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Abstract—The `p (0 < p < 1) quasi-norm is used as a sparsity-
inducing function, and has applications in diverse areas, e.g.,
statistics, machine learning, and signal processing. This paper
proposes a heuristic based on a two-block ADMM algorithm for
tackling `p quasi-norm minimization problems. For p = s/q < 1,
s, q ∈ Z+, the proposed algorithm requires solving for the roots
of a scalar degree 2q polynomial as opposed to applying a soft
thresholding operator in the case of `1. We show numerical results
for two example applications, sparse signal reconstruction from
few noisy measurements and spam email classification using sup-
port vector machines. Our method obtains significantly sparser
solutions than those obtained by `1 minimization while achieving
similar level of measurement fitting in signal reconstruction, and
training and test set accuracy in classification.

I. INTRODUCTION

This paper considers problems of the form:

min
x

‖x‖pp ,
∑
i∈[n] |xi|p s.t. f(x) ≤ 0, (1)

where p ∈ (0, 1), [n] = {1, . . . , n}, n ∈ Z+, and f : Rn → R
is a convex possibly nonsmooth function. This formulation
arises in areas as machine learning and signal processing.
For instance, let {(ui, vi)}i∈[m] be a training set of feature-
label pairs (ui, vi), and m ∈ Z+. In regression, one seeks
to fit a model that relates vi ∈ R to ui via solving (1) with
f(x) = ‖Ux − v‖2 − ε, where the ith row of U ∈ Rm×n is
constructed using ui, v = [vi]i∈[m], and ε > 0. Alternatively,
if vi ∈ {−1, 1} denotes a class label in a binary classification
problem, one might seek to find a linear classifier with a
decision rule v̂ = sign(u>x), e.g., using support vector
machines, where the first entry of u and x are 1 and the
bias term, respectively. The classifier can be obtained by
solving (1) with f(x) = 1

m

∑
i∈[m]

(
1− viu>i x

)+ − ε, where
(.)+ = max(., 0). In both examples, the `p quasi-norm of
x is used in (1) as a sparsity-inducing function. Problem (1)
provides a tradeoff between how well a model performs on a
certain task versus its complexity, controlled by ε.

We propose an ADMM algorithm for approximating the so-
lution of (1). For p = s/q < 1, the computational complexity
of the proposed algorithm is similar to `1 minimization except
for the additional effort of solving for the roots of a scalar
degree 2q polynomial as opposed to applying the soft thresh-
olding operator for `1. We present numerical results showing
that our method significantly outperforms `1 minimization in
terms of the sparsity level of obtained solutions.

This work was partially supported by National Institutes of Health (NIH)
Grant R01 HL142732, National Science Foundation (NSF) Grant 1808266.

A sparse solution to (1) is defined as one that has a
small number of entries whose magnitudes are significantly
different than zero [1]. Indeed, many signals/images are either
sparse or compressible, i.e., can be approximated by a sparse
representation with respect to some transform domain. The
development of a plethora of overcomplete waveform dictio-
naries motivate the basis pursuit principle that decomposes a
signal into a sparse superposition of dictionary elements [2].
Furthermore, sparsity finds application in object recognition
and classification problems, e.g., [5], and signal estimation
from incomplete linear measurements known as compressed
sensing [6], [7]. Reference [8] provides a comprehensive
review of theoretical results on sparse solutions of linear
systems and its applications in inverse problems.

Retrieving sparse solutions of underdetermined linear sys-
tems received tremendous attention over the past two decades;
see [8] and references therein. Reference [10] identifies the
major algorithmic approaches for tackling sparse approxima-
tion problems, namely, greedy pursuit [11], convex relaxation
[2], [6], [7], [12], and nonconvex optimization [13], [14].

Problems seeking sparse solutions are often posed as
min{f(x) + µg(x)} for some µ > 0 and a sparsity-inducing
penalty function g, e.g., g(x) = ‖x‖pp, where g can be
either convex, e.g., p = 1, or nonconvex, e.g., 0 ≤ p < 1.
For a comprehensive reference on sparsity-inducing penalty
functions, see [15]. It has been shown that exact sparse signal
recovery from few measurements is possible via letting g be
the `1 norm if the measurement matrix satisfies a certain
restricted isometry property (RIP) [1], [16]. However, RIP is
a stringent property. Motivated by the fact that ‖x‖pp → ‖x‖0
as p → 0, it is natural to consider the `p quasi-norm
problem (0 < p < 1). It has been shown in [17] that `p
minimization with p < 1 achieves perfect signal reconstruction
under less restrictive isometry conditions than needed for
`1. Several references considered sparse signal reconstruction
via nonconvex optimization, [13], [17]–[21] to name a few.
In [13], it is shown that replacing `1 norm with `p quasi-
norm, signal recovery is possible using fewer measurements.
Furthermore, [13] presents a simple projected gradient descent
method that identifies a local minimizer of the problem. An
algorithm that uses operator splitting and Bregman iteration
methods as well as a shrinkage operator is presented in [18].
Reference [19] proposes an algorithm based on the idea of
locally replacing the original nonconvex objective function
by quadratic convex functions that are easily minimized and
establishes connection to iterative reweighted least squares
[22]. In [20], an interior point potential reduction algorithm
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is proposed to compute an ε-KKT solution in O(nε log 1
ε )

iterations, where n is the dimension of x. Reference [21]
uses ADMM and proposes a generalized shrinkage operator
for nonconvex sparsity-inducing penalty functions.

II. ALGORITHM

This section develops a method for approximating the
solution of (1). Problem (1) is convex at p = 1; hence, can be
solved efficiently and exactly. However, the problem becomes
nonconvex when p < 1. An epigraph equivalent formulation
of (1) is obtained by introducing the variable t = [ti]i∈[n]:

min
x,t

1>t

s.t. ti ≥ |xi|p, i ∈ [n]

f(x) ≤ 0,

(2)

where 1 is a vector of all ones. Let the nonconvex set X ⊂ R2

be the epigraph of the scalar function |x|p, i.e., X = {(x, t) ∈
R2 : t ≥ |x|p}. Then, (2) can be cast as

min
x,t

∑
i∈[n]

1X (xi, ti) + 1>t

s.t. f(x) ≤ 0,

(3)

where 1X (.) is the indicator function to the set X , i.e., it
evaluates to zero if its argument belongs to the set X and is
+∞ otherwise. ADMM exploits the structure of the problem
to split the optimization over the variables via iteratively
solving fairly simple subproblems. In particular, we introduce
auxiliary variables y = [yi]i∈[n] and z = [zi]i∈[n] and obtain
an ADMM equivalent formulation of (3) given by:

min
x,t,y,z

∑
i∈[n]

1X (xi, ti) + 1Y(y) + 1>z

s.t. x = y : λ

t = z : θ,

(4)

where Y is the 0-sublevel set of f , i.e., Y = {y ∈ Rn :
f(y) ≤ 0}. The dual variables associated with the constraints
x = y and t = z are λ and θ, respectively. Hence, the
Lagrangian function corresponding to (4) augmented with a
quadratic penalty on the violation of the equality constraints,
with penalty parameter ρ > 0, is given by:

Lρ(x, t,y, z,λ,θ) =
∑
i∈[n]

1X (xi, ti) + 1Y(y) + 1>z

+ λ>(x− y) + θ>(t− z) +
ρ

2

(
‖x− y‖2 + ‖t− z‖2

)
. (5)

Consider the two block variables (x, t) and (y, z). Then,
ADMM [23] consists of the following iterations:

(x, t)k+1 = argmin
x,t

Lρ(x, t,y
k, zk,λk,θk) (6)

(y, z)k+1 = argmin
y,z

Lρ(x
k+1, tk+1,y, z,λk,θk) (7)

λk+1 = λk + ρ(xk+1 − yk+1) (8)
θk+1 = θk + ρ(tk+1 − zk+1). (9)

Algorithm 1: ADMM (ρ > 0)

1 Initialize: y0, z0, λ0, θ0

2 for k ≥ 0 do
3 (xi, ti)

k+1 ← ΠX

(
yki −

λk
i

ρ , z
k
i −

θki
ρ

)
, ∀i ∈ [n]

4 yk+1 ← ΠY

(
xk+1 + λk

ρ

)
5 zk+1 ← tk+1 + θk−1

ρ

6 λk+1 ← λk + ρ(xk+1 − yk+1)

7 θk+1 ← θk + ρ(tk+1 − zk+1).

According to the expression of the augmented Lagrangian
function in (5), it follows from (6) that the variables x and t
are updated via solving the following nonconvex problem:

min
x,t

‖x− yk +
λk

ρ
‖2 + ‖t− zk +

θk

ρ
‖2

s.t. (xi, ti) ∈ X , i ∈ [n].

(10)

Exploiting the separable structure of (10), one immediately
concludes that (10) splits into n independent 2-dimensional
problems that can be solved in parallel, i.e., for each i ∈ [n],

(xi, ti)
k+1 = ΠX

(
yki −

λki
ρ
, zki −

θki
ρ

)
, (11)

where ΠX (.) denotes the Euclidean projection operator onto
the set X . Furthermore, (5) and (7) imply that y and z are
independently updated as follows:

yk+1 = ΠY

(
xk+1 +

λk

ρ

)
(12)

zk+1 = tk+1 +
θk − 1

ρ
. (13)

Algorithm 1 summarizes the proposed ADMM algorithm.
It is clear that z, λ, and θ merit closed form updates. How-
ever, updating (x, t) requires solving n nonconvex problems.
Moreover, a projection onto the convex set Y is needed for
updating y which can lead to a heavy computational burden.
In the following two sections, we present our approach for
handling these two concerns.

III. NONCONVEX PROJECTION

In this section, we present the method used to tackle the
nonconvex projection problem required to update x and t.

Among the advantages of the proposed algorithm is that it
is amenable to decentralization. As is clear from (11), x and
t can be updated element-wise via performing a projection
operation onto the nonconvex set X , one for each i ∈ [n]. The
n projection problems can be run independently in parallel. We
now outline the proposed idea for solving one such projection,
i.e., we suppress the dependence on the index of the entry of
x and t. For (x̄, t̄) ∈ R2, ΠX (x̄, t̄) entails solving

min
x,t

g(x, t) , (t− t̄)2 + (x− x̄)2

s.t. t ≥ |x|p.
(14)
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If t̄ ≥ |x̄|p, then trivially ΠX (x̄, t̄) = (x̄, t̄). Thus, we focus on
the case in which t̄ < |x̄|p. The following proposition states
the necessary optimality conditions for (14).

Proposition 1. Let t̄ < |x̄|p, and (x∗, t∗) be an optimal
solution of (14). Then, the following properties are satisfied

(a) sign(x∗) = sign(x̄),
(b) t∗ ≥ t̄,
(c) |x∗|p ≥ t̄,
(d) t∗ = |x∗|p.

Proof. We prove the statements by contradiction as follows:
(a) Suppose that sign(x∗) 6= sign(x̄), then

|x∗ − x̄|= |x∗ − 0|+|x̄− 0| > |x̄− 0|, (15)

i.e., (x∗− x̄)2 > (0− x̄)2. Hence, g(x∗, t∗) − g(0, t∗) >
0. Moreover, the feasibility of (x∗, t∗) implies that t∗ >
0. Thus, (0, t∗) is feasible and attains a lower objective
value than that attained by (x∗, t∗). This contradicts the
optimality of (x∗, t∗).

(b) Assume that t∗ < t̄. Then,

g(x∗, t∗)− g(x∗, t̄) = (t∗ − t̄)2 > 0. (16)

Furthermore, by the feasibility of (x∗, t∗), we have
|x∗|p ≤ t∗ < t̄. Thus, (x∗, t̄) is feasible and attains a
lower objective value than that attained by (x∗, t∗). This
contradicts the optimality of (x∗, t∗).

(c) Suppose that |x∗|p < t̄, i.e.,

−t̄
1
p < x∗ < t̄

1
p . (17)

We now consider two cases, x̄ > 0 and x̄ < 0. First, let
x̄ > 0. Then, we have by (a) and (17) that 0 < x∗ < t̄

1
p .

Since t̄ < |x̄|p, i.e., (x̄, t̄) /∈ X , therefore t̄
1
p < x̄ and

hence, 0 < x∗ < t̄
1
p < x̄. Pick x0 > 0 such that |x0|p = t̄,

i.e., x0 = t̄
1
p . Then clearly, x∗ < x0 < x̄. Thus, we have

g(x∗, t∗)− g(x0, t
∗) = (x∗ − x̄)2 − (x0 − x̄)2 > 0, (18)

where the last inequality follows from the just proven
identity that x∗ < x0 < x̄. Moreover, we have by (b)
that |x0|p = t̄ ≤ t∗. Thus, (x0, t

∗) is feasible and attains
a lower objective value than that attained by (x∗, t∗). This
contradicts the optimality of (x∗, t∗).
On the other hand, let x̄ < 0. Then, we have by (a) and
(17) that −t̄

1
p < x∗ < 0. Since t̄ < |x̄|p, i.e., (x̄, t̄) /∈ X ,

then t̄
1
p < |x̄|, i.e., x̄ < −t̄

1
p . Therefore,

x̄ < −t̄
1
p < x∗, (19)

Pick x0 < 0 such that |x0|p = t̄, i.e., x0 = −t̄
1
p . Then,

(18) also holds when x̄ < 0. Note that |x0|p = t̄ ≤ t∗ by
(b). Thus, (x0, t

∗) is feasible and attains a lower objective
value than that attained by (x∗, t∗). This contradicts the
optimality of (x∗, t∗).

(d) The feasibility of (x∗, t∗) eliminates the possibility that
t∗ < |x∗|p. Now let t∗ > |x∗|p and pick t0 = |x∗|p. Then,

Algorithm 2: Nonconvex projection (p = s
q < 1)

1 R ← roots{a2q + s
q (a2s − t̄as)− |x̄|aq}

2 R̄ ← R\{complex numbers and negative reals in R}
3 T ← {(rq, rs) : r ∈ R̄}
4 (x̂, t∗)← argmin {g(x, t) : (x, t) ∈ T }
5 x∗ ← sign(x̄)x̂

t̄ ≤ |x∗|p = t0 < t∗, where the first inequality follows
from (c). Then, 0 ≤ t0 − t̄ < t∗ − t̄. Thus, we have

g(x∗, t∗)− g(x∗, t0) = (t∗ − t̄)2 − (t0 − t̄)2 > 0, (20)

Furthermore, the feasibility of (x∗, t0) follows trivially
from the choice of t0. Thus, (x∗, t0) is feasible and attains
a lower objective value than that attained by (x∗, t∗). This
contradicts the optimality of (x∗, t∗).

This concludes the proof.

We now make use of the fact that for (14), an optimal
solution (x∗, t∗) satisfies that t∗ = |x∗|p and hence, (14)
reduces to solving

min
x

(|x|p − t̄)2 + (x− x̄)2. (21)

The first order necessary optimality condition for (21) implies
the following:

p|x∗|p−1sign(x∗)(|x∗|p − t̄) + x∗ − x̄ = 0. (22)

By the symmetry of the function |x|p, assume without loss
of generality that x∗ > 0 and let 0 < p = s

q < 1 for some
s, q ∈ Z+. A change of variables aq = x∗ plugged in (22)
shows that finding an optimal solution for (14) reduces to
finding a root of the following scalar degree 2q polynomial:

a2q +
s

q

(
a2s − t̄as

)
− x̄aq. (23)

Thus, to find ΠX (x̄, t̄), solve for a root a∗ of the polynomial
in (23) such that (a∗

q

, a∗
s

) minimizes g(x, t). Algorithm 2
summarizes the method we use to solve problem (14). In case
x̄ = 0, we set x∗ = t∗ = 0. If the set R̄ is empty, we set
x∗ = 0 and t∗ = (t̄)+.

IV. DISTRIBUTED CONVEX PROJECTION

Step 4 of Algorithm 1 involves solving a convex projection
problem. Although convex, solving this problem can poten-
tially be a computational bottleneck in some applications, or
not at all feasible in some others. For example, designing
a classifier with a huge training set renders the projection
problem computationally intensive. Moreover, if the data is
distributed among multiple entities, i.e., each entity has a
private local data set, then a centralized solution to the
projection problem might not be a viable option.

In many applications, the function f(x) in (1) evaluates the
loss incurred by x averaged on a data set T , i.e., f merits a
separable structure with respect to the data. Thus, we propose
to solve the projection problem using a scatter-gather type of
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algorithm in which a master node distributes the computational
load over a group of workers N . Each worker performs a local
few-shot learning, while the master combines their decisions.

Let T = {(uj , vj)}j∈[m] be a training set of feature-
label pairs with m examples, and consider f(x) =
1
m

∑
j∈[m] `(uj , vj ,x) − ε, where ` is some convex loss

function. Then, ΠY(ȳ) entails solving:

min
y

1

2
‖y − ȳ‖2 s.t.

1

m

∑
j∈[m]

`(uj , vj ,y) ≤ ε. (24)

Define {Ti}i∈N as a partition of T , where the ith set of
training examples Ti is assigned to worker i ∈ N . Indeed, Ti
might be a local private data set generated at worker i ∈ N .
Instead of solving (24) in a centralized setting, the master
broadcasts ȳ to all workers, each worker finds

y∗i = argmin
yi

1

2
‖yi−ȳ‖2 s.t.

1

|Ti|
∑
j∈Ti

`(uj , vj ,yi) ≤ ε,

(25)
reports its local decision y∗i to the master, then the master
combines the workers’ decision simply via averaging, i.e.,
y∗ =

∑
i∈N

|Ti|
m y∗i . This y∗ is the updated y variable with

which Algorithm 1 proceeds.

V. NUMERICAL RESULTS

We conduct numerical experiments on two families of prob-
lems: i) sparse signal reconstruction from noisy measurements,
and ii) binary classification using support vector machines. We
compare our method on problem (1) at p = 0.5 with a CVX
[26] solution of (1) at p = 1.

A. Sparse signal reconstruction

Let n = 210, m = n
4 , and randomly construct a matrix

U ∈ Rm×n such that U = [M,−M] and M is a sparse
binary random matrix with a few number of ones in each
column. More precisely, the number of ones in each column
of M is generated independently and randomly in the range of
integers between 10 and 20, and their locations are randomly
chosen independently for each column. Sparse binary random
matrices satisfy a weak form of the RIP, and following the
setup in [20], the concatenation of two copies of the same
random matrix in U implies that column orthogonality is
not maintained. A reference signal xopt is generated such
that ‖xopt‖0 = d0.2ne. The indices of the nonzero entries
of xopt are uniform randomly chosen, and the value of
each nonzero entry is generated according to a zero-mean
unit-variance Gaussian distribution. The measurement vector
v = Uxopt + n, where n is a zero-mean Gaussian noise
vector with covariance σ2I, and I is the identity matrix. We
reconstruct a sparse signal from the noisy measurements v
via solving (1) with f(x) = ‖Ux − v‖/‖v‖ − ε, i.e., f(x)
measures the relative residual corresponding to x.

Fig. 1 plots the sparsity level of solutions obtained by both
`p quasi-norm and `1 norm minimization at various noise
variance levels. In particular, we solve (1) at p = 1/2 and
p = 1. An entry of x whose absolute value exceeds 10−6

10-4 10-3 10-2 10-1 100

σ
2

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

||x
|| 0 / 

n

p=0.5
p=1

Fig. 1. Effect of noise variance on the sparsity of solutions obtained by `p
quasi-norm and `1 norm minimization.

is considered a nonzero element and we compute the zero
norm of x accordingly. At each value of σ2, after the gener-
ation of the corresponding measurement vector v, we choose
ε = ‖Uxopt − v‖/‖v‖. Obviously, this choice of ε is not
possible in practice as xopt is not known a priori. Nevertheless,
its choice is motivated by the inherent dependence of ε and
σ2. One chooses ε depending on the noise level, i.e., the
higher the noise variance the higher the value of ε. Fig. 1
shows that our method produces sparser solutions than those
obtained by `1 when the noise level is relatively high. It is
worth mentioning that the solutions produced by Algorithm
1 are feasible with respect to (1). Furthermore, the behavior
depicted by Fig. 1 persists for any problem instance generated
as described above.

B. Binary classification

We use support vector machines to build a spam email
classifier. The training set used is a subset of the SpamAssassin
Public Corpus [24]. Let {(uj , vj)}j∈[m] be the training set
of feature vectors uj ∈ {0, 1}n with corresponding labels
vj ∈ {−1, 1} identifying whether the email is spam or not. We
do not dwell on the details related to feature extraction since
it is not the message that this experiment conveys. Instead, we
highlight the effectiveness of our method in deciding whether
an email is spam or not based on as few number of words
as possible. Indeed, the body of an email is preprocessed
based on ideas promoted by [25]. Following [25], we maintain
a vocabulary list of n = 1899 words. Then, for a given
preprocessed email j ∈ [m], the wth entry of uj is 1 if word
w in the vocabulary list appears in email j, and it is zero
otherwise. We build a linear classifier with a decision rule
v̂ = sign(u>x), where u is the feature vector of the email in
question, and x is the linear classifier’s coefficients with its
first entry being the bias term.

The purpose is to build a classifier that attains a high
accuracy on the training set and simultaneously uses the least
possible number of words from the vocabulary list to detect
whether an email is spam or legit, i.e., a low-complexity
classifier. We build the classifier by solving (1) with:

f(x) =
1

m

∑
j∈[m]

(
1− vju>j x

)+ − ε. (26)
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Fig. 2. Number of words selected for classification versus ε for `p quasi-norm
and `1 norm minimization.
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Fig. 3. Training and test set accuracies versus ε for `p quasi-norm and `1
norm minimization.

The desired training set accuracy is controlled by choosing ε,
i.e., the lower the value of ε the higher the accuracy. Clearly,
f not only urges u>j x to have the same sign as vj , but it also
urges that to happen with a margin, i.e., it tries to push u>j x
below −1 if vj = −1 to incur no cost from the jth training
example. Likewise, it tries to push u>j x above 1 if vj = 1.

We run Algorithm 1 with p = 1/2 on 2000 training emails
at various values of ε. We terminate the algorithm after 100
iterations at each value of ε, and evaluate the performance of
the learned classifier on a test set of 1000 emails. We solve (1)
at p = 1 for comparing its performance with that obtained by
Algorithm 1 at p = 1/2. Fig. 2 shows the number of nonzero
entries in the classifier’s coefficients x learned at p = 1 and
p = 1/2. An entry of x is considered nonzero if its absolute
value is above 10−4. The corresponding training and test set
accuracies for the obtained classifiers are plotted in Fig. 3. Fig.
2 and 3 together show that our method obtains classifiers that
use significantly less number of words to make a decision on
the legitimacy of an email while achieving almost similar level
of accuracy on both the training and test sets. This behavior
is consistent for all values of ε. For instance, at ε = 0.2, `0.5
minimization uses 11 words from the vocabulary list to make
decisions as opposed to 40 words used by `1 minimization.
Nevertheless, both `0.5 and `1 attain about the same training
and test set accuracies, 93% and 90%, respectively.

VI. CONCLUSION

We present a nonconvex ADMM algorithm that approx-
imates the solution of the `p (0 < p < 1) quasi-norm

minimization problem. The algorithm is computationally ef-
ficient, where its complexity is bounded by the effort of
finding a root for a scalar degree 2q polynomial for a rational
0 < p = s/q < 1. The method is numerically shown to
significantly outperform `1 in terms of sparsity of generated
solutions at similar performance levels in different tasks.
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