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The concept of integrating data from disparate sources to ac-7

celerate scientific discovery has generated tremendous excitement in8

many fields. The potential benefits from data integration, however,9

may be compromised by the uncertainty due to incomplete/imperfect10

record linkage. Motivated by a suicide risk study, we propose an ap-11

proach for analyzing survival data with uncertain event times arising12

from data integration. Specifically, in our problem deaths identified13

from the hospital discharge records together with reported suicidal14

deaths determined by the Office of Medical Examiner may still not15

include all the death events of patients, and the missing deaths can16

be recovered from a complete database of death records. Since the17

hospital discharge data can only be linked to the death record data18

by matching basic patient characteristics, a patient with a censored19

death time from the first dataset could be linked to multiple po-20

tential event records in the second dataset. We develop an integra-21

tive Cox proportional hazards regression, in which the uncertainty in22

the matched event times is modeled probabilistically. The estimation23

procedure combines the ideas of profile likelihood and the expecta-24

tion conditional maximization algorithm (ECM). Simulation studies25

demonstrate that under realistic settings of imperfect data linkage,26

the proposed method outperforms several competing approaches in-27

cluding multiple imputation. A marginal screening analysis using the28

proposed integrative Cox model is performed to identify risk fac-29

tors associated with death following suicide-related hospitalization30

in Connecticut. The identified diagnostics codes are consistent with31

existing literature and provide several new insights on suicide risk32

prediction and prevention.33

1. Introduction. In many fields of science, engineering, and medicine,34

combining multiple datasets from disparate sources has made it possible to35

tackle important problems at an accelerated rate through integrative statis-36

tical learning. These datasets cover overlapped or interrelated measurements37

from individuals. In an ideal situation, the multi-source data should pertain38

to the same set of fully identified individuals. For example, in a cancer study,39

multi-platform genetic data such as mRNA gene expression, DNA methy-40

lation, and copy number variation are available from each patient (Zhao41
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et al., 2015); an integrative analysis then ensures a comprehensive coverage1

of genetic perspectives to understand the disease mechanism. In practice,2

however, more than often, a unique identifier is not provided or does not3

even exist to link multi-source or multi-platform datasets. This gives rise4

to the so-called “data/record linkage” problem, i.e., matching records from5

different sources that belong to the same person or entity based on available6

characteristics of the entity (e.g., Winglee, Valliant and Scheuren, 2005); see7

Harron, Goldstein and Dibben (2015) for a recent review. Matching errors8

are bound to occur (Bohensky et al., 2010), and the potential benefits from9

data integration may be compromised. Therefore, in statistical analysis with10

integrated data, it is important to take into account the uncertainty due to11

imperfect linkage.12

Our research was motivated by the survival analysis of youth and young13

adult patients in the State of Connecticut who were at elevated risk of sui-14

cide because of having been hospitalized for suicide attempt or intentional15

self-injury. Data from diagnosis were available from the Connecticut Hospi-16

tal Inpatient Discharge Data (HIDD). Deaths by suicide were determined17

from the Office of the Connecticut Medical Examiner (OCME). It has been18

revealed, however, that suicidal death is often underreported in key Western19

countries (Pritchard and Hansen, 2015; Tøllefsen et al., 2016). The death20

records identified from the OCME for this group are incomplete because,21

first suicide deaths may be underreported, and second they do not include22

deaths due to other causes. Hence, some patients with censored suicide times23

might have died. While the missing deaths may possibly be recovered from a24

complete mortality database of the state, the HIDD data can only be linked25

to the death records by matching basic patient characteristics such as date26

of birth, gender, race, and residential zip code, because there is no unique27

identifier to join the two datasets even before the data were de-identified28

in order to protect patient privacy. Consequently, in the integrated data, a29

censored death time before matching could be linked to multiple possible30

death times in the mortality data; see details in Section 2.31

Figure 1 illustrates the data matching patterns in a general integrated32

survival analysis setup similar to that in our suicide risk study. In dataset I,33

a positive number of subjects’ event times are observed and known to be34

accurate (Case 1). For those subjects whose event times are censored in35

dataset I, their event times might be captured in dataset II. After the link-36

age process with partial identifiers, the event time of any subject who does37

not find a match in dataset II is still censored (Case 2). As such, Case 1 and38

Case 2 consist of non-censored and censored subjects, respectively, in a stan-39

dard right censored data setting. Challenges are brought by those subjects40
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Fig 1. Illustration of the data matching patterns for studies with event time outcomes.

with one or more matches (Case 3): we are not sure which one, if any, of1

the matched event times is the truth. The subjects in Case 3 can be further2

classified into two types: Case 3a contains subjects whose true event time is3

included in the matched records, and Case 3b contains subjects whose true4

event time is not included in the matched records, and, hence, is actually5

censored. This classification is unknown and has to be inferred from the6

data. The task can be regarded as a missing data problem, in which the7

indicators of whether each matched record is true are missing.8

Some efforts have been made to similar problems of mis-measured out-9

comes or uncertain endpoints. Snapinn (1998) proposed a modification of10

the Cox proportional hazard model (Cox, 1972) for nonfatal uncertain end-11

points by assigning weights that represent the likelihood of each potential12

endpoint being true. The determination of the weights, however, requires an13

additional diagnostic score and depends on a subjective estimation of the14

relative frequency of true endpoints to false endpoints suggested by the end-15

point committee or experts in the therapeutic area. Richardson and Hughes16

(2000) proposed an estimation procedure for the product limit estimate of17

survival function with no covariate based on the expectation maximization18

(EM) algorithm (Dempster, Laird and Rubin, 1977) when a binary diag-19

nosis outcome was measured with uncertainty. The method was designed20

for discrete-time contexts where the time points of outcome testing were21
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predetermined. Meier, Richardson and Hughes (2003) extended the discrete1

proportional hazard model (Kalbfleisch and Prentice, 2002) to mis-measured2

outcomes under a setting similar to Richardson and Hughes (2000) but al-3

lowed covariate effects. In a more general setting, regression methods have4

been developed for linked data where the response and covariates come from5

two databases (e.g., Hof and Zwinderman, 2012, 2015; Tancredi and Liseo,6

2015). None of the existing works was designed to handle the data integra-7

tion problem in a survival analysis like ours.8

We propose an integrative Cox proportional hazard model for data with9

uncertain event time points. The uncertainty in the integrated survival data10

is modeled probabilistically, where the probabilities depend only on the rel-11

ative hazards from the Cox model itself. The model reduces to the regular12

Cox model when there is no uncertain record. In contrast to the method of13

Snapinn (1998), our method does not require any extra diagnostic variable or14

prior knowledge on the initial probabilities indicating the true outcomes. The15

estimation procedure combines the ideas of profile likelihood and the expec-16

tation conditional maximization (ECM) algorithm. The proposed method is17

shown to outperform naive approaches in simulation studies under realistic18

settings similar to the real data example. We apply the proposed approach to19

identifying risk factors associated with patient survival after suicide-related20

hospitalization, using data obtained by integrating the HIDD/OCME data21

and the mortality record data of the period 2005–2012 in Connecticut. The22

identified diagnostic codes are mostly consistent with existing results and23

provide several new insights on suicide risk prediction and prevention.24

The rest of this paper is organized as follows. The settings for integrated25

survival data for the Connecticut suicide risk analysis and the associated26

challenges are presented in Section 2. In Section 3, we present the inte-27

grative Cox regression modeling framework. The estimation procedure is28

developed in Section 4. The simulation studies are presented in Section 5.29

A marginal screening analysis using the proposed integrative model for the30

Connecticut suicide risk study is reported in Section 6. Section 7 concludes31

with a discussion. Implementation of the proposed methods is available in32

a package named intsurv for R (R Development Core Team, 2017), which33

can be accessed at https://github.com/wenjie2wang/intsurv.34

2. Integrated Survival Data of a Patient Group with Elevated35

Suicide Risk. Suicide is a serious public health problem in the US. Death36

by suicide is increasing among all age groups in the US, with a 24% increase37

in suicide rates observed from 1999 to 2014. There is a strong tendency for38

suicide attempters to make additional attempts after the initial suicide at-39

https://github.com/wenjie2wang/intsurv
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tempt (Suominen et al., 2004), and suicide attempt is a strong predictor of1

suicidal death (Bostwick et al., 2015). Understanding factors associated with2

suicide for patients hospitalized due to suicide attempt is critical to a better3

allocation of selected prevention efforts among those at elevated risk. An im-4

mediate challenge in statistical modeling is that attributing death to suicide5

is not easy as suicidal death is often under-reported. For example, Pritchard6

and Hansen (2015) showed that undetermined and accidental death was a7

main source of the under-reported-suicides across different countries includ-8

ing the US; Tøllefsen et al. (2016) reported that from re-evaluations of 18009

deaths in Scandinavia, 9% of the natural deaths and accidents were reclassi-10

fied as suicides in the Norwegian data, and 21% of the undetermined deaths11

were reclassified as suicides in the Swedish data.12

We focused on patients of age 15–30 with high suicide risk in Connecticut.13

This group of patients consisted of those who were admitted to a hospital in14

Connecticut due to suicide attempt or self-inflicted injury, survived, and were15

discharged, during fiscal years 2005–2012. The entry time of each patient into16

the study is the time of last such discharge. The event time is the time to17

death from all causes, including suicide, since the entry time. The cutoff date18

of the HIDD is September 30, the end of fiscal year of 2012, which means19

that the patients were followed up until this time. The OCME provided20

data on suicide deaths of this period, which included a field for reporting21

source that allowed accurate identification of the corresponding patients in22

HIDD. Since the HIDD and OCME data only captured reported suicide23

deaths, we acquired the complete mortality data of the same period from24

the Connecticut Department of Public Health, aiming to recover the missing25

deaths through record linkage using basic patient characteristics. The HIDD26

and OCME data lead to Dataset I while the mortality data is Dataset II in27

Figure 1. We stress that here we set the terminal event as death from all28

causes rather than only due to suicide. This is mainly because the cause of29

death is not available in the mortality data so that it can not be recovered30

from data integration. On the other hand, without data integration, ignoring31

unreported suicidal deaths and deaths due to other causes would jeopardize32

the validity of statistical results. Because suicide is a major cause of death33

among young suicide attempters, death due to all causes stands as a valid34

terminal event to study in our problem.35

A total of 7,304 patients were followed up until September 30, 2012.36

Among them, 4,981 were white (2,775 female and 2,206 male) and 2,32337

were non-white (1,304 female and 1,019 male). Before matching, Case 138

consisted of 133 patients with confirmed suicide death from the OCME, a39

censoring rate of 98.2%. For the 7,171 patients with censored event times,40
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we made record linkage with the Connecticut state mortality database by1

date of birth, gender, and race. Since the death time had to happen after2

the discharge, we excluded any matched event before the discharge date of3

each patient during the matching process. After matching, Case 2 consisted4

of 6,546 patients with no matched record, while Case 3 consisted of 625 pa-5

tients with at least one matched records. In Case 3, 584 patients had one6

match, 39 patients had two matches, and two patients had four matches,7

it was possible for each patient to be still alive on September 30, 2012, in8

which case, the true death time is censored.9

The HIDD data contained a large number of records on the characteris-10

tics of patients and their previous hospital admissions. The research inter-11

est was to identify important diagnostic categories associated with patient12

death. The diagnostics were recorded as ICD-9 diagnosis codes, or more13

formally ICD-9-CM (International Classification of Diseases, 9th Revision,14

Clinical Modification). We grouped the ICD-9 codes by their three leading15

characters that define the major diagnosis categories. Suicide attempts were16

identified by both ICD-9 external cause of injury codes and other ICD-917

code combinations indicative of suicidal behavior (Patrick et al., 2010; Chen18

and Aseltine, 2017). Other ICD-9 codes during the inpatient hospitalization19

fell into 167 major diagnosis categories, which led to 167 indicator variables.20

Not all 167 indicators, however, can be used as covariates. Among them,21

51 ICD-9 indicators had quasi-complete separation (Albert and Anderson,22

1984) in our data; that is, there was no death event among those whose23

diagnosis included any of these ICD-9 categories. Although they could be24

potentially useful in predicting survival and thus merit further investiga-25

tion, they cannot be considered as covariates in a Cox regression framework26

adopted in this work, since their coefficient estimates would tend to be neg-27

ative infinite. To focus on the main idea, we further filtered out another 5828

ICD-9 indicators by restricting every cell of the cross table of the diagnosis29

indicator and event indicator to be at least three. The remaining 58 ICD-930

codes were used in a marginal screening analysis; see Section 6.31

3. Integrative Cox Model. Consider a random sample of n subjects32

who fall into the three cases as illustrated in Figure 1. Let I1, I2, and I333

be the indices of the subjects in Case 1, 2, and 3, respectively. For subject34

j ∈ I1, we observe the event time Vj . For subject j ∈ I2, we observe the35

censoring time Cj . For subject j ∈ I3, the true event time Vj has sj ≥ 236

possibilities, 0 < Vj,1 < · · · < Vj,sj−1 < Vj,sj , but we only observe 0 < Vj,1 <37

· · · < Vj,sj−1 < Cj , where Cj is the censoring time such that Cj < Vj,sj . The38

reason for Cj < Vj,sj is case 3b in Figure 1, where none of the matches is39
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correct, so the actual death time must be after Cj . Regarding subjects in1

Case 1–2 as having only sj = 1 possibility with Vj,1 = Vj , we use a unified2

notation for the observed data from subject j3

(Tj,k,∆j,k,xj) : k ∈ {1, . . . , sj},

where xj is a p-dimensional vector of predictors, Tj,k = min(Vj,k, Cj), ∆j,k =4

1(Vj,k ≤ Cj), and Cj is the censoring time. For cases 1–2, ∆j,1 is the event5

indicator and the notation is the same as in standard right-censored data.6

For Case 3, we have sj ≥ 2; ∆j,1 = · · · = ∆j,sj−1 = 1 and ∆j,sj = 0 are7

indicators denoting that all the matches before Cj are possible events and8

the last possibility is always censored. These notations will be used in the9

estimation procedure.10

The true event time Vj of subject j, j ∈ {1, . . . , n}, is assumed to follow11

a Cox model with hazard function12

(1) hj(t) = h0(t) exp(x>j β),

where h0(·) is an unspecified baseline function, and β is a vector of unknown13

coefficient of the covariate vector xj . Let Sj(t) = exp{−H0(t) exp(x>j β)},14

where H0(t) =
∫ t
0 h(s)ds, be the survival function of subject j. The density15

function is then fj(t) = hj(t)Sj(t). In addition, we assume that the censoring16

time Cj has an unknown density function g(t), distribution function G(t),17

survival function G(t) = 1 − G(t), does not depend on the covariates xj ,18

and is independent of the event times conditional on the covariates xj . The19

conditional independence assumption of the censoring time is justified for20

our study because the censoring was administrative.21

We propose to model the uncertain records in a probabilistic way by22

introducing a vector of truth indicator for each subject. For subject j, let23

Zj = (Zj,1, . . . , Zj,sj ) be a random vector from multinomial distribution24

Multi(1,πj),25

Zj,k =

{
1, Vj = Vj,k, or (Tj,k,∆j,k) is the truth

0, otherwise
,

where k ∈ {1, . . . , sj},
∑sj

k=1 Zj,k = 1, 0 ≤ πj,k ≤ 1 and
∑sj

k=1 πj,k = 1.26

As such, for each subject j, j ∈ {1, . . . , n}, πj = (πj,1, . . . , πj,sj ) is the27

probability vector where πj,k = Pr(Vj = Vj,k) (i.e., probability of the k-th28

record being true). Clearly, for j ∈ I1 ∪ I2, we have sj = 1 and πj,1 = 1,29

i.e., Zj,1 = 1 with probability 1. For j ∈ I3, however, the truth indicators30

can be regarded as missing. That Zj,k = 1, k ∈ {1, . . . , sj − 1}, corresponds31

Case 3a, while Zj,sj = 1 suggests Case 3b.32
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Let Tj = (Tj,1, . . . , Tj,sj ) and ∆j = (∆j,1, . . . ,∆j,sj ), with realizations1

tj = (tj,1, . . . , tj,sj ) and δj = (δj,1, . . . , δj,sj ), respectively. Let the set of2

all model parameters be θ = {β,π, h0(·), g(·)}, where π = (π1, . . . ,πn).3

Let zj be a realization of Zj . Given the truth indicators, we assume that4

the distribution of the fake records is independent of the true record and5

degenerates to a point mass at the point of the observed fake records. This6

assumption allows us to get away with modeling the intractable distribution7

of the fake records (e.g., the fake death times produced from imperfect data8

matching in our suicide risk study), so that the likelihood of (Tj ,∆j) given9

Zk only depends on the likelihood of the true record. The complete-data10

likelihood of (Tj ,∆j ,Zj) from subject j turns out to be11

(2) LCj (θ) =

sj∏
k=1

{
πj,k[fj(tj,k)G(tj,k)]

δj,k [g(tj,k)Sj(tj,k)]
1−δj,k

}zj,k
.

The derivation detail is available in Section 1 of the Supplementary Ma-12

terials (Wang et al., 2019). All the possible realizations of Zj are zj =13

(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . ., (0, 0, . . . , 0, 1). The observed-data likeli-14

hood contribution from subject j is then obtained by summing out zj in (2):15

(3) LOj (θ) =

sj∑
k=1

πj,k[fj(tj,k)G(tj,k)]
δj,k [g(tj,k)Sj(tj,k)]

1−δj,k .

Let Yobs = {(t1, δ1,x1), . . . , (tn, δn,xn)} denote the observed data of the n16

independent subjects. The likelihood for the observed data is then given by17

LO(θ) =
∏n
j=1 L

O
j (θ).18

Thus far the observed-date likelihood in (3) is derived from a missing data19

perspective, but it can also be understood in several different ways. Intu-20

itively, for subject j, each of its sj records leads to a likelihood of the event21

time and the censoring time, i.e., [fj(tj,k)G(tj,k)]
δj,k [g(tj,k)Sj(tj,k)]

1−δj,k for22

k ∈ {1, . . . , sj}, and the LOj (θ), the contribution of subject j to LO(θ), is23

then constructed as a weighted sum with weights πj,k satisfying 0 ≤ πj,k ≤ 124

and
∑sj

k=1 πj,k = 1. From the perspective of finite mixture model, the πj,k’s25

are the mixing probabilities, and the above likelihood form of each mixture26

component is a direct consequence of our assumption that given the truth27

indicator the distribution of the fake records degenerates such that the dis-28

tribution of (Tj ,∆j) only depends on the true record. Interestingly, the pro-29

posed method is also connected to a trimmed likelihood approach (e.g., Hadi30

and Luceño, 1997; Neykov et al., 2007), for which, however, the optimiza-31

tion problem is combinatorial in nature and a naive exhaustive search is not32
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feasible; see Section 4.4 for details. In contrast, the proposed probabilistic1

formulation allows us to develop an ECM algorithm to conduct maximum2

likelihood estimation. We remark that our approach may allow potential in-3

corporation of certain known missing mechanism of the true label, through4

imposing more structures on πj or modeling them using covariates. For in-5

stance, in some applications it may be reasonable to assume that the prior6

probability of being censored is the same for all the subjects with uncertain7

records. In this work, however, we focus on the unconstrained situation.8

4. Model Estimation via an ECM Algorithm.9

4.1. Estimation Procedure. The ECM algorithm is a variation of the10

powerful EM algorithm for dealing with incomplete data (Meng and Rubin,11

1993). It replaces the M-step of an EM algorithm with multiple conditional12

maximization (CM) steps which are often computationally easier to handle.13

We propose a maximum likelihood estimation procedure for the integrative14

Cox model following the architecture of the ECM, in which the CM-steps15

utilize a profile likelihood similar to the partial likelihood (Cox, 1975).16

The complete-data loglikelihood can be decomposed into two parts which17

involve two exclusive sets of parameters, respectively. Let Ymis = (z1, . . . ,zn)18

and Y = {Yobs,Ymis}. From (2), the complete-data loglikelihood is19

`(θ | Y ) = `(β,π, h0(·) | Y ) + `c(g(·) | Y ),(4)

where20

`(β,π, h0(·) | Y )(5)

=
n∑
j=1

sj∑
k=1

zj,k
{

log πj,k + δj,k log fj(tj,k) + (1− δj,k) logSj(tj,k)
}
,

and21

`c(g(·) | Y ) =

n∑
j=1

sj∑
k=1

zj,k
{
δj,k logG(tj,k) + (1− δj,k) log g(tj,k)

}
.(6)

The second part `c(g(·) | Y ) only involves the nuisance distribution of the22

censoring time.23

We compute the conditional expectations of the complete-data loglikeli-24

hood (4) given the observed data Yobs and the set of parameter estimates25

θ(i) = {β(i),π(i), h
(i)
0 (·), g(i)(·)} at i-th iteration (i = 0, 1, . . .), where θ(0) is26

the initial/starting estimate. Define27

wj,k(θ
(i)) := P(Zj,k = 1,Tj ,∆j | θ(i)) = π

(i)
j,k

(
h
(i)
j,kS

(i)
j,kG

(i)
j,k

)δj,k(
g
(i)
j,kS

(i)
j,k

)1−δj,k
,
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where h
(i)
j,k = h

(i)
0 (tj,k) exp(x>j β

(i)) and S
(i)
j,k = exp{−H(i)

0 (tj,k) exp(x>j β
(i))},1

G
(i)
j,k = G

(i)
(tj,k), and g

(i)
j,k = g(i)(tj,k). By Bayes rule, we have2

pj,k(θ
(i)) := P(Zj,k = 1 | Tj ,∆j ,θ

(i)) =
wj,k(θ

(i))∑sj
k=1wj,k(θ

(i))
.(7)

Plugging (7) into (5) and (6), we obtain the E-step that involves two3

separate parts:4

E `{β,π, h0(·) | Yobs,θ
(i)}(8)

=

n∑
j=1

sj∑
k=1

pj,k(θ
(i))
{

log(πj,k) + δj,k log fj(tj,k) + (1− δj,k) logS(tj,k)
}
,

and5

E `c{g(·) | Yobs,θ
(i)}(9)

=

n∑
j=1

sj∑
k=1

pj,k(θ
(i))
{
δj,k logG(tj,k) + (1− δj,k) log g(tj,k)

}
.

The separation of the two terms in parameters facilitates the M-step. The6

first term (8) can be handled by profiling out the nuisance parameters. Note7

that, for fixed β and π, the h0(t) maximizing the conditional expectation (8)8

is a discrete function that is positive only at possible event times and zero9

anywhere else. Let Yj,k(t) = 1(tj,k ≥ t) and Nj,k(t) = zj,k1(tj,k ≤ t, δj,k = 1).10

Then the true number of events by time t is N(t) =
∑n

j=1

∑sj
k=1Nj,k(t).11

Let dN(t) denote the number of true events at time t. Let Ñj,k(t;θ
(i)) =12

pj,k(θ
(i))1(tj,k ≤ t, δj,k = 1) and Ñ(t;θ(i)) =

∑n
j=1

∑sj
k=1 Ñj,k(t;θ

(i)), which13

are the conditional expectation of Nj,k(t) and N(t) given Yobs, evaluated at14

θ(i), respectively. Then dÑ(t;θ(i)) = E {dN(t)|Yobs,θ
(i)} is the jump size of15

Ñ(t;θ(i)) at time t. Equation (8) can be rewritten to allow tied event times16

as follows:17

E `{β,π, h0(·) | Yobs,θ
(i)}(10)

=
∑
t∈T

−h0(t) n∑
j=1

sj∑
k=1

Yj,k(t)pj,k(θ
(i)) exp(x>j β) + dÑ(t;θ(i)) log h0(t)


+

n∑
j=1

sj∑
k=1

pj,k(θ
(i))
[
δj,kx

>
j β + log πj,k

]
,
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where T = {tj,k | δj,k = 1, k ∈ {1, . . . , sj}, j ∈ {1, . . . , n}} is the collection1

of all observed possible event times.2

Given β and π, the baseline hazard h0 only appears in the first term3

of (10), and the maximizer is4

ĥ0(t) =
dÑ(t;θ(i))∑n

j=1

∑sj
k=1 Yj,k(t)pj,k(θ

(i)) exp(x>j β)
,

which is nonzero only for those t ∈ T , similar to the “Breslow estima-5

tor” (Breslow, 1974). Further, for fixed β, it is easy to check that π
(i+1)
j,k =6

pj,k(θ
(i)) maximizes (10) by Lagrange multipliers method. Plugging these7

estimators back into (10), we get a profile likelihood in terms of β8

E `{β, π̂, ĥ0 | Yobs,θ
(i)}

=
∑
t∈T

{
−dÑ(t;θ(i))

[
1− log dÑ(t;θ(i))

]}
+

n∑
j=1

sj∑
k=1

pj,k(θ
(i)) log pj,k(θ

(i))

+ p`(β | θ(i)),

where9

p`(β | θ(i)) =

n∑
j=1

sj∑
k=1

∫ ∞
0

I(β, t | θ(i)) dÑj,k(t;θ
(i)),(11)

I(β, t | θ(i)) = x>j β − log

(
n∑
l=1

sl∑
m=1

Yl,m(t)pl,m(θ(i)) exp(x>l β)

)
,

is the only part involving β. This profiling approach is similar to the partial10

likelihood of Cox (1975) except that the distribution of the censoring time11

comes into play through pj,k’s and dÑj,k’s. The estimator β̂ of β is obtained12

by maximizing (11). Once β̂ has converged, ĥ0(·) and π̂j,k’s can be updated.13

Maximizing the second part (9) involves nonparametric maximum likeli-14

hood estimator of the censoring distribution function G(·). We characterize15

the censoring time by its hazard function hc(·). Similar to h0(t), the hc(·)16

that maximizes (9) is nonzero only at the observed censoring times. By the17

assumption we made, the only possible censoring time for each subject is its18

last record time. For j ∈ {1, . . . , n}, define Cj(t;θ
(i)) = pj,sj (θ

(i))1(tj,sj ≤19

t, δj,sj = 0) and C(t;θ(i)) =
∑n

j=1Cj(t;θ
(i)). Let dC(t;θ(i)) be the jump20

size of C(t;θ(i)) at time t. Then we may rewrite (9) to allow tied censoring21

times as follows:22

E `c(g(·) | Yobs,θ
(i)) =

∑
t∈C

dC(t;θ(i)) log hc(t)− hc(t)
n∑
j=1

sj∑
k=1

pj,k(θ
(i))Yj,k(t)

 ,
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where C = {tj,sj | δj,sj = 0, j ∈ {1, . . . , n}} is the collection of all observed1

censoring times. Maximizing it with respect to hc(t) gives2

ĥc(t) =
dC(t;θ(i))∑n

j=1

∑sj
k=1 pj,k(θ

(i))Yj,k(t)
.

Therefore, for every record time tj,k, we have3

Ĝ(tj,k) = exp

− ∑
t≤tj,k

ĥc(t)

 = exp

− ∑
t≤tj,k

dC(t;θ(i))∑n
l=1

∑sl
m=1 pl,m(θ(i))Yl,m(t)


and ĝ(tj,k) = ĥc(t)Ĝ(tj,k).4

We summarize the ECM estimation procedure in Algorithm 1. In our5

numerical studies, we stop the algorithm if ‖β(i)−β(i−1)‖/‖β(i) +β(i−1)‖ <6

10−6 and ‖π(i) − π(i−1)‖/‖π(i) + π(i−1)‖ < 10−8.7

4.2. Initialization. Since the maximum likelihood estimation problem8

here is non-convex, it may admit multiple local maxima. Therefore, we rec-9

ommend setting multiple initial values of β and π to help identify a good10

solution, as allowed by the available computational resources. In particular,11

we propose two simple but pragmatic initialization procedures that work12

well even with limited resources.13

The first procedure is as follows:14

(i) Fit a regular Cox model on all the certain records (Case 1–2) and use15

the estimated coefficients to initialize β; initialize Ŝj,k with the fitted16

survival function evaluated at tj,k; initialize ĥj,k with a nearest left17

neighbor interpolation of the fitted hazard function (if no left neighbor,18

use nearest right neighbor).19

(ii) Switching event and censoring for all the certain records (Case 1–2),20

estimate the hazard function for censoring by the Nelson-Aalen estima-21

tor (without covariates) and obtain the corresponding survival function22

estimate; initialize Ĝj,k with the fitted survival function evaluated at23

tj,k; initialize ĥc(tj,k) with a nearest left neighbor interpolation of the24

fitted hazard function (if no left neighbor, use nearest right neighbor).25

(iii) Plug ŵj,k = h∗j,kŜj,kĜj,k, where h∗j,k = δj,kĥj,k + (1 − δj,k)ĥc(tj,k),26

into (7) as wj,k and initialize πj,k as the resulting pj,k.27



INTEGRATIVE SURVIVAL ANALYSIS 13

Algorithm 1 Estimation procedure for integrative Cox model with uncer-
tain event records. (The dependence of πj,k’s, Ñj,k’s, dÑ(t), and dC(t) on θ
is dropped for ease of notation.)

initialize β and π;
repeat

for j = 1, 2, . . . , n do . Update Ñj,k(t)’s
for k = 1, 2, . . . , sj do

Ñj,k(t)← πj,k1(tj,k ≤ t, δj,k = 1);

end for
end for
for each t ∈ T do . Update ĥ0(·)

h0(t)← dÑ(t)∑n
j=1

∑sj
k=1 Yj,k(t)πj,k exp(x>j β)

; H0(t)←
∑
s≤t

h0(s);

end for
for each t ∈ C do . Update ĥc(·)

hc(t)←
dC(t)∑n

j=1

∑sj
k=1 Yj,k(t)πj,k

; Hc(t)←
∑
s≤t

hc(s),

end for
for j = 1, 2, . . . , n do . Update π̂j,k’s

for k = 1, 2, . . . , sj do

Sj,k ← exp
{
−H0(tj,k) exp(x>j β)

}
; Gj,k ← exp {−Hc(tj,k)} ;

wj,k ← πj,k
[
hj,kSj,kGj,k

]δj,k [gj,kSj,k]1−δj,k ; πj,k ←
wj,k∑sj
k=1 wj,k

;

end for
end for
β ← arg max p`(β|θ) . Update β̂

until Convergence

In the above procedure, letting ĥ∗j,k = 1 in step (iii) leads to a simpler1

alternative, which puts more weights to the uncertain event times before2

the censoring time and thus may work better when Case 3a is estimated to3

have a larger size than Case 3b. This gives a second initialization procedure.4

The two initialization procedures were applied in the simulation studies5

presented in Section 5 and the results were satisfactory in most scenarios.6

4.3. Inference. In an EM or ECM algorithm, generally standard error7

(SE) estimates for the parameter estimates cannot be easily produced along8

with the estimation procedure. A few approaches have been proposed for9



14 W. WANG ET AL.

estimating the asymptotic covariance matrix for parameters of interest, in-1

cluding the supplemented EM (SEM) algorithm (Meng and Rubin, 1991),2

the profile likelihood approach (Murphy and van der Vaart, 2000), numerical3

differentiation methods based on forward difference and Richardson extrap-4

olation (Jamshidian and Jennrich, 2000), and their variants with profiling5

(Xu, Baines and Wang, 2014). Unfortunately, none of these methods is read-6

ily applicable to our case. In our work, we use the bootstrap (Efron, 1979,7

1981) method that performs resampling at the subject level for survival data8

for making inference. Efron (1981) proposed the SE be estimated as sample9

standard deviation of bootstrap estimates, or based on inter-quantile range10

and normal approximation. The p-values from the Wald test for testing the11

significance of each regression coefficient can then be computed.12

4.4. Connection with Trimmed Likelihood. We show that the proposed13

method is closely connected to a trimmed likelihood approach, which offers14

an intuitive understanding of our method from the robust estimation per-15

spective. The trimmed likelihood (Rousseeuw, 1984; Hadi and Luceño, 1997;16

Neykov et al., 2007) is a general approach for conducting robust maximum17

likelihood estimation in the presence of outliers, in which the observations18

are trimmed according to their contributions to the likelihood function. Our19

probabilistic modeling approach via ECM provides an efficient way for tar-20

geting the computationally infeasible trimmed likelihood estimator.21

Recall the observed-data likelihood formulation given in (3). Denote22

rj,k(β) = [fj(tj,k)G(tj,k)]
δj,k [g(tj,k)Sj(tj,k)]

1−δj,k ,

where j ∈ {1, . . . , n}, k ∈ {1, . . . , sj}. For ease of notation, here we do not23

explicitly write out the dependency of rj,k(β) on the observed data and24

assume other unknown quantities h0(·) and g(·) have been profiled out. (In25

fact, the above can be regarded as a general survival modeling formulation26

in this section.) Then the proposed maximum likelihood estimator can be27

expressed as28

(β̂, π̂) ∈ arg max
β,π

n∏
j=1

( sj∑
k=1

πj,krj,k(β)

)
.(12)

Here each πj is a probability vector and there is no additional structural29

constraint on π. Now, for each j, define rj,(sj)(β) as the largest order statis-30

tic of rj,k(β), k = 1, . . . , sj . Then, a trimmed likelihood estimator can be31

constructed as32

β̃ ∈ arg max
β

n∏
j=1

rj,(sj)(β).(13)
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Intuitively, (13) shows that the optimal β is reached when for each patient1

with uncertain records, only the most plausible record (as judged by having2

the largest log-likelihood value among all the records) contributes to the3

overall log-likelihood function and the rest all get trimmed. Interestingly, it4

can be verified that the two methods in (12) and (13) share the same set of5

global solutions.6

Lemma 4.1. The β̂ from solving (12) is a solution of (13), and vice7

versa.8

To see this, note that for each πj = (πj,1, . . . , πj,sj ), we have π̂j =9

arg maxπj

∑sj
k=1 πj,k rj,k(β̂), because given β = β̂ the problem in (12) is sep-10

arable in each set of πj . Then the maximum can be attained at π̂j,k0j
= 1 and11

π̂j,k = 0 for k 6= k0j , where k0j ∈ arg maxk rj,k(β̂). It follows that the maxi-12

mum value of the objective function in (12) can be written as
∏n
j=1 rj,(sj)(β̂),13

which, clearly reveals that β̂ is a maximizer of the trimmed likelihood prob-14

lem in (13). On the other hand, let π̃j be that π̃j,k0j
= 1 and π̃j,k = 0 for15

k 6= k0j , where k0j ∈ arg maxk rj,k(β̃) with some abuse of notation. Then it16

can be seen that {β̃, π̃} is necessarily a solution of (12).17

In practice, however, finding the global solution of the trimmed likelihood18

problem is infeasible via a naive exhaustive search approach. For example,19

in our suicide risk study, an exhaustive search amounts to fit 2584× 339× 5220

many Cox models. In contrast, our probabilistic modeling approach can be21

regarded as an efficient way for targeting the trimmed likelihood estimator22

via the ECM algorithm, with carefully constructed initial values.23

5. Simulation Study.24

5.1. Simulation Settings. Our simulation settings were designed to mimic25

the data integration process in the survival analysis of patients admitted to26

hospital due to unsuccessful suicide attempts in Connecticut. As shown in27

Figure 1, n1 is the number of subjects with events observed for certain from28

dataset I (Case 1); n2 is the number of subjects whose true event time is29

included in the matched event times (Case 3a); n3 is the number of subjects30

whose true event time is censored but for whom some false event times are31

matched (Case 3b); n4 is the number of subjects whose event times are cen-32

sored for certain since no match is found from dataset II (Case 2). As such,33

n =
∑4

i=1 ni is the total sample size, and n2 + n3 + n4 is the number of34

subjects that are censored before data matching.35
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Table 1
Summary of different simulation settings. The number of subjects in Group 1 is fixed at

n1 + n2 = 200.

Group 1 Group 2

Scenario CR1 MR CMR n1 n2 n3 n4 n OCR
# (Case 1) (Case 3a) (Case 3b) (Case 2)

1 30 70 20 189 11 46 24 270 26
2 30 70 80 161 39 9 21 230 13
3 60 40 20 178 22 84 160 444 55
4 60 40 80 136 64 17 122 339 41
5 90 10 20 167 33 117 1350 1667 88
6 90 10 80 118 82 24 953 1177 83

CR1: Censoring rate before matching (%); MR: Matching rate (%); CMR: Cor-
rect matching rate (%); OCR: Oracle censoring rate (%).

We define a few quantities for designing the experiment: censoring rate1

of dataset I before matching (CR1) is CR1 = 1 − n1/n; matching rate2

(MR) is MR = (n2 + n3)/(n2 + n3 + n4); correct matching rate (CMR)3

CMR = n2/(n2 + n3). MR is the proportion of subjects having matched4

records among subjects whose event times are censored from dataset I; CMR5

is the proportion of the subjects whose true event time is contained in the6

matched event times. In all the settings, we set MR = 1 − CR1, assuming7

that the lower the CR1, the more likely that dataset I misses true events8

among the censored records. The number of subjects who actually had events9

was fixed at n1 + n2 = 200 to keep an approximately same benchmark10

performance from oracle models under different settings.11

Three levels of CR1 were considered, i.e., CR1 ∈ {30%, 60%, 90%}, corre-12

sponding to moderate, heavy, and severe censoring, respectively. Two levels13

of CMR were considered, i.e., CMR ∈ {20%, 80%}; the larger the CMR,14

the more valuable information can be potentially recovered from dataset II.15

Given (CR1,MR,CMR) and with the condition n1 + n2 = 200, the values16

of ni’s, i = 1, . . . , 4 were then completely determined. Table 1 summarizes17

the sample size and its decomposition into the four cases, for each of the 618

simulation scenarios determined by the combinations of CR1 and CMR.19

For ease of data generation, we divide the subjects into two groups:20

Group 1 contains those whose true event times are included in the observed21

data, not necessarily certain though (Case 1 and Case 3a); Group 2 con-22

tains those whose true event times are not in the observed data (Case 223

and Case 3b). Define oracle censoring rate (OCR), OCR = (n3 +n4)/n, the24

proportion of Group 2 in the sample, which is unobserved but completely25

determined for each setting after the values of ni’s are determined. Our26
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strategy was to generate true event time and censoring time for all subjects1

for a given OCR first, identify subjects in Case 3a from Group 1, identify2

subjects in Case 3b from Group 2, and then generate fake event times for3

those in Case 3a and Case 3b, respectively.4

The true event times were generated from Cox model (1) with a Weibull5

baseline hazard function. Four independent covariates were included in the6

model; the first three were from the standard normal distribution and the7

fourth was from the Bernoulli distribution with rate 0.5. All four true regres-8

sion coefficients were set to be 1. The censoring time was generated from the9

uniform distribution over (0.5, 12.5). The Weibull-shape parameter was set10

to be 2, 1, and 0.7 for the moderate, heavy, and severe censoring scenarios in11

terms of CR1, respectively. The Weibull-scale parameter was tuned in each12

setting so that the OCR determined in that setting is attained on average.13

To identify Case 3a subjects from Group 1 and Case 3b subjects from14

Group 2, we treated the data uncertainty as a missing-label problem: the15

labels are observed for the n1 + n4 subjects in Cases 1–2, but are missing16

for the n2 +n3 subjects in Case 3. Two missing mechanisms were considered17

for the labels: missing completely at random (MCAR) and missing not at18

random (MNAR). In the MCAR mechanism, the probability of a label be-19

ing missing was completely random, regardless of the underlying true event20

time. In the MNAR mechanism, the probability of a label being missing21

was proportional to the true event time; the longer the true event time, the22

more likely a subject was identified as Case 3a from Group 1 or Case 3b from23

Group 2. Such decomposition ensures that the sample size decomposition of24

each simulated data closely matches its corresponding setting in Table 1.25

The last step was to generate fake event times for subjects in Case 3.26

For subjects in Case 3a, their censoring times were observed and true event27

times were included in the matches. The number of additional fake event28

times was set to be zero or one with probability 0.9 and 0.1, respectively. In29

other words, the possible records for each of them consisted of one observed30

censoring time, one true event time, and one additional fake event time with31

probability 0.1. For subjects in Case 3b, their true event times were censored32

and the number of fake event times was set to be one or two with probabil-33

ity 0.9 and 0.1, respectively. In other words, each of them had one observed34

censoring time, one or two fake event times with probability 0.9 or 0.1, re-35

spectively. Each fake event time was generated from Cox model (1) with36

one extra covariate in addition to the existing four covariates, conditional37

on that the fake event time was less than the censoring time (Nadarajah and38

Kotz, 2006). This extra covariate took value −1 or 1 with equal probability,39

and its coefficient was set to be 3.40
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5.2. Competing Methods and Evaluation Metrics. Three competing meth-1

ods were considered, multiple imputation (MI) and two naive approaches.2

MI was originally introduced by Rubin (1987) for non-response in surveys,3

which imputes every missing value multiple times with draws from certain4

distribution and summarized the results from the multiple versions of the5

complete data. In our setup, the missing values are the truth indicators.6

Given a simulated dataset, we imputed 200 times the truth indicators for7

the subjects in Case 3 and took the average of the coefficient estimates from8

fitting the regular Cox model with each imputed data as the final estimates.9

Specifically, in each imputation, for each subject the truth indicator vec-10

tor was generated from a multinomial distribution, where the probability of11

censoring was set to be proportional to n4/(n1+n4), and the remaining prob-12

ability was equally split among the uncertain event records. The two naive13

approaches were based on the regular Cox model as well. The first (denoted14

by C.Cox) fits the regular Cox model to dataset I, which treats all subjects15

in Case 3 as censored, completely ignoring integration with dataset II. C.Cox16

may give biased estimator for not considering the events missed by dataset I.17

The second approach (denoted by U.Cox) excludes those subjects with mul-18

tiple event times after matching with dataset II (Case 3) and fits the regular19

Cox model with the remaining subjects with unique records (Case 1 and20

Case 2). The data used by U.Cox is a subset of that used by C.Cox. By re-21

moving subjects in dataset I whose event times were not uniquely recorded,22

U.Cox may give less efficient but unbiased estimation under MCAR.23

The proposed integrative Cox model is denoted by I.Cox. We also included24

two oracle procedures where the true event indicators are known a priori:25

the oracle Cox model (O.Cox) and the oracle Weibull model (O.Weibull).26

They give the best achievable performances, infeasible in practice but can27

be used as references in comparison.28

We measured the estimation performance by the `2-norm of (β̂−β0), i.e.,29

‖β̂−β0‖ = [(β̂−β0)
>(β̂−β0)]

1/2, where β0 is the underlying true coefficient30

vector, and β̂ is its estimator. In addition, we estimated the baseline survival31

functions from the purposed I.Cox model and two naive Cox methods, and32

compared them with the true parametric curve over a tense time grid from33

0 to 12 with step size of 0.1. For each subject with multiple records, the34

estimated probabilities π̂j from the proposed I.Cox model can be used to35

identify the true record. We used the Bayes rule to select the record with36

the largest estimated probability; by comparing to the underlying truth,37

we computed the correct identification rate of the true records among the38

subjects having uncertain records. The experiment was replicated 1,000 time39

under each setting and the results were then averaged.40
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Table 2
Comparison on parameter estimation performance through mean of 100× ‖β̂ − β0‖ (with

the standard deviation given in parenthesis).

# O.Weibull O.Cox I.Cox U.Cox C.Cox MI

MCAR

1 18.0 (7.3) 20.7 (8.6) 22.4 (9.7) 24.9 (9.9) 81.1 (22.0) 81.0 (9.9)
2 17.5 (7.7) 20.8 (8.9) 22.1 (9.6) 23.4 (10.0) 139.7 (14.7) 80.8 (11.0)
3 18.5 (7.9) 19.7 (8.7) 23.6 (10.2) 22.3 (9.2) 55.9 (17.2) 81.2 (9.9)
4 18.6 (7.6) 20.3 (8.7) 22.8 (10.1) 26.0 (11.4) 107.7 (15.9) 94.2 (12.0)
5 18.0 (8.0) 18.2 (8.1) 20.6 (9.0) 20.2 (9.0) 30.5 (12.3) 39.5 (11.7)
6 18.4 (8.2) 18.8 (8.3) 22.2 (9.8) 30.1 (12.6) 51.8 (12.3) 51.4 (11.3)

MNAR

1 18.0 (7.3) 20.7 (8.6) 22.4 (9.4) 27.6 (10.6) 48.4 (21.0) 81.5 (10.0)
2 17.5 (7.7) 20.8 (8.9) 22.4 (9.7) 24.4 (10.4) 79.9 (20.9) 55.2 (11.5)
3 18.5 (7.9) 19.7 (8.7) 22.5 (10.2) 22.9 (9.7) 27.1 (11.8) 86.4 (8.9)
4 18.6 (7.6) 20.3 (8.7) 23.2 (10.2) 24.2 (10.7) 38.3 (15.0) 51.6 (12.0)
5 18.0 (8.0) 18.2 (8.1) 21.1 (9.2) 20.7 (9.3) 21.1 (9.0) 40.2 (9.3)
6 18.4 (8.2) 18.8 (8.3) 23.5 (10.3) 30.2 (13.0) 27.3 (11.3) 30.1 (10.8)

MCAR: Missing completely at random; MNAR: Missing not at random.

5.3. Simulation Results. Table 2 summarizes the simulation results on1

parameter estimation. As expected, the two practically-infeasible oracle ap-2

proaches perform the best, which provide benchmarks for comparison. The3

I.Cox method and the U.Cox method appear to have a clear advantage over4

the C.Cox method and the MI method under most settings. The disadvan-5

tage of the C.Cox method is expected; subjects in Case 3a are mistakenly6

treated as censored, which increases the variance in estimation due to less7

events and introduces bias due to the mistakenly treated censoring. Its per-8

formance is even worse in MCAR settings, because in the MNAR setting,9

longer survival time is more likely to be uncertain such that the true event10

time is more likely to be close to the censoring time than under MCAR. The11

MI method performs worse than the C.Cox method in the setting with lower12

CMR under MNAR, unlike in other settings where they are less different,13

because the imputation does not account for the informative missingness14

and lower CMR means higher noise in data integration.15

Between I.Cox and U.Cox, it appears that the I.Cox method either sub-16

stantially outperforms U.Cox, or has comparable performance comparing to17

U.Cox. Specifically, when CR1 is moderate (30%) and MR is high (70%),18

I.Cox outperforms U.Cox, with more advantage in the MNAR case than in19

the MCAR case. When CR1 is heavy (60%) with 40% MR, I.Cox outper-20

forms U.Cox in the cases where CMR is 80% and in the MNAR case with21

20% CMR; otherwise, it has a close but slightly worse performance than22
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Fig 2. Mean of the estimated baseline survival function in various simulation settings
when true record labels are missing at random (MCAR).

U.Cox. Lastly, under severe CR1 (90%) and low MR (10%), I.Cox outper-1

forms U.Cox when CMR is 80% and has a slightly worse performance when2

CMR decreased to 20%. It is not surprising that I.Cox does not always out-3

performs U.Cox, because the potential gain from data integration depends4

on the quality of both the original data (dataset I) and the matching data5

(dataset II). Indeed, I.Cox did not outperform U.Cox in scenario 3 and sce-6

nario 5 when CR1 is high and CMR is very low. In general, data integration7

is beneficial when the original data misses a substantial amount of true event8

records and thus may have inadequate or biased information for model esti-9

mation, and/or when the correct information that can be recovered by the10

matching data “exceeds” the accompanying noise/false information.11

Figure 2 presents a visual comparison on the estimation of the baseline12

survival function from I.Cox and two naive Cox methods in different set-13

tings under MCAR. The true baseline survival curves are included. The14

I.Cox clearly performs the best overall, and in most cases the mean of its15

baseline survival function estimates over 1,000 replications is close to the16
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Table 3
Mean correct identification rates in percentage for subjects in Case 3 under different

simulation settings.

Scenario

1 2 3 4 5 6

MCAR 85.7 89.5 83.1 83.8 80.4 80.0
MNAR 87.5 88.6 90.5 85.5 94.2 86.0

corresponding true curve. In contrast, both U.Cox and C.Cox, especially1

the latter, may lead to substantial overestimation of the survival probabil-2

ities. We have also checked the variation of the estimated survival curves3

from these methods and I.Cox performs satisfactorily. See Section 2 of the4

Supplementary Materials (Wang et al., 2019) for an example plot of mean5

survival curves with pointwise 95% empirical confidence intervals and similar6

results under MNAR.7

Table 3 reports the mean correct identification rate for all the subjects8

with uncertain records in Case 3 from the survival analysis with the I.Cox9

method. The rate ranges from 80.0% to 94.2%, which means that the true10

records can be correctly identifies by the I.Cox model for at least 80% of11

subjects having uncertain records in all cases. We remark that in practice12

the main focus of such integrative analysis is still on the estimation and13

inference of β; one should be cautious on using the estimated probabilities14

to identify the true records, as the empirical evidence from our simulation15

study is certainly limited.16

To check the performance of I.Cox in making inferences about the un-17

known covariate coefficients in comparison with U.Cox and O.Cox, we used18

bootstrap with 1,000 bootstrap samples. The confidence intervals based on19

sample standard deviation and inter-quantile produced estimates in good20

agreement, and we report those based on sample standard deviation. The21

results of point estimate, SE, and empirical coverage percentage for the coef-22

ficient of one continuous covariate and the binary covariate are summarized23

in Table 4. The bootstrap SE estimates appear to be close to the empirical24

SEs of the coefficient estimates in most of the settings. The coverage rate25

of 95% confidence intervals constructed from the SE estimates and normal26

approximation is close to the nominal level in most cases. The worst cases27

are for β1 under MNAR when the censoring of dataset I is severe.28

We have explored the asymptotic behaviors of the I.Cox estimator empir-29

ically. Following the original sample size decomposition given in Table 1, we30

increase the total sample size to 2, 4, 8, and 16 times under each original31

setting. The results show that the mean of ‖β̂−β0‖ decreases as the sample32
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Table 4
Summaries of point estimate, standard error, and empirical coverage of 95% confidence

intervals for two covariate coefficients.

# Method β̂1 SE(β̂1) ESE(β̂1) CP(β̂1) β̂4 SE(β̂4) ESE(β̂4) CP(β̂4)

MCAR

1 I.Cox 1.02 0.088 0.089 94.8 1.02 0.171 0.170 94.9
U.Cox 0.94 0.086 0.088 87.0 0.93 0.162 0.168 92.2
O.Cox 1.01 0.082 0.085 94.6 1.01 0.156 0.155 94.8

2 I.Cox 1.02 0.088 0.087 94.9 1.02 0.166 0.170 94.3
U.Cox 1.01 0.095 0.094 95.7 1.01 0.176 0.184 94.0
O.Cox 1.01 0.084 0.084 95.9 1.01 0.157 0.161 94.7

3 I.Cox 1.03 0.089 0.092 93.0 1.04 0.177 0.180 93.2
U.Cox 0.96 0.086 0.087 91.4 0.96 0.164 0.163 94.1
O.Cox 1.01 0.081 0.085 93.7 1.01 0.154 0.154 95.2

4 I.Cox 1.03 0.086 0.088 94.1 1.02 0.170 0.172 95.1
U.Cox 1.05 0.099 0.096 94.5 1.04 0.192 0.189 95.2
O.Cox 1.01 0.081 0.081 95.1 1.00 0.157 0.157 95.5

5 I.Cox 1.03 0.082 0.083 92.6 1.01 0.167 0.167 94.7
U.Cox 1.02 0.084 0.085 94.3 1.03 0.164 0.161 95.3
O.Cox 1.01 0.077 0.078 94.9 1.01 0.150 0.149 95.4

6 I.Cox 1.04 0.085 0.088 91.7 1.04 0.163 0.170 93.4
U.Cox 1.09 0.106 0.105 87.7 1.10 0.199 0.196 93.0
O.Cox 1.00 0.080 0.078 95.5 1.01 0.152 0.154 94.9

MNAR

1 I.Cox 1.02 0.088 0.088 95.6 1.02 0.172 0.168 95.6
U.Cox 0.91 0.086 0.086 80.5 0.91 0.162 0.165 90.3
O.Cox 1.01 0.082 0.085 94.6 1.01 0.156 0.155 94.8

2 I.Cox 1.02 0.088 0.089 94.1 1.02 0.167 0.173 94.7
U.Cox 0.96 0.092 0.095 92.3 0.95 0.175 0.183 92.7
O.Cox 1.01 0.084 0.084 95.9 1.01 0.157 0.161 94.7

3 I.Cox 1.04 0.088 0.090 92.4 1.04 0.170 0.169 94.2
U.Cox 0.95 0.087 0.090 89.2 0.95 0.164 0.163 93.3
O.Cox 1.01 0.081 0.085 93.7 1.01 0.154 0.154 95.2

4 I.Cox 1.03 0.087 0.089 94.1 1.02 0.170 0.173 95.0
U.Cox 1.00 0.094 0.095 95.6 1.00 0.192 0.188 95.3
O.Cox 1.01 0.081 0.081 95.1 1.00 0.157 0.157 95.5

5 I.Cox 1.04 0.082 0.083 91.8 1.04 0.161 0.162 95.1
U.Cox 1.03 0.084 0.085 93.3 1.04 0.165 0.165 94.8
O.Cox 1.01 0.077 0.078 94.9 1.01 0.150 0.149 95.4

6 I.Cox 1.06 0.086 0.087 89.9 1.06 0.164 0.175 93.3
U.Cox 1.08 0.103 0.104 88.2 1.11 0.202 0.209 92.1
O.Cox 1.00 0.080 0.078 95.5 1.01 0.152 0.154 94.9

SE: Standard error estimate; ESE: Empirical standard error from point estimates;
CP: Coverage probability (%) of 95% confidence intervals.
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size increases, and the rate of convergence is approximately the square root1

of the sample size. We have also done simulation studies with fixed total2

sample size and the results are similar to what we have presented. More de-3

tails are available in Section 3 and 4 of the Supplementary Materials (Wang4

et al., 2019).5

6. Survival Analysis of the Connecticut Data. We conducted a6

marginal screening analysis using I.Cox over the aforementioned 58 indica-7

tors of ICD-9 categories, with three demographic variables, age, male, (ver-8

sus female) and White (versus non-White) always included in the model.9

That is, each ICD-9 indicator was included as the fourth variable in the10

screening process. The inference results were obtained based on 1,000 boot-11

strap samples, following the procedure detailed in Section 4.3. After the p-12

values of all the ICD-9 indicators were gathered from the marginal models,13

the Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995) was14

applied to control the false discovery rate (FDR) at 5%. For comparison,15

we repeated the same analysis using C.Cox, which ignored matching, and16

U.Cox, which discarded all the uncertain events from matching.17

The coefficient estimates for male and White from all the marginal models18

were significant at 5% level. Males were at significantly higher risk of death19

than females, and whites were at significantly higher risk than non-whites.20

These findings of disparity in gender and race agree well with existing studies21

(e.g., Kung, Pearson and Wei, 2005; Pena et al., 2012). The age effect was less22

significant compared with gender and race. Most estimates for the coefficient23

of age from the marginal models were significantly greater than zero at 10%24

level, providing mild evidence that the survival time after suicide attempt25

tends to decrease with age for the patients in the study (age 15–30).26

The screening analysis of ICD-9 codes revealed interesting and insightful27

results. By controlling the FDR at 5% for the results from each method,28

neither C.Cox nor U.Cox identified any significant ICD-9 category; in con-29

trast, I.Cox identified four ICD-9 categories to be significantly associated30

with the risk of death after unsuccessful suicide attempt. The p-values for31

coefficient estimates of the four ICD-9 indicators are reported in the upper32

part of Table 5. The coefficient for ICD-9 code 292 was significantly positive,33

indicating that patients with drug-induced mental disorder had significantly34

higher risk than others after controlling for age, gender, and race. Patients35

with borderline personality disorders (ICD-9 code 301) were also found to36

have a significantly higher risk of death. These results are supported by37

several studies, e.g., Harris and Barraclough (1997), Lieb et al. (2004) and38

McGirr et al. (2007), among others. The I.Cox model also suggests that pa-39
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Table 5
Selected ICD-9 categories by I.Cox and their brief descriptions. Columns 2–4 reports
p-values (unadjusted) of coefficient estimates from I.Cox, C.Cox and U.Cox method,

respectively, where the significance is indicated by asterisk and the sign of estimates is
given in subscripts.

ICD-9 I.Cox C.Cox U.Cox Description

Significant ICD-9 codes under 5% FDR control

786 0.000∗+ 0.004+ 0.002+ Dyspnea, respiratory abnormalities, and chest pain
V45 0.000∗+ 0.088+ 0.045+ Postsurgical acquired absence of organ & other post-

procedural status
292 0.001∗+ 0.007+ 0.007+ Drug-induced mental disorders
301 0.002∗+ 0.069+ 0.066+ Borderline personality disorder

Additional ICD-9 codes with individual p-value under 5%

780 0.010∗+ 0.178+ 0.169+ Alteration of consciousness, convulsions, and sleep
disturbances

299 0.019∗+ 0.050∗+ 0.035∗+ Pervasive developmental disorders
298 0.036∗+ 0.075+ 0.044∗+ Other non-organic psychoses
304 0.041∗+ 0.014∗+ 0.011∗+ Drug dependence (such as opioid type, cocaine, or

cannabis)
966 0.041∗+ 0.140+ 0.129+ Poisoning by anticonvulsants drugs
E98 0.043∗− 0.046∗− 0.065− Poisoning by analgesics, tranquilizers with undeter-

mined reason
272 0.046∗+ 0.139+ 0.094+ Disorders of lipoid metabolism
070 0.053+ 0.008∗+ 0.008∗+ Chronic viral hepatitis C
V65 0.143+ 0.027∗+ 0.047∗+ Counseling on substance use and abuse
874 0.338+ 0.029∗+ 0.063+ Open wound of neck without mention of complication
969 0.421− 0.027∗− 0.024∗− Poisoning by antidepressants, antipsychotics, and

neuroleptics

I.Cox: Integrative Cox model; C.Cox: Regular Cox model fitted to dataset I before
matching; U.Cox: Regular Cox model fitted to data with matched records removed.

tients with dyspnea respiratory abnormalities and chest pain (ICD-9 code1

786) had significantly higher risk. In the literature, chest pain was reported2

to have positive association between psychiatric illness and panic disorder3

by Katon et al. (1988) and Fleet et al. (1996), respectively, which provided a4

possible explanation. Patients having postsurgical acquired absence of organ5

and other postprocedural status (ICD-9 code V45) were also under higher6

risk of death, which may or may not be directly related to suicide.7

We also checked the screening results without FDR control. The ad-8

ditional ICD-9 codes with unadjusted p-values under 5% are reported in9

the lower part of Table 5. For example, the effect of disorders of lipoid10

metabolism indicated by ICD-9 code 272 was identified by I.Cox. The posi-11

tive association between suicidal behavior and lipid metabolism in depressive12

disorders was reported by Koponen et al. (2015). Overall, various mental13
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Table 6
Coefficient estimates from joint model including significant ICD-9 categories from

marginal screening by I.Cox with FDR controlled at 5%.

Predictor β̂ exp(β̂) SE(β̂) z Pr(> |z|)

Demographics
Age 0.12 1.22 0.11 1.11 0.269
Male 1.81 6.11 0.32 5.63 0.000
White 2.18 8.86 0.38 5.78 0.000

ICD-9 Code
786 1.54 4.67 0.36 4.23 0.000
V45 1.68 5.34 0.57 2.95 0.003
292 0.69 1.98 0.31 2.21 0.027
301 0.60 1.82 0.24 2.48 0.013

disorders, psychological issues, drug dependence and abuse appear to be as-1

sociated with shortened survival time after unsuccessful suicide attempts.2

Therefore, by taking the data uncertainty into consideration and utilizing3

information from the second data source, the proposed I.Cox method reveals4

much more insightful results than the naive approaches.5

We then turned our attention to joint modeling, to check the estima-6

tion and predictive power of the joint model with all the identified ICD-97

categories. Table 6 summarizes the refitted I.Cox model with the three de-8

mographic variables (age, gender, and race) and the four significant ICD-99

indicators identified from marginal screening. The coefficient estimates of10

male, White and four ICD-9 indicators were all significantly positive at 5%11

level, consistent with the results from screening, while coefficient estimate of12

age was insignificant. Because neither of the naive Cox methods suggested13

any significant ICD-9 category with FDR controlled at 5% from marginal14

screening, their joint models only included the three demographic variables.15

We checked that the coefficient estimates were all significant at 5%.16

For the three joint models resulting from I.Cox and two naive meth-17

ods, we performed an out-of-sample comparison analysis on their prediction18

performance. (We excluded age in the joint model of I.Cox since it was in-19

significant.) Specifically, we randomly split the patients into a training set20

and a test set. Patients having events and patients having censoring times21

were put in different strata so that the training set and the testing set had22

about the same censoring rate. For U.Cox, patients in Case 1 and Case 223

were randomly selected into training set with probability 0.8; for C.Cox,24

patients having certain event times (Case 1) and the remaining patients25

having censoring times in dataset I were randomly selected into the training26

set, separately, with probability 0.8; for I.Cox, patients in Case 1, Case 2,27
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Fig 3. Out-of-sample comparison of the prediction performance on survival outcomes of
I.Cox and the naive methods using random splitting.

and Case 3 were randomly selected into the training set, respectively, with1

probability 0.8, 0.8, and 1. As such, for each method, the testing set only2

consisted of patients whose records are certain (Case 1 and Case 2), which3

makes an objective evaluation of fitted models possible. In each split, a fitted4

model using the training set was used to predict the survival outcomes of5

patients in the testing set and classify them to a high risk group and a low6

risk group based on their risk scores. By comparing the group classification7

to the actual outcomes, we computed the receiver-operator characteristics8

(ROC) curve of the survival outcomes. The random split procedure was9

repeated 1,000 times and the results were then averaged.10

Figure 3 presents the ROC curves (on the left panel), and the curves (on11

the right panel) showing the relationship between the size of the high risk12

group and the proportion of subjects having observed suicide death that13

were captured in the high risk group. Here the ROC curves are based on14

binary classification using the predicted risk scores; this is motivated by the15

clinical setting of a suicide prevention program, where a group of patients16

with high risk of suicidal death is identified and subsequently monitored for17

suicide prevention. We remark that one may also use a time-dependent ROC18

analysis (Heagerty and Zheng, 2005) to quantify the prediction performance19

of a survival model. On average, the area under curve (AUC) was 0.825 for20

I.Cox, 0.761 for C.Cox, and 0.757 for U.Cox. Therefore, the I.Cox model21

provided a better prediction on survival outcomes than both of the naive22

methods overall. The results on the right panel converted the ROC curves23
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based on the censoring rate and showed that in order to capture 60% of1

the patients having observed events, the size of the high risk group needed2

was 10.6% on average for I.Cox, much less than the sizes 23.8% and 24.3%3

for C.Cox and U.Cox, respectively. Translating to the real clinical setting,4

this means that in order to capture 60% of the patients that would die,5

using I.Cox allows us to achieve this by monitoring only 10.6% of all the6

patients, while using the native Cox methods will require 25%, a much larger7

population.8

7. Discussion. We studied a general survival modeling setup with inte-9

grated data, in which the survival outcome, i.e., the time to certain event of10

interest, needed to be captured from multiple datasets through record link-11

age. Such problems are especially prevalent in medical research and health-12

care analytics. Some commonly encountered events of interest include occur-13

rence of disease, hospital readmission after discharge, and death following14

certain diagnostics or treatment. However, patients’ medical records are of-15

ten scattered among many healthcare providers and government agencies.16

These datasets are generally de-identified to protect patient privacy, but17

due to limitations in the current healthcare system, the de-identification of18

each dataset is often done separately before data integration, causing the19

aforementioned record linkage issues. To the best of our knowledge, build-20

ing healthcare information exchange system to connect healthcare providers21

is still largely an ongoing effort. Moreover, analyzing uncertain survival or22

time-to-event data is challenging due to censoring. When the censoring rate23

is high, e.g., the event is rare, the information on event times can be quite24

limited and the results could become sensitive to inaccuracies and anomalies25

in event times. Therefore, properly handling the uncertainty in event times26

holds the key to ensure the validity of statistical inference.27

Data integration with partial identifier is a double-edged sword in inte-28

grative statistical analysis. As a powerful tool to combine information from29

multiple sources, integrative analysis with probabilistic uncertainty model-30

ing needs to be applied with care depending on the degree of imperfectness31

or noise. Imperfect data integration introduces noise and sometimes errors32

into the integrated data, the consequence of which could outweigh the po-33

tential gain in integrative data analysis. Although it is difficult to provide34

a specific guideline on when to use integrative analysis, we suggest that35

practitioner always perform out-of-sample analysis to evaluate and compare36

different methods whenever possible. To ensure the evaluation is objective,37

only the data without uncertainty should be used in testing.38

Our case study has an additional distinguishing feature in that it is the39
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outcome variable (survival time) that is obtained from data integration. This1

is in contrast to other integrative data analysis settings where usually pre-2

dictors or features are obtained from multiple data sources. In our applica-3

tion, we obtained insightful results on potential risk factors associated with4

death following suicide attempt, which otherwise would have been missed5

by the naive approaches. Compared with the method of Snapinn (1998), our6

method is more attractive in that it does not require additional diagnostic7

variables or prior knowledge on the characterization of the truth indicators.8

Several directions are worth pursuing for future research. The standard9

errors of the estimates cannot be easily produced along with the proposed10

estimation procedure. Although bootstrap is shown to perform well, the11

method would be more attractive in practice if a less computationally inten-12

sive inference approach were available. Under realistic settings of imperfect13

data linkage, the proposed method is shown to outperform several naive ap-14

proaches. A natural theoretical question of interest is to quantify how the15

potential gain from data integration is associated with the quality of the16

original data and the match data. Our model framework is flexible and can17

be further extended to other survival models such as parametric survival18

models and competing risk models. Other extensions include the modeling19

of censoring times with covariates and the incorporation of certain known20

missing mechanism of the label of true endpoint. In our application, we21

adopted a marginal screening approach to identify important predictors; it22

would be interesting to extend the proposed method to conduct variable23

selection with high-dimensional predictors through regularized estimation.24

The rareness of suicide attempt brings many challenges in its modeling and25

prediction, including the occurrence of quasi-complete separation; these is-26

sues will need to be carefully studied in the future.27

It is promising to further explore the trimmed likelihood formulation to28

better understand the robustness of the proposed approach and design better29

algorithm to target its global optimal solution. This formulation also sheds30

light on the consistency of the resulting estimator of the proposed method31

through the perspective of robust estimation and outlier detection. It shows32

that at least two conditions, regarding the proportion and magnitude of the33

“outliers’ — fake records — are required. First, the proportion of patients34

with uncertain records should be under control, e.g., (n2 + n3)/n → c for35

some 0 ≤ c < 1 as n→∞. Second, the fake records have to be distinguish-36

able from the true one; e.g., for patient j, we need k∗ = arg maxk rj,k(β
∗) for37

n sufficiently large, where the k∗th record is the truth and β∗ denotes the38

true coefficient vector. A thorough investigation of the theoretical properties39

of the proposed method along this direction is of interest.40
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SUPPLEMENTARY MATERIAL

Supplementary Materials: Integrative Survival Analysis with1

Uncertain Event Times in Application to a Suicide Risk Study2

(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide detailed3

derivations of the likelihood formulation, additional supporting tables/figures4

from simulation studies, and discussions on the properties of the proposed5

method.6
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