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INTEGRATIVE SURVIVAL ANALYSIS WITH UNCERTAIN
EVENT TIMES IN APPLICATION TO A SUICIDE RISK
STUDY

By WENJIE WANGT ROBERT ASELTINE! Kun CHEN®TT AND JUN

University of Connecticut! and University of Connecticut Health Centert

The concept of integrating data from disparate sources to ac-
celerate scientific discovery has generated tremendous excitement in
many fields. The potential benefits from data integration, however,
may be compromised by the uncertainty due to incomplete/imperfect
record linkage. Motivated by a suicide risk study, we propose an ap-
proach for analyzing survival data with uncertain event times arising
from data integration. Specifically, in our problem deaths identified
from the hospital discharge records together with reported suicidal
deaths determined by the Office of Medical Examiner may still not
include all the death events of patients, and the missing deaths can
be recovered from a complete database of death records. Since the
hospital discharge data can only be linked to the death record data
by matching basic patient characteristics, a patient with a censored
death time from the first dataset could be linked to multiple po-
tential event records in the second dataset. We develop an integra-
tive Cox proportional hazards regression, in which the uncertainty in
the matched event times is modeled probabilistically. The estimation
procedure combines the ideas of profile likelihood and the expecta-
tion conditional maximization algorithm (ECM). Simulation studies
demonstrate that under realistic settings of imperfect data linkage,
the proposed method outperforms several competing approaches in-
cluding multiple imputation. A marginal screening analysis using the
proposed integrative Cox model is performed to identify risk fac-
tors associated with death following suicide-related hospitalization
in Connecticut. The identified diagnostics codes are consistent with
existing literature and provide several new insights on suicide risk
prediction and prevention.

1. Introduction. In many fields of science, engineering, and medicine,
combining multiple datasets from disparate sources has made it possible to
tackle important problems at an accelerated rate through integrative statis-
tical learning. These datasets cover overlapped or interrelated measurements
from individuals. In an ideal situation, the multi-source data should pertain
to the same set of fully identified individuals. For example, in a cancer study,
multi-platform genetic data such as mRNA gene expression, DNA methy-
lation, and copy number variation are available from each patient (Zhao

*Corresponding author; kun.chen@uconnledu
Keywords and phrases: Cox model, Data linkage, ECM algorithm, Integrative learning,
Suicide prevention
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2 W. WANG ET AL.

et al., 2015); an integrative analysis then ensures a comprehensive coverage
of genetic perspectives to understand the disease mechanism. In practice,
however, more than often, a unique identifier is not provided or does not
even exist to link multi-source or multi-platform datasets. This gives rise
to the so-called “data/record linkage” problem, i.e., matching records from
different sources that belong to the same person or entity based on available
characteristics of the entity (e.g., Winglee, Valliant and Scheuren, 2005); see
Harron, Goldstein and Dibben (2015) for a recent review. Matching errors
are bound to occur (Bohensky et al., 2010), and the potential benefits from
data integration may be compromised. Therefore, in statistical analysis with
integrated data, it is important to take into account the uncertainty due to
imperfect linkage.

Our research was motivated by the survival analysis of youth and young
adult patients in the State of Connecticut who were at elevated risk of sui-
cide because of having been hospitalized for suicide attempt or intentional
self-injury. Data from diagnosis were available from the Connecticut Hospi-
tal Inpatient Discharge Data (HIDD). Deaths by suicide were determined
from the Office of the Connecticut Medical Examiner (OCME). It has been
revealed, however, that suicidal death is often underreported in key Western
countries (Pritchard and Hansen, 2015; Tgllefsen et al., 2016). The death
records identified from the OCME for this group are incomplete because,
first suicide deaths may be underreported, and second they do not include
deaths due to other causes. Hence, some patients with censored suicide times
might have died. While the missing deaths may possibly be recovered from a
complete mortality database of the state, the HIDD data can only be linked
to the death records by matching basic patient characteristics such as date
of birth, gender, race, and residential zip code, because there is no unique
identifier to join the two datasets even before the data were de-identified
in order to protect patient privacy. Consequently, in the integrated data, a
censored death time before matching could be linked to multiple possible
death times in the mortality data; see details in Section 2.

Figure 1 illustrates the data matching patterns in a general integrated
survival analysis setup similar to that in our suicide risk study. In dataset I,
a positive number of subjects’ event times are observed and known to be
accurate (Case 1). For those subjects whose event times are censored in
dataset I, their event times might be captured in dataset II. After the link-
age process with partial identifiers, the event time of any subject who does
not find a match in dataset II is still censored (Case 2). As such, Case 1 and
Case 2 consist of non-censored and censored subjects, respectively, in a stan-
dard right censored data setting. Challenges are brought by those subjects
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Dataset |

—

Subjects that are censored before matching: ny + n3 + ny

Case 1
Subjects having event times: n4

Matching
Dataset Il
Match found Match not found
Case 3 Case 2
Subjects having at least one matched event: ny + ng Subjects that are censored after matching: ny
Truth included in match Truth not included in match
Case 3a Case 3b
Subjects actually having events: ny Subjects that are actually censored: n3

Fic 1. [llustration of the data matching patterns for studies with event time outcomes.

with one or more matches (Case 3): we are not sure which one, if any, of
the matched event times is the truth. The subjects in Case 3 can be further
classified into two types: Case 3a contains subjects whose true event time is
included in the matched records, and Case 3b contains subjects whose true
event time is not included in the matched records, and, hence, is actually
censored. This classification is unknown and has to be inferred from the
data. The task can be regarded as a missing data problem, in which the
indicators of whether each matched record is true are missing.

Some efforts have been made to similar problems of mis-measured out-
comes or uncertain endpoints. Snapinn (1998) proposed a modification of
the Cox proportional hazard model (Cox, 1972) for nonfatal uncertain end-
points by assigning weights that represent the likelihood of each potential
endpoint being true. The determination of the weights, however, requires an
additional diagnostic score and depends on a subjective estimation of the
relative frequency of true endpoints to false endpoints suggested by the end-
point committee or experts in the therapeutic area. Richardson and Hughes
(2000) proposed an estimation procedure for the product limit estimate of
survival function with no covariate based on the expectation maximization
(EM) algorithm (Dempster, Laird and Rubin, 1977) when a binary diag-
nosis outcome was measured with uncertainty. The method was designed
for discrete-time contexts where the time points of outcome testing were
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4 W. WANG ET AL.

predetermined. Meier, Richardson and Hughes (2003) extended the discrete
proportional hazard model (Kalbfleisch and Prentice, 2002) to mis-measured
outcomes under a setting similar to Richardson and Hughes (2000) but al-
lowed covariate effects. In a more general setting, regression methods have
been developed for linked data where the response and covariates come from
two databases (e.g., Hof and Zwinderman, 2012, 2015; Tancredi and Liseo,
2015). None of the existing works was designed to handle the data integra-
tion problem in a survival analysis like ours.

We propose an integrative Cox proportional hazard model for data with
uncertain event time points. The uncertainty in the integrated survival data
is modeled probabilistically, where the probabilities depend only on the rel-
ative hazards from the Cox model itself. The model reduces to the regular
Cox model when there is no uncertain record. In contrast to the method of
Snapinn (1998), our method does not require any extra diagnostic variable or
prior knowledge on the initial probabilities indicating the true outcomes. The
estimation procedure combines the ideas of profile likelihood and the expec-
tation conditional maximization (ECM) algorithm. The proposed method is
shown to outperform naive approaches in simulation studies under realistic
settings similar to the real data example. We apply the proposed approach to
identifying risk factors associated with patient survival after suicide-related
hospitalization, using data obtained by integrating the HIDD/OCME data
and the mortality record data of the period 2005-2012 in Connecticut. The
identified diagnostic codes are mostly consistent with existing results and
provide several new insights on suicide risk prediction and prevention.

The rest of this paper is organized as follows. The settings for integrated
survival data for the Connecticut suicide risk analysis and the associated
challenges are presented in Section 2. In Section 3, we present the inte-
grative Cox regression modeling framework. The estimation procedure is
developed in Section 4. The simulation studies are presented in Section 5.
A marginal screening analysis using the proposed integrative model for the
Connecticut suicide risk study is reported in Section 6. Section 7 concludes
with a discussion. Implementation of the proposed methods is available in
a package named intsurv for R (R Development Core Team, 2017), which
can be accessed at https://github.com/wenjie2wang/intsurv.

2. Integrated Survival Data of a Patient Group with Elevated
Suicide Risk. Suicide is a serious public health problem in the US. Death
by suicide is increasing among all age groups in the US, with a 24% increase
in suicide rates observed from 1999 to 2014. There is a strong tendency for
suicide attempters to make additional attempts after the initial suicide at-
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INTEGRATIVE SURVIVAL ANALYSIS 5

tempt (Suominen et al., 2004), and suicide attempt is a strong predictor of
suicidal death (Bostwick et al., 2015). Understanding factors associated with
suicide for patients hospitalized due to suicide attempt is critical to a better
allocation of selected prevention efforts among those at elevated risk. An im-
mediate challenge in statistical modeling is that attributing death to suicide
is not easy as suicidal death is often under-reported. For example, Pritchard
and Hansen (2015) showed that undetermined and accidental death was a
main source of the under-reported-suicides across different countries includ-
ing the US; Tollefsen et al. (2016) reported that from re-evaluations of 1800
deaths in Scandinavia, 9% of the natural deaths and accidents were reclassi-
fied as suicides in the Norwegian data, and 21% of the undetermined deaths
were reclassified as suicides in the Swedish data.

We focused on patients of age 15-30 with high suicide risk in Connecticut.
This group of patients consisted of those who were admitted to a hospital in
Connecticut due to suicide attempt or self-inflicted injury, survived, and were
discharged, during fiscal years 2005-2012. The entry time of each patient into
the study is the time of last such discharge. The event time is the time to
death from all causes, including suicide, since the entry time. The cutoff date
of the HIDD is September 30, the end of fiscal year of 2012, which means
that the patients were followed up until this time. The OCME provided
data on suicide deaths of this period, which included a field for reporting
source that allowed accurate identification of the corresponding patients in
HIDD. Since the HIDD and OCME data only captured reported suicide
deaths, we acquired the complete mortality data of the same period from
the Connecticut Department of Public Health, aiming to recover the missing
deaths through record linkage using basic patient characteristics. The HIDD
and OCME data lead to Dataset I while the mortality data is Dataset 1I in
Figure 1. We stress that here we set the terminal event as death from all
causes rather than only due to suicide. This is mainly because the cause of
death is not available in the mortality data so that it can not be recovered
from data integration. On the other hand, without data integration, ignoring
unreported suicidal deaths and deaths due to other causes would jeopardize
the validity of statistical results. Because suicide is a major cause of death
among young suicide attempters, death due to all causes stands as a valid
terminal event to study in our problem.

A total of 7,304 patients were followed up until September 30, 2012.
Among them, 4,981 were white (2,775 female and 2,206 male) and 2,323
were non-white (1,304 female and 1,019 male). Before matching, Case 1
consisted of 133 patients with confirmed suicide death from the OCME, a
censoring rate of 98.2%. For the 7,171 patients with censored event times,
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6 W. WANG ET AL.

we made record linkage with the Connecticut state mortality database by
date of birth, gender, and race. Since the death time had to happen after
the discharge, we excluded any matched event before the discharge date of
each patient during the matching process. After matching, Case 2 consisted
of 6,546 patients with no matched record, while Case 3 consisted of 625 pa-
tients with at least one matched records. In Case 3, 584 patients had one
match, 39 patients had two matches, and two patients had four matches,
it was possible for each patient to be still alive on September 30, 2012, in
which case, the true death time is censored.

The HIDD data contained a large number of records on the characteris-
tics of patients and their previous hospital admissions. The research inter-
est was to identify important diagnostic categories associated with patient
death. The diagnostics were recorded as ICD-9 diagnosis codes, or more
formally ICD-9-CM (International Classification of Diseases, 9th Revision,
Clinical Modification). We grouped the ICD-9 codes by their three leading
characters that define the major diagnosis categories. Suicide attempts were
identified by both ICD-9 external cause of injury codes and other ICD-9
code combinations indicative of suicidal behavior (Patrick et al., 2010; Chen
and Aseltine, 2017). Other ICD-9 codes during the inpatient hospitalization
fell into 167 major diagnosis categories, which led to 167 indicator variables.
Not all 167 indicators, however, can be used as covariates. Among them,
51 ICD-9 indicators had quasi-complete separation (Albert and Anderson,
1984) in our data; that is, there was no death event among those whose
diagnosis included any of these ICD-9 categories. Although they could be
potentially useful in predicting survival and thus merit further investiga-
tion, they cannot be considered as covariates in a Cox regression framework
adopted in this work, since their coefficient estimates would tend to be neg-
ative infinite. To focus on the main idea, we further filtered out another 58
ICD-9 indicators by restricting every cell of the cross table of the diagnosis
indicator and event indicator to be at least three. The remaining 58 ICD-9
codes were used in a marginal screening analysis; see Section 6.

3. Integrative Cox Model. Consider a random sample of n subjects
who fall into the three cases as illustrated in Figure 1. Let Iy, I, and I3
be the indices of the subjects in Case 1, 2, and 3, respectively. For subject
J € I, we observe the event time Vj. For subject j € I>, we observe the
censoring time Cj. For subject j € I3, the true event time V; has s; > 2
possibilities, 0 < Vj1 <--- < Vj4. 1 < Vjs,, but we only observe 0 < V;; <
< Vg1 < C}, where C} is the censoring time such that C; < Vis;- The
reason for Cj < Vj,. is case 3b in Figure 1, where none of the matches is
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INTEGRATIVE SURVIVAL ANALYSIS 7

correct, so the actual death time must be after C;. Regarding subjects in
Case 1-2 as having only s; = 1 possibility with V1 = V}, we use a unified
notation for the observed data from subject j

(Tjks Djszj) o k€ {1, 85},

where x; is a p-dimensional vector of predictors, Tj ;, = min(Vj x, Cj), Aj, =
1(Vjr < Cj), and Cj is the censoring time. For cases 1-2, A; 1 is the event
indicator and the notation is the same as in standard right-censored data.
For Case 3, we have s; > 2; Aj; = --- = Aj,sj_l =1 and Aj,sj = 0 are
indicators denoting that all the matches before C are possible events and
the last possibility is always censored. These notations will be used in the
estimation procedure.

The true event time Vj of subject j, j € {1,...,n}, is assumed to follow
a Cox model with hazard function

(1) hj(t) = ho(t) exp(z] B),

where hg(-) is an unspecified baseline function, and 3 is a vector of unknown
coefficient of the covariate vector x;. Let S;(t) = exp{—Ho(t) exp(ijB)},

where Hy(t) = fg h(s)ds, be the survival function of subject j. The density
function is then f;(t) = h;(t)S;(t). In addition, we assume that the censoring
time C; has an unknown density function g(t), distribution function G(t),
survival function G(t) = 1 — G(t), does not depend on the covariates x;,
and is independent of the event times conditional on the covariates x;. The
conditional independence assumption of the censoring time is justified for
our study because the censoring was administrative.

We propose to model the uncertain records in a probabilistic way by
introducing a vector of truth indicator for each subject. For subject j, let
Z; = (Zj1,...,Zjs;) be a random vector from multinomial distribution
Multi(1, 7r;),

. )
0, otherwise

= {1, Vi = Vi, or (Tjr,Ajj) is the truth
where k € {1,...,8;}, >0, Zjk = 1,0 < mjp < Land >3 mk = L.
As such, for each subject j, j € {1,...,n}, mj = (mj1,...,7;s,) is the
probability vector where 7, = Pr(V; = Vj) (i.e., probability of the k-th
record being true). Clearly, for j € I; U I, we have s; = 1 and m;1 = 1,
i.e., Z;1 = 1 with probability 1. For j € I3, however, the truth indicators
can be regarded as missing. That Z;, =1, k € {1,...,s; — 1}, corresponds
Case 3a, while Zj; ;. = 1 suggests Case 3b.
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8 W. WANG ET AL.

Let Ty = (Tja1,...,Tjs;) and Ay = (Aj1,...,4j,), with realizations
tj = (tj1,...,tjs;) and &6; = (j1,...,0;s;), respectively. Let the set of
all model parameters be 8 = {3, 7, ho(-),g(-)}, where w = (m,..., 7).
Let z; be a realization of Z;. Given the truth indicators, we assume that
the distribution of the fake records is independent of the true record and
degenerates to a point mass at the point of the observed fake records. This
assumption allows us to get away with modeling the intractable distribution
of the fake records (e.g., the fake death times produced from imperfect data
matching in our suicide risk study), so that the likelihood of (T}, A;) given
Zj. only depends on the likelihood of the true record. The complete-data
likelihood of (T}, A, Z;) from subject j turns out to be

Sj

@ 150) = TT {mialfi G0 o008, (0]} "

k=1

The derivation detail is available in Section 1 of the Supplementary Ma-
terials (Wang et al., 2019). All the possible realizations of Z; are z; =
(1,0,0,...,0), (0,1,0,...,0), ..., (0,0,...,0,1). The observed-data likeli-
hood contribution from subject j is then obtained by summing out z; in (2):

) LPO) = Y mualfi(tn) Gl o) S (]
k=1

Let Yobs = {(t1,01,21), ..., (tn,0pn, x,)} denote the observed data of the n
independent subjects. The likelihood for the observed data is then given by
£0(6) = [T1_, L9(0).

Thus far the observed-date likelihood in (3) is derived from a missing data
perspective, but it can also be understood in several different ways. Intu-
itively, for subject j, each of its s; records leads to a likelihood of the event
time and the censoring time, i.e., [fj(tj,k)é(tj,k)](sj’k[g(tj,k)Sj(tj,k)]lféj’k for
ke {1,...,s;}, and the L?(O), the contribution of subject j to LP(8), is
then constructed as a weighted sum with weights 7; 5, satisfying 0 < 7, < 1
and 22321 7jr = 1. From the perspective of finite mixture model, the 7;;’s
are the mixing probabilities, and the above likelihood form of each mixture
component is a direct consequence of our assumption that given the truth
indicator the distribution of the fake records degenerates such that the dis-
tribution of (T}, A;) only depends on the true record. Interestingly, the pro-
posed method is also connected to a trimmed likelihood approach (e.g., Hadi
and Luceno, 1997; Neykov et al., 2007), for which, however, the optimiza-
tion problem is combinatorial in nature and a naive exhaustive search is not
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INTEGRATIVE SURVIVAL ANALYSIS 9

feasible; see Section 4.4 for details. In contrast, the proposed probabilistic
formulation allows us to develop an ECM algorithm to conduct maximum
likelihood estimation. We remark that our approach may allow potential in-
corporation of certain known missing mechanism of the true label, through
imposing more structures on 7; or modeling them using covariates. For in-
stance, in some applications it may be reasonable to assume that the prior
probability of being censored is the same for all the subjects with uncertain
records. In this work, however, we focus on the unconstrained situation.

4. Model Estimation via an ECM Algorithm.

4.1. Estimation Procedure. The ECM algorithm is a variation of the
powerful EM algorithm for dealing with incomplete data (Meng and Rubin,
1993). It replaces the M-step of an EM algorithm with multiple conditional
maximization (CM) steps which are often computationally easier to handle.
We propose a maximum likelihood estimation procedure for the integrative
Cox model following the architecture of the ECM, in which the CM-steps
utilize a profile likelihood similar to the partial likelihood (Cox, 1975).

The complete-data loglikelihood can be decomposed into two parts which

involve two exclusive sets of parameters, respectively. Let Yiis = (21,. .., 2,)
and Y = {Yops, Ymis}- From (2), the complete-data loglikelihood is
(4) O Y)=LB,m ho(-) | Y)+Le(9(-) | Y),
where
(5) B, m ho(-) | Y)
n Sj
= Z Z Zj,k{ log ik + 5j,k log fj (th) +(1-— 5j,k) log Sj (tj,k)}7

j=1k=1

and
n Sj

(6)  Le(9()|Y) = 2k 10,1108 Gt 1) + (1 — d;x) log g(tjk) } -

=1 k=

—_

J
The second part £.(g(-) | Y') only involves the nuisance distribution of the
censoring time.

We compute the conditional expectations of the complete-data loglikeli-
hood (4) given the observed data Yg,s and the set of parameter estimates
0" = {B0) 7)) h(()z)(-),g(i)(-)} at i-th iteration (i = 0,1,...), where 8 is
the initial /starting estimate. Define
wy(00) = P(Z = 1.1, A, | 09) = =) (W)0G0) " (46)507) ",

s
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where h) = 1§ (t;1) exp(a] B7) and S\) = exp{—H" (t; ) exp(a] B))},
égll)g = é(i) (tj%), and g( P =gl )( k). By Bayes rule, we have

wj, k(g(i))
Zk 1 Wy, 1(00)

Plugging (7) into (5) and (6), we obtain the E-step that involves two
separate parts:

(8) EE{ﬂ’“ hO() | nb&g(i)}

—ZZPM {10g(7T; k) + 0j1og fi(tjk) + (1 — 5j,k)10g5(tj,k)}’

(7) pin(0D) :=P(Z; =1|Tj,A;,00) =

7j=1k=1
and
9) EHg(-)!Yobs, o)}
S NICL ){6;1108G(t;0) + (1 80) log g (t) |
7j=1k=1

The separation of the two terms in parameters facilitates the M-step. The
first term (8) can be handled by profiling out the nuisance parameters. Note
that, for fixed B and 7, the ho(¢) maximizing the conditional expectation (8)
is a discrete function that is positive only at possible event times and zero
anywhere else. Let Y; ,(t) = 1(¢jx > t) and N (t) = 2, 1(tjr < t, 656 = 1).
Then the true number of events by time ¢ is N(t) = >27_, S0 N ().
Let dN(t) denote the number of true events at time t. Let ]Vjﬁ(t; 01)) =
Pik(@D)L(t;k < 1,85 = 1) and N(t;00) = 30 377 | Nj4(t;07), which
are the condltlonal expectation of V. k(1) and N(t) given Yo, evaluated at
0( i), respectively. Then dN (¢;00)) = IE {dN ()| Yops, 09} is the jump size of

(t, 6(") at time t. Equation (8) can be rewritten to allow tied event times
as follows:

(10) E4{B, 7, ho(-) | Yops, 8D}

=" | ~hott ZZ £)p;k(8) exp(a] B) + AN (t; 01)) log ho(t)

teT 7=1k=1

n S5
+3 D k(8 [@,MJTB + log Wj,k} ;

j=1k=1
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where T = {t;; | 0, =1, k€ {1,...,s;}, j€{1,...,n}} is the collection
of all observed possible event times.
Given B and 7, the baseline hazard hg only appears in the first term
of (10), and the maximizer is
. N (4)
holt) = GO
> Yl V(8D (09) exp(a] B)
which is nonzero only for those t € 7T, similar to the “Breslow estima-
or” (Breslow, 1974). Further, for fixed 3, it is easy to check that 7r(l+1) =
pj’k(G(i)) maximizes (10) by Lagrange multipliers method. Pluggmg these
estimators back into (10), we get a profile likelihood in terms of 3

E ({83, 7, ho | Yobs, 89}

= Z { AN (t; 60 [1 —log AN (t; 0(1))] } + Z ij,k(e@) logpj,k(e(i))
teT j=1k=1
+ pl(B|6Y),
where
a1 pBleM) =3 / 1(8,t]69) AN, (t:6),
71=1 k=1
1(8,t|6Y) =] B8 — log (Z > Vi ()prn (09) exp(@] ﬂ)) ,
=1 m=1

is the only part involving 8. This profiling approach is similar to the partial
likelihood of Cox (1975) except that the distribution of the censoring time
comes into play through p;’s and dﬁjﬁk’s. The estimator B of 3 is obtained
by maximizing (11). Once 3 has converged, ho(-) and 7jk’s can be updated.

Maximizing the second part (9) involves nonparametric maximum likeli-
hood estimator of the censoring distribution function G(-). We characterize
the censoring time by its hazard function h.(-). Similar to ho(t), the hc(-)
that maximizes (9) is nonzero only at the observed censoring times. By the
assumption we made, the only possible censoring time for each subject is its
last record time. For j 6 {1 .,n}, define C;(t; 01 = Dis; (G(i))l(tﬁsj <
t,05s;, = 0) and C(t; 00 Z LCi(t;00). Let dC(t;0%) be the jump
size of C(t;0") at time t. Then we may rewrite (9) to allow tied censoring
times as follows:

Ele(g(") | Yobs, 0%) =~ 4 dC(t;01)) log he(t) ZZPJ,

teC j=1k=1
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12 W. WANG ET AL.

where C = {t;5, | §;5; = 0,5 € {1,...,n}} is the collection of all observed
censoring times. Maximizing it with respect to h.(t) gives

holt) = dC(t; 81)
‘ S Y k(0O k()

Therefore, for every record time ¢, we have

= - dC(t; 6M)
G(tjr) =expg — he(t) p =expg — .
/ Z Z STt Yoy P (0D)Yi (D)

and g(t; k) = he(t)G(t; k).

We summarize the ECM estimation procedure in Algorithm 1. In our
numerical studies, we stop the algorithm if |3 — 3¢=1]/||8®) + B || <
1076 and ||[7® — 7@V /||7@ 4+ 70D < 1078,

4.2. Initialization. Since the maximum likelihood estimation problem
here is non-convex, it may admit multiple local maxima. Therefore, we rec-
ommend setting multiple initial values of 3 and 7 to help identify a good
solution, as allowed by the available computational resources. In particular,
we propose two simple but pragmatic initialization procedures that work
well even with limited resources.

The first procedure is as follows:

(i) Fit a regular Cox model on all the certain records (Case 1-2) and use
the estimated coefficients to initialize 3; initialize S’jyk with the fitted
survival function evaluated at ¢;; initialize iLj’k with a nearest left
neighbor interpolation of the fitted hazard function (if no left neighbor,
use nearest right neighbor).

(ii) Switching event and censoring for all the certain records (Case 1-2),
estimate the hazard function for censoring by the Nelson-Aalen estima-
tor (without covariates) and obtain the corresponding survival function

estimate; initialize éj’k with the fitted survival function evaluated at

tjk; initialize f;,c(tjyk) with a nearest left neighbor interpolation of the
fitted hazard function (if no left neighbor, use nearest right neighbor).

(iii) Plug wjk = h S ,k‘G]ky where h* ik = (5J kh]k + (1 — 5J k)h (jk)
into (7) as w;x and initialize ; as ‘the resulting pj .
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Algorithm 1 Estimation procedure for mtegratlve Cox model with uncer-
tain event records. (The dependence of 7;’s, N ’s, dN(t), and dC(t) on 6
is dropped for ease of notation.)
initialize 3 and mr;
repeat _
for j =1,2,...,ndo > Update Nj x(t)’s
for k=1,2,...,s; do

Njk(t) = mj .ty n < t,656 = 1);

end for
end for R
for each t € T do > Update ho(+)
dN( )
h ) P (— ho
Z; 1 Zk RRIOLN exp(a:;.r,ﬁ) ;
end for .
for each t € C do > Update he(-)
helt) « ooy CH() 3 hes),
Z] 1 Zk 1 ( )ﬂ—J k s<t
end for
for j=1,2,...,ndo > Update 7;,x’s
for k=1,2,...,s; do
Sjkw—exp{ Ho(t;,) exp(x } G+ exp{—H:(t;1)};
wjk < 50 [ 0S5 kG k) " (956 S5.4] T i —
Dk Wik
end for
end for .
B < arg max pl(3|0) > Update 3
until Convergence
In the above procedure, letting il;k , = 1 in step (iii) leads to a simpler

alternative, which puts more weights to the uncertain event times before
the censoring time and thus may work better when Case 3a is estimated to
have a larger size than Case 3b. This gives a second initialization procedure.
The two initialization procedures were applied in the simulation studies
presented in Section 5 and the results were satisfactory in most scenarios.

4.3. Inference. In an EM or ECM algorithm, generally standard error
(SE) estimates for the parameter estimates cannot be easily produced along
with the estimation procedure. A few approaches have been proposed for
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estimating the asymptotic covariance matrix for parameters of interest, in-
cluding the supplemented EM (SEM) algorithm (Meng and Rubin, 1991),
the profile likelihood approach (Murphy and van der Vaart, 2000), numerical
differentiation methods based on forward difference and Richardson extrap-
olation (Jamshidian and Jennrich, 2000), and their variants with profiling
(Xu, Baines and Wang, 2014). Unfortunately, none of these methods is read-
ily applicable to our case. In our work, we use the bootstrap (Efron, 1979,
1981) method that performs resampling at the subject level for survival data
for making inference. Efron (1981) proposed the SE be estimated as sample
standard deviation of bootstrap estimates, or based on inter-quantile range
and normal approximation. The p-values from the Wald test for testing the
significance of each regression coefficient can then be computed.

4.4. Connection with Trimmed Likelihood. We show that the proposed
method is closely connected to a trimmed likelihood approach, which offers
an intuitive understanding of our method from the robust estimation per-
spective. The trimmed likelihood (Rousseeuw, 1984; Hadi and Luceno, 1997;
Neykov et al., 2007) is a general approach for conducting robust maximum
likelihood estimation in the presence of outliers, in which the observations
are trimmed according to their contributions to the likelihood function. Our
probabilistic modeling approach via ECM provides an efficient way for tar-
geting the computationally infeasible trimmed likelihood estimator.

Recall the observed-data likelihood formulation given in (3). Denote

rik(B) = [f5(t0)G (017 ot ) S (t)] 0%,
where j € {1,...,n}, k€ {1,...,s;}. For ease of notation, here we do not
explicitly write out the dependency of r;;(3) on the observed data and
assume other unknown quantities ho(-) and g(-) have been profiled out. (In
fact, the above can be regarded as a general survival modeling formulation
in this section.) Then the proposed maximum likelihood estimator can be
expressed as

(12) (B,%) e argmaxH <Z Wj,kﬁ‘,k(ﬂ)) .
B o1 \k=1

Here each r; is a probability vector and there is no additional structural
constraint on 7. Now, for each j, define r; ,.1(3) as the largest order statis-

tic of 7;,(8),k = 1,...,s;. Then, a trimmed likelihood estimator can be
constructed as

n
(13) JCRS arg;naxH 7j.(s;)(B)-

J=1
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Intuitively, (13) shows that the optimal 3 is reached when for each patient
with uncertain records, only the most plausible record (as judged by having
the largest log-likelihood value among all the records) contributes to the
overall log-likelihood function and the rest all get trimmed. Interestingly, it
can be verified that the two methods in (12) and (13) share the same set of
global solutions.

LEMMA 4.1.  The B from solving (12) is a solution of (13), and vice
versa.

To see this, note that for each m; = (mj1,...,7;s;), we have ; =
arg max, ZZJ:l Tk erg(B), because given 3 = 3 the problem in (12) is sep-
arable in each set of 7r;. Then the maximum can be attained at 7; o = 1 and

]
ik = 0 for k # k?, where k;-] € argmax 1 x(03). It follows that the maxi-

~

mum value of the objective function in (12) can be written as [T7_; 7 5,)(8),

which, clearly reveals that B is a maximizer of the trimmed likelihood prob-
lem in (13). On the other hand, let 7; be that 7, .0 = 1 and 7 = 0 for
(]

k # k:?, where k? € arg max;, rjﬁk(,[;) with some abuse of notation. Then it
can be seen that {3, 7%} is necessarily a solution of (12).

In practice, however, finding the global solution of the trimmed likelihood
problem is infeasible via a naive exhaustive search approach. For example,
in our suicide risk study, an exhaustive search amounts to fit 2°%4 x 339 x 52
many Cox models. In contrast, our probabilistic modeling approach can be
regarded as an efficient way for targeting the trimmed likelihood estimator

via the ECM algorithm, with carefully constructed initial values.
5. Simulation Study.

5.1. Simulation Settings. Our simulation settings were designed to mimic
the data integration process in the survival analysis of patients admitted to
hospital due to unsuccessful suicide attempts in Connecticut. As shown in
Figure 1, ny is the number of subjects with events observed for certain from
dataset I (Case 1); ng is the number of subjects whose true event time is
included in the matched event times (Case 3a); ng is the number of subjects
whose true event time is censored but for whom some false event times are
matched (Case 3b); ny is the number of subjects whose event times are cen-
sored for certain since no match is found from dataset II (Case 2). As such,
n = Z?Zl n; is the total sample size, and ns + n3 + ny4 is the number of
subjects that are censored before data matching.
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TABLE 1
Summary of different simulation settings. The number of subjects in Group 1 is fized at
n1 + no = 200.
Group 1 Group 2
Scenario CR1 MR CMR ni no ns N4 n OCR

# (Case 1) (Case 3a) (Case 3b) (Case 2)
1 30 70 20 189 11 46 24 270 26
2 30 70 80 161 39 9 21 230 13
3 60 40 20 178 22 84 160 444 55
4 60 40 80 136 64 17 122 339 41
5 90 10 20 167 33 117 1350 1667 88
6 90 10 80 118 82 24 953 1177 83

CR1: Censoring rate before matching (%); MR: Matching rate (%); CMR: Cor-
rect matching rate (%); OCR: Oracle censoring rate (%).

We define a few quantities for designing the experiment: censoring rate
of dataset I before matching (CR1) is CR1 = 1 — nj/n; matching rate
(MR) is MR = (na + n3)/(n2 + ng + n4); correct matching rate (CMR)
CMR = ng/(n2 + n3). MR is the proportion of subjects having matched
records among subjects whose event times are censored from dataset I; CMR
is the proportion of the subjects whose true event time is contained in the
matched event times. In all the settings, we set MR = 1 — CR1, assuming
that the lower the CR1, the more likely that dataset I misses true events
among the censored records. The number of subjects who actually had events
was fixed at n1 + no = 200 to keep an approximately same benchmark
performance from oracle models under different settings.

Three levels of CR1 were considered, i.e., CR1 € {30%, 60%, 90%}, corre-
sponding to moderate, heavy, and severe censoring, respectively. Two levels
of CMR were considered, i.e., CMR € {20%,80%}; the larger the CMR,
the more valuable information can be potentially recovered from dataset II.
Given (CR1,MR,CMR) and with the condition 11 4+ ng = 200, the values
of n;’s, i = 1,...,4 were then completely determined. Table 1 summarizes
the sample size and its decomposition into the four cases, for each of the 6
simulation scenarios determined by the combinations of CR1 and CMR.

For ease of data generation, we divide the subjects into two groups:
Group 1 contains those whose true event times are included in the observed
data, not necessarily certain though (Case 1 and Case 3a); Group 2 con-
tains those whose true event times are not in the observed data (Case 2
and Case 3b). Define oracle censoring rate (OCR), OCR = (nz + n4)/n, the
proportion of Group 2 in the sample, which is unobserved but completely
determined for each setting after the values of n;’s are determined. Our
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INTEGRATIVE SURVIVAL ANALYSIS 17

strategy was to generate true event time and censoring time for all subjects
for a given OCR first, identify subjects in Case 3a from Group 1, identify
subjects in Case 3b from Group 2, and then generate fake event times for
those in Case 3a and Case 3b, respectively.

The true event times were generated from Cox model (1) with a Weibull
baseline hazard function. Four independent covariates were included in the
model; the first three were from the standard normal distribution and the
fourth was from the Bernoulli distribution with rate 0.5. All four true regres-
sion coefficients were set to be 1. The censoring time was generated from the
uniform distribution over (0.5,12.5). The Weibull-shape parameter was set
to be 2, 1, and 0.7 for the moderate, heavy, and severe censoring scenarios in
terms of CR1, respectively. The Weibull-scale parameter was tuned in each
setting so that the OCR determined in that setting is attained on average.

To identify Case 3a subjects from Group 1 and Case 3b subjects from
Group 2, we treated the data uncertainty as a missing-label problem: the
labels are observed for the n; + ng subjects in Cases 1-2, but are missing
for the ny 4+ n3 subjects in Case 3. Two missing mechanisms were considered
for the labels: missing completely at random (MCAR) and missing not at
random (MNAR). In the MCAR mechanism, the probability of a label be-
ing missing was completely random, regardless of the underlying true event
time. In the MNAR mechanism, the probability of a label being missing
was proportional to the true event time; the longer the true event time, the
more likely a subject was identified as Case 3a from Group 1 or Case 3b from
Group 2. Such decomposition ensures that the sample size decomposition of
each simulated data closely matches its corresponding setting in Table 1.

The last step was to generate fake event times for subjects in Case 3.
For subjects in Case 3a, their censoring times were observed and true event
times were included in the matches. The number of additional fake event
times was set to be zero or one with probability 0.9 and 0.1, respectively. In
other words, the possible records for each of them consisted of one observed
censoring time, one true event time, and one additional fake event time with
probability 0.1. For subjects in Case 3b, their true event times were censored
and the number of fake event times was set to be one or two with probabil-
ity 0.9 and 0.1, respectively. In other words, each of them had one observed
censoring time, one or two fake event times with probability 0.9 or 0.1, re-
spectively. Each fake event time was generated from Cox model (1) with
one extra covariate in addition to the existing four covariates, conditional
on that the fake event time was less than the censoring time (Nadarajah and
Kotz, 2006). This extra covariate took value —1 or 1 with equal probability,
and its coefficient was set to be 3.
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18 W. WANG ET AL.

5.2. Competing Methods and Evaluation Metrics. Three competing meth-
ods were considered, multiple imputation (MI) and two naive approaches.
MI was originally introduced by Rubin (1987) for non-response in surveys,
which imputes every missing value multiple times with draws from certain
distribution and summarized the results from the multiple versions of the
complete data. In our setup, the missing values are the truth indicators.
Given a simulated dataset, we imputed 200 times the truth indicators for
the subjects in Case 3 and took the average of the coefficient estimates from
fitting the regular Cox model with each imputed data as the final estimates.
Specifically, in each imputation, for each subject the truth indicator vec-
tor was generated from a multinomial distribution, where the probability of
censoring was set to be proportional to ng/(n1+n4), and the remaining prob-
ability was equally split among the uncertain event records. The two naive
approaches were based on the regular Cox model as well. The first (denoted
by C.Cox) fits the regular Cox model to dataset I, which treats all subjects
in Case 3 as censored, completely ignoring integration with dataset II. C.Cox
may give biased estimator for not considering the events missed by dataset I.
The second approach (denoted by U.Cox) excludes those subjects with mul-
tiple event times after matching with dataset II (Case 3) and fits the regular
Cox model with the remaining subjects with unique records (Case 1 and
Case 2). The data used by U.Cox is a subset of that used by C.Cox. By re-
moving subjects in dataset I whose event times were not uniquely recorded,
U.Cox may give less efficient but unbiased estimation under MCAR.

The proposed integrative Cox model is denoted by I.Cox. We also included
two oracle procedures where the true event indicators are known a priori:
the oracle Cox model (O.Cox) and the oracle Weibull model (O.Weibull).
They give the best achievable performances, infeasible in practice but can
be used as references in comparison.

We measured the estimation performance by the fo-norm of (,é —Bo), i.e.,
||B—BOH = [(,B—BO)T(,@—BO)]I/Z, where 3 is the underlying true coefficient
vector, and B is its estimator. In addition, we estimated the baseline survival
functions from the purposed I.Cox model and two naive Cox methods, and
compared them with the true parametric curve over a tense time grid from
0 to 12 with step size of 0.1. For each subject with multiple records, the
estimated probabilities 7; from the proposed I.Cox model can be used to
identify the true record. We used the Bayes rule to select the record with
the largest estimated probability; by comparing to the underlying truth,
we computed the correct identification rate of the true records among the
subjects having uncertain records. The experiment was replicated 1,000 time
under each setting and the results were then averaged.
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TABLE 2

the standard deviation given in parenthesis).

# O.Weibull  0O.Cox 1.Cox U.Cox C.Cox MI
MCAR
1 18.0 (7.3) 20.7 (8.6) 22.4 (9.7) 24.9 (9.9) 81.1(22.0) 81.0 (9.9)
2 175 (7.7) 20.8 (8.9) 22.1 (9.6) 23.4 (10.0) 139.7 (14.7) 80.8 (11.0)
3 185 (7.9) 19.7 (8.7) 23.6 (10.2) 223 (9.2) 559 (17.2) 81.2 (9.9)
4 186 (7.6) 20.3 (8.7) 22.8 (10.1) 26.0 (11.4) 107.7 (15.9) 94.2 (12.0)
5 18.0(8.0) 18.2(8.1) 20.6 (9.0) 20.2 (9.0) 30.5(12.3) 39.5 (11.7)
6 18.4(8.2) 18.8(8.3) 222 (9.8) 30.1 (12.6) 51.8 (12.3) 51.4 (11.3)
MNAR
1 18.0 (7.3) 20.7 (8.6) 22.4 (9.4) 27.6 (10.6) 48.4 (21.0) 81.5 (10.0)
2 175 (7.7) 20.8 (8.9) 224 (9.7) 24.4 (10.4) 79.9 (20.9) 55.2 (11.5)
3 185 (7.9) 19.7 (8.7) 225 (10.2) 229 (9.7) 27.1 (11.8) 86.4 (8.9)
4 186 (7.6) 20.3 (8.7) 23.2(10.2) 24.2 (10.7) 38.3 (15.0) 51.6 (12.0)
5 18.0(8.0) 18.2(8.1) 21.1 (9.2) 20.7 (9.3) 21.1 (9.0) 40.2 (9.3)
6 184 (8.2) 18.8 (8.3) 23.5(10.3) 30.2 (13.0) 27.3 (11.3) 30.1 (10.8)

19

Comparison on parameter estimation performance through mean of 100 x ||,3 — Bol| (with

MCAR: Missing completely at random; MNAR: Missing not at random.

5.3. Simulation Results. Table 2 summarizes the simulation results on
parameter estimation. As expected, the two practically-infeasible oracle ap-
proaches perform the best, which provide benchmarks for comparison. The
I.Cox method and the U.Cox method appear to have a clear advantage over
the C.Cox method and the MI method under most settings. The disadvan-
tage of the C.Cox method is expected; subjects in Case 3a are mistakenly
treated as censored, which increases the variance in estimation due to less
events and introduces bias due to the mistakenly treated censoring. Its per-
formance is even worse in MCAR settings, because in the MNAR setting,
longer survival time is more likely to be uncertain such that the true event
time is more likely to be close to the censoring time than under MCAR. The
MI method performs worse than the C.Cox method in the setting with lower
CMR under MNAR, unlike in other settings where they are less different,
because the imputation does not account for the informative missingness
and lower CMR means higher noise in data integration.

Between 1.Cox and U.Cox, it appears that the [.Cox method either sub-
stantially outperforms U.Cox, or has comparable performance comparing to
U.Cox. Specifically, when CR1 is moderate (30%) and MR is high (70%),
I.Cox outperforms U.Cox, with more advantage in the MNAR case than in
the MCAR case. When CR1 is heavy (60%) with 40% MR, I.Cox outper-
forms U.Cox in the cases where CMR is 80% and in the MNAR case with
20% CMR; otherwise, it has a close but slightly worse performance than
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CR1=30% CR1=30% CR1=60%
CMR = 20% CMR = 80% CMR = 20%
1.00 1.009 1.0
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0.004 ———— | 0.001 S—— e

CR1=60% CR1=90% CR1=90%
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Estimated baseline survival function
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0.4+

0 3 6 9 12 0 3 é 9 12 0 3 6 9 12
Time
Method — Truth  ---- I.Cox U.Cox C.Cox

Fic 2. Mean of the estimated baseline survival function in various simulation settings
when true record labels are missing at random (MCAR).

U.Cox. Lastly, under severe CR1 (90%) and low MR (10%), I.Cox outper-
forms U.Cox when CMR is 80% and has a slightly worse performance when
CMR decreased to 20%. It is not surprising that I.Cox does not always out-
performs U.Cox, because the potential gain from data integration depends
on the quality of both the original data (dataset I) and the matching data
(dataset II). Indeed, I.Cox did not outperform U.Cox in scenario 3 and sce-
nario 5 when CR1 is high and CMR is very low. In general, data integration
is beneficial when the original data misses a substantial amount of true event
records and thus may have inadequate or biased information for model esti-
mation, and/or when the correct information that can be recovered by the
matching data “exceeds” the accompanying noise/false information.

Figure 2 presents a visual comparison on the estimation of the baseline
survival function from [.Cox and two naive Cox methods in different set-
tings under MCAR. The true baseline survival curves are included. The
1.Cox clearly performs the best overall, and in most cases the mean of its
baseline survival function estimates over 1,000 replications is close to the



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

INTEGRATIVE SURVIVAL ANALYSIS 21

TABLE 3
Mean correct identification rates in percentage for subjects in Case 3 under different
simulation settings.

Scenario
1 2 3 4 5 6

MCAR 85.7 895 831 838 804 80.0
MNAR 875 88.6 90.5 855 942 86.0

corresponding true curve. In contrast, both U.Cox and C.Cox, especially
the latter, may lead to substantial overestimation of the survival probabil-
ities. We have also checked the variation of the estimated survival curves
from these methods and [.Cox performs satisfactorily. See Section 2 of the
Supplementary Materials (Wang et al., 2019) for an example plot of mean
survival curves with pointwise 95% empirical confidence intervals and similar
results under MNAR.

Table 3 reports the mean correct identification rate for all the subjects
with uncertain records in Case 3 from the survival analysis with the I.Cox
method. The rate ranges from 80.0% to 94.2%, which means that the true
records can be correctly identifies by the I.Cox model for at least 80% of
subjects having uncertain records in all cases. We remark that in practice
the main focus of such integrative analysis is still on the estimation and
inference of 3; one should be cautious on using the estimated probabilities
to identify the true records, as the empirical evidence from our simulation
study is certainly limited.

To check the performance of I1.Cox in making inferences about the un-
known covariate coefficients in comparison with U.Cox and O.Cox, we used
bootstrap with 1,000 bootstrap samples. The confidence intervals based on
sample standard deviation and inter-quantile produced estimates in good
agreement, and we report those based on sample standard deviation. The
results of point estimate, SE, and empirical coverage percentage for the coef-
ficient of one continuous covariate and the binary covariate are summarized
in Table 4. The bootstrap SE estimates appear to be close to the empirical
SEs of the coefficient estimates in most of the settings. The coverage rate
of 95% confidence intervals constructed from the SE estimates and normal
approximation is close to the nominal level in most cases. The worst cases
are for 81 under MNAR when the censoring of dataset I is severe.

We have explored the asymptotic behaviors of the I.Cox estimator empir-
ically. Following the original sample size decomposition given in Table 1, we
increase the total sample size to 2, 4, 8, and 16 times under each original
setting. The results show that the mean of |3 — Bo|| decreases as the sample
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TABLE 4

intervals for two covariate coefficients.

# Method B SE(1) ESE(f1) CP(B1) f1 SE(Ba) ESE(B1) CP(Ba)
MCAR
1 I.Cox 1.02  0.088 0.089 94.8 1.02 0.171 0.170 94.9
U.Cox 094 0.086 0.088 87.0 0.93 0.162 0.168 92.2
0.Cox 1.01 0.082 0.085 94.6 1.01 0.156 0.155 94.8
2 IL.Cox 1.02  0.088 0.087 949 1.02 0.166 0.170 94.3
U.Cox 1.01 0.095 0.094 95.7 1.01 0.176 0.184 94.0
0.Cox 1.01 0.084 0.084 95.9 1.01 0.157 0.161 94.7
3 LCox 1.03  0.089 0.092 93.0 1.04 0.177 0.180 93.2
U.Cox 0.96 0.086 0.087 91.4 0.96 0.164 0.163 94.1
0.Cox 1.01 0.081 0.085 93.7 1.01 0.154 0.154 95.2
4 I.Cox 1.03 0.086 0.088 94.1 1.02 0.170 0.172 95.1
U.Cox 1.05 0.099 0.096 94.5 1.04 0.192 0.189 95.2
0.Cox 1.01 0.081 0.081 95.1 1.00  0.157 0.157 95.5
5 I.Cox 1.03  0.082 0.083 92.6 1.01 0.167 0.167 94.7
U.Cox 1.02 0.084 0.085 94.3 1.03 0.164 0.161 95.3
0.Cox 1.01 0.077 0.078 94.9 1.01  0.150 0.149 95.4
6 I.Cox 1.04 0.085 0.088 91.7 1.04 0.163 0.170 93.4
U.Cox 1.09 0.106 0.105 87.7 1.10 0.199 0.196 93.0
0.Cox 1.00 0.080 0.078 95.5 1.01 0.152 0.154 94.9
MNAR
1 I.Cox 1.02  0.088 0.088 95.6 1.02 0.172 0.168 95.6
U.Cox 091 0.086 0.086 80.5 0.91  0.162 0.165 90.3
0.Cox 1.01 0.082 0.085 94.6 1.01 0.156 0.155 94.8
2 IL.Cox 1.02  0.088 0.089 94.1 1.02  0.167 0.173 94.7
U.Cox 0.96 0.092 0.095 92.3 0.95 0.175 0.183 92.7
0.Cox 1.01 0.084 0.084 95.9 1.01 0.157 0.161 94.7
3 LCox 1.04 0.088 0.090 92.4 1.04 0.170 0.169 94.2
U.Cox 0.95 0.087 0.090 89.2 0.95 0.164 0.163 93.3
0.Cox 1.01 0.081 0.085 93.7 1.01 0.154 0.154 95.2
4 I1.Cox 1.03  0.087 0.089 941 1.02 0.170 0.173 95.0
U.Cox 1.00 0.094 0.095 95.6 1.00 0.192 0.188 95.3
0.Cox 1.01 0.081 0.081 95.1 1.00  0.157 0.157 95.5
5 I.Cox 1.04 0.082 0.083 91.8 1.04 0.161 0.162 95.1
U.Cox 1.03 0.084 0.085 93.3 1.04 0.165 0.165 94.8
0.Cox 1.01 0.077 0.078 949 1.01 0.150 0.149 95.4
6 I.Cox 1.06 0.086 0.087 89.9 1.06 0.164 0.175 93.3
U.Cox 1.08 0.103 0.104 88.2 1.11 0.202 0.209 92.1
0.Cox 1.00 0.080 0.078 95.5 1.01  0.152 0.154 94.9

SE: Standard error estimate; ESE: Empirical standard error from point estimates;
CP: Coverage probability (%) of 95% confidence intervals.
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size increases, and the rate of convergence is approximately the square root
of the sample size. We have also done simulation studies with fixed total
sample size and the results are similar to what we have presented. More de-
tails are available in Section 3 and 4 of the Supplementary Materials (Wang
et al., 2019).

6. Survival Analysis of the Connecticut Data. We conducted a
marginal screening analysis using I.Cox over the aforementioned 58 indica-
tors of ICD-9 categories, with three demographic variables, age, male, (ver-
sus female) and White (versus non-White) always included in the model.
That is, each ICD-9 indicator was included as the fourth variable in the
screening process. The inference results were obtained based on 1,000 boot-
strap samples, following the procedure detailed in Section 4.3. After the p-
values of all the ICD-9 indicators were gathered from the marginal models,
the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) was
applied to control the false discovery rate (FDR) at 5%. For comparison,
we repeated the same analysis using C.Cox, which ignored matching, and
U.Cox, which discarded all the uncertain events from matching.

The coefficient estimates for male and White from all the marginal models
were significant at 5% level. Males were at significantly higher risk of death
than females, and whites were at significantly higher risk than non-whites.
These findings of disparity in gender and race agree well with existing studies
(e.g., Kung, Pearson and Wei, 2005; Pena et al., 2012). The age effect was less
significant compared with gender and race. Most estimates for the coefficient
of age from the marginal models were significantly greater than zero at 10%
level, providing mild evidence that the survival time after suicide attempt
tends to decrease with age for the patients in the study (age 15-30).

The screening analysis of ICD-9 codes revealed interesting and insightful
results. By controlling the FDR at 5% for the results from each method,
neither C.Cox nor U.Cox identified any significant ICD-9 category; in con-
trast, [.Cox identified four ICD-9 categories to be significantly associated
with the risk of death after unsuccessful suicide attempt. The p-values for
coefficient estimates of the four ICD-9 indicators are reported in the upper
part of Table 5. The coefficient for ICD-9 code 292 was significantly positive,
indicating that patients with drug-induced mental disorder had significantly
higher risk than others after controlling for age, gender, and race. Patients
with borderline personality disorders (ICD-9 code 301) were also found to
have a significantly higher risk of death. These results are supported by
several studies, e.g., Harris and Barraclough (1997), Lieb et al. (2004) and
McGirr et al. (2007), among others. The I.Cox model also suggests that pa-



10

11

12

13

24 W. WANG ET AL.

TABLE 5
Selected ICD-9 categories by I.Cox and their brief descriptions. Columns 2—j reports
p-values (unadjusted) of coefficient estimates from I.Coz, C.Cox and U.Coz method,
respectively, where the significance is indicated by asterisk and the sign of estimates is
given in subscripts.

ICD-9 I.Cox C.Cox U.Cox Description

Significant ICD-9 codes under 5% FDR, control
786  0.000% 0.0044+ 0.0021 Dyspnea, respiratory abnormalities, and chest pain
V45 0.000% 0.0884 0.045; Postsurgical acquired absence of organ & other post-
procedural status
292 0.001% 0.0074+ 0.0074+ Drug-induced mental disorders
301 0.002% 0.0694+ 0.0664 Borderline personality disorder

Additional ICD-9 codes with individual p-value under 5%

780 0.0107 0.1784+ 0.1694 Alteration of consciousness, convulsions, and sleep
disturbances

299  0.019% 0.050% 0.035% Pervasive developmental disorders

298  0.036% 0.0754 0.044% Other non-organic psychoses

304 0.041% 0.014% 0.011% Drug dependence (such as opioid type, cocaine, or
cannabis)

966 0.041%7 0.1404 0.1294 Poisoning by anticonvulsants drugs

E98 0.043% 0.046° 0.065_ Poisoning by analgesics, tranquilizers with undeter-
mined reason

272 0.046% 0.1394 0.0944 Disorders of lipoid metabolism

070  0.053; 0.008% 0.008% Chronic viral hepatitis C

V65 0.1434 0.0277 0.047% Counseling on substance use and abuse

874 0.3384+ 0.029% 0.063+ Open wound of neck without mention of complication

969 0.421_ 0.027% 0.024% Poisoning by antidepressants, antipsychotics, and
neuroleptics

I.Cox: Integrative Cox model; C.Cox: Regular Cox model fitted to dataset I before
matching; U.Cox: Regular Cox model fitted to data with matched records removed.

tients with dyspnea respiratory abnormalities and chest pain (ICD-9 code
786) had significantly higher risk. In the literature, chest pain was reported
to have positive association between psychiatric illness and panic disorder
by Katon et al. (1988) and Fleet et al. (1996), respectively, which provided a
possible explanation. Patients having postsurgical acquired absence of organ
and other postprocedural status (ICD-9 code V45) were also under higher
risk of death, which may or may not be directly related to suicide.

We also checked the screening results without FDR control. The ad-
ditional ICD-9 codes with unadjusted p-values under 5% are reported in
the lower part of Table 5. For example, the effect of disorders of lipoid
metabolism indicated by ICD-9 code 272 was identified by I.Cox. The posi-
tive association between suicidal behavior and lipid metabolism in depressive
disorders was reported by Koponen et al. (2015). Overall, various mental
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TABLE 6
Coefficient estimates from joint model including significant ICD-9 categories from
marginal screening by I. Cox with FDR controlled at 5%.

Predictor B exp(B) SE(B) z  Pr(>|z|)
Demographics

Age 0.12 1.22 0.11 1.11 0.269
Male 1.81 6.11 0.32  5.63 0.000
White 2.18 8.86 0.38 5.78 0.000
I1CD-9 Code

786 1.54 4.67 0.36  4.23 0.000
V45 1.68 5.34 0.57  2.95 0.003
292 0.69 1.98 0.31 221 0.027
301 0.60 1.82 0.24 2.48 0.013

disorders, psychological issues, drug dependence and abuse appear to be as-
sociated with shortened survival time after unsuccessful suicide attempts.
Therefore, by taking the data uncertainty into consideration and utilizing
information from the second data source, the proposed I.Cox method reveals
much more insightful results than the naive approaches.

We then turned our attention to joint modeling, to check the estima-
tion and predictive power of the joint model with all the identified ICD-9
categories. Table 6 summarizes the refitted I.Cox model with the three de-
mographic variables (age, gender, and race) and the four significant ICD-9
indicators identified from marginal screening. The coefficient estimates of
male, White and four ICD-9 indicators were all significantly positive at 5%
level, consistent with the results from screening, while coefficient estimate of
age was insignificant. Because neither of the naive Cox methods suggested
any significant ICD-9 category with FDR controlled at 5% from marginal
screening, their joint models only included the three demographic variables.
We checked that the coefficient estimates were all significant at 5%.

For the three joint models resulting from I.Cox and two naive meth-
ods, we performed an out-of-sample comparison analysis on their prediction
performance. (We excluded age in the joint model of I.Cox since it was in-
significant.) Specifically, we randomly split the patients into a training set
and a test set. Patients having events and patients having censoring times
were put in different strata so that the training set and the testing set had
about the same censoring rate. For U.Cox, patients in Case 1 and Case 2
were randomly selected into training set with probability 0.8; for C.Cox,
patients having certain event times (Case 1) and the remaining patients
having censoring times in dataset I were randomly selected into the training
set, separately, with probability 0.8; for I.Cox, patients in Case 1, Case 2,
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Fic 3. Out-of-sample comparison of the prediction performance on survival outcomes of
1.Cox and the naive methods using random splitting.

and Case 3 were randomly selected into the training set, respectively, with
probability 0.8, 0.8, and 1. As such, for each method, the testing set only
consisted of patients whose records are certain (Case 1 and Case 2), which
makes an objective evaluation of fitted models possible. In each split, a fitted
model using the training set was used to predict the survival outcomes of
patients in the testing set and classify them to a high risk group and a low
risk group based on their risk scores. By comparing the group classification
to the actual outcomes, we computed the receiver-operator characteristics
(ROC) curve of the survival outcomes. The random split procedure was
repeated 1,000 times and the results were then averaged.

Figure 3 presents the ROC curves (on the left panel), and the curves (on
the right panel) showing the relationship between the size of the high risk
group and the proportion of subjects having observed suicide death that
were captured in the high risk group. Here the ROC curves are based on
binary classification using the predicted risk scores; this is motivated by the
clinical setting of a suicide prevention program, where a group of patients
with high risk of suicidal death is identified and subsequently monitored for
suicide prevention. We remark that one may also use a time-dependent ROC
analysis (Heagerty and Zheng, 2005) to quantify the prediction performance
of a survival model. On average, the area under curve (AUC) was 0.825 for
1.Cox, 0.761 for C.Cox, and 0.757 for U.Cox. Therefore, the I.Cox model
provided a better prediction on survival outcomes than both of the naive
methods overall. The results on the right panel converted the ROC curves
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based on the censoring rate and showed that in order to capture 60% of
the patients having observed events, the size of the high risk group needed
was 10.6% on average for I.Cox, much less than the sizes 23.8% and 24.3%
for C.Cox and U.Cox, respectively. Translating to the real clinical setting,
this means that in order to capture 60% of the patients that would die,
using I.Cox allows us to achieve this by monitoring only 10.6% of all the
patients, while using the native Cox methods will require 25%, a much larger
population.

7. Discussion. We studied a general survival modeling setup with inte-
grated data, in which the survival outcome, i.e., the time to certain event of
interest, needed to be captured from multiple datasets through record link-
age. Such problems are especially prevalent in medical research and health-
care analytics. Some commonly encountered events of interest include occur-
rence of disease, hospital readmission after discharge, and death following
certain diagnostics or treatment. However, patients’ medical records are of-
ten scattered among many healthcare providers and government agencies.
These datasets are generally de-identified to protect patient privacy, but
due to limitations in the current healthcare system, the de-identification of
each dataset is often done separately before data integration, causing the
aforementioned record linkage issues. To the best of our knowledge, build-
ing healthcare information exchange system to connect healthcare providers
is still largely an ongoing effort. Moreover, analyzing uncertain survival or
time-to-event data is challenging due to censoring. When the censoring rate
is high, e.g., the event is rare, the information on event times can be quite
limited and the results could become sensitive to inaccuracies and anomalies
in event times. Therefore, properly handling the uncertainty in event times
holds the key to ensure the validity of statistical inference.

Data integration with partial identifier is a double-edged sword in inte-
grative statistical analysis. As a powerful tool to combine information from
multiple sources, integrative analysis with probabilistic uncertainty model-
ing needs to be applied with care depending on the degree of imperfectness
or noise. Imperfect data integration introduces noise and sometimes errors
into the integrated data, the consequence of which could outweigh the po-
tential gain in integrative data analysis. Although it is difficult to provide
a specific guideline on when to use integrative analysis, we suggest that
practitioner always perform out-of-sample analysis to evaluate and compare
different methods whenever possible. To ensure the evaluation is objective,
only the data without uncertainty should be used in testing.

Our case study has an additional distinguishing feature in that it is the
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outcome variable (survival time) that is obtained from data integration. This
is in contrast to other integrative data analysis settings where usually pre-
dictors or features are obtained from multiple data sources. In our applica-
tion, we obtained insightful results on potential risk factors associated with
death following suicide attempt, which otherwise would have been missed
by the naive approaches. Compared with the method of Snapinn (1998), our
method is more attractive in that it does not require additional diagnostic
variables or prior knowledge on the characterization of the truth indicators.

Several directions are worth pursuing for future research. The standard
errors of the estimates cannot be easily produced along with the proposed
estimation procedure. Although bootstrap is shown to perform well, the
method would be more attractive in practice if a less computationally inten-
sive inference approach were available. Under realistic settings of imperfect
data linkage, the proposed method is shown to outperform several naive ap-
proaches. A natural theoretical question of interest is to quantify how the
potential gain from data integration is associated with the quality of the
original data and the match data. Our model framework is flexible and can
be further extended to other survival models such as parametric survival
models and competing risk models. Other extensions include the modeling
of censoring times with covariates and the incorporation of certain known
missing mechanism of the label of true endpoint. In our application, we
adopted a marginal screening approach to identify important predictors; it
would be interesting to extend the proposed method to conduct variable
selection with high-dimensional predictors through regularized estimation.
The rareness of suicide attempt brings many challenges in its modeling and
prediction, including the occurrence of quasi-complete separation; these is-
sues will need to be carefully studied in the future.

It is promising to further explore the trimmed likelihood formulation to
better understand the robustness of the proposed approach and design better
algorithm to target its global optimal solution. This formulation also sheds
light on the consistency of the resulting estimator of the proposed method
through the perspective of robust estimation and outlier detection. It shows
that at least two conditions, regarding the proportion and magnitude of the
“outliers’” — fake records — are required. First, the proportion of patients
with uncertain records should be under control, e.g., (n2 + n3)/n — c for
some 0 < ¢ < 1 as n — oco. Second, the fake records have to be distinguish-
able from the true one; e.g., for patient j, we need k* = arg max;, r;,(8*) for
n sufficiently large, where the k*th record is the truth and 3* denotes the
true coefficient vector. A thorough investigation of the theoretical properties
of the proposed method along this direction is of interest.
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SUPPLEMENTARY MATERIAL

Supplementary Materials: Integrative Survival Analysis with
Uncertain Event Times in Application to a Suicide Risk Study
(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide detailed
derivations of the likelihood formulation, additional supporting tables/figures
from simulation studies, and discussions on the properties of the proposed
method.
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