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Abstract— The paper introduces a novel methodology for the
identification of coefficients of switched autoregressive linear
models. We consider the case when the system’s outputs are
contaminated by possibly large values of measurement noise.
It is assumed that only partial information on the probabil-
ity distribution of the noise is available. Given input-output
data, we aim at identifying switched system coefficients and
parameters of the distribution of the noise which are compatible
with the collected data. System dynamics are estimated through
expected values computation and by exploiting the strong law of
large numbers. We demonstrate the efficiency of the proposed
approach with several academic examples. The method is
shown to be extremely effective in the situations where a large
number of measurements is available; cases in which previous
approaches based on polynomial or mixed-integer optimization
cannot be applied due to very large computational burden.

I. INTRODUCTION

The interest in the study of hybrid systems has been
persistently growing in the last years, due to their capability
of describing real-world processes in which continuous and
discrete time dynamics coexist and interact. Besides classical
automotive and chemical processes, emerging applications
include computer vision, biological systems, and communi-
cation networks.

Moreover, hybrid systems can be used to efficiently ap-
proximate nonlinear dynamics, with broad application, rang-
ing from civil structures to robotics and systems biology, that
entail extracting information from high volume data streams
[13], [18]. In the case of high dimentional data, nonlinear
order reduction or low dimensional sparse representations
techniques [9], [5], [16], are very effective in handling static
data, but most do not exploit dynamical information of the
data.

In the literature, several results have been obtained for the
analysis and control of hybrid systems, formally character-
izing important properties such as stability or reachability,
and proposing different control designs [10]. In parallel,
researchers rapidly realized that first-principle models may
be hard to derive especially with the increase of diverse
application fields. This sparked interest on the problem of

1Sarah Hojjatinia is with the School of Electrical Engineering and
Computer Science, The Pennsylvania State University, University Park, PA,
USA, szh199@psu.edu

2Constantino M. Lagoa is with the School of Electrical Engineering and
Computer Science, The Pennsylvania State University, University Park, PA,
USA, lagoa@psu.edu

3 Fabrizio Dabbene is with CNR-IEIIT, Politecnico di Torino, 10129
Torino, Italy, fabrizio.dabbene@ieiit.cnr.it

This work was partially supported by National Institutes of Health (NIH)
Grant R01 HL142732, National Science Foundation (NSF) Grant #1808266
and the International Bilateral Joint CNR-JST Lab COOPS.

identifying hybrid (switched) models starting from experi-
mental data; see for instance the tutorial paper [14] and the
survey [3].

It should be immediately pointed out that this identification
problem is not a simple one, since the simultaneous presence
of continuous and discrete state variables gives it a combi-
natorial nature. The situation becomes further complicated
in the presence of unknown-but-bounded noise. In this case
the problem is in general NP-hard. Several approaches have
been proposed to address this difficulty, see e.g. [8]. The
paper [15] reformulates the problem as a mixed-integer
program. These techniques proved to be very effective in
situations involving relatively small noise levels or moderate
dimensions, but they do not appear to scale well, and their
performance deteriorates as the noise level or problem size
increase.

Of particular interest are recent approaches based on con-
vex optimization: in [1] some relaxation based on sparsity are
proposed, while [12] develops a moment based approach to
identify the switched autoregressive exogenous system, and
[6] adapts it toward Markovian jump systems identification.
These methods are surely more robust, and represent the
choice of reference for medium-size problems and medium
values of noise, and have found applications in several
contexts, ranging from segmentation problems arising in
computer vision to biomedical systems.

However, the methods still rely on the solution of rather
large optimization problems. Even if the convex nature
of these problems allows to limit the complexity growth,
there are several situations for which their application be-
comes critical. For instance, identification problems cases
that involve quite high noise levels and/or large number of
measurements.

An enlightening example, which serves as a practical
motivation for our developments, arises in healthcare appli-
cations: the availability of activity tracking devices allows
to gather a large amount of information of the physical
activity of an individual. Physical activity is a dynamic
behavior, which in principle can be modeled as a dynamical
system [7]. Moreover, its characteristics may significantly
change depending on the time of the day, position, etc. This
motivated the approach of modeling it as a switching system
[2].

In this paper, we focus on cases involving a very large
number of sample points, possibly affected by large lev-
els of noise. In this situation, polynomial/moments based
approaches become ineffective, and different methodologies
need to be devised. The approach we propose builds upon
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the same premises as [12]: the starting point is the algebraic
procedure due to Ma and Vidal [11], where it has been
shown for noiseless processes, it is possible to identify the
different subsystems in a switching system by recurring to
a Generalized Principal Component Analysis (GPCA). In
particular, we infer the parameters of each subsystem from
the null space of a matrix Vn(r) constructed from the input-
output data r via a nonlinear embedding (the Veronese map).

The approach was extended to the cases in presence of
process noise in [12], showing how the entries of this matrix
depend polynomially on the unknown noise terms. Then,
the problem was formulated in an unknown-but-bounded
setting, looking for an admissible noise sequence rendering
the matrix Vn(r) rank deficient. This problem was then
relaxed using polynomial optimization methods.

In this work, we follow the same line of reasoning, but
then take a somewhat different route. First, we consider
random noise, and we assume that some information on the
noise is available. Then, instead of relaxing the problem, we
exploit the availability of a large number of measurements
to make recurse to law-of-large-numbers type of reasoning.
This allows us to devise an algorithm characterized by an ex-
tremely low complexity in terms of required operations. The
ensuing optimization problem involves only the computation
of the singular vector associated with the minimum singular
value of a matrix that can be efficiently computed and whose
size does not depend on the number of measurements.

A. Paper Organization

The paper is structured as follows: after this introduction,
there is a brief notation section. Section II includes the
problem statement. In Section III, algebraic reformulation of
switched autoregressive (SAR) linear system identification
problem for noiseless data is reviewed. The problem of
identifying SAR system in the presence of noise is surveyed
in Section IV. In Section V, the algorithm for estimating
unknown noise parameters is described. Numerical results
are shown in Section VI. Finally, Section VII concludes the
paper highlighting some possible future research directions.

B. Notation

Given a scalar random variable X , we denote by md

its dth moment, which may be computed according to the
following integral

md = E[xd] =

∫ ∞
−∞

xd f(x) dx (1)

where E[·] refers to expectation, and f(x) is the probability
density function of X . Additionally, the variance of X is
indicated by s2. For instance, if X has a normal distribution

with zero mean and variance s2, i.e. f(x) =
1

s
√
2π
e−x

2/2s2 ,

its moments are given by

md = E[xd] =

{
0 if d is odd
sd (d− 1)!! if d is even

(2)

where !! denotes double factorial (n!! is the product of all
numbers from n to 1 that have the same parity as n).

II. PROBLEM STATEMENT

In this section, a complete description of the problem is
addressed. In addition, the required assumptions are defined
to solve the problem.

A. System Model

We consider SAR systems of the form

xk =

na∑
j=1

ajσ(k) xk−j +

nc∑
j=1

cjσ(k) uk−j (3)

where xk ∈ R is the output at time k and uk ∈ R is input
at time k. The variable σ(k) ∈ {1, ..., n} denotes the sub-
system active at time k, where n is the total number of
sub-systems. Furthermore, ajσ(k) and cjσ(k) denote unknown
coefficients corresponding to mode σ(k). Time k takes values
over the non-negative integers.

In practice, output is always contaminated by noise; i.e.
we assume that we observe

yk = xk + ηk (4)

where ηk, denotes measurement noise.
The following assumptions are made on the system model

and noise.
Assumption 1: Throughout this paper it is assumed that:
• Upper bounds on na and nc are available.
• Upper bound on the number of subsystems n is avail-

able.
• Noise ηk at time k is independent from ηl for k 6= l, and

identically distributed with probability density f(η|θ);
where θ is a (low dimensional) vector of unknown
parameters.

• Input sequence uk applied to the system is known and
bounded.

• There exists a finite constant L so that |xk| ≤ L for all
positive integers k.

B. Problem Definition

The main objective of this paper is to develop algorithms
that are able to identify the coefficients of a SAR model
from noisy observations. More precisely, we aim at solving
the following problem:

Problem 1: Given Assumption 1, an input sequence uk,
k = −nc + 1, . . . , N − 1 and noisy output measurements
yk, k = −na + 1, . . . , N , determine coefficients of the
SAR model ai,j , i = 1, 2, . . . , na, j = 1, 2, . . . , n, ci,j ,
i = 1, 2, . . . , nc, j = 1, 2, . . . , n, and the noise distribution
parameters θ.

III. NOISELESS CASE: A REVIEW

As a motivation for the approach presented in this paper,
we review and slightly reformulate earlier results on an
algebraic reformulation of the SAR identification problem
for the case where no noise is present. We refer the reader
to [19] for details on this algebraic approach to switched
system identification.
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A. Hybrid Decoupling Constraint

We start by noting that equation (3) is equivalent to

bTσ(k) rk = 0 (5)

where we introduced the (known) regressor at time k

rk = [xk, xk−1, · · · , xk−na , uk−1, · · · , uk−nc ]
T

and the vector of unknown coefficients at time k

bσ(k) =

[−1, a1σ(k), · · · , anaσ(k), c1σ(k), · · · , cncσ(k)]
T .

Hence, independently of which of the n submodels is active
at time k, we have

Pn(rk) =
n∏
i=1

bTi rk = cTnνn(rk) = 0, (6)

where the vector of parameters corresponding to the i-
th submodel is denoted by bi ∈ Rna+nc+1, and νn() is
Veronese map of degree n [4]

νn([x1, · · · , xs]T ) = [· · · , xn1
1 xn2

2 · · ·xns
s , · · · ]T

which contains all monomials of order n in lexicographical
order, and cn is a vector whose entries are polynomial
functions of unknown parameters bi (see [20] for explicit
definition). The Veronese map above is also known as
polynomial embedding in machine learning [20].

Equation (6) holds for all k, and these equalities can be
expressed in matrix form

Vn(r)cn =
[
νn(r1)

T , · · · , νn(rN )T
]T
cn = 0 (7)

where r, without the subscript, denotes the set of all regressor
vectors. Clearly, we are able to identify cn (and hence the
system’s parameters) if and only if Vn(r) is rank deficient.
In that case, the vector cn can be found by computing the
nullspace of Vn.

B. A Reformulation of the Hybrid Decoupling Constraint

Note that the number of rows of the Veronese matrix Vn
is equal to the number of measurements available for the
regressor; i.e., in the notation of our paper, the number of
rows is N . Therefore, a reformulation of the results in the
previous section is needed to be able to address the problem
of identification from very large data sets.

As mentioned in the previous section, in the absence of
noise, the SAR system identification is equivalent to finding
a vector cn satisfying

cTnνn(rk) = 0 for all k = 1, 2, . . . N.

This is in turn equivalent to finding cn so that

1

N

N∑
k=1

cTnνn(rk)ν
T
n (rk)cn = 0

As a result, for the noiseless case, identifying the coefficients
of the sub-models is equivalent to finding the singular vector
cn associated with the minimum singular value of the matrix

MN =
1

N

N∑
k=1

νn(rk)ν
T
n (rk)

.
=

1

N

N∑
k=1

Mk (8)

Note that, by using this equivalent condition, we only need
to consider matrices of size

(
n+na+nc

n

)
. In other words,

the size of this matrix does not depend on the number of
measurements. This is especially important when considering
very large data sets.

IV. SAR SYSTEM IDENTIFICATION IN THE PRESENCE OF
NOISE

Now, we address the case where the measurements of
output of the switched autoregressive system are corrupted
by noise. As a first step, we consider the case where the
distribution of the noise is known, so its moments md are
available.

As seen in the previous section, identifying the parameters
of the SAR model is equivalent to finding a vector in the
null space of the matrix MN . Under mild conditions, the
null space of the matrix above has dimension one if and
only if the data is compatible with the assumed model.
However, if noise is present, xk is not known; therefore, this
matrix cannot be computed. In this section, we use available
information on the statistics of the noise to compute approx-
imations of the matrixMN , consequently approximations of
vectors in its null space.

A. On the Powers of xk
Since we do not have access to the values of the output

xk to estimate the values of the quantities in equation (8),
we need to relate the powers of xk to the measurements and
available information of the noise.

Note that xk is a (unknown) deterministic quantity. There-
fore

xhk = E[xhk ] (9)

Since xk = yk − ηk we have

xhk = E[xhk ] = E[(yk − ηk)h] ∀k = 1, 2, · · · , N (10)

Assume, for simplicity the distribution of the noise is sym-
metric with respect to the origin. As a result, all odd moments
are zero (in particular, the noise is zero mean, i.e. m1 = 0).
This assumption is made to simplify the calculations below
and the approach can be immediately extended to the non-
symmetric case.

We concentrate on computing the expected value of pow-
ers of xk recursively and in a closed form. First, we give an
example of how to compute the expected value of powers of
xk for powers h = 1, 2. For h = 1, we have

xk = E[xk] = E[yk − ηk] = E[yk]−m1 = E[yk] (11)

while, for h = 2, we can write

x2k = E[x2k] = E[(yk − ηk)2] = E[y2k]− 2E[ykηk] + E[η2k].
(12)
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Note that E[y2k] can be estimated from collected data, and
E[η2k] is equal to second moment of noise (m2), which is
assumed to be known. To estimate the value of E[ykηk],
consider the following

E[ykηk] = E[(xk + ηk)ηk] = E[xkηk] + E[η2k]. (13)

The quantities xk and ηk are mutually independent and,
therefore, E[xkηk] = E[xk]E[ηk], with E[ηk] = m1 = 0.
As a consequence, we have

E[ykηk] = E[η2k] (14)

and finally the value of equation (12) is

E[x2k] = E[y2k]− 2E[η2k] + E[η2k] = E[y2k]− E[η2k] (15)

= E[y2k]−m2

The reasoning above can be generalized to any power
of xk. More precisely, we have the following result whose
proof is an immediate consequence of the derivations so far.

Lemma 1: The expected value of the powers of xk satis-
fies

E[xhk ] = E[(yk − ηk)h] = E[yhk ]−
h∑
d=1

(
h

d

)
E[xh−dk ]E[ηdk]

= E[yhk ]−
h∑
d=1

(
h

d

)
E[xh−dk ]md

∀k = 1, 2, · · · , N. (16)

B. On the Structure of Mk

We derive some of the properties of the matrices Mk now.
An immediate consequence of the results in the previous
section is the following.

Lemma 2: Assume that the noise distribution, some pa-
rameters of the noise, and the input signal are given and
fixed. Let monn(·) denote a function that returns a vector
with all monomials up to order n of its argument. Then there
exists an affine function M(·) so that

Mk = E{M [monn(yk, . . . , yk−na)]}
=M{E[monn(yk, . . . , yk−na)]}.

It should be noted that the random variables yk and yl
are mutually independent for k 6= l, so the function above
can further be represented as a multilinear function of the
moments of yk.

C. An Example of Construction of Mk

To better illustrate the approach used in this paper, we
provide an example of how to construct the matrix Mk

required for identification. To this end, consider the problem
of identifying a SAR system with n = 2 subsystems of the
form

subsystem 1 : xk = a1 xk−1 + b1 uk−1

subsystem 2 : xk = a2 xk−1 + b2 uk−1
(17)

from noisy measurements

yk = xk + ηk (18)

where ηk has a symmetric distribution. We can rewrite the
system as in equation (6). In particular, the vector c2 as a
function of the parameters of the subsystems, assumes the
form

c2 = [1,−(a1 + a2),−(b1 + b2), a1a2, a1b2 + b1a2, b1b2]
T .

The regressor vector rk at time k

rk =
[
xk xk−1 uk−1

]T
gives rise to the following Veronese vector

νn(rk) = rk ⊗ rk =


x2k

xk xk−1
xk uk−1
x2k−1

xk−1 uk−1
u2k−1

 (19)

whose size is l × 1, with l =
(
n+na+nc

n

)
=
(
2+1+1

2

)
= 6.

From rk and νn(rk), we can compute matrix Mk, which
is given in Figure 1. Then, as we have the values of noisy
output yk, we compute expected value of powers of xk in
terms of expected value of powers of yk and moments of
measurement noise. Following the results of Lemma 1, we
obtain the second matrix in Figure 1. For system of equation
(17), Mk is given by the two expression in Figure 1.

D. Identification Algorithm

As mentioned before, to identify the parameters of the
SAR system, we need to be able to estimate the matrixMN

in equation (8). It turns out that it can be done by using the
available noisy measurements. More precisely, we have the
following result.

Theorem 1: Let M(·) and monn(·) be the functions de-
fined in Lemma 2. Define

M̂N
.
=

1

N

N∑
k=1

M [monn(yk, . . . , yk−na
)]

Then, as N →∞,

M̂N −MN → 0 a.s.

Sketch of proof: See Appendix.
As a result, the empirical average computed using the

noisy measurements (where expected values of monomials
are replaced by the measured monomial values) converges
to the desired matrix in equation (8). Therefore we propose
the following algorithm for identification of a SAR system.

Algorithm 1: Let na, nc, n and some parameters of the noise
be given.
Step 1. Compute matrix

M̂N =
1

N

N∑
k=1

M [monn(yk, . . . , yk−na)]
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Mk = νn(rk) ν
T
n (rk) =


x4k x3k xk−1 x3k uk−1 x2k x

2
k−1 x2k xk−1 uk−1 x2k u

2
k−1

∗ x2k x
2
k−1 x2k xk−1 uk−1 xk x

3
k−1 xk x

2
k−1 uk−1 xk xk−1 u

2
k−1

∗ ∗ x2k u
2
k−1 xk x

2
k−1 uk−1 xk xk−1 u

2
k−1 xk u

3
k−1

∗ ∗ ∗ x4k−1 x3k−1 uk−1 x2k−1 u
2
k−1

∗ ∗ ∗ ∗ x2k−1 u
2
k−1 xk−1 u

3
k−1

∗ ∗ ∗ ∗ ∗ u4k−1



Mk =


E[y4k]−6m2 (E[y2k]−m2)−m4 (E[y3k]−3m2 E[yk])E[yk−1] (E[y3k]−3m2 E[yk])uk−1

∗ (E[y2k]−m2) (E[y2k−1]−m2) (E[y2k]−m2)E[yk−1]uk−1

∗ ∗ (E[y2k]−m2)u
2
k−1

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

· · ·

· · ·

(E[y2k]−m2) (E[y2k−1]−m2) (E[y2k]−m2)E[yk−1]uk−1 (E[y2k]−m2)u
2
k−1

(E[y3k−1]−3m2 E[yk−1])E[yk] (E[y2k−1]−m2)E[yk]uk−1 E[yk]E[yk−1]u
2
k−1

(E[y2k−1]−m2)E[yk]uk−1 E[yk]E[yk−1]u
2
k−1 E[yk]u

3
k−1

E[y4k−1]−6m2 (y2k−1−m2)−m4 (E[y3k−1]−3m2 E[yk−1])uk−1 (E[y2k−1]−m2)u
2
k−1

∗ (E[y2k−1]−m2)u2
k−1 E[yk−1]u

3
k−1

∗ ∗ u4
k−1


Fig. 1. Example of construction of Mk

Step 2. Let cn be the singular vector associated with the
minimum singular value of M̂N .

Step 3. Determine the coefficients of the subsystems from
the vector cn.

In order to perform Step 3 in Algorithm 1, we adopt poly-
nomial differention algorithm for mixtures of hyperplanes,
introduced by Vidal [21, pp. 69–70].

V. ESTIMATING UNKNOWN NOISE PARAMETERS

We now address the case where the distribution of the
noise is not completely known. As mentioned in Assump-
tion 1, the distribition of the noise is known except for a
few parameters θ. For simplicity of exposition, lets consider
the case where the noise has a normal distribution with
zero mean and unknown variance s2. The reasoning extends
to any noise distribution with a small number of unknown
parameters.

In such a case, the objective is to simultaneously estimate
system parameters and the variance of noise. We start by
noting that computing MN using the true value of the
variance results in a rank deficient matrix. Moreover, given
collected data yk and uk, the matrix M̂N is a continuous
function of the moments of noise and, hence, a known con-
tinuous function of the standard deviation s. Given previous
convergence results, the true value of s will make M̂N to
have a very small minimum singular value (especially for
large values of N ). For this reason, estimation of s can be
performed by minimizing the minimum singular value of
matrix above over the allowable values of s. More precisely,
we propose the following algorithm

Algorithm 2: Let na, nc, n, some parameters of the noise
and smax be given.
Step 1. Compute matrix

M̂N =
1

N

N∑
k=1

M [mon(yk, . . . , yk−na)]

as a function of the noise parameter s.
Step 2. Find the value s∗ ∈ [0, smax] that minimizes the

minimum singular value of M̂N .
Step 3. Let cn be associated singular vector.
Step 4. Determine the coefficients of the subsystems from

the vector cn.

Note that the nonconvex optimization of Step 2 can be
solved via an easily implementable line-search. However,
the solution s∗ might not be unique; i.e., there might exist
several values of s that lead to a minimum singular value
very close to zero. In practice, our experience has been
that, for sufficiently large N , the above algorithm provides
both a good estimate of the systems coefficients, and noise
parameters; especially if we take s∗ to be the smallest value
of s for which the minimum singular value of M̂N is below
a given threshold ε.

VI. NUMERICAL RESULTS

In the following examples, we address the problem of
identifying a two-modes switched system of the form of
equation (17), whose true coefficients are a1 = 0.3, b1 =
1, a2 = −0.5, and b2 = −1. Measurement noise is assumed
to be zero-mean with Normal distribution. In the numerical
examples presented, N = 106 input-output data is given.
True and identified coefficients for different variances of
noise, are presented in Table I. Variance of noise and noise
to output ratio for each experiment are also shown in this
table. The provided noise to output ratio (γ) is defined as

γ =
max |η|
max |y|

(20)

Results are as expected even for high values of noise in
comparison to output. As it is illustrated in Table I, the
identified parameters are very close to true values which
demonstrates the convergence of proposed algorithm even for
small signal to noise ratio. Moreover, the algorithm requires
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TABLE I
IDENTIFYING POLYNOMIAL COEFFICIENTS FOR DIFFERENT VALUES OF NOISE VARIANCE AND DIFFERENT SYSTEM RUN.

system Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7 Value 8 Value 9
# 1 −(a1 + a2) -(b1 + b2) a1 a2 a1 b2 + b1 a2 b1 b2 γ s2 estimation of s2

true parameters 1 0.2 0 -0.15 -0.8 -1 - - -
identification 1 1 0.2002 0.0001 -0.1503 -0.7989 -0.9996 0.2410 0.1 0.1000
identification 2 1 0.2002 0.0011 -0.1510 -0.7974 -1.0004 0.5187 0.5 0.4980
identification 3 1 0.1977 0.0046 -0.1548 -0.7997 -0.9966 0.6494 1 1.0010
identification 4 1 0.2120 0.0003 -0.1485 -0.8006 -1.0017 0.8516 2 1.9950

a very small computational effort. For the case of 106

measurements and using an off-the-shelf core i5 laptop with
8 Gigs of RAM, the running time is between 7 to 8 seconds,
which shows the effectiveness of approach for very large data
sets.

The second norm of error between true coefficients of
system and estimated coefficients, ‖cn− ĉn‖2 , as a function
of number of measurements, N , is depicted in Figure 2 for
different values of noise variance. As it can be seen from
Figure 2, the error decreases as the number of measurements
increases. Rate of convergence is fast, despite the fact that,
in some of the experiments, a large amount of noise is used.
It should be noted that these results are for one experiment,
and given that this is a realization of a random process, error
is not always decreasing. For all values of noise variance,
error will eventually decrease and the estimated values of
coefficients converge to the true values.

104 105 106

10-3

10-2

10-1

s2 = 0.1

s2 = 0.5

s2 = 1

s2 = 2

Fig. 2. Estimation error of system coefficients

Now that we have identified the coefficients of polynomial,
it is time to identify each subsystems’ coefficients. For the
above mentioned example, Table II shows the values of
subsystems coefficients for different experiments related to
different values of noise variance. As we see in this table
the value of coefficients are very close to the true values,
even when the noise variance is high with noise magnitude
in average around 85% of the signal magnitude.

The estimation of noise variance based on the structure
of matrix Mk is shown in Table I as well. The estimates of
noise variance are very close to the true values of variance.

TABLE II
IDENTIFYING SUBMODELS’ COEFFICIENTS FOR DIFFERENT VALUES OF

NOISE VARIANCE.

coeff- true variance variance variance variance
icients values s2 = 0.1 s2 = 0.5 s2 = 1 s2 = 2

a1 0.3 0.3002 0.2981 0.3006 0.2938
b1 1 0.9988 1.0007 0.9412 1.0031
a2 -0.5 -0.4996 -0.5000 -0.5006 -0.5059
b2 -1 -0.9999 -0.9991 -1.0004 -1.0011

By knowing the structure of matrix Mk , the dependence
of every entry on the moments of noise, and the relation
in between these moments and the unknown variance (see
Section I-B), we are able to estimate the noise parameter (in
this case, noise variance). This illustrates the capability of
the proposed algorithm to estimate both system and noise
parameters even for large values of noise.

Two examples of the process of estimating the unknown
variance of noise are shown in Fig. 3; where Fig. 3(a) is for
the case of given data contaminated with noise of variance 1,
and Fig. 3(b) is for data with measurement noise of variance
2. By taking s∗ as the smallest local minimum, the estimated
variance for both cases in Fig. 3(a) and Fig. 3(b) is very close
to the true values.

VII. CONCLUSION AND FUTURE WORK

In this paper we have proposed a methodology to identify
the coefficients of switched autoregressive processes and
unknown noise parameters, starting from partial information
of the noise and given input-output data of switched system.
The approach is shown to be particularly efficient in the case
of large amount of data, situation that makes it possible to
exploit law-of-large-numbers type of results. The approach
requires the computation of singular value decomposition of
a specially constructed input-output Veronese matrix. The
ensuing singular vector is then related to the switched system
parameters to be identified. We prove that the estimated
parameters converge to the true ones as the number of
measurements grows. Numerical simulations show a low
estimation error, even in the case of large measurement
noise. Also, in cases that noise distribution is not completely
known, simulation results show very close estimation of
unknown parameters of noise to the true values. In future
work, we will consider the problem of identifying switched
systems with process noise from large amount of noisy
data. Moreover, we will address the problem of identifying
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Fig. 3. Estimation of noise variance

switching dynamics in switched processes form large noisy
data sets.
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APPENDIX

Sketch of Proof of Theorem 1: For simplicity of presenta-
tion, let

M̂k
.
=M [monn(yk, . . . , yk−na)]

We first note that, given the assumptions made on the noise,
uk and xk, the entries of M̂k have a variance uniformly
bounded for all k. Moreover

k > l + na ⇒ M̂k and M̂l are independent.

Hence, by Kolmogorov’s Strong Law of Large Numbers [17]
we have

1

L

L∑
l=1

M̂k+l(na+1) −
1

L

L∑
l=1

E[M̂k+l(na+1)]→ 0 a.s.

as L→∞. Since

E[M̂k)] =Mk for all positive integer k

and applying the results above for k = 1, 2, . . . , na + 1, we
conclude that

1

N

N∑
j=1

M̂j −
1

N

N∑
j=1

Mj → 0 a.s.

as N →∞.
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