the evaluation of divergent ones. Situations can also
arise for finite expectation values where taking the D — 3
limit and taking the expectation value do not commute:

( lim M) # lim (M). (32)

We will give an example of this subtlety and describe when
it will occur. Some special techniques are useful for finding
and/or testing expectation values, such as recursion relations
and the Feynman-Hellmann theorem. We will explore some
consequences of these methods in three and D dimensions.
Finally, we will discuss momentum-space brackets and their
relation to expectation values.

Many innovative procedures for the evaluation of Coulomb
expectation values have appeared in the literature, including
those of [24-38], as well as useful lists of expectation values
[1,39-45]. Our lists overlap with these but are more extensive.

The expectation value ((V')?),, is divergent for £ = 0 with
a divergence proportional to (r—*) , in three dimensions, so it

must be regularized in order to be evaluated. When £ > 0 this
expectation value is finite due to the factors of r* in the wave
function, and we can use standard three-dimensional methods
as described in Sec. V. After performing the angular integrals,
the S-state expectation value can be written as

(V') = / dr P R (V' (WP Ru(r),  (33)
0

where R,(r) = J)nogle/fle"’/ano(p) with 29,.r = p. The
L,o(p) function is a generalized series

)

_ 142¢ 2
0120 + O0(p?). (34)

1
Ln()(p) =1+

2,0

Only the first three terms in L,o(p), the ones shown,
are sensitive at short distances, so we isolate the short-
distance part Lo=1+ 0/2 — finop % /(2[1 + 2€]) for sep-
arate treatment. The remaining terms in the series, starting at
0(p?), we define as L,y(p) = Lyo(p) — Luo(p). We write the
expectation value with D — 3 — 2¢ as

((V')ho = @1 fwdr PP [(1 = 2€)Br 2P
0

X {(Ln0)* + Lo Lno + LuoLno}, (35)

where V (r) = —B/r'72¢. Only the first term involving (I:no)2
is divergent (when € = 0), but for Re(¢) > % its r integral is
convergent and can be expressed in terms of gamma functions.
We analytically continue the result to a neighborhood of ¢ = 0
and expand in a Laurent series to obtain a series with a 1/€
pole expressing the divergence plus a series with non-negative
powers of €. The remaining terms containing L, are finite
and can be evaluated with € — 0 using the methods of Sec. V.
In all we find

SN2y 372 -2¢ _%_ pn
(V) Vo = wme(Za) it { c Sln(z,nrz“)

+8H,, + 4 4 16 + O(e) (36)
e ———-—— €)t.
3n2 n 3

The expectation value (V3)n0 is simpler becauseA only the first
term in the series for L,y must be included in L,q. For other
expectation values as many terms should be included in £, as
needed.

Extra care is required for some finite expectation values for
which the operations of taking the expectation value and the
D — 3 limit do not commute. An example is (r—274 Bf)no.
When taking the second derivative of the radial part of the
wave function, second derivatives of L,y occur, which look
like

0;Luo(p) = —figep™ T2 + 0(p"). (37)

Negative powers of p generated in this way can lead to
divergences in the radial integral that would not have been
present in three dimensions where the associated Laguerre is a
regular polynomial. The radial integral gives a 1/¢ divergence,
which along with the explicit factor of ¢ produced by the
differentiation, leads to an additive constant that would not
have appeared in three dimensions. The same separation of
Lo into L0 + X, allows us to evaluate this expectation value
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safely, finding

—2n% — 1 4+20(L+1)
40 — 1/2)(L + 1/2)(L + 3/2)n3

(r_2+4€ af)nz = (m,Za)* {

2
- Efszo}, (38)

which differs from <r*2a,2>n0 evaluated directly in three di-
mensions [as tabulated in (A5d)] only in the §,—¢ term.

Expectation values involving the momentum squared posi-
tioned next to a wave function (or adjoint wave function) may
be simplified by use of the Schrodinger equation. We write (5)
in the form p?v = 2m,.(H — V), so that

(Mp*) = 2m,(M(E —V)), (39)

(P’M) = 2m,((E — VM) (40)

for any operator M.

Recursion relations [27,29] allow us to express one ex-
pectation value in terms of others, which may already be
known. Recursion relations can be found by noting that for
any operator A, the expectation value of B = [H, A] vanishes:
(B) = 0. When we deal with radial operators only, we can use
the radial Hamiltonian

1 D—1_ €¢+D-2) B
-2 — 9, — NS
2m,|: ! r + r? i| rl=2¢ “D

Using A — r* we find 0 = s(s + 1 — 2¢)(r*=2) + 2s(r*~19,),
or

H=

(r'o,) = —%(s +2—2e)(r*") whens # —1. (42)

Now taking A — 7*9, and using (41) to write 37 in terms of
H and eliminating (r*~29,) using (42), we find

O = SmrE(s + 1)(,‘5) + 4mr/3(2S + 1 + 26)(’,371#»26)
515" = (1-2€)° — 4L+ 1 =201 ). (43)

Additional relations could be found by making other choices
for A. We can now derive some consequences. Use of (42)
with s = —2 + 2¢ gives

(V'a,) =0 (44)

[except when £ = 0, since (r~P) is a special case not regulated
by dimensional regularization as noted below (66); the £ =
0 result for (V'9,) can be obtained using the fundamental
theorem of calculus and is given in (A15f)]. Use of (42) with
s = —3 + 4e gives

(VV'8,) = —H((V')). (45)
Use of (43) with s = 0 and (1) = 1 gives
_ 2E
V)= 1426 (46)

Use of (43) with s = —2 + 4€ gives
4m,E(1 — 4€)(V?) — 2m,(3 — 10€)(V?)

4000+ 1 — 2¢)

—|—|:3(1—2e)— Ty

}<(V/)2> =0. 47

These results are exact in D dimensions.

The Feynman-Hellmann theorem [46, p. 195] gives ad-
ditional relationships involving expectation values. For A a
parameter of the Hamiltonian, the theorem states that

oH oE
— )= (48)
oA oA

Using the radial Hamiltonian of (41), the relevant parameters
are m,, B, and £. The equation for m, is

H-V OE
<— > = ; (49)
my om,
and the equation for 8 is
% oF
<—> = —. (50)
Bl 9B

The first-order differential equations implied by (46), (49),
and (50) lead to

1-2¢

E ocm) ™ gz (51)

which can also be seen using (15) and (23). The equation for
¢ leads to a value for (1/r?) in three dimensions, but its utility
in D dimensions is unclear to us.

Momentum-space brackets [1] are defined according to

(M(Bor B gy, = f 4 pad” p1 ¥ (B2 M (s 1 W (B,

(52)
where d”p = dPp/(27)P. Momentum-space brackets are
useful because Feynman rules are often expressed in mo-
mentum space and such brackets emerge naturally in the
initial stages of a calculation. Fourier transformation can be
employed to give an equivalent coordinate space version

(M. PV, 5, = / dPx, dPx, 2P pad® py 1 ()
x €T M (P, pr)e” " M (E)
- / APy dPxy T (EDM G T (R,
(53)
where M (X, X;) is the Fourier transform
M, %) = /de2dDPl P RM (B, pr)e PN (54)

When M(p,, p;) can be expressed entirely in terms of the
relative momentum § = p, — p;, one can write M (p,, p1) =
M (g ) and M (X, X;) takes the form

M@, %)) = / aPqa®py €TEM (G )e "R

= ME)8° (% — %1). (55)

In that case, the momentum-space bracket is equal to a corre-
sponding expectation value

(M (P2, P1)) popy = /dDXlﬂT(f)M(f)‘#(f) = (M), (56)
where M(%¥) = [d”qe*M(G) (see Appendix B) is the

Fourier transform of M(p,, p1) = M(G ). Brackets involving
components of p, or p; in the numerator can be dealt with by
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replacing py;, for example, by id;; acting on the exponential
e~P1'%1 followed by a partial integration to let the derivative
act on the wave function ¥ (%;). One finds, for instance, that
the momentum-space bracket of p,;N(§ )py; can be written as
an expectation value according to

(PN (G )P1i)pr.jy = (PIN(X)pi), (57)
where p; = —id; and N(X ) is the Fourier transform of N(§ ).

The momentum-space Schrodinger equation

ﬁ2

2m,

v(p) +/deV(ﬁ— Kyw®)=Evp).  (58)

where V(p — k)= —4nZaj® /(p—k)? can be extremely
useful for simplifying momentum-space brackets directly in
momentum space. We find that

(M(ﬁZs ﬁl )ﬁ12>]_52,[31

—om, [ °prd®py ' (52)

x {M(ﬁz, PE — /deM@z,l?)V(l? — ﬁo}w(ﬁl ),
(59)

with an extra integral to do that may lead to an overall simpli-
fication. An analogous relation holds for (52M(p,, p1)) P

A number of expectation values and momentum-space
brackets are presented in Appendix A. Many of the three-
dimensional ones appear elsewhere, but we thought it would
be useful to have a complete list containing both finite and di-
vergent expectation values in one place. The finite ones, where
possible, have been checked using numerical integration in
three dimensions for many values of the quantum numbers,
and we have verified that all of them are consistent with the
various recursion relations and other identities.

A few of the expectation values in the lists are singular
when evaluated directly in three dimensions but are finite in
the D — 3 limit of the D-dimensional result. One of these is
(p®). After use of the Schrodinger equation on the left and
right, we find

(P°) = @m)HE*(p*) — E(p*V) — E(Vp?) + (V5?V)).
(60)
The final expectation value here is divergent in three dimen-
sions as can best be seen in momentum space:

(VpV) = </de‘7(ﬁz — k)R (k —ﬁ1)>
D2.D1
([ ot D Cantan)
(P2 —k)? (k—=p1)* 155

(61)

where the k integral is divergent for large |12| in three di-
mensions. In D dimensions, for appropriate values of D, the
k integral is well defined and can be performed by use of a
Feynman parameter. We find that

TA/2+€)] pa- P
(1 —2e¢) (q2)1/2+e ﬁz,ﬁ1’
(62)

<Vﬁ2‘7) — 21+2€7T3/2—6ﬁ

which has a finite D — 3 limit. We write this in coordinate
space using the Fourier transform formula of Appendix B as

(Vp2V) = (pV?pi), (63)

and note that the three-dimensional expectation value
(piV?p;) has the finite value (A13i) that can be obtained from
(A3f). The final regularized value of (p°) is given in (A3c).
Another exceptional case is the momentum-space bracket
(1/g 4 it which is divergent in three dimensions, but when
evaluated in D dimensions has a finite D — 3 limit. We use
the D-dimensional Fourier transform of Appendix B to see
that

1 _I(=1/2=-¢€) 14 _
<51’4>ﬁz,ﬁ1 T e S e
= —L{3n2 — 0+ DYmZa) . (64)
167

One particular bracket bears special mention, i.e., that of
In g where ¢ = |g |. This bracket appears in calculations, but
its evaluation has particular difficulties. The bracket can be
expressed as an expectation value using the Fourier transform
(FT) of Ing

(Ing)p, 5, = (FT[Ing](x)). (65)

We write Ing as Ing = limHO%qs. If we assume that the
operation of taking the limit of a derivative commutes with
the operation of taking a Fourier transform (done using the
formulas of Appendix B), we find that the transform of In g is

rs)

~5pmpe (60

FT[In¢](X) — lim iFT[cf](fc) =
s—0 dS

This function 1/rP is problematic because it gives divergent
S-state expectation values that are not regulated by dimen-
sional regularization: [ dr r®='R,o(r)r~"R,o(r) has a short-
distance divergence. It seems that our usual approach of
evaluating momentum-space brackets by Fourier transforma-
tion followed by calculating a coordinate-space expectation
value must fail. We could fall back on momentum-space
calculations, which work for individual states, but it seems
difficult to find a general formula (for all states) by using
momentum-space methods. Instead, we evaluate the bracket
of Ing by keeping s as the regulating parameter and hold
off on taking the s derivative and s — O limit until after
the expectation value is done. This procedure gives a finite
result for (Ingq) 2.1 that agrees with direct evaluations of
momentum-space brackets for particular states. Details of the
calculation are given in Appendix E.

IV. EVALUATION OF AN EXAMPLE OF
AN ENERGY-LEVEL CONTRIBUTION

We give a sample calculation of a dimensionally regular-
ized contribution to Coulomb energy levels as an illustration
of the usefulness of Coulomb expectation values of the sort
studied and tabulated in this work. We base our calculation on
the dimensionally regularized low-energy effective quantum
field theory nonrelativistic QED (NRQED) [47]. We consider
the contribution illustrated in Fig. 1, which shows a process
involving exchange of a Coulomb photon having a Coulomb
vertex on one end and a higher-order vertex on the other. In
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FIG. 1. Diagrams showing the CX1 corrections to bound-state
energies. These graphs contain a Coulomb photon exchange (dashed
line) between electron and nucleus (solid lines). The CX 1 interaction
is shown as a cross, while the usual Coulomb interaction (—iq) is
shown as a dot. The bound-state wave functions on the left and right
are present but not represented in the diagram.

particular, we will calculate the effect of the “CX1” higher-
order vertex, which comes from the term

8L =ylex LD D-E+E-Dly (67)
m
|

. . iq .,
AEcy; = Z/d’dpzddpl ‘lf(pz){cggll) — (P — 1) (—ig2) + (—ig)el) = —
1

in the NRQED Lagrangian (as given in [48]). The factor cx
is a Wilson coefficient (i.e., a matching coefficient) and lends
its name to this contribution. The fermion fields ' and ¥
are two-component Pauli spinors representing the electron
or the “nucleus” (assumed also to be a spin—% fermion)
with charge ¢ and mass m. The photon field is contained
in the electric field E = —VA® — 3yA, and D = V — igA is
the gauge-covariant derivative. The Feynman rule from §£
for the interaction of a fermion with a Coulomb photon is
X150 (p2 — 12 2. A formalism for using NRQED to cal-
culate bound-state energy levels is given in [11]. It makes
use of the NRQED Bethe-Salpeter equation and a pertur-
bative scheme based on a lowest-order problem that can
be reduced to the usual Schrédinger equation with a (D =
3 — 2¢ dimensional) Coulomb potential. The Bethe-Salpeter
wave functions in this formalism are W(p) and ¥(p), and
the energy shift coming from the two diagrams of Fig. 1
is

iq2

—(p7 —ﬁf)z}mwm, (68)

2

where d = 4 — 2¢ is the dimension of space-time. The cx; matching coefficient might be different for different particles. For

elementary spin—% particles such as the electron and muon (and their antiparticles) it is cx; =

25 + O(e) [48].

The reduction of (68) to an expectation value and then to a number happens through several steps. We perform the energy

integrals by use of a convenient property of the lowest-order NRQED Bethe-Salpeter wave functions: [dpy ¥ (p) =

¥1(p)and

[dpo¥(p) = ¥(P), where (P ) is the spatial wave function discussed in Sec. II. The CX 1 energy correction simplifies to
(1) (2)
c c -
AEcx; = —4nZaﬁ2e<ﬁ + ﬁ) / dpsd®py ! (Pz)(pzq—pl)l/f( ). (69)
1 2

where the integrals now are over the D = 3 — 2¢ spatial dimensions, the charge product is g, =
71. We expand the numerator factor (57 — p

we define § = p, —

—4nZa i€ as in (1), and
pr)? = pst —2p7pi + pi'. We use the Fourier transform as

discussed in Sec. IIT and Appendix B to turn our expression for the energy correction into a standard (D-dimensional) expectation

value:

C(l) C(2)
AEcx1 = | = + =1
m1 m2

(p*V —

2p2Vp2+VpHh. (70)

The required expectation values have been tabulated as (A13k) and (A130). Or, we could use the identity of (Al5e) to write

(PYV —2pVp2 +Vp*
C(l) C(2)

AEcxy = —4m, | XL + XL (V"))
m1 m2

32 —L(¢4+1)

négm,(z(x)mk{— —81n (

) as —4m,((V")?), and so reduce our result for the CX 1 energy correction to

L)+ 8H, sk —d el ife=o,
(71)

Mm@

c Cx
= —4m, [ X + X

m1 m2

where we have used the value for ((V’)?) tabulated in (A13e).
It is extremely convenient to have results for needed expecta-
tion values readily available.

V. INTEGRALS AND MATRIX ELEMENTS INVOLVING
ASSOCIATED LAGUERRE POLYNOMIALS

Many expectation values in D =3 —2e¢ dimensions
are finite and reduce to their three-dimensional form in

20+ D(E—1/2)(e+1/2)(+3/2)m

m‘r‘(Zot)6 if £ > 0,

(

the limit € — 0. In this section we develop the tech-
niques for evaluating the types of integrals involving
standard three-dimensional associated Laguerre polynomi-
als that occur in the quantum mechanical Coulomb prob-
lem. Where possible, general formulas are obtained, and
a number of special cases most useful for atomic physics
calculations are discussed in detail. Some useful sums
that follow from the integration formulas are given as
well.
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We begin by finding general expressions for the integrals

o0
I(n, k) = / dx e "X LE(x), (72a)
0
Jy(n, k) = / dx e x" InxLk (x), (72b)
0
K(n, k;n', k') = / dx e X LE(x)LE (x), (72¢)
0

Li(n, k;n', k') = f dxe™x* Inx LY(x0)LE (x),  (72d)
0

o0
My(n, k;n', k) = / dxe*x* In’x L];(x)Lﬁ,, (x) (72e)
0

(where s must satisfy s > —1 in order to avoid a divergence
for small x) and some related sums. It is also occasionally
necessary to find values for integrals like those above but with
negative values of s for which the integrals are divergent. In
that case, subtractions are required: we choose to modify one
of the associated Laguerre polynomials in the integrand by
removing its first p powers of x where p + s > —1. If we write

Lrx) = Z Crirx” (73)
r=0

n+k)

n—r.

for the associated Laguerre function where ¢, = %(
as in (C20), then we can define

p—1 n
LA = LE) = Y e’ =Y e (74)

r=0 r=p

The subtracted integrals are convergent for p + s > —1:

o0
Pl(n, k) = / dx e™x° LE(x), (75a)
0
o0
PI(n, k) = / dx e x" Inx PLE (x), (75b)
0
o0 !
PK(n, k;n' k') = / dx e™x" TLE oLk (x), (75¢)
0
o0 !
PL(n, k;n', k') = / dxe™x Inx PLEo)LE (x),  (75d)
0

o
My(n, kin' k') = / dx e x* I x PLE()LE (x).  (75e)
0

We can immediately obtain a result for I;(n, k) using the
series expansion for Lﬁ (x) as

o0
L(n, k)=/ dxe_"xSL,’;(x)
0

n o]
=chkr/ dx e x5t
r=0 0
_X": (—1)T(n+k+1)
= =Tk A4+ Dr!

r=l

T(s+r+1). (76)

However, a more convenient form without a sum is possible
through use of integration by parts. We use the Rodrigues

formula (C24) for Lk (x) and define D = d/dx to write

1 o0
I(n, k) = - / dx x* kD" (xR e™™). (77)
- JO

Now, we integrate by parts n times using the assumption
that the real part of s is sufficiently large that all integrated
terms vanish at x = 0. They vanish for x — oo due to the
exponential factor. One finds that

] o0
Is(n, k) = ;/ dx (=1)"D"(x* )" the™
- J0O

— =" /oodx Cs—k+1) Skt =
nJo I(s—k—n+1)

_(=1'T(s—k+ DI(s+ 1)

T oonl Ts—k—n+1)

(78)

Results for I;(n, k) with smaller values of s are obtained by
analytical continuation and possibly the appropriate limiting
case as s approaches the desired value. For example, the
integral Io(n — 1, 1) with n > 1 has the value

[o.¢]
Iin—1,1)= f dxe™ L) (x)
0

(=)' T((s+1)
m
s=0(n—D!T(s—(n—1))
=1, (79)

where (D7d) was used to see that

I'(s)

— (_1\W
}gr(l) F(s—N)_( IDRSVAR (80)

Other integrals, similarly obtained, are
[e.¢]
Li(n—1,1) =/ dxexL! | (x)
0

= D lim P +1) =68=1 (B
m—D!'s>1T'(s—(—1))

and

L(n—22)= / dxe™xL2 ,(x)
0

(=D)=2  T(s—DI(s+1)
- lim = Op>2-
n=—2)s—>1T({(s—1)—(n—2)) 2
(82)
A general result is

1 (ntk—s—1)!

Sn?(k—sil)! 0 < N § k— 1,
Ii(n, k) = 1 O, k<s<n+k—-1 (83)

CsTgrs ntk<s

where we assume that s, k, and n are all non-negative integers.
We can obtain results for the subtracted integrals 7 (n, k)
starting from (76). We find

3 L (=D'Tn+k+1)
sn, k) =) (n— )Tk + 7+ Dr!

r=p

F's+r+1). (84)

042511-8



COULOMB EXPECTATION VALUES IN D =3 AND ... PHYSICAL REVIEW A 101, 042511 (2020)

The sum can be done, for example by use of Mathematica [49], giving
(—DPn+B)T(p+s+1)
m—pplftk+p+1)

(The hypergeometric functions are defined and some properties are given in Appendix D.) For specific values of p (with p > 0)
this can be simplified. As examples, one has

Fn+k+ DO(Gs+1)

(n, k) = sh(L, —n+p, 1+p+s;1+p, 1+k+p;l). (85)

1 _ _ : 1) —

Iy(n, k) = AT D) Fi(=n,s + Lk +1;1) — 1}, (862)
) T+ k+ DI+ 1) 3 _ g G+ D

1(n, k) = AR D) {2F1( n,s+ Lk+1;1)—1 1 }, (86b)

where values having s an integer in the range —p < s < —1 must be interpreted as limits. We use (D39) to rewrite these as

r k+1)r H(r k—s)I'(k+1
U(n k) = (mn+k+ DI+ D [Tn+k—9l(k+1) ’ 87a)
n!T(k + 1) Fk—s)I(n+k+1)
r k+1)r H(r k—s)'k+1 1
21 (. k) = (n+k+ DM+ D[Ptk —9lGk+1)  nls+1) , 87b)
n!l'(k + 1) Fk—s)In+k+1) k+1
interpreting the formulas as limits as appropriate. For the once subtracted integral with integral s, s > —p = —1andn > 1, one
has
n(l — H,), s=—1
1—n s=0
1 _ k]
=1, =1"0 0 I<s<n—1 (88)
—sln+ (—1)"_1s!(;:1]), n<s
and withn > 2
1
n(n—1)(3 = 2H,), s=-—1
—1n—Dn-2), s=0
L(n—2,2)={ -3+ D(n—-2), s=1 (39)
—slin(n — 1), 2<s<n—1
—stn(n— D+ (=1s1(72), n<s.
For the twice subtracted integral with integral s, s > —p = —2, one has
n(n+1
(), 5= -2
n(% — H,,), s=—1
Tn—1,1) = { e=bo=2) s=0 , (90)
s+ Dn— (s+3)], 1<s<n—1
B+ Dn— s+ + =D))<
all of which vanish automatically when n = 1 or 2 since ZL! | (x) vanishes in those cases.
The Js(n, k) integrals can be obtained from the I;(n, k) ones using
d d
axs = Ee‘”‘” =x'Inx 91)
and
dTI's+a)'(s+b) T'(s+a)l'(s+b)
— = (Y(s+a)+v(s+Db)—y(s+o)l (92)

ds I'(s+c¢) I'(s+c¢)
One finds immediately that
(=1D)'T(s—k+DI'(s+1)
n! I's—k—n+1)

where as in I(n, k) a limiting procedure for s is often required. The result for J;(n, k) can be simplified somewhat using the
digamma identity (D16b):

Jo(n, k) = /Oodxe_xxS lnxLﬁ(x) = (Wes—k+1D)+vs+1)—yv(s—k—n+1)}, (93)
0

(—D)'T(s—k+ DI+ 1) - 1

by ==, Ts—k—n+1) WHI)_Zk—Hr—s'

(94)

r=1
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As an example, we calculate Jo(n — 1, 1) = lim,_ o Js(n — 1, 1):

n—1

© (=Dt T(s)I(s+1) 1
dxe*InxL) = 1 D—Y —t=—yg—H,, 95
/0 re Ik, 0= S T — =y | YO r;r—s vE 1 ©)
and more generally one has
1)
Jn—1,1)= %(s —Dls!(n—1—s)! forn>2andsaninteger 1 <s<n—1. (96)
n—1)!
Some of the J;(n — 3, 5) integrals are also useful, and one has
1 —s)ls!
Js(n—3,5) = M{HS —ve —Hpy1—s + Ha—y} form > 3 and s an integer 0 < s < 4. o7
(n—3)1(4 —s)!
A more general result is
ST H, + He oot — Hypiog — 76}, 0<s <k—1
Js(n, k) — (71)»s—k+1(s*krzl!sl(l’l“rk*S*l)!’ k < s < n +k -1 (98)
M{Hs""Hx—k _Hs—n—k_VE}v n+k<s

nl(s—n—k)!

where we assume that s, k, and n are all non-negative integers.

A comparison of (76) with (79) and a similar comparison for the logarithmic integrals results in a number of useful summation

formulas. One finds that

2”: (—=1)/(n+k)!

£ (= DUk + !

for non-negative integral values of n and k and any s, perhaps
with a limit required. For example, withn - n— 1, k — 1,
and s — 0, one has

n—1 n
-1y =1
> (;h)

For the logarithmic case, we return to the evaluation of J;(n, k)
by the direct method:

(100)

o0
Jy(n, k) = / dx e " x* Inx L (x)
0

n o0 )
= chkj/ dxe*Inxx*t/
= 70
. i (=Y (n+k)!
(n— Dk + D!

j=0

C+j+Dy(s+j+1).

(101)

So, one has the summation formula

n

oDt b!
= Dk + Y

_(=1)'T(s—k+ DI (s+ 1)
T onl Ts—k—n+1)

. 1
X{W(s—i-l)—zk_l—_l_r_s},

r=1

F's+j+DyYs+j+1)

(102)

T(s+j+1)=

(—D)'T(s—k+DI'(s+ 1)
n! F's—k—n+1)

99)

(

valid for non-negative integral values of n and k, and s > —1,
perhaps with a limit required. For example, withn — n — 1,
k — 1,5 — 0, one has

n—1
ZH)’( :’_ l)x/fu +1)=y()—H, 1 = -y —H, 1.
Jj=0

J
(103)
Also, withn > 1, k — 0, and s — 0, one finds
n /n .
Z(—l)f( .)w(f +1)
j=0 J
.. T's+DI'(s+1)
= lim
n! s—0 I'(s—(m-—1))
n 1
x{w(s—i—l)—;m}. (104)

The denominator gamma factor is singular for all such n, so
the whole term would vanish except if there is a pole in the
curly brackets. All terms there are finite except when r = 1,
in which case they go as 1/s, and (80) leads to

Z(—1>f<”.>w(j+ h=-r.
j=0 J "

(105)

For the evaluation of K(n, k;n’, k') we use the expansion
(73) for one of the associated Laguerre functions and the
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Rodrigues formula (C24) for the second and find

n 00
Cnk T T

Kn, k;n' k') = E "”r/ dx e *xX*x & x K DY (" K )
n: 0

_ anr/ d ( l)n Dn (x_H»r k) n'+k' 7)(

ok o0 r 0 ) B
ZCk / dxF(Sfi:—_rk/_;ﬁl)xa-kr—k—nxnﬂce—x
=0 0

n

(- RN=1 3 (=1)T(s+r+1—k)(s+r+1)
- n' —~ i =Wk +PIDs+r+1—kK —n)

(106)

The integration by parts above was done under the assumption that Re(s) is large enough so that the integrated terms vanish for
x — 0 as in the derivation of (79). Integrals for smaller values of s are obtained through analytic continuation and, if necessary,
a limiting procedure for s.

The subtracted K integrals differ from the above only by having a different lower limit for the » summation:

n

I(—=1)" 1T 1—k)r 1
sz(n,k;n/,k/)z(n—i_ )( ) Z ( ) (s—I—r+ ) (s+r+ ) ’ (107)
n'! _— rifn—r)lk+n!l'(s+r+1 -k —n)
and converge whenever s + p > —1.
We can use (106) to prove the Laguerre orthogonality relation (C26):
DI(=D" K (—=)'T(r + DIk 1
Ketn kom, by — SFRICD" g DTG+ DI 44 D)
m! — ri(n— Nk +rTr+1—m)
ICERNCRVARS (=17
= . > (108)

—~ (n=nITr+1-m)

The gamma function in the denominator is infinite for every r in the sum when m > n, so K (n, k; m, k) vanishes in this case. By
symmetry under n <> m, Ki(n, k; m, k) also vanishes for m < n. When m = n, the only nonvanishing contribution comes from
r = m = n, with the result

k)!
Kiln, kem. by = S8 (109)
n!
The orthogonality relation (C26)
o0 k)!
f dx e LEOLE () = Ke(n, ko, o) = +, L (110)
0 n.
follows immediately.
Another integral useful for normalizing the Coulomb wave functions is
> (1" & —1)'T(r+2)I'(k 2
[ ave s L] = Ko kin by = TEOED COUFDTELT 22 iy
0 n! — rin—n!'tk+r+ DHI(r+2—n)

Because of the function I'(r + 2 — r) in the denominator, the only nonvanishing terms are those with r = n — 1 and r = n. One
finds that

/wdxe_x LT = (n+k)(— 1)”{(—1)”(n+1)!(k+n+l)! (—1"'nl(k + n)! }
) n! n\(k +n)! (n— DIk +n—1)

(n+k)

@n+k+1). (112)

Another set of useful K integrals is K;(n — 1, 1;n — a, a) with a an integer 1 < a < n, for which we use (106):

n—1

n!(—1)"¢ (—D)T(s+r+1—a)
——— lim E
(n—a)! s—>0 r'(n—l — ) s—m—-—r—1D]

Kin—1,1;n—a,a) = (113)
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For 0 < r < a — 1 there is a divergent gamma function in both the numerator and the denominator (with a finite limit), while
for a < r < n — 1 there is a divergent gamma function only in the denominator. It follows that

1

a

I(—1)ra —1y Ms—(@—r—1
Kl(n—l,l;n—a,a)zn( ) Z =D im [s—Ga=r )]
(n—a)! prs r‘m—1—-r)s—>0T[s—(n—r—1)]
I =S ) N G ) e U g )
- (n—a)! prs rln—r—D!I (=D a—r—1)
a—1
n! a—1
MYy
(n—a)l(a—1)! = r
= N8ui. (114)
A similar calculation leads to
Kon—1,1:n—a,a) = <”>{1 — .0} (115)
a
We also find
b
(n+1)! (=1)'(n—r)!
Ko(n — Iin—b,b+1)= 116
on—a,atLin +1 (n—b)!;(n—a—r)!(r—i—a—l—l)!(b—r)! (116)
and
b—1
(n+1)! (—1)'(r+ Dn—1—r)!
Ki(n—a,a+lin—bb+1) = : 117
W —a.a+ln +D (n—b)!;(n—a—r)!(r—i—a—i—])!(b—]—r)! 17
As a summary of results for the K integrals one has
k)!
KeGn km, k) = +, s (118a)
n.
(n+k)!
K _ kin k)= ——(2 k+1), 118b
k—2(n, ksn, k) n!k(kz—l)(n+ +1) (118b)
k)!
Ki1(n,kin, k) = M, (118¢)
nlk
k)!
Kiwin kin k) = +| Yokt ), (118d)
n.
+ k)!
Kiwa(n kin by = — M ionn+k + 1)+ h+ Dk +2)), (118e)
k+ 1)!
Kicra(n, ki e+ 1) = KDY (118)
n:
k)!
Keor(n kin— 1k + 1) = — 2 FRL (118g)
(n—1)!
k)!
Kk+2(n,k;n—1,k+1)=—%(3n+2k+1), (118h)
n— !
Kon—1,1;n—a,a) = 5 {1 =04=0} = —————{1 —du=0} (@a€Z,0<a<n, (118i)
a al(n —a)!
2_1D@Bn2 -2
Ko(n— 2,30 —2,3) = "- —DOT = 2) (118))
60
2 1 —2)(5n? -3
Ko(n—2.3:n— 3,4y = "0~ D= DO 0 =3) (118K)
360
- Dm—-2)2n—1)5r*—5n—9
Kot — 3. din — 3, 4) = "= D =2)@n = D" = 5n = 9) (1181)
2520
Kin—1,1n—a,a) =né,—y (aeZ,1 <a<n), (118m)
Kmn—1,1;n—1,1) = 2n%, (118n)
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Kn—-1,1n—2,2) = —n(n — 1), (1180)
Ksn—1,1;n—3,5) =n(n—1)(n—2), (118p)
Kin—1,1;n—3,5 =2nn—1)n—2)(n+3), (118q)
Kin—2,2;n—3,5 =—nn—1)n—-2)(n—+)5). (118r)

Some values for the subtracted K integrals are

1 nZ nn—1)
K n—1,in—1,1)=——=—— 2 (119a)
2 2
3 -2
K (n—2.2m—1.1) =" = _nn=De=2) (119b)
6 6
K (n—1,1;n—1,1)=0, (119¢)
P -1 -2)
K oon—1lin—1,1)="2 2 nn=Dn=2) 119d
2(” bl 7n 9 ) 12 12 9 ( )
3 —DHn—-2
K -1 1n—2,2 = nrzDe=2) (119)
12 12
3 1
Ki(n—1,1;n—3,5) = %(n =3/2)= gn(n = 1)n = 2)(n = 3/2), (119f)
Ky(n—1,1;n—3,5) =2n* = 2n(n — 1)(n — 2), (119g)
2 Tn 7
Ka(n =1, 1in = 4,6) = <= = 2n(n = D)(n = 2)(n = 3). (119h)

A general expression for the evaluation of ?K,(n, k;n’, k") can be obtained by considering three possible regions in the sum
over r. Our general assumptions are that n, k, n’, k', p are all non-negative integers and that the convergence condition s + p >
—1 holds. While the general formula (107) has no restriction that s be an integer, we now assume that s is an integer as well. We
note that the factors

(=T +r+1)
ri(n — )ik +r)!

(120)

in the sum over r are all well defined and finite for  in the summation range p < r < n.Forp <r < k' —s—1,both (s +r +
1 — k') in the numerator and I'(s + r + 1 — k" — #’) in the denominator are divergent. The ratio is evaluated as a limit in which
s — € + s approaches its integral value s when € — 0. One has

Ps+r+1-k) . e — (K —s—1—7)] (=1 K =s=l=r(y/ 4k — 5 — 1 —r)!
1m =
Cs+r+1—k—n) e0le—0+k—5s—1-r)] (=¥ =s=1=r (k) —s — 1 —r)!

(121)

For values of r in the range k' — s < r < ' + k' — s — 1, the divergent gamma function in the denominator is not canceled by a
numerator divergence and the contribution vanishes. For r in the range n’ 4+ k' — s < r < n, all gamma functions are finite and
can be written as factorials. The result for the subtracted K integral is

e 1y — BERNEDT {’”‘ (1Y + D1 (0 +K =5 = 1= 1)l

riir+k)!n—rlk —s—1—-r)!

n'!

N Z (=1 (r +)!(r +s —k')! (122)

o TR =) s = = k)] ’
This formula works as well when p = 0, giving the standard K integrals of (106). We note that one or both of the summation
regions might be void, giving a contribution of zero for that sum. Also, the factorial functions in the denominators enforce the
overall limits of summation, keeping r in the range 0 < r < n.

An associated integral with a log function can be obtained by way of the same method of differentiation by s that gave J;(n, k)
from I;(n, k):
(n+kI(-1)" Z (=D)'T(s+r+1—K)[(s+r+1)

n'! r’‘m—nrlk+nrTs+r+1—-k —n')

o0
Li(n, k;n', k') = / dxe*x* lnxL’,j(x)Lﬁ,/(x) =
0 r=0

x (WG +r+1—K)+yG+r+D)—yYGs+r+1—FkK—n)). (123)
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Some examples include

Lon—1,1;n—1,1) = —n(H, + yg — 1), (124a)
Li(n—1,1;n—1,1) = n(H, — yp), (124b)
Lin—1,Ln—1,1)=2n"H,—yg + 1) —n, (124c)
Ly(n—1,1;n—2,2) = —n(n — D(H, + 1 — yg), (124d)
(n+k)!
Lio(n kin k) = ————[(2n +k + D)(Hgys + Hy_a — Hyp — v£) — @n + 1], (124e)
nlk(k? — 1)
k)! 1
Ly kin by = S op h - | (124f)
nlk k
(n+k)!
Le(n, ks n, k) = =— == (Hyi = ), (124g)
(n+k)!
Lisi(n, ksn, k) = =— == [Q2n + k + D(Hae = yp) + 20+ 1], (124h)
n+k)! .
Lini(nkin—1,k+1) = —ﬁ(Hwk —ye+1). (124i)

The subtracted L integral is defined as

o0
PL(n, k;n', k) :/ dx e *x* lnxpLﬁ(x)Lﬁ,/(x)
0

n

(RN (DTG +r+1—kK)s+r+1)
N n' o rlmn—nrnlk+n)Ts+r+1-k —n')
x{WYs+r+1—kK)+y+r+D)—yY+r+1—k —n)l, (125)
where ¥ (n, z) is defined in (D20). As an example, one has
Lin—1,1;n—3,5)= —5(n — 1)(n — 2){36 + 75n — 73n* + 24n(n — 3/2)(H, + v&)}. (126)
A second differentiation by s gives integrals involving In® x:
d2
@xs =1In’x x’. (127)

We find that
M,(n, k;n' k') = / dx e x* In® x L* (x)LK (x)
0
CER NGV Z (=1)T(s+r+1—K)(s+r+1)
B rln—r)lk+n)ITs+r+1—k —n)

n'! g
x{Y(l,s+r+1-)Y+vA,s+r+ D)=y, s+r+1—-k —n')
+ P2 4+r+ 1K)+ s+r+ D+y2s+r+1—k —n)
+2¢(s+r+1—KWEs+r+ 1) —2¢G6+r+1—k)Ys+r+1—kK —n)
2 (s+r+Dy(s+r+1—k —n)}. (128)
As an example, we evaluate M (n — 1, 1;n — 1, 1). First, by explicit integration, one has the values yE2 —2ye+¢(2)and 2)/5 —
6ye + 2¢(2) + 4 for n = 1 and 2, respectively. In general, one has
(=1)
n—1—n!'r+2-—n)

o) n—1
Mi(n—-1,1n—-1,1)= / dxe™xIn’xL! ()L  (x) =n(-=1)y"" Z (
0 r=0

<y (Lr+D4+y,r+2) =y, r+2=n)+ 2+ D)+ 92 +2) + > (r+2—n)
+2y(r+ DY(r+2) =29+ DHyYy(r+2—n) =29 0T +2)¢ (T +2—n)}. (129)

For general n > 2 one breaks the sum into two parts:, 0 < r < n — 2 and r = n — 1, and works them out separately. The gamma
function in the denominator is singular in the sum, so only the singular parts of the numerator contribute and a limiting process
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is required for their evaluation. The result is

Min—1, 150 =1, 1) = n{t2,m)+ 02, n+1) = 2, 1) + (Hyoy + H,)? = 2y (Hoot + Hy) + 12)
n—2

1
—2n Z m{Hr +H1 —yve —H, 0}, (130)
r=0

where the sum is void for n = 1 and Hy = 0. The sums can be done using the formulas of Appendix D, resulting in

Mi(n—1,1;n—1,1) =n{H2_| + H®| +¢(2) — 2ygH, + ¥2}. (131)
More generally, one has
n+k)! .
My(n, ki k) = ¢ - ) M2, —H?, +2H,  (H, — yp) = 2diH_(n,n + k — 1) + y2 + ¢(2)}, (132)

where diH_ (7, m) is the falling diharmonic number defined in (D29).

VI. DISCUSSION

We have given an extensive list of expectation values that are useful for the calculation of corrections to the properties of
Coulombic two-body bound systems. We used dimensional regularization to regulate divergences and have found the values
for a number of expectation values using this regulatory scheme. In addition to exploring the use of dimensional regularization
in the Coulomb problem, we gave convenient formulas for a number of integrals involving the standard associated Laguerre
polynomials. These integration formulas involved one or two associated Laguerre polynomials, arbitrary powers of the radial
variable r, and possibly various powers of In r. We also obtained formulas for analogous integrals involving subtracted associated
Laguerre polynomials that were required for the evaluation of divergent expectation values. Most of the tabulated expectation
values, Laguerre polynomial integrals, and associated sums described in Sec. V were used in a calculation of corrections to the
energy levels of positronium at order ma® using dimensionally regularized nonrelativistic quantum electrodynamics (NRQED)
[11,50], and would also appear in calculations of energy levels for any Coulombic two-body bound state at this order when using
dimensional regularization.
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APPENDIX A: COULOMB EXPECTATION VALUES

We define coordinate-space expectation values in the usual way:

(M) = /dDXW(X')M(X’)lﬁ()?). (AD)

Some finite expectation values in D = 3 dimensions are given here:

_ y3 _ (m.Za)?

FEN=wE=0P=¢ = — (A2a)
T mn
1) =1, (A2b)
(r) = %{3;12 — 00+ DYm,Za) ™, (A2¢)
(r*y = "—2{5n2 +1 =300+ D}m,Za) 2 (A2d)
- 2 T £l

2
(r}y = %{35n4 +25n% = 300200 4+ 1) — 6£(L + 1) + 3[£(€ + D*Ym, Za) 3, (A2e)

4
rty = %{63n4 +1057% + 12 — 70020(L 4+ 1) — 502(¢ 4+ 1) + 15[£(L + D) *}m, Za) ™4, (A2f)

1 m,Zo

<_> _ mZa (A2g)

r n2

< 1 > _ (m,Za)? (A2h)
W+ 123
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m,Za)?

(7).~
=0

2+ 1)+ 1/2)n%’

[3n% — £(€ + D)](m, Zar)*

1
<ﬁ>l>0 T 2000+ D+ 1/2)(€ — 1/2)(¢ +3/25

[5n2 + 1 = 3¢(¢ + D, Za)’

(7)., -
oo

1o\ =1
<r_28 (x )>Z>0 B 97{

206 — DL+ 1)L +2)(E — 1/2)(€ +1/2)(€ + 3/2)n’

(M, Za)>8—;.

A set of finite expectation values containing the momentum operator p = —iV follows:

-
o]

(pi&*@pi) =

=V, =

2 (mZa )?

2
T o bmZa),
C+12m “’}(’" ®)

8n2 4+ 1 —40(¢+ 1) 8
400 —1/2)(€ + 1/2)(€ + 3/2)n’
disg | (= Dby }(eraf
n3 3ns T
1 L +1)
2 L+ 12
1 1 5
= T ariom }(m’Z“) ’
2n* 4+ 1-20£+1)
400 —1/2)(€ + 1/2)(€ + 3/2)n’

2
PO TRy v °}(m’za)

} (mZa )4

}(mrzmz,

4 4
+ =8¢0 { (M Zat)",
n

! S\ n—1+0e+1) 4 .y
<”"72”f‘3”fxf72xf”f ~ L2 -2+ 12 +3/2m° _n_35‘=°}('"’za)’
< Lo —3pats, > il () L2 by }(mZot)S
Prabi 2PRnstiPi] T\ 20+ D= 12+ 1)@+ 3/2m | o5 e
e+ 1
<p2r>=<rp2>={ (2+2 ) }( rZat),
ST 1 \
< ?> <?p>_{(e+1/2)n3 T }('"’Z“)’
< l> =<1p4> { An? +2 — 400+ 1) l}(m,Za)S,
r r (€—1/2)0(+ 1/2)( +3/2m5 o
I R M
P T\ L T leer e+ 12w @+ 12 e
J1\ L\ 302 +3/4 — 20(6 + 1) } ;
<p r%>M_ r3p>e>0_{E(Z+1)(€+l/2)(€—1/2)(€+3/2)n5 (e Zar)”,
W+ 3
(p'rp?) = {— (22; )4 o 2}(m,Zoz)3
I 4n® —40(€ + 1) s
<p PP >Z>O - {n6 e s 1/2)n5}(m’za) '

042511-16

}12
4 B 3 Zayt
SV N
> 8 8n2 4+ 1 — 46(¢ + 1) 0 )
W W 12w T €= 12+ 12+ 32m ;550}(%20() :
2 1

(A2i)

(A2))

(A2K)

(A21)

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

(A3f)

(A3g)

(A3h)

(A3i)

(A3))

(A3k)

(A3])

(A3m)

(A3n)

(A30)

(A3p)

(A3q)

(A3r)

(A3s)
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Expectation values involving the radial derivative 9, = %;0; = iX - p include

3
8r = -7
(ror) >
m,Zo
(0) = —

n?

13 (m,Za)?
<r > 200+ 123’

1 2m, Za )’
ﬁ ar - n—S(SZ:O’

<i8 > _ [3n% — (£ + D)](m, Zar)*
P e ME+ 1) —1/2)(E+ 1/2)(€ +3/2)n
<l(a, 4 m,Za)> = { 4n’ — 1 n 355_0}(%201)4
3 40— 1/2)C+1/2)€+3/2n° 3 = ’
<la> _ [5n2 + 1 =320 + DI, Za)’
e 200 =D)L+ DL+ 2)( — 1/2)(€ + 1/2)(€ +3/2)n5

1 1 2 — 1)(m,Zat)®
|8 —= =— 8¢=1.
r r) oo ond

Some expectation values involving 92 are

44L+1) 1
(roy) = T—z}(era),
o J1+ee+n 1 2
L=l L2 Za)’
; r| — F (£+1/2)n3 E =0 ( (M Za),

10\ _ 2202 — 1420 + Dion, Ze)?
P27 T A= 1/2)(E + 1/2)(E +3/2)n

1L\ 21240+ 1) 22 — 1) X
<Fa’ >M - {M(@ DD E D3 ol o }(m’Z“) ’
and also
1 1
92 s 3
<8r 8r) I o+ 1/2)?13 }(erO[) ,
_n2_
<a’T %3’2 > ~ae - 172)(511214;25)((@113)/2);15 N ?2355:0}("1’2“)4’
1 2 22 — 1)

<3:§3rz> = _FSZ:O — T‘SE:I }(erOK)S,

@17 —4n? =2 = 20+ D)+ 62 + D+ 6L+ DP 3 }(m 2o
vl 400 — 1/2)( 4+ 1/2)(€ +3/2)n3 [ ’
oo AHEEHD) 242041 3 X

o) = w @ iom e }(m’zo‘) ’
sy | 2014+ 3 4 4
(p*87) = C+ 120 p + 3 5@—0}("%20!) .

042511-17

(Ada)
(A4b)

(Adc)

(A4d)

(Ade)

(A4f)

(Adg)

(A4h)

(ASa)

(ASb)

(ASc)

(A5d)

(ASe)

(A6a)

(A6b)

(A60)

(A6d)

(A6e)

(A6f)
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Some expectation values involving 9> are

(83) = 3 + _ 3 ng_o (m,Za)?
r nd o+ 1/2m3 nd T

1 3n> +3/2 -3¢+ 1

~93) = w2 Vo za)t,
r 40 — 1/2) + 1/2)(+3/2n°  n?

1, 2(n* +2) 22 = 1) 5
<ﬁ3r = _TSZ:O+ T(SE:I (m,Za)y,
6n* +3—6n*0(t+1)—6[LL+1]* 3 4
<8j83) iy s et D - Ol + D] =+ =80 { (m,Za)*.
40— 1/2)(€ + 1/2)(€ + 3/2)m n*
In the following, we also use the adjoint radial derivative 31 = —8;%; = —ip - £. The general relation holds:

(@D FE)(B)) = (O f*@)(3,)%)*
from which follows
(D) = (r(8,)).

Some expectation values involving both 31 and 9, are

1 L+ 1)
peoy _ygtgy L T D 2
<171x1x117}) = <3r o) = 2 0+ 1/2)”3 }(m,Z(x) ,
"\l", = 3T13 — _l+; (m,Za)’
pl-xlr'xjpj - - rf— Vl4 (E-I-I/Z)I’l% myla),
1 1 2> 4+1 -2+ 1) 4
2 2pV=(9T—35.\ = - 4
<p HiaxiP f> - <a, ) 3r> a1+ 12013208 w B‘ZZO}(’”’Z") ’
2 21 _
<p,x, 3x,pj> =<aji3a,> _ 6n% + (€ + D[2n* — 1 —20(¢ + 1)] (mZa,
=1 s A —=DEE+ DI+ 2)E = 1/2)(E+ 1/2)(E+3/2)n
2 _ 2 _
<a*l3<a,—l>> :{ 2 4+1/2—0+1) _2n 1)&21}(%2“)57
T oo 200 + 1)L — 1/2)(€ + 1/2)(£ + 3/2)n5 95
2 _
(-5~ e e nae
r)r ) eso 20004+ 1)L — 1/2)(L + 1/2)(¢ + 3/2)n3
We also find
2 _
(01 0.} :{ 2n2 —2420(L+ 1) LE+1) 2 B i}(m,Za)“
400 —1/2)(C+1/2)E +3/2m5 (€ +1/2n5 (L +1/2)n3  n?
1 i _ —4n® —1/24+20(£ 4 1) 4 4
<Pn;3rpn> = <pn;xipipn> = {4(6 D+ 12013 n E&:o}(mrza) ,
2n® —2420(¢ + 1) 0e+1) 2

B, — (aTaT _
\Pupitixjpipn) = (9,0, 9:00) = {4(@ 1)U+ 12+ 320 (128  (+ 12

Some expectation values involving logs are

20 +1

Kn H L
2m,Zo et T VE 2n

In(kr) m,Zo In Kn +H
r n2 2erOt n+-¢ YE (>
In(xr) _ (m,Za)? In Kn T H TH q
2 = C+ 120 2m,Za 20+1 20 n+¢ — YE (>»

(In(kr)) = In <

3 T D+ 12 2m, Za

042511-18

— 5—4 }(era)4.

In(kr) (m,Za)? Kn n—~£0—1/2
In +Hoepo +Hopoy —Hpyo — v — — [
>0

(A7a)

(A7)

(A7c)

(A7d)

(A8)

(A9)

(A10a)

(A10b)

(A10c)

(A10d)

(A10e)

(A10f)

(Alla)

(A11b)

(Allc)

(A12a)

(A12b)

(A12¢)

(A12d)
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In%(kr) (mZa) |, , Kn K @
[ 2 ) 2 o 2

+ 2Hpe(Hy—emy —ve) —2diH-(n — € -1, n + £ — 1)+y§+§(2)},

(In(cr)3,) m,Za 1 Kn tH n 1
n(kr)d,) = — n it — —t.
* n2? 2m,Zao HTVE 2

(A12e)

(A12f)

Expectation values involving the Coulomb potential include the following, where we note that S-state expectations involving V

must be evaluated in D dimensions:

m.(Za)?
n2
mf(Zot)4
€+ 120
72 3 =2¢ 1 n 2 : _
oyt -4 (5hy) +4H, - 2 - 4] ife=o0,

—m} (Za)® .
D120 if £ >0,

V)= -

s

(V3 =

(V3 =

a2 -4 n (5he) +4H, - 2 -2) ife =0,

7m;3_ (Za)y .
WrnHe+im if £ >0,

rEmZaP | -2 =8 In (525 ) +8H, + 55 — 4 — 18] ife=o,

n

(Vv =

(V') = s )
2 .

20+ D=1+ 1/2)E+3/2m m}(Zat) if € >0,

4n? — 1

2= 1T D +3/2m

(V') = 2m,(V?) + { 8& 0} m}(Za)®,

. —2n —14+20(£+1)

72a3) = |
406 — 1/2)(€ + 1/2)(£ 4 3/2)n
1 2

2
Vpi) == = 5y + 380 pm(Za)?,
{piV pi) {n4 @+ 120 + 3 zo}m,( o)

2
— —=8i=0 }mf(Za)ﬁ,
n

82 +1—4L(0+1)
400 —1/2)( + 1/2)(¢ +3/2)n°

(Vp*V) = (piV?pi) = {

8
+ —36z=o}mj‘(2a>6,
n

2 _ 2\ l_ 2 3 4
(PV) = (Vi) = {n4 o }m,(Zoc) ,

N i o R e VR N U P
<p V>_<Vp>_{(@—1/2)(e+1/2)(e+3/2)n5 nt n35”}m’(z")’

rgimZaP |2 +8 In (5 ) —sH, + 1 - 2 +8] ire=0,

2 —e(e+l) 4 6 .
e 2s M (Za) if ¢ > 0,

4 42— 400+ 1)
400 — 1/2)(€ + 1/2)(€ + 3/2)n
224+ 1—20(0+ 1)

_ 4 1 -
+ _ - 4 6 _ \2
R e ety e sgzo}m,@a) S,

45z 0} m}(Za)® — m.(V?),

(p2vp2> — 4ncﬁ,zlmf(Za)3,a2€{———4ln (2mZo:>+4H ___#"f‘,%z—é‘-} if ¢ =0,
1 4 4 . .
[ + 2w e(£+1)(z+1/2)n3]m,(201) if £ > 0.

(A13a)

(A13b)

(A13c)

(A13d)

(A13e)

(A13f)

(Al3g)

(A13h)

(A13i)

(A13))

(A13K)

(A13])

(A13m)

(A13n)

(A130)

Only the leading terms are shown for S-state expectation values involving V: terms of O(¢) are ignored. All expectation values
for £ > 0 were evaluated in the D — 3 limit and the results given are exact in that limit, as are expectation values involving the

three-dimensional Coulomb potential V.
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Second- and higher-order derivatives in coordinate-space expectation values can lead to unexpected results. Some examples

of expectation values that do or might seem to lead to unexpected results are shown here:

1 —2n* — 1420+ 1 2 1
2\ = (m,Za)* wolr2eer D) 2 (L) (Alda)
r2—4e 406 —1/2)L+1/2)E +3/2)n>  n? r2
1, 4 -1 2my | 4
= (m,Z — = —(V?), Al4b
<r24€p> o) (6+1/2>n5} g (A140)
1 3n2 +3/2 300+ 1 4 1
83\ = (m,Za)* n+3/ Sl N SN Y S (Al4c)
pl-de 46 —1/2)+1/2) +3/2)n>  n?
! V) =m}(Za)* ! + ! + 2 3 (A14d)
g | TN T T e | T
1 1+2£+1) 3 2 4m, _
82 2 = rZ 4 —_— e — _ V3 , A14
<r4f ’p> U TSy (z+1/2)n3} g V) (Alde)
! V) =ml(Za)* L_ 2 + 45 £ (p*V) (A14f)
r—4ep — Ty I’l4 (Z + 1/2)7’!3 P =0 )4 s
o, o 3 4 8 4
= (m,Z _= L S , Al4
<r_4€p> (m,Zo) ot @128 0} #(p") (Al4g)
1 _ | _, 1 (1 —2¢) -4 | R
pr 9,V)= " Vo, +V'}) = —Za r—za, — T(V ) = _EW ), (A14h)
LoV} = (?7) = mdzat| - 2 (A14i)
i——piV ) = =m(Za)'{— — —— 1, i
Pil=acP P r w120
L7 (piVpi) =m (Za)* ! 2 + 25 (A14))
—piVpi)= (piVpi) =m (Za — — ——— 4+ — =0 ¢,
r__4é pl p pl p r n4 (g + 1/2)]’13 n3 =0 J
1 1 2m, -
8p*) = (mZa)) —————— V + =V, Al4k
<r14€ p> oneze) {2(5+ 1/2)n5}+ gV (Al
All of these formulas are correct only through O(€°); there are uncalculated O(e) corrections.
Some exact D-dimensional relations among expectation values involving the potential V = —g/r'=2¢ where g = I'(1/2 —
€)Za >~ /2*€ include (47) and
(VpV) = (piV?pi), (Al52)
(V') = =2(VV'a,), (A15b)
(V1)) =2m (V) + (Vp*V) = 2m,E(V?), (A15¢)
(V1)) = (VPV) = (p*V?) = (Vp*V) = (V?pP), (A15d)
2m (V') = (pPVp?) — (p*V) = (PPVp*) — (V). (Al5e)
(V'9,) = —2w ¢ Zai* 8¢—p. (A15f)
Some momentum-space brackets involving § = p, — p; are
1 1 /1 Za)?
[, - olt)-
g | Gp 2N\ 272 (€ + 1/2)n’
1 _ 1/1 . m,Za (A17)
G%lsp5 Am\r|  4mwn?’
1 1
<T> = ———{3n" — L + D}(m,Za) ", (A18)
9" pr.p 16m
1 (in (222) 4 1, 4 251 2 i g =
(In(1g D)p,.50 = X 3 (A19)
’ - (myZo) :
"D Er1/2) s if £ >0,
In(|g 1/1 2m,Z Z
(0] =) (22
q o 4 r n %97}
. (n* = D)8y | (m,Zar)’
(P2~ P1)pon = { 3 — (A21)
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pr - D 8n? — 40 +1)+1 8 m,Za)*
<P2qp1> _ { ( ) .. eo}%, (A22)
g1 15,5 4+ 1/2)( = 1/2)(€ +3/2)n n’ 2
<(ﬁ2 “4)(g - P )> _ { 4n* — 1 }(erOt)4 (A23)
1g1° s A+ 12— 1/2)€+3/29n° | 272
pr- P 1 1 2 1 2 (m.Za)?
AR AR R S R PN "
" App ATV (+1/2n n* n 4
(P2-4)(G - P) L] 1, i1 1 2 (m,Za)?
= — V= (p-p It = ——m—— — =8y} ——, A25
< A P L A Crip w8 (A25)
prpt — (P2 - p1)* 1 3 mZo)?
<P2P1 ﬁ(fz p1) > :{ S S 5[_0}%, (A26)
q B n 2(0+1/2) dmtn
-2 ) 2
(Pz — D1 ) 2
- =7 = A27
< 7 > ﬁ ﬂZ(mk (7', (A27)
ran p2,p1 )
PPLY o (V) (A28)
q 50,51 AnZoi*€
250 (oo o2 V') 1 2_ Za)
P1pi fpz p) _ |« ))_ P SNty (m,Za) . (A29)
G2 P Am*(Zou)Ofu2e Y 6n’
We can keep higher-order terms if necessary, for example,
_ mr(Zoc)2 un 2 »
V@5 = o 1+€|l41n T +4H,, + ~ 2+ 0(H}. (A30)
APPENDIX B: FOURIER TRANSFORM IN D DIMENSIONS
The D-dimensional Fourier transform is given by [15]
px _n lzzn 1—‘(Z#kﬂ) ~
/deep Yin(P) = 7 D/2,m4D F(é) Yo (@), (B1)

where the YKL; are D-dimensional spherical harmonics of angular momentum ¢, while m represents the indices necessary to
distinguish one spherical harmonic with angular momentum £ from another. Formula (B1) is singular when the arguments of the
gamma functions are nonpositive integers. The Fourier transform contains delta functions and their derivatives when (£ — n)/2
is a nonpositive integer and logs when (£ 4+ D + n)/2 is a nonpositive integer. The three-dimensional special case is standard
and is discussed, for example, in [51]. Some useful transforms include

.1 F(D*O()
dD ipxX__ 2 B2
/ PE R T Qagbir(a) e B2
p

D+2—«
il T (B2b)
P P 2a leD/ZF( )rD+1 ™t
DD F(ZM)
D tp-xplpl_ 2 A _ 2.5
/d pe P T - ‘nD/zF( )rD+2 (x{ ij = (D42 — )k}, (B2c)
D44—«
ipx PiPiPk . (= . . . A
./dee ’ pi - ’2a_an§erz)2D+s_a {(Bijfk + 8jaki + Sikj) — (D + 4 — )Xk}, (B2d)
2
D+4—a
D ipx PiPjPkDPe F(T) . S 8
[ave S = Sy s (ot + badi + ud)
—(D+4-— Ol)(Sij)ACk)??[ + 5,'/()/5]')?( + 8,‘[)?1')?]( + Sjk)ACi)ACg + 31'@)?3,')?3/( + Skg)ACi)ACj)
+D+4—a)D+6— Ol))’f,‘)?j)?k)’fz}, (B2e)

where p = |p|. The transforms (B2a) and (B2b) are immediate since the transformed functions 1/p* and p;/p* have £ = 0 and
1, respectively, while p;p;/p® is a combination of £ = 2 and 0, p;p;py/p® is a combination of £ = 3 and 1, and p;p;pxp/p* is
a combination of £ = 4, 2, and 0.
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APPENDIX C: REVIEW OF THE BOUND-STATE
COULOMB PROBLEM IN THREE DIMENSIONS

In this Appendix we assemble the main formulas rele-
vant to the three-dimensional bound-state Coulomb problem.
We use the conventions for associated Laguerre polynomi-
als found in [52-56] and that are built into the computer
algebra systems Mathematica [49] and MATLAB [57]. Other
references, including many textbooks on quantum mechanics,
use a variety of other conventions; a partial tabulation is given
in Liboff [58, Table 10.3].

The coordinate-space Schrodinger-Coulomb equation is

ﬁ 2
2m,

where p = —i%, m, = mymy /(my + my) is the reduced mass,

}1//(76)=E¢(55), (ChH

and V(r) = —Za/r. For the bound-state Coulomb wave func-
tions we have
wnim(?) = RnZ (r)YKm(f')’ (Cz)
where
4n—t—1)1)"? .
Rn — p/2L25+1 C3
e(r) {—a3n4(n+€)! } pe (0 (C3)

with p = 2r/(an), and a, the Bohr radius for a system with
positive charge Z and reduced mass m,, given by
h 1

a= = (C4)
m,Zoac m Lo

in our units. For Z = 1 (as for hydrogen) with the assumption
of no recoil (nucleus of infinite mass, m, = m,), the usual
Bohr radius is

~0.052918 nm. (C5)

oo, Bohr =

Me0C

We have separated out the short-distance behavior (given

by p®) and the long-distance behavior (controlled by the

exponential e "), As examples, the S-state radial functions
are

4 12
Ruo(r) = {ﬁ} e "L,y (p), (C6)
and the P-state radial functions are
4 12
N R —p/273
Rnl(r) - {a3n5(n2 — 1)} pe r Ln—2(P)~ (C7)
The radial Schrodinger equation is
2 0+ 1 2m,Zo m,Zo)>
[af+—a,— €xh, 2mze_{ )}ne(r)
r r n?
(C8)

and in terms of the dimensionless radial variable p it is

2 LL+1) n 1
4+ =9, — ———+— — — |Ru(p) = 0. C9
[p+pp 200 4] (o) (9)
The solutions to the radial equation can be expressed
in terms of associated Laguerre polynomials. The Laguerre
polynomials are the conventionally normalized solutions to

the equation

d2
[xd—2 +(1 - x)— + n:|L (x) = (C10)
and have the generating function
1 Xz >
exp | — = 7'L,(x), z| <1 Cl1
— p[ I_J Z:(; @), Izl (C11)
Rodrigues’ formula
Ly(x) = x"e™), (C12)
recursion relations
(n+ DLy (x) = 2n+ 1 —x)L,(x) — nL,—1(x), (Cl3a)
xLy,(x) = n[Ly,(x) — Lo—1 (0], (C13b)
and orthogonality relation
oo
/ dxe*L,(x)L,(x) = 8. (C14)
0
An explicit formula is
(=1 o
L (x)—n'z T (C15)

An integral formula for them can be derived easily by use of a
Laplace transform to solve the defining differential equation:

Ln(x)zygﬂ(l +t)n€_’“,

2mi  gntl

(C16)

where the integration contour circles the origin in a counter-
clockwise direction [59], and they can be expressed in terms
of hypergeometric functions as

L,(x) = 1Fi(—=n, 1;x). (C17)
The associated Laguerre polynomials
dk
Ly@) = (=1~ Ly (x) (C18)
are the regular solutions to the equation
d2
[ e +(k+l—x)—+nj|Lf§(x)_0 (C19)

An explicit formula is

n

kpn =D)'(n+k)! L (—x) (n+k
L,,(x)_;(n x = ( >

— )k +r)'r! = rl \n—r
(C20)
We use the general definition of the binomial symbol
r 1
“) = et (1)
b) T(@—-b+1DI(H+1)

which works even when a and b are not integers, to extend the
definition of L’,f (x) to nonintegral k. We define

L,(x)=0 and L‘(x)=0 for n<0. (C22)
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The associated Laguerre polynomials have the generating
function

1 Xz 00 l
- P [_1 _Z} =) L), Iz <1 (C23)
n=0

Rodrigues’ formula

k — e _" n+k —x
Lrx) = T (x"he™), (C24)
recursion relations
LA (x) = (x — n)LE () + (n + OLE_ | (x), (C252)
L) = Lo — L (), (C25b)
XL (x) = (n+k + DLE() — (n + DL, (),
(C25¢)
(n+ kL () = (n+ DL (x) — (n+ 1 — x)LE(x),
(C25d)
d
—LE(x) = —L (%), (C25¢)
dx
and orthogonality relation
© k!
/ dx e Lk oLk (x) = +' L. (C26)
0 n!

An integral formula for the associated Laguerre polynomials

is
dt (1 +1)yrt*
Lﬁ(x) — % _Le*ﬂ’

2mwi ] ©27)

and their explicit expression in terms of hypergeometric func-
tions is
k
Ly(x) = (n—]l{— ) 1Fi(—=n, k+1;x). (C28)

The Schrodinger-Coulomb equation in momentum space
has the form

p? 3 AnZo
/d _—‘ﬁ(g)—Elﬁ(P) (C29)
@p—t)

where d"p = (‘zin)n. The momentum-space Coulomb wave

functions are Fourier transforms of the coordinate-space func-
tions:

I/Infm(ﬁ) = /dsx e_iﬁ‘iwnﬁm()?) = Rnf(p)ylm(p,\)v (C30)
where

Ru(p) = (C31)

n

Pt i (D
¢n nt D;'_Z Cnll(D_ .
The constants in (C31) are the coordinate-space wave function
at contact

3\ 1/2 Za)? 172

b, = (V_) _ [M] — oG =0) (C32)
T 3

and

don(n — £ — 1)!

12
aror] o

Ny = 22”3;15![

and we have used D, = p* +y? and D, = p* — y>. The
momentum-space version of the Coulomb wave function can
be obtained by Fourier transformation of the coordinate-space
wave function [60], by direct solution of the momentum-
space Schrodinger-Coulomb equation [61], or from the the
momentum-space Green function [62-64]. Some values for
the Gegenbauer polynomials are C;(B) = 1, C}(B) = 2AB,
C%(,B) = 20(A + 1)B? — A, etc. They satisfy the Gegenbauer
differential equation

2
[(1 -8 )— -+ 2/\)/3% + n(n + 2)»)}6’,’}(/3) =0

dp?
(C34)
the Rodrigues formula
iy ST+ 4+20) 5 i
G == T(M)I(2n +21) (1=£%
2ynta—1/2
X< B [(1 B°) I (C35)
and have the series expansion
/2l 3
cpy =y ST B (c3e)

— T(k!(n — 2k)!

where the floor [n/2] is the greatest integer in n/2. The
Gegenbauer generating function is

1

A28 27 = meC,ﬁ(.B).

m=0

(C37)

The natural interval is —1 < 8 < 1, corresponding to 0 <
p < oo. The Gegenbauer polynomials satisfy the orthonor-
mality condition

1 1-2A
-1

nl(n+ MDICWPE "™
(C38)
Various derivative identities exist, including
d
—CH(B) = 22C L (B). (C39)

dp

APPENDIX D: SPECIAL FUNCTIONS: GAMMA,
POLYGAMMA, BETA, ZETA, HYPERGEOMETRIC,
AND HARMONIC AND DIHARMONIC NUMBERS

In this Appendix we give definitions and useful formulas
for a number of special functions. In particular, we consider
the gamma, polygamma, beta, zeta, and hypergeometric func-
tions. We also discuss properties of the harmonic numbers that
arise, for example, when expanding the gamma function near
a nonpositive integer. We define “diharmonic numbers” as the
natural generalization of harmonic numbers for use in related
circumstances. Our definitions follow the standards set, for
example, in [52,53,56].

The gamma function is defined by

()= /oo dxx'"le™™, (D1)
0

042511-23



ADKINS, ALAM, LARISON, AND SUN PHYSICAL REVIEW A 101, 042511 (2020)

so that Some identities that prove useful in the evaluation of (r”)
for various values of p and elsewhere are
*© F(}’l + 1) n—1
dxx"e™™ = ———=. (D2) I'(a+n)
/0 Antl W = H(a + k), (D7a)
The gamma function satisfies I'(1) = 1 and the recursive I'(—a+n) . Lla+1)
——— =)= (D7b)
formula [(—a) Fa—n+1)
I‘(a)
'h)y=m—1DI'(n—-1) (D3) F(a — l_[(ll — k), (D7c)

sothat I'(n) = (n — 1)! if n > 1 is an integer. It also satisfies T'(e)
the reflection identity ['(e —n)

where n is a positive integer and H,, is the harmonic number

= (=D)"n!{l1 —eH, + O(?)}, (D7d)

T

@ —z) = - (D4)
sin(rz) = Z - (D8)
and the duplication formula We also define the generalized harmonic number H® as
F@rz+1/2) =227 T(22). (D5) HO =3 L (DY)
k=1 e
Some useful values for integral and half-integral arguments  which has the form of a truncated version of the sum used to
are define the Riemann zeta function
|
ra =1 (D6a) ¢(s) = ks (D10)
F(n)=m-1!, (D6b) Expansion of the gamma functlon near integral arguments can
1 be facilitated by the formula
F(—) =7, (Dé6c)
— (=15 (n)
VET(1 = "
(2n—l)”\/_ eVET(1 + €) exp{z ——e (D11)
2 = (D6d) n=2
The beta function B(a, b) is defined as
1
——) = C(@)r'®
( 2) (D6e) B(a, b) = T@r®) (D12)
I'(a+b)
<_ n-4+ l) = ( 2w (D6f) Many useful integrals can be done in terms of the beta
2 (2” - 1)” function, including
|
I
/ dxx"(1 —x)"=Bn+1,m+1), (D13a)
0
/2 1 1 1
/ do sin" 0 cos" 0 = —B nt , mtl , (D13b)
0 2 2 2
e a | 1 1
/ dy —5 — Zpst-eg(tl ety (D13¢)
0 (A + xb)‘ b b b
& x4 —1 atl atl 1 a+1 a+1
d = B ' —A%)-B 11— . D13d
/0 A+ 2)(B + 1) 54 )% ( b b ) (D13d)

Derivatives of the gamma function are given in terms of the polygamma functions. Specifically, the digamma function ¥ (z)
is the logarithmic derivative of I'(z):

F ()
I'(z)

(D14)
As a direct consequence of I'(z + 1) = z['(z) one has

¥z + l)=¢(z)+§, (D15)
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and the derived formulas

N—1
1
Y(E+N)= W(Z)-’_ZZ—}—_I” (D16a)
r=0
N
V(@) =Y@—N)+ Zz_—r. (D16b)
r=1

Some useful values for integral and half-integral arguments
are

Y1) = —vye, (D17a)

Y(n) = —ye + Hy1, (D17b)
w(%) = —yr —2In2, (D17¢)
. 21n2 ~_2 D17d
o(rrg)=rem2mar Y gty o

where the Euler, or Euler-Mascheroni, constant is yg =
0.5772156649. Near the origin v(z) has a pole and the
expansion

1
V@ = v i@t o), (D18)
and also, for N a non-negative integer,
lin}][l/f(G) — ¥ (e —N)] = —Hy, (D19a)
—N
im Yle=N) = lim Ve = (—DVTINL
e~0 ['(e —N) e—~0I'(e = N)
(D19b)
The higher polygamma functions are
d n
Y(n, z) = <d_> Y (2). (D20)
z

Some useful values and relations involving the polygamma
function are

Y(n,z) = (- 1)"+1n'z W = (—-1"nlc(n+1,2), (D21a)
( 1)”n‘
Yn,z+1)=vmz)+ T (D21b)
N—1 1
Y2+ N) = Y0+ (1) (D21¢)
r=0
Yo
Y(n,z) = 1//(n,z—N)+(—1)”n!Zm. (D21d)
r=I1

The functions ¥ (n, z) have a pole of order n + 1 near the
origin and the expansion

v(n,z) = (—1)"+1n!{zn% +¢n+ 1)+ 0(z)} (D22)

and satisfy identities of the sort

. Y(l,e—N)—y*(e—N) . ¥(1,€e)—[y(e)+Hy]
im = lim

e—0 F(G —N) e—0 F(G —N)

=2(—1)"N!(Hy—yp). (D23)

The Hurwitz generalized zeta function ¢ (n, x) is defined as

[e¢]

1
£(s,q) = ]; GT (D24)
and satisfies
= 1
t(s,N) = Z (N+k)x Z o =L@ —HY,
N aninteger with N > 1 (D25)

(

with H(()‘Y) = 0. The polygamma function satisfies a corre-
sponding identity

Y, N) = (=D"Dnat{c(n+ 1) — Hy P},
n, N integers: n > I, N > 1. (D26)
In particular, one has
¥(l,1) = ¢(2), (D27a)
Y(1,N) =) —Hy . (D27b)
Some useful harmonic number sums are
" H 1
Y =L = (H; +HP), (D28a)
—r 2
n—1 H n—1 H
Yo=Y " =H-HP,  (D28b)
“n—r r

r=1

r=

where the latter sum comes from Eq. (24) of Spiel3 [65].

The ‘“diharmonic” sums shown above are of the form
Zregion 1/(ij) where “region” is some region in the plane of
integer pairs (i, j) with 1 < i, j < co. Diharmonic sums for
rectangular regions are easy to work out since the sums factor-
ize. For the rectangle a < i < b, ¢ < j < d, the diharmonic

sum is Zagigb, e<j<d 1/(j) = (Hp — Ho—1)(Hg — He—y).
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FIG. 2. Regions in the plane of integral-valued (i, j) pairs over which the sums > . 1/(ij) are defined as the diharmonic numbers:
diH, (n, m) with a positively sloped diagonal segment and diH_(n, m) with a negativelybsloped segment. (a) Shows the trapezoidal region
for diH, (7, 5) while (b) shows the region for diH, (10, —3), of which only the triangular tip is active in the sum. (c) Shows the region for
diH_(7, 12). Values for the diharmonic numbers of (a)—(c) are also shown.

More generally, in analogy to the dilogarithm function, we above:
define the rising and falling “diharmonic numbers”
n n m—I1+i le+(l1 1) — Z -Q = 2 H2 + H(z)) (D3O)
diH+(l’l, m) = Z m 1+i Z Z -
i=1 i=1 j=1 and
(nonzero forn > 1,m > 2 —n), (D29a) n-l H,_;
" R diH_(n—l,n—l)zzT’:Hﬁ—Hff). (D31)
diH_(n,m)EZLl_lzz Z — i=1
i—1 ! =1 j=1 The diharmonic numbers are much more general, as the spe-

(nonzero forn > 1,m > 1). (D29b)

The regions in the (i, j) plane over which the sums of 1/(ij)
are taken are illustrated in Fig. 2. For the purposes of these
definitions, we assume that H, = 0 for n» < 0 and that the
summations vanish when the upper limit is less than the lower.
The diharmonic sums allow us to find the values of the sum
of 1/(ij) over any polygonal region of (i, j), space with
1 < i, j < oo having sides that are either vertical, horizontal,
or diagonal at 45°. Some special cases come from (D28)

J

cial cases both come from regions with a vertex at i = j = 1
and with one side along the horizontal axis. Some more gen-
eral sums appear in Spiel3, but apparently only for triangular
regions with the diagonal on or close to the line i = j. The
diharmonic sums for arbitrary polygonal regions in the (i, j)
plane having all sides either horizontal, vertical, or diagonal at
45° can be obtained as linear combinations of diH. (n, m) and
the sums for rectangular regions. Closed forms for diharmonic
numbers of nearby regions can be obtained using the recursion
relations

diH,(n + 1, m) = diH (n, m) + THHm, (D32a)
diH, (n,m) + — (H +H,, — Hyon) ifm>1,
diH, (n,m + 1) = {diH,(n,0) + H(z) ifm=0, (D32b)
d]HJr(nv m)"’E(Hn_Hfm_Hner) if —n <m< —1,
) diH_(n, m) ifn>m,
dH_-(n+1,m) =1 . . . (D32c¢)
diH_(n, m) + = Hu_y ifn <m,
diH_(n,m) + -5 Myt +Hy, — Hpyy ) ifm>n—1,
diH_(n,m+ 1) = 71 m) & G (M +n) (D32d)
diH_(n, m)—}—m+2Hm+1 ifm<n-—1.
Values for diharmonic numbers of nearly triangular regions include
1
diH,(n,2) = ~(H2 + H?) + 1 — : D33
iHi(n,2) = S(H, + HY) +1 - -~ (D33a)
1
diH,(n, 1) = 5(Hﬁ +HY), (D33b)
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1
diH, (n,0) = 5(H,% —HY), (D33c¢)
. 1, 5 o 1
diH, (n, —1) = E(Hn —HY) -1+ -, (D33d)
n
diH_(n—1,n—1) = H> —H?, (D33e)
: L) = 12 @ _1
diH-(n—1,n)=H, | —H — p (D33f)
dH.(n—1,n+1)=H? T I l+ ! +E (D33g)
B ’ o2 "2 n4+2\n n+1 2) &
The diharmonic numbers also satisfy reflection identities
diH,(n,m) =H,y . H, —diH, (n+m—1, —m + 1), (D34a)
diH_(n,m) = an+1 — Hfﬁ] —diH_-(m —n+1,m)+H,,_,.1H, (D34b)
found by consideration of the regions in (i, j) space covered by the corresponding sums.
The hypergeometric function ,Fj(a, b; c; x) is defined by
o atbt x"
2Fila biex) =) —=, (D35)
= c" n!
and more generally by
00 n i
ay...a, x"
Fo(ay,...,ay,¢1,...,C05X) = = Ly (D36)
P r 1 ; ... n!
where the rising and falling factorials [66] are
_ r -1
d=a@+ ). (atn—1y=@rm _  (atn (rising factorial), (D37a)
I'(a) n
r 1
=aa—1). a-ntl)= —FTD (%) (alling factorial). (D37b)
'a—n+1) n

[The rising factorial is also known as the “Pochhammer symbol”: @ = (a),. Other notations for the rising and falling factorials
are a” = a™ and, confusingly, a* = (a),. One must always verify definitions when dealing with rising and falling factorials.
The advantage of the notation chosen here is that it is unambiguous and suggestive of its meaning.] Rising and falling factorials
satisfy identities reminiscent of the binomial formula

@+by =Y (: )a"—f W, (D38a)
r=0

@+br=>Y" (’;) = (D38b)
r=0

The hypergeometric series terminates when a or b is a negative integer. A hypergeometric function identity that is useful when
doing sums involving factorials and binomial coefficients is given as (5.93) of Graham, Knuth, and Patashnik [66]:

F(c—a+ml(c) (c— a) _(a—ot
I(c—a)(c+n) ¢  (—cr

2Fi(a, —n;c; 1) = for integer n > 0. (D39)

One often requires series expansions of ,Fj(a, b; c; x) when a, b, and ¢ differ from integers by terms of order ¢ with one of
those integers in a or b being negative. For example, whena — —n +ae, b — k+be,c - —n+ 1+ ae,and x — —1, withn
an integer n > 1 and k an integer k > 0, we define

f(n,k,a,b)=rF(—n+ae, k+be;—n+ 1+ ae;—1). (D40)
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For the case n > 1,k > 1, one has

3 (1Y (ntaeyk+bey 3 (—=1) (—n + a€)(k + be)

= (—n+ 1+ ae)ij! pa (—n+j + ae)j!

fn=2k=1,ab)=

n—=l s 1y 7 s —1)kd
DK G > ((LJFO(E) . (D41)

14 (—
tonta ;(—nJrj)j! @ont 2 Gt )l

where sums are taken to be zero when the upper limit is smaller than the lower limit. The first sum here is easy to evaluate for
given n and k. The second term can be expanded in € using

(k + be)" 1k1 be v (1 be . N be
e - { ( * )< * )< +m>'“( e >( +k+——1>}

k —1
e U RO (D42)

The final infinite sum evaluates to

i (—1)/k/ _(_1)n+1kﬁ
(—n+j)j!  (m+1)

sB(L Ln+k+1;2,n+2;,—1), (D43)
j=n+1

which, at least for integers n, k with 0 < n, k < 16, evaluates to a form « In2 + g for some «, 8. So in all one has

—1)"tn (k —1 k —1 b
f(n>1,k>1,a,b)=()—n< +Z )+1+(—1)"< +Z )[F%(Hkﬂ_l—Hk_l)}

ae
1

Z( 1Yk (—1)"nkm
(n—J)J' (n+ 1)

B L n4+k+1;2,n+2;,—1) + O(e). (D44)
Jj=

Other cases require separate analyses, which proceed along similar lines. For instance, with n > 1, k = 0 one finds

n—1 ;
f(n>1.0.a.b0) = [1—(—1)”1—’}+be 1+ 12— 12, + 3 Y
a a n—

j=1

+ 0(). (D45)

For more general expansions of this sort, where the arguments a, b, c, etc., of a hypergeometric function are linearly dependent
on a small parameter €, a number of computer programs are available [67-70].

APPENDIX E: EVALUATION OF THE BRACKET (In g)3, 5

The momentum-space bracket (Ing);, 5 is easy to evaluate for any specific state via momentum-space integration. This is a
finite bracket with no need for regularization, so we calculate in three dimensions. In order to obtain a general formula for this
bracket, it is best to work with coordinate-space expectation values. However, the three-dimensional Fourier transform of In g is
FT[In¢](X ) = —1/(4mr*), which has a divergent expectation value for S states. Dimensional regularization fails to regulate the
Fourier transform of In ¢, which is proportional to 1/rP in D dimensions, so we stick to three dimensions and regulate differently.
We note that % 44° =¢'Ing and

d
lnq—}g)r(l) xq , (ED)

so we use s as a regulating parameter and hold off on the derivative and s — 0 limit until after taking the expectation value. That

is, we evaluate (In g) 5o @S

d
(Ing)p. 5, = lim ~(FT["1(¥)). (E2)

The three-dimensional Fourier transform of ¢°, from Appendix B, is
FT[¢*1(X) = /d‘Sq g = —2v , (E3)
5) 3t
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ZF— 3 ' i * —p ,—s—1lcr1 2
T ‘)(an) <a3n5>/0 oo )

with the expectation value

(FT[g"1(Z))no = /d" P2Ruo(r)FTIg 1(F )Ryo(r) =
_ ( 4 ) r(#%)
“\an/) 73210(-

1

_(A)_ () Al (=1 (<D T(=s = 14 (=5 + 1)
N <a_n) 32T (%) (a3n5) — 1! gr m—1—=r)r+ D)IT(=s+r—n) EH

after use of the S-state wave function of (C6) and the integration formula (106). Application of an s derivative and the limit
s — 0 yields the S-state bracket of In g:

4\ () A1 Z (C1YT(=s — 1+ P)(=s + r)
<lnq)p2pl_}1»0<an> T(-3) (a n5) n—1)! ;r!(n—l—r)!(r—i—])!l"(—s—l—r—n)

o(2) (15

We can simplify the expression in curly brackets slightly by use of Y(—s —1+7r) — Y (—s+r—n) = Z =2 T , which
has a linear divergence for s — O when j = r. In the s — 0 limit I'(—s/2) has a linear divergence, as does I'(—s — 1 4 r)
forr=0and I, '(—s+r) for r =0, and I'(—s +r —n) for 0 < r < n — 1. Near s = 0, the expression in curly brackets is
In (%) +H,+O0(s)forr=0,1/s + O(s®) for r = 1, and O(1/s)for2 < r < n — 1. We see that the only terms in the sum over
r that contribute to the s — O limit have »r = 0 and 1, and we find

> Y(=s—1+7r)—Y(—s+r)+ = w(——)+w< s+r—n)} (ES5)

(Ing) (m,Za)? | 2m,Zo CH 4+ n—1 (E6)
ng)s s = n ;

@72, an’ n 2n
for S states. We have checked this formula for (In g) 521 by explicit integration in momentum space for 1 < n < 36. For £ > 0
the bracket (In g) P —%(r*) is finite and can be evaluated in the usual way. Our result for (In q) 5,5, Agrees with that of

Titard and Yndurain [43].

[1] A. Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys. Rev. A
59, 4316 (1999).

[2] G. S. Adkins, Phys. Lett. B 382, 1545 (2018).

[3] L. S. Brown, Quantum Field Theory (Cambridge University
Press, Cambridge, 1992).

[4] A. Pineda and J. Soto, Nucl. Phys. B: Proc. Suppl. 64, 428
(1998).

[5] A. Pineda and J. Soto, Phys. Rev. D 59, 016005 (1998).

[6] A. Pineda and J. Soto, Phys. Lett. B 420, 391 (1998).

[7] A.Czarnecki, K. Melnikov, and A. Yelkhovsky, Phys. Rev. Lett.
82,311 (1999).

[8] A. Czarnecki, U. D. Jentschura, and K. Pachucki, Phys. Rev.
Lett. 95, 180404 (2005).

[9] U. D. Jentschura, A. Czarnecki, and K. Pachucki, Phys. Rev. A
72, 062102 (2005).

[10] B.J. Wundt and U. D. Jentschura, Phys. Lett. B 659, 571 (2008).

[11] G. S. Adkins, J. Phys.: Conf. Ser. 1138, 012005 (2018).

[12] A. H. Hoang, in At the Frontier of Particle Physics/Handbook
of QCD, edited by M. Shifman (World Scientific, Singapore,
2002), Vol. 4, Chap. 37, pp. 2215-2331.

[13] N. Brambilla, A. Pineda, J. Soto, and A. Vairo, Rev. Mod. Phys.
77, 1423 (2005).

[14] A. Pineda, Prog. Part. Nucl. Phys. 67, 735 (2012).

[15] S. G. Samko, Sov. Math. 22, 60 (1978).

[16] K. Andrew and J. Supplee, Am. J. Phys. 58, 1177 (1990).

[17] D. J. Morales, Int. J. Quantum Chem. 57, 7 (1996).

[18] S.-H. Dong, Wave Equations in Higher Dimensions (Springer,
Dordrecht, 2011).

[19] M. Bures, Ph.D. thesis, Masaryk University, Brno, Czech Re-
public, 2015.

[20] J. Avery, Hyperspherical Harmonics: Applications in Quantum
Theory (Kluwer Academic, Dordrecht, 1989).

[21] J. S. Avery, J. Comput. Appl. Math. 233, 1366 (2010).

[22] S. P. Alliluev J. Exp. Theor. Phys. 33, 200 (1957) [Sov. Phys.
JETP 6, 156 (1958)].

[23] M. M. Nieto, Am. J. Phys. 47, 1067 (1979).

[24] E. Schrédinger, Ann. Phys. 385, 437 (1926).

[25] 1. Waller, Z. Phys. 38, 635 (1926).

[26] J. H. Van Vleck, Proc. R. Soc. London A 143, 679 (1934).

[27] S. Pasternack, Proc. Natl. Acad. Sci. USA 23, 91 (1937).

[28] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Springer, Berlin, 1957).

[29] J. H. Epstein and S. T. Epstein, Am. J. Phys. 30, 266 (1962).

[30] P. Blanchard, J. Phys. B: At. Mol. Phys. 7, 993 (1974).

[31] C. Sanchez del Rio, Am. J. Phys. 50, 556 (1982).

[32] H. Beker, Am. J. Phys. 65, 1118 (1997).

[33] S. Balasubramanian, Am. J. Phys. 68, 959 (2000).

[34] R. A. Swainson and G. W. E. Drake, J. Phys. B: At. Mol. Opt.
Phys. 23, 1079 (1990).

[35] H. M. Srivastava, H. A. Mavromatis, and R. S. Alassar,
Appl. Math. Lett. 16, 1131 (2003).

[36] S. K. Suslov and B. Trey, J. Math. Phys. 49, 012104 (2008).

042511-29


https://doi.org/10.1103/PhysRevA.59.4316
https://doi.org/10.1103/PhysRevA.59.4316
https://doi.org/10.1103/PhysRevA.59.4316
https://doi.org/10.1103/PhysRevA.59.4316
https://doi.org/10.1016/j.physleta.2018.03.048
https://doi.org/10.1016/j.physleta.2018.03.048
https://doi.org/10.1016/j.physleta.2018.03.048
https://doi.org/10.1016/j.physleta.2018.03.048
https://doi.org/10.1016/S0920-5632(97)01102-X
https://doi.org/10.1016/S0920-5632(97)01102-X
https://doi.org/10.1016/S0920-5632(97)01102-X
https://doi.org/10.1016/S0920-5632(97)01102-X
https://doi.org/10.1103/PhysRevD.59.016005
https://doi.org/10.1103/PhysRevD.59.016005
https://doi.org/10.1103/PhysRevD.59.016005
https://doi.org/10.1103/PhysRevD.59.016005
https://doi.org/10.1016/S0370-2693(97)01537-2
https://doi.org/10.1016/S0370-2693(97)01537-2
https://doi.org/10.1016/S0370-2693(97)01537-2
https://doi.org/10.1016/S0370-2693(97)01537-2
https://doi.org/10.1103/PhysRevLett.82.311
https://doi.org/10.1103/PhysRevLett.82.311
https://doi.org/10.1103/PhysRevLett.82.311
https://doi.org/10.1103/PhysRevLett.82.311
https://doi.org/10.1103/PhysRevLett.95.180404
https://doi.org/10.1103/PhysRevLett.95.180404
https://doi.org/10.1103/PhysRevLett.95.180404
https://doi.org/10.1103/PhysRevLett.95.180404
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1103/PhysRevA.72.062102
https://doi.org/10.1016/j.physletb.2007.11.062
https://doi.org/10.1016/j.physletb.2007.11.062
https://doi.org/10.1016/j.physletb.2007.11.062
https://doi.org/10.1016/j.physletb.2007.11.062
https://doi.org/10.1088/1742-6596/1138/1/012005
https://doi.org/10.1088/1742-6596/1138/1/012005
https://doi.org/10.1088/1742-6596/1138/1/012005
https://doi.org/10.1088/1742-6596/1138/1/012005
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1103/RevModPhys.77.1423
https://doi.org/10.1016/j.ppnp.2012.01.038
https://doi.org/10.1016/j.ppnp.2012.01.038
https://doi.org/10.1016/j.ppnp.2012.01.038
https://doi.org/10.1016/j.ppnp.2012.01.038
https://doi.org/10.1119/1.16248
https://doi.org/10.1119/1.16248
https://doi.org/10.1119/1.16248
https://doi.org/10.1119/1.16248
https://doi.org/10.1002/(SICI)1097-461X(1996)57:1<7::AID-QUA2>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-461X(1996)57:1<7::AID-QUA2>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-461X(1996)57:1<7::AID-QUA2>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1097-461X(1996)57:1<7::AID-QUA2>3.0.CO;2-1
https://doi.org/10.1016/j.cam.2009.02.057
https://doi.org/10.1016/j.cam.2009.02.057
https://doi.org/10.1016/j.cam.2009.02.057
https://doi.org/10.1016/j.cam.2009.02.057
https://doi.org/10.1119/1.11976
https://doi.org/10.1119/1.11976
https://doi.org/10.1119/1.11976
https://doi.org/10.1119/1.11976
https://doi.org/10.1002/andp.19263851302
https://doi.org/10.1002/andp.19263851302
https://doi.org/10.1002/andp.19263851302
https://doi.org/10.1002/andp.19263851302
https://doi.org/10.1007/BF01397605
https://doi.org/10.1007/BF01397605
https://doi.org/10.1007/BF01397605
https://doi.org/10.1007/BF01397605
https://doi.org/10.1098/rspa.1934.0027
https://doi.org/10.1098/rspa.1934.0027
https://doi.org/10.1098/rspa.1934.0027
https://doi.org/10.1098/rspa.1934.0027
https://doi.org/10.1073/pnas.23.2.91
https://doi.org/10.1073/pnas.23.2.91
https://doi.org/10.1073/pnas.23.2.91
https://doi.org/10.1073/pnas.23.2.91
https://doi.org/10.1119/1.1941987
https://doi.org/10.1119/1.1941987
https://doi.org/10.1119/1.1941987
https://doi.org/10.1119/1.1941987
https://doi.org/10.1088/0022-3700/7/9/010
https://doi.org/10.1088/0022-3700/7/9/010
https://doi.org/10.1088/0022-3700/7/9/010
https://doi.org/10.1088/0022-3700/7/9/010
https://doi.org/10.1119/1.12789
https://doi.org/10.1119/1.12789
https://doi.org/10.1119/1.12789
https://doi.org/10.1119/1.12789
https://doi.org/10.1119/1.18733
https://doi.org/10.1119/1.18733
https://doi.org/10.1119/1.18733
https://doi.org/10.1119/1.18733
https://doi.org/10.1119/1.1287351
https://doi.org/10.1119/1.1287351
https://doi.org/10.1119/1.1287351
https://doi.org/10.1119/1.1287351
https://doi.org/10.1088/0953-4075/23/7/005
https://doi.org/10.1088/0953-4075/23/7/005
https://doi.org/10.1088/0953-4075/23/7/005
https://doi.org/10.1088/0953-4075/23/7/005
https://doi.org/10.1016/S0893-9659(03)90106-6
https://doi.org/10.1016/S0893-9659(03)90106-6
https://doi.org/10.1016/S0893-9659(03)90106-6
https://doi.org/10.1016/S0893-9659(03)90106-6
https://doi.org/10.1063/1.2830804
https://doi.org/10.1063/1.2830804
https://doi.org/10.1063/1.2830804
https://doi.org/10.1063/1.2830804

ADKINS, ALAM, LARISON, AND SUN

PHYSICAL REVIEW A 101, 042511 (2020)

[37] S. K. Suslov, J. Phys. B: At. Mol. Opt. Phys. 43, 074006
(2010).

[38] I. Gonzalez, K. T. Kohl, I. Kondrashuk, and V. H. Moll,
Symm. Integr. Geom.: Methods Applicat. 13, 001 (2017).

[39] K. Bockasten, Phys. Rev. A 9, 1087 (1974).

[40] G. W. F. Drake and R. A. Swainson, Phys. Rev. A 42, 1123
(1990).

[41] J. Shertzer, Phys. Rev. A 44, 2832 (1991).

[42] R. A. Swainson and G. W. F. Drake, J. Phys. A: Math. Gen. 24,
79 (1991).

[43] S. Titard and F. J. Yndurdin, Phys. Rev. D 49, 6007 (1994).

[44] W.-C. Qiang and S.-H. Dong, Phys. Scr. 70, 276 (2004).

[45] J. Zatorski, Phys. Rev. A 78, 032103 (2008).

[46] S. Weinberg, Lectures on Quantum Mechanics, 2nd ed.
(Cambridge University Press, Cambridge, 2015).

[47] W. E. Caswell and G. P. Lepage, Phys. Lett. B 167, 437
(1986).

[48] R. J. Hill, G. Lee, G. Paz, and M. P. Solon, Phys. Rev. D 87,
053017 (2013).

[49] Wolfram Research, Inc., Mathematica 11.1 (Wolfram Research,
Inc., Champaign, Illinois, 2017).

[50] G. S. Adkins, B. Akers, M. F. Alam, L. M. Tran, and X. Zhang,
Proc. Sci. FFK2019, 004 (2019).

[51] G. S. Adkins, Bull. Allahabad Math. Soc. 31(Part 2), 215
(2016).

[52] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1972).

[53] I. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series,
and Products (Academic Press, New York, 1980).

[54] A. Galindo and P. Pascual, Quantum Mechanics I (Springer,
Berlin, 1990).

[55] G. B. Arfken and H. J. Weber, Mathematical Methods for
Physicists (Academic Press, San Diego, CA, 2001).

[56] NIST Handbook of Mathematical Functions, edited by F. W. J.
Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark (Cambridge
University Press, Cambridge, 2010).

[57] MATLAB (The MathWorks, Inc., Natick, MA, 2019).

[58] R. L. Liboff, Introductory Quantum Mechanics (Addison-
Wesley, Reading, MA, 1998).

[59] E. Merzbacher, Quantum Mechanics, 2nd ed. (Wiley,
New York, 1961).

[60] B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929).

[61] V. Fock, Z. Phys. 98, 145 (1936).

[62] J. Schwinger, J. Math. Phys. 5, 1606 (1964).

[63] M. Lieber, in Relativistic, Quantum Electrodymanic, and Weak
Interaction Effects in Atoms, edited by W. Johnson, P. Mohr,
and J. Sucher, AIP Conf. Proc. No. 189 (American Institute of
Physics, New York, 1989), pp. 445-459.

[64] G. S. Adkins and J. D. Cammerata, Phys. Rev. A 45, 1314
(1992).

[65] J. SpieB, Math. Computat. 55, 839 (1990).

[66] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathe-
matics: A Foundation for Computer Science, 2nd ed. (Addison-
Wesley, Reading, MA, 1994).

[67] T. Huber and D. Maitre, Comput. Phys. Commun. 175, 122
(2006).

[68] T. Huber and D. Maitre, Comput. Phys. Commun. 178, 755
(2008).

[69] Z.-W. Huang and J. Liu, Comput. Phys. Commun. 184, 1973
(2013).

[70] D. Greynat and J. Sesma, Comput. Phys. Commun. 185, 472
(2014).

042511-30


https://doi.org/10.1088/0953-4075/43/7/074006
https://doi.org/10.1088/0953-4075/43/7/074006
https://doi.org/10.1088/0953-4075/43/7/074006
https://doi.org/10.1088/0953-4075/43/7/074006
https://doi.org/10.1103/PhysRevA.9.1087
https://doi.org/10.1103/PhysRevA.9.1087
https://doi.org/10.1103/PhysRevA.9.1087
https://doi.org/10.1103/PhysRevA.9.1087
https://doi.org/10.1103/PhysRevA.42.1123
https://doi.org/10.1103/PhysRevA.42.1123
https://doi.org/10.1103/PhysRevA.42.1123
https://doi.org/10.1103/PhysRevA.42.1123
https://doi.org/10.1103/PhysRevA.44.2832
https://doi.org/10.1103/PhysRevA.44.2832
https://doi.org/10.1103/PhysRevA.44.2832
https://doi.org/10.1103/PhysRevA.44.2832
https://doi.org/10.1088/0305-4470/24/1/019
https://doi.org/10.1088/0305-4470/24/1/019
https://doi.org/10.1088/0305-4470/24/1/019
https://doi.org/10.1088/0305-4470/24/1/019
https://doi.org/10.1103/PhysRevD.49.6007
https://doi.org/10.1103/PhysRevD.49.6007
https://doi.org/10.1103/PhysRevD.49.6007
https://doi.org/10.1103/PhysRevD.49.6007
https://doi.org/10.1088/0031-8949/70/5/002
https://doi.org/10.1088/0031-8949/70/5/002
https://doi.org/10.1088/0031-8949/70/5/002
https://doi.org/10.1088/0031-8949/70/5/002
https://doi.org/10.1103/PhysRevA.78.032103
https://doi.org/10.1103/PhysRevA.78.032103
https://doi.org/10.1103/PhysRevA.78.032103
https://doi.org/10.1103/PhysRevA.78.032103
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1103/PhysRevD.87.053017
https://doi.org/10.1103/PhysRevD.87.053017
https://doi.org/10.1103/PhysRevD.87.053017
https://doi.org/10.1103/PhysRevD.87.053017
https://doi.org/10.1103/PhysRev.34.109
https://doi.org/10.1103/PhysRev.34.109
https://doi.org/10.1103/PhysRev.34.109
https://doi.org/10.1103/PhysRev.34.109
https://doi.org/10.1007/BF01336904
https://doi.org/10.1007/BF01336904
https://doi.org/10.1007/BF01336904
https://doi.org/10.1007/BF01336904
https://doi.org/10.1063/1.1931195
https://doi.org/10.1063/1.1931195
https://doi.org/10.1063/1.1931195
https://doi.org/10.1063/1.1931195
https://doi.org/10.1103/PhysRevA.45.1314
https://doi.org/10.1103/PhysRevA.45.1314
https://doi.org/10.1103/PhysRevA.45.1314
https://doi.org/10.1103/PhysRevA.45.1314
https://doi.org/10.1090/S0025-5718-1990-1023769-6
https://doi.org/10.1090/S0025-5718-1990-1023769-6
https://doi.org/10.1090/S0025-5718-1990-1023769-6
https://doi.org/10.1090/S0025-5718-1990-1023769-6
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2006.01.007
https://doi.org/10.1016/j.cpc.2007.12.008
https://doi.org/10.1016/j.cpc.2007.12.008
https://doi.org/10.1016/j.cpc.2007.12.008
https://doi.org/10.1016/j.cpc.2007.12.008
https://doi.org/10.1016/j.cpc.2013.03.016
https://doi.org/10.1016/j.cpc.2013.03.016
https://doi.org/10.1016/j.cpc.2013.03.016
https://doi.org/10.1016/j.cpc.2013.03.016
https://doi.org/10.1016/j.cpc.2013.10.001
https://doi.org/10.1016/j.cpc.2013.10.001
https://doi.org/10.1016/j.cpc.2013.10.001
https://doi.org/10.1016/j.cpc.2013.10.001

