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Summary
The article introduces novel methodologies for the identification of coefficients
of switching autoregressive moving average with exogenous input systems and
switched autoregressive exogenous linear models. We consider cases where sys-
tem's outputs are contaminated by possibly large values of noise for both cases of
measurement noise and process noise. It is assumed that only partial informa-
tion on the probability distribution of the noise is available. Given input-output
data, we aim at identifying switched system coefficients and parameters of the
distribution of the noise, which are compatible with the collected data. We
demonstrate the efficiency of the proposed approach with several academic
examples. The method is shown to be effective in the situations where a large
number ofmeasurements is available; cases inwhich previous approaches based
on polynomial ormixed-integer optimization cannot be applied due to very large
computational burden.
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1 INTRODUCTION

The interest in the study of hybrid systems has been persistently growing in the last years, due to their capabil-
ity of describing real-world processes in which continuous and discrete state dynamics coexist and interact. Besides
classical automotive and chemical processes, emerging applications include computer vision, biological systems, and
communication networks.

Moreover, hybrid systems can be used to efficiently approximate nonlinear dynamics, with broad application, ranging
from civil structures to robotics and systems biology, that entail extracting information from high-volume data streams.1-3
In the case of high-dimensional data, nonlinear order reduction or low-dimensional sparse representations techniques4-6
are very effective in handling static data, but most do not exploit dynamical information on the data.

In the literature, several results have been obtained for the analysis and control of hybrid systems, formally characteriz-
ing important properties such as stability or reachability and proposing different control designs.7 In parallel, researchers
rapidly realized that first-principle models may be hard to derive especially with the increase of diverse application fields.
This sparked interest on the problem of identifying hybrid (and, in particular, switched) models starting from experimen-
tal data; see for instance the tutorial article8 and the survey.9 In this article, we aim at addressing one important part
of this identification problem. Namely, we aim at developing algorithms that effectively identify the switching dynamic
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equations that govern the evolution of the continuous states. In other words, we aim at identifying the difference equation
of each submodel in the presence of measurement and process noise.

It should be immediately pointed out that this identification problem is not a simple one, since the simultaneous
presence of switching gives it a combinatorial nature. The situation becomes further complicated in the presence of noise.
In this case, the problem is in general NP-hard. Several approaches have been proposed to address this difficulty.10 The
identification problem is reformulated as a mixed-integer program in Roll et al.11 These techniques proved to be very
effective in situations involving relatively small noise levels or moderate dimensions, but they do not appear to scale well,
and their performance deteriorates as the noise level or problem size increase. In addition, the problem of identification
of piecewise linear systems, where the “active” linear submodel depends on the value of the state, has been addressed
in Ferrari-Trecate et al,12 Juloski et al,13 and Saxen et al.14 The aim is to identify both the submodels and the regions
where they are active. However, the problems formulated in these articles are nonconvex and only local optimality of the
proposed approaches is proven.

Of particular interest are recent approaches based on convex optimization: in the work by Bako15 relaxations based on
sparsity are proposed, while inOzay et al,16 amoment-based approach is developed to identify the switched autoregressive
exogenous system, and Hojjatinia et al17 adapts it toward Markovian jump systems identification. These methods are
surely more robust and represent the choice of reference for medium-size problems andmedium values of noise and have
found applications in several contexts, ranging from segmentation problems arising in computer vision to biomedical
systems.

However, the methods still rely on the solution of rather large optimization problems. Even if the convex nature of
these problems allows to limit the complexity growth, there are several situations for which their application becomes
critical. For instance, identification problems that involve quite high-noise levels and/or large number of measurements.

An enlightening example, which serves as a practical motivation for our developments, arises in healthcare applica-
tions: the availability of activity tracking devices allows to gather a large amount of information of the physical activity of
an individual. Physical activity is a dynamic behavior, which in principle can be modeled as a dynamical system.18 More-
over, its characteristics may significantly change depending on the time of the day, position, and so on. This motivated
the approach of modeling it as a switching system.19

In this article, we focus on cases involving a very large number of sample points, possibly affected by large levels of
noise. In this situation, polynomial/moments-based approaches become ineffective, and different methodologies need to
be devised. The approach we propose builds upon the same premises as Ozay et al16 and Hojjatinia et al:20 the starting
point is the algebraic procedure due to Ma and Vidal,21 where it has been shown that for noiseless processes it is possible
to identify the different subsystems in a switching system by recurring to a generalized principal component analysis
(GPCA). In particular, we infer the parameters of each subsystem from the null space of a matrix Vn(r) constructed from
the input-output data r via a nonlinear embedding (the Veronese map).

The approach was extended to the case where process noise is present in Ozay et al,16 showing how the
entries of this matrix depend polynomially on the unknown noise terms. Then, the problem was formulated in an
unknown-but-bounded setting, looking for an admissible noise sequence rendering the matrix Vn(r) rank deficient. This
problem was then relaxed using polynomial optimization methods.

In thiswork, we follow the same line of reasoning, but then take a somewhat different route. First, we consider random
noise, and we assume that some information on the noise is available. Then, instead of relaxing the problem, we exploit
the availability of a large number of measurements and its “averaged behavior.” This allows us to devise an algorithm
characterized by an extremely low complexity in terms of required operations. The ensuing optimization problem involves
only the computation of the singular vector associated with theminimum singular value of amatrix that can be efficiently
computed and whose size does not depend on the number of measurements.

1.1 Article organization

In Section 2, previous results on switched system identification when no noise is present are reviewed. Section 3 concen-
trates on the problem of switched system identification in the presence of measurement noise. The results are extended
to the case of process noise in Section 4. Procedures for simultaneous estimation of systems parameters and noise param-
eters are described in Section 5. Several examples that illustrate the performance of the proposed approach are provided
in Section 6. Finally, some concluding remarks are provided in Section 7.
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1.2 Notation

Given a scalar random variable x ∈ R, we denote by md its dth moment E[xd], where E[⋅] refers to expectation. The
moments of x may be computed according to the following integral

md = E[xd] = ∫
∞

−∞
xd f (x) dx, (1)

where f(x) is the probability density function of x. In addition, the variance of x is indicated by Var(x).
When some of the parameters 𝜃 of the distribution are not known, we use the notation f(x|𝜃) to denote the depen-

dence of the probability density function on these unknown parameters. Throughout this article, we assume that f(x|𝜃)
is a continuous function of 𝜃. Obviously, this implies that the moments of the random variable are known continuous
functions of 𝜃.

For example, if x has a normal distribution with zero mean and we assume that the variance 𝜃 = 𝜎2 is not known then
we have

f (x|𝜃) = 1√
2𝜋𝜃

e−x2∕2𝜃.

The moments of x as a function of 𝜃 are given by

md = E[xd] =

{
0 if d is odd
𝜃d∕2 (d − 1)!! if d is even

(2)

where !! denotes double factorial (n!! is the product of all numbers from n to 1 that have the same parity as n).

2 NOISELESS SWITCHED SYSTEM IDENTIFICATION: A REVIEW

As amotivation for the approach presented in this article,we review and slightly reformulate earlier results on an algebraic
approach to the switched system identification.We refer the reader toVidal et al22 for details on this formulation. Consider
a switched autoregressive exogenous (SARX) system of the form

xk =
na∑
j=1

aj𝛿k xk−j +
nb∑
j=1

bj𝛿k uk−j, (3)

where xk ∈ R and uk ∈ R are the output and input at time k, respectively. The variable 𝛿k ∈ {1,… ,n} denotes the
subsystem active at time k, where n is the total number of subsystems. Furthermore, aj𝛿k and bj𝛿k denote unknown coef-
ficients corresponding to mode 𝛿k. Assume that the values of uk, k = −nb + 1,… ,N − 1 and xk, k = −na + 1,… ,N are
available.

As a first step toward an identification algorithm, we start by noting that Equation (3) can be written in compact
form as

t⊤𝛿k rk = 0, (4)

where we introduced the (known) regressor vector at time k

rk =
[
xk, xk−1,… , xk−na , uk−1,… ,uk−nb

]⊤
and the vector of (unknown) coefficients at time k

t𝛿k =
[
−1, a1𝛿k ,… , ana𝛿k , b1𝛿k ,… , bnb𝛿k

]⊤
.



4 HOJJATINIA et al.

Hence, independently of which of the n submodels is active at time k, we have that the following equality should
hold

pn(rk) =
n∏
i=1

t⊤i rk = 𝜈n(rk)⊤cn = 0, (5)

where the vector of parameters corresponding to the ith submodel is denoted by ti ∈ Rna+nb+1, 𝜈n(⋅) is Veronese map of
degree n,23 and cn is a vector whose entries are polynomial functions of unknown parameters ti (see Reference 24 for
explicit definition).

The Veronese map, also known as polynomial embedding in machine learning, contains all monomials of order n in
lexicographical order. That is, given a vector x ∈ Rs and n > 0, we have

𝜈n (x) =

[ ⋮
x𝛼11 x

𝛼2
2 … x𝛼ss
⋮

]
,

s∑
i=1

𝛼i = n, 𝛼i ≥ 0,

and 𝜈n (x) ∈ R𝓁 , with 𝓁 =
(
n+s
n

)
. Equation (5) holds for all k, and these equalities can be expressed in matrix form as

follows

Vn(r) cn =
[
𝜈n(r1)⊤,… , 𝜈n(rN)⊤

]⊤cn = 0 (6)

where r, without subscript, denotes the set of all regressor vectors. Clearly, we are able to identify cn (and hence, under
general conditions, the system's parameters24) if and only ifVn(r) is rank deficient. In that case, the vector cn can be found
by computing the null space of Vn(r). To better clarify this procedure and fix the notation, we illustrate it in the following
simple example.

Example 1. Consider a system of order 1 (na = nb = 1) which switches between two different subsystems (n = 2) ,
that is,

subsystem 1 ∶ xk = a1 xk−1 + b1 uk−1
subsystem 2 ∶ xk = a2 xk−1 + b2 uk−1. (7)

We can rewrite the system as in Equation (4). The regressor vector rk at time k

rk =
[
xk xk−1 uk−1

]⊤
,

gives rise to the following Veronese vector

𝜈n(rk) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x2k
xk xk−1
xk uk−1
x2k−1

xk−1 uk−1
u2k−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (8)

whose length is
(
n+na+nb

n

)
=
(
2+1+1
2

)
= 6. The corresponding coefficient vector c2 assumes the form

c2 = [1,−(a1 + a2),−(b1 + b2), a1a2, a1b2 + b1a2, b1b2]⊤

and its components can be observed to be polynomial functions of the parameters of the subsystems.
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2.1 A reformulation of the hybrid decoupling constraint

Note that the number of rows of the Veronese matrix Vn is equal to the number of measurements available for the
regressor, that is, in the notation of our article, the number of rows is N. Therefore, very large datasets (large N) lead
to computational problems that are ill conditioned or even impossible to solve. Hence, in this article, we work with an
equivalent condition that is more suitable for the problem of SARX system identification from very large datasets. We
now elaborate on this.

As previously mentioned, in the absence of noise, the SARX system identification is equivalent to finding a vector cn
satisfying

c⊤n𝜈n(rk) = 0 for all k = 1, 2,…N.

We observe that this is in turn equivalent to finding cn so that

1
N

N∑
k=1

c⊤n𝜈n(rk)𝜈⊤n (rk) cn = 0.

As a result, for the noiseless case, identifying the coefficients of the submodels of switched system is equivalent to finding
the singular vector cn associated with the minimum singular value of the matrix

N = 1
N

N∑
k=1

𝜈n(rk) 𝜈⊤n (rk)
.
= 1
N

N∑
k=1

Mk. (9)

Note that, by using this equivalent condition, we only need to consider square matrices of size
(
n+na+nb

n

)
. In other

words, the size of this matrix does not depend on the number of measurements. This is especially important when
considering very large datasets.

Example 2. To illustrate the notation introduced, we revisit Example 1: in this case the matrix Mk has the
form

Mk = 𝜈n(rk) 𝜈⊤n (rk) =

⎛⎜⎜⎜⎜⎜⎜⎝

x4k x
3
k xk−1 x3k uk−1 x2k x

2
k−1 x2k xk−1 uk−1 x2k u

2
k−1

∗ x2k x
2
k−1 x

2
k xk−1 uk−1 xk x3k−1 xk x2k−1 uk−1 xk xk−1 u

2
k−1

∗ ∗ x2k u
2
k−1 xk x2k−1 uk−1 xk xk−1 u

2
k−1 xk u3k−1

∗ ∗ ∗ x4k−1 x3k−1 uk−1 x2k−1 u
2
k−1

∗ ∗ ∗ ∗ x2k−1 u
2
k−1 xk−1 u3k−1

∗ ∗ ∗ ∗ ∗ u4k−1

⎞⎟⎟⎟⎟⎟⎟⎠
(10)

where the ∗s are to avoid double writing of the entries and refer to the fact thatMk is a symmetric matrix, MT
k = Mk.

MatrixN is just the time average ofMk above.

3 IDENTIFICATION OF SWITCHED AUTOREGRESSIVE MOVING
AVERAGE WITH EXOGENOUS INPUT SYSTEMS

In this section, we address the problem of identification of switching autoregressivemoving averagewith exogenous input
(SARMAX) systems. More precisely, we consider SARMAX systems of the form

xk =
na∑
j=1

aj𝛿k xk−j +
nb∑
j=1

bj𝛿k uk−j, (11)

yk = xk + 𝜂k, (12)
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where yk is the observed output, which is assumed to be contaminated by (possibly large) noise 𝜂k. As before, xk ∈ R is
the noiseless system output at time k and uk ∈ R is input at time k. Moreover, the variable 𝛿k ∈ {1,… ,n} denotes the
subsystem active at time k, where n is the total number of subsystems.

As a first step in the development of the proposed identification procedure, the following assumptions are made on
the SARMAX system model and measurement noise.

Assumption 1. Throughout this article for SARMAX system identification, it is assumed that:

(a) Model orders na and nb are available.
(b) The number of subsystems n is available, and each subsystem is “visited” infinitely often. More precisely, let Ni(N)

be the number of “visits” of subsystem i up until time N. Then, for all i = 1, 2,… ,n

lim
N→∞

Ni(N)
N

> 0.

(c) Noise 𝜂k is independent from 𝜂l for k ≠ l and identically distributed with probability density f(𝜂|𝜃); where 𝜃 is a (low
dimensional) vector of unknown parameters

(d) Moments of noisemd (up to order d = 4n) are bounded.
(e) Input sequence uk applied to the system is known and bounded, that is, there exists a Lu such that |u(k)| ≤ Lu for all k.
(f) There exists a finite constant Lx so that |xk| ≤ Lx for all k.

We now provide a few comments on the assumptions made above. Assumption 1.a can be relaxed to assume only
knowledge of upper bounds on na and nb. In this case, on top of the approach proposed, a search over the allowable values
of na and nb is needed to determine the values that better fit the data collected.

In the proposed procedure we rely on the use of estimates of the matrixN described in (9) to determine the coef-
ficients of the subsystems. In the case of large N, to be able to identify all subsystems we need Assumption 1.b so that
each subsystem has a “significant impact” in the construction of N . Indeed, if the condition is not satisfied for some
subsystem i, thenN will not depend on it for large values of N.

In Assumption 1.c, we allow for incomplete knowledge of the measurement noise. More precisely, we assume that
the overall “form” of the noise is known but some of its parameters will be estimated from the data. An example of this is
zero mean iid Gaussian noise where the variance is not known and needs to be estimated together with the parameters
of the subsystems.

Finally, Assumptions 1.d-f, are related to “stability” of the system and are needed to enforce boundedness of mean
and variance of the quantities used to estimate the parameters of the subsystems and the parameters of the noise.

3.1 Problem statement and preliminary results

To simplify the exposition to follow, we start discussing the case when the parameters 𝜃 of the noise distribution are
known and, hence, we can compute its moments. The more general case, where joint estimation of the parameters of the
distribution of the noise is needed, is addressed in Section 5.

We start with the definition of the problem that we want to solve and provide some preliminary results that will allow
us to develop efficient algorithms for estimation of the coefficients of the subsystems. Consider the following problem:

Problem 1. Given Assumption 1, an input sequence uk, k = −nb + 1,… ,N − 1 and noisy output measurements yk, k =
−na + 1,… ,N, determine coefficients of the SARMAX model ai,j, i = 1, 2,… ,na, j = 1, 2,… ,n, bi,j, i = 1, 2,… ,nb, j =
1, 2,… ,n.

As we have seen when discussing the noiseless case, the switched autoregressive exogenous system identification
problem is equivalent to finding a vector in the null space of thematrixN defined in (9). Undermild conditions, the null
space of this matrix has dimension one if and only if the data are compatible with the assumed model. However, if noise
is present, xk is not known and, therefore,N cannot be computed. In the remainder of this section, we make use of the
available measurements as well as the a priori information on the statistics of the noise to compute approximations of the
matrixN and, consequently, approximations of vectors in its null space. Let us start by establishing some properties of
the entries of this matrix.
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On the powers of xk: Since we do not have access to the values of the output xk to estimate the values of the quantities
in Equation (9), we need to relate the powers of xk to the measurements and available information of the noise, that is,
its moments. Note that xk is a (unknown) deterministic quantity. Therefore, for any integer h,

xhk = E[xhk ]. (13)

Since xk = yk − 𝜂k we have

xhk = E[xhk ] = E[(yk − 𝜂k)h]. ∀k = 1, 2,… ,N. (14)

Assume now, for simplicity, the distribution of the noise is symmetric with respect to the origin. As a result, all odd
moments are zero (in particular, the noise is zero mean, ie, m1 = 0). We remark that this assumption is made only to
simplify the calculations below, and that the approach can be extended to the nonsymmetric case.

We concentrate on computing the expected value of powers of xk recursively and in a closed form. First, we give an
example of how to compute the expected value of powers of xk for powers h = 1, 2. For h = 1, we have

xk = E[xk] = E[yk − 𝜂k] = E[yk] − E[𝜂k] = E[yk] −m1 = E[yk], (15)

while, for h = 2, we can write

x2k = E[x2k] = E[(yk − 𝜂k)2] = E[y2k] − 2E[yk𝜂k] + E[𝜂2k] = E[y2k] − 2E[yk𝜂k] +m2. (16)

We remark again that the second moment of noise E[𝜂2k] = m2 is assumed to be known. To estimate the value of
E[yk𝜂k], consider the following

E[yk𝜂k] = E[(xk + 𝜂k)𝜂k] = E[xk𝜂k] + E[𝜂2k]. (17)

The quantities xk and 𝜂k are mutually independent and, therefore, E[xk𝜂k] = E[xk]E[𝜂k], with E[𝜂k] = m1 = 0. As a
consequence, we have

E[yk𝜂k] = E[𝜂2k], (18)

and finally the value of Equation (16) is

E[x2k] = E[y2k] − 2E[𝜂2k] + E[𝜂2k] = E[y2k] − E[𝜂2k]
= E[y2k] −m2. (19)

The reasoning above can be generalized to any power of xk. More precisely, we have the following result, whose proof
is an immediate consequence of the derivations so far.

Lemma 1. The expected value of the powers of xk satisfies

E[xhk ] = E[(yk − 𝜂k)h] = E[yhk] −
h∑
d=1

(
h
d

)
E[xh−dk ] E[𝜂dk ]

= E[yhk] −
h∑
d=1

(
h
d

)
E[xh−dk ] md k = 1, 2,… ,N. (20)

The result above provides a systematic way of relating the matrix Mk to the statistical properties of the measured
output yk and of the noise 𝜂k. This relationship will be exploited later on to estimateN from data.

Example 3 (Construction of Mk). To illustrate the use of the concepts above, we revisit again the example used in
previous sections. Recall that, for this example, the matrix Mk has the form provided in Equation (10). Now, we can
compute expected value of powers of xk in terms of expected value of powers of yk and moments of measurement noise.
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More precisely, using Lemma 1, we obtain an equivalent expression for the matrixMk in (10), which is provided below.

Mk =

⎛⎜⎜⎜⎜⎜⎝

E[y4k] − 6 m2 (E[y2k] −m2) −m4 (E[y3k] − 3 m2 E[yk]) E[yk−1] (E[y3k] − 3 m2 E[yk]) uk−1
∗ (E[y2k] −m2) (E[y2k−1] −m2) (E[y2k] −m2) E[yk−1] uk−1
∗ ∗ (E[y2k] −m2) u2k−1
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

…

…

(E[y2k] −m2) (E[y2k−1] −m2) (E[y2k] −m2) E[yk−1] uk−1 (E[y2k] −m2) u2k−1
(E[y3k−1] − 3 m2 E[yk−1]) E[yk] (E[y2k−1] −m2) E[yk] uk−1 E[yk] E[yk−1] u2k−1
(E[y2k−1] −m2) E[yk] uk−1 E[yk] E[yk−1] u2k−1 E[yk] u3k−1

E[y4k−1] − 6 m2 (y2k−1 −m2) −m4 (E[y3k−1] − 3 m2 E[yk−1]) uk−1 (E[y2k−1] −m2) u2k−1
∗ (E[y2k−1] −m2) u2k−1 E[yk−1] u3k−1
∗ ∗ u4k−1

⎞⎟⎟⎟⎟⎟⎟⎠
(21)

On the structure of Mk:We now provide one of the properties of the matricesMk = 𝜈n(rk) 𝜈⊤n (rk) that is central to the
results to follow. If we look at the example above, we see that for given moments of the noise, this new representation
of Mk is an affine function of monomials of yk and uk. This is a general result which is an immediate consequence of
the reasoning described above and the fact that yk and yl are independent random variables for k ≠ l and uk is a given
deterministic signal.

Lemma 2. Assume that the noise distribution and the input signal are given and fixed. Let monn(⋅) denote a function
that returns a vector with all monomials up to order n of its argument. Then there exists an affine matrix function M(⋅)
so that

Mk = 𝜈n(rk) 𝜈⊤n (rk) = E{M[monn(yk,… , yk−na ,uk−1,… ,uk−nb)]}
= M{E[monn(yk,… , yk−na ,uk−1,… ,uk−nb)]}.

3.2 SARMAX identification algorithm

As mentioned before, to identify the parameters of the SARMAX system, we need to be able to estimate the matrixN
in Equation (9). It turns out that it can be done by using the available noisy measurements. More precisely, we have the
following result.

Theorem 1. Let M(⋅) andmonn(⋅) be the functions defined in Lemma 2. Define

̂N
.
= 1
N

N∑
k=1

M[monn(yk,… , yk−na ,uk−1,… ,uk−nb)].

Then, as N → ∞,

̂N −N → 0 a.s.

and, for any (i, j) entry and for any 𝜖 > 0

Probability
{
max
N≥J

|||̂N(i,j) −N(i,j)

||| ≥ 𝜖

}
≤ O(1∕J).

Proof. See Appendix. ▪

As a result, the empirical average computed using the noisy measurements (where expected values of monomials are
replaced by the measured monomial values) converges to the desired matrix in Equation (9). Therefore, we propose the
following algorithm for identification of a SARMAX system.
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Algorithm 1 (SARMAX identification). Let na, nb, n and moments of the noise be given.

Step 1. Compute matrix

̂N = 1
N

N∑
k=1

M[monn(yk,… , yk−na ,uk−1,… ,uk−nb)].

Step 2. Let cn be the singular vector associated with the minimum singular value of ̂N .
Step 3. Determine the coefficients of the subsystems from the vector cn.

In order to perform step 3 in Algorithm 1, we adopt polynomial differentiation algorithm for mixtures of hyperplanes,
introduced by Vidal25,pp69-70. For the sake of completeness, we now review this algorithm.

Algorithm 2 (Polynomial differentiation for mixtures of hyperplanes). Let the set of regressors r be given and let cn be
the vector computed by Algorithm 1.

Step 1. Define polynomial pn(rk) = c⊤n 𝜈n(rk)
Step 2. Let Dp(rk) be the gradient of a polynomial p at rk.for i = n ∶ 1

yi = argminrk ∈ r, Dpi(rk) ≠ 0
|pi(rk)|‖Dpi(rk)‖ ,

ti =
Dpi(yi)‖Dpi(yi)‖ ,

pi−1(rk) =
pi(rk)
t⊤i rk

,

end
Step 3. Assign point rk to subspace Si if i = argminl=1,…,n|t⊤l rk|

4 SWITCHED AUTOREGRESSIVE EXOGENOUS SYSTEM
IDENTIFICATION

We now show how the approach developed in the previous section can be adapted to the problem of identification of
switched autoregressive exogenous systems. Consider SARX models of the form

yk =
na∑
j=1

aj𝛿k yk−j +
nb∑
j=1

bj𝛿k uk−j + 𝜖k, (22)

where 𝜖k denotes process noise, yk ∈ R is the output at time k, and uk ∈ R is the input at time k. As before, the variable
𝛿k ∈ {1,… ,n} denotes the subsystem active at time k, where n is the total number of subsystems. Furthermore, aj𝛿k and
bj𝛿k denote unknown coefficients corresponding to mode 𝛿k.

The following assumptions are made on the above SARX system model and process noise.

Assumption 2. For SARX system identification, it is assumed that:

1. Model orders na and nb are available.
2. The number of subsystems n is available, and each subsystem is “visited” infinitely often. See precise definition in

Assumption 1.
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3. Noise 𝜖k is independent from 𝜖l for k ≠ l, and identically distributed with probability density f(𝜖|𝜃), where 𝜃 is a (low
dimensional) vector of unknown parameters.

4. Moments of noisemd (up to order d = 4n) are bounded.
5. Input sequence uk applied to the system is known and bounded.

Again, we assume that the order and number of subsystems are given. If only upper bounds are available, we can
search among allowable values and choose the ones better fit the data collected. As for the assumption on the sys-
tem and noise, these are done do that the quantities used in the identification algorithms have bounded mean and
variance.

Oncemore, for simplicity of exposition, in the reasoning below, we assume that the distribution of the noise is known,
so its moments md are available. As mentioned before, estimation of the parameters of the distribution of the noise is
addressed in Section 5.

We start by noting that Equation (22) is equivalent to

t⊤𝛿k rk = 0, (23)

where, for the case of ARX system with process noise, the regressor at time k takes the form

rk = [yk − 𝜖k, yk−1,… , yk−na , uk−1,… ,uk−nb]
⊤,

and the vector of unknown coefficients at time k is

t𝛿k = [−1, a1𝛿k ,… , ana𝛿k , b1𝛿k ,… , bnb𝛿k ]
⊤.

Hence, as before, independently of which of the n submodels is active at time k, we have

Pn(rk) =
n∏
i=1

t⊤i rk = c⊤n𝜈n(rk) = 0, (24)

where the vector of parameters corresponding to the ith submodel is denoted by ti ∈ Rna+nb+1, and 𝜈n,(.) is the Veronese
map of degree n. As before, the number of rows in the Veronese matrix Vn, which consists of all the Veronese
maps at time k = 1, 2,… ,N, is equal to N (the number of measurements available for the regressor) and, therefore,
a reformulation of the results is needed to be able to address the problem of SARX identification from very large
datasets.

The switched ARX system identification is equivalent to finding a vector cn satisfying

c⊤n𝜈n(rk) = 0 for all k = 1, 2,…N.

This is in turn equivalent to finding a vector cn so that

1
N

N∑
k=1

c⊤n𝜈n(rk)𝜈⊤n (rk)cn = 0.

Consequently, identifying the coefficients of the submodels of switched ARX system is equivalent to finding a singular
vector cn associated with the minimum singular value of the noise-dependent matrix

proc
N = 1

N

N∑
k=1

𝜈n(rk) 𝜈⊤n (rk)
.
= 1
N

N∑
k=1

Mproc
k . (25)

The main difference between the SARX case and the SARMAX discussed in the previous section is the fact that the
matrix proc

N is a function of the unmeasurable noise 𝜖k and cannot be directly computed. Therefore, we use available
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information on the statistics of the noise to compute approximations of the matrixproc
N , and, consequently, approxima-

tions of vectors in its null space. As a first step, we now relate the expected value of powers of yk − 𝜖k to the noisy output
and available information of the noise.

Lemma 3. Consider output monomials of the form ek = yh1k−1 … yhnak−na
, where

∑na
i=1 hi ≤ 2n, the expected value of the

powers of multiplication of yk − 𝜖k and ek satisfies

E[(yk − 𝜖k)h ek] = E[yhk ek] −
h∑
d=1

(
h
d

)
E[(yk − 𝜖k)h−d ek] E[𝜖dk ]

= E[yhk ek] −
h∑
d=1

(
h
d

)
E[(yk − 𝜖k)h−d ek] md

k = 1, 2,… ,N and ∀i = 0, 1,… , 2n − h. (26)

Again, we can exploit the structure of the matrixMproc
k to determine high-fidelity estimates from collected data. We

start by emphasizing the following structural result

Lemma 4. Assume that the noise distribution and the input signal are given and fixed. Again, letmonn(⋅) denote a function
that returns a vector with all monomials up to order n of its argument. Then there exists an affine function Mproc(⋅) so that

Mproc
k = E{Mproc[monn(yk,… , yk−na ,uk−1,… ,uk−nb)]}

= Mproc{E[monn(yk,… , yk−na ,uk−1,… ,uk−nb)]}.

Example 4 (Construction ofMproc
k ). To better illustrate the proposed approach, we provide an example of how to con-

struct the matrixMproc
k required for SARX identification. To this end, consider the problem of identifying a SARX system

with n = 2 subsystems of order na = nb = 1 of the form

subsystem 1 ∶ yk = a1 yk−1 + b1 uk−1 + 𝜖k

subsystem 2 ∶ yk = a2 yk−1 + b2 uk−1 + 𝜖k, (27)

where 𝜖k has a symmetric distribution. We can rewrite the system as in Equation (24). In particular, the regressor vector
rk at time k

rk =
[
yk − 𝜖k yk−1 uk−1

]⊤
gives rise to the following Veronese vector

𝜈n(rk) =

⎡⎢⎢⎢⎢⎢⎢⎣

(yk − 𝜖k)2
(yk − 𝜖k) yk−1
(yk − 𝜖k) uk−1

y2k−1
yk−1 uk−1
u2k−1

⎤⎥⎥⎥⎥⎥⎥⎦
, (28)

whose size is l × 1, with l =
(
n+na+nb

n

)
=
(
2+1+1
2

)
= 6. The corresponding vector c2 as a function of the parameters of the

subsystems, assumes the form

c2 = [1,−(a1 + a2),−(b1 + b2), a1a2, a1b2 + b1a2, b1b2]⊤.

From rk and 𝜈n(rk), we can compute matrixMproc
k as follows

Mproc
k = 𝜈n(rk) 𝜈⊤n (rk)
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=

⎛⎜⎜⎜⎜⎜⎜⎝

(yk − 𝜖k)4 (yk − 𝜖k)3 yk−1 (yk − 𝜖k)3 uk−1 (yk − 𝜖k)2 y2k−1 (yk − 𝜖k)2 yk−1 uk−1 (yk − 𝜖k)2 u2k−1
∗ (yk − 𝜖k)2 y2k−1 (yk − 𝜖k)2 yk−1 uk−1 (yk − 𝜖k) y3k−1 (yk − 𝜖k) y2k−1 uk−1 (yk − 𝜖k) yk−1 u2k−1
∗ ∗ (yk − 𝜖k)2 u2k−1 (yk − 𝜖k) y2k−1 uk−1 (yk − 𝜖k) yk−1 u2k−1 (yk − 𝜖k) u3k−1
∗ ∗ ∗ y4k−1 y3k−1 uk−1 y2k−1 u

2
k−1

∗ ∗ ∗ ∗ y2k−1 u
2
k−1 yk−1 u3k−1

∗ ∗ ∗ ∗ ∗ u4k−1

⎞⎟⎟⎟⎟⎟⎟⎠
.

Then, as we have the values of noisy output yk, we compute expected value of powers of yk − 𝜖k in terms of expected value
of powers of yk and moments of process noise. Following the results in Lemma 3, we obtain the matrix below.

Mproc
k =

⎛⎜⎜⎜⎜⎜⎝

E[y4k] − 6 m2 (E[y2k] −m2) −m4 E[y3k yk−1] − 3 m2 E[yk yk−1] (E[y3k] − 3 m2 E[yk]) uk−1
∗ E[y2k y

2
k−1] −m2 E[y2k−1] (E[y2k yk−1] −m2 E[yk−1]) uk−1

∗ ∗ (E[y2k] −m2) u2k−1
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

…

…

E[y2k y
2
k−1] −m2 E[y2k−1] (E[y

2
k yk−1] −m2 E[yk−1]) uk−1 (E[y2k] −m2) u2k−1

E[yk y3k−1] E[yk y2k−1] uk−1 E[yk yk−1] u2k−1
E[yk y2k−1] uk−1 E[yk yk−1] u2k−1 E[yk] u3k−1

E[y4k−1] E[y3k−1] uk−1 E[y2k−1] u
2
k−1

∗ E[y2k−1] u
2
k−1 E[yk−1] u3k−1

∗ ∗ u4k−1

⎞⎟⎟⎟⎟⎟⎟⎠
4.1 SARX identification algorithm

As mentioned before, to identify the parameters of the SARX system, we need to be able to estimate the matrix proc
N

in Equation (25). It turns out that it can be done by exploiting its structure and using the available noisy measurements.
More precisely, we have the following result.

Theorem 2. Let Mproc(⋅) andmonn(⋅) be the functions defined in Lemma 4. Define

̂proc
N

.
= 1
N

N∑
k=1

Mproc[monn(yk,… , yk−na ,uk−1,… ,uk−nb )].

Take any monomial

zk = yh0k yh1k−1 … yhnak−na
(29)

where
∑na

i=0 hi ≤ 2n , hi = 0, 1, 2,… , 2n. If for any h1, h2,… , hna , the sequence {zk, k ≥ 1} satisfies

•
∑∞

k=1
(Var zk)(log k)2

k2
< ∞

•
∑∞

l=1
𝜌l
lq
< ∞ for some 0 ≤ q < 1,

where {𝜌l, l ≥ 1} is a sequence of constants such that supk≥1|Cov (zk, zk+l)| ≤ 𝜌l l ≥ 1. then, as N → ∞,

̂proc
N −proc

N → 0 a.s.

Proof. Direct application of the results in Reference 26 with bn = n. For completeness this result is stated as Theorem 3
in Appendix. ▪
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Remark 1 (On rate of convergence). Again from the results in Reference 26, it is possible to show that, for any 𝜖 > 0, the
(i, j) entry of the true and estimated matrices satisfy

Probability
{||||̂proc

N (i,j) −proc
N (i,j)

|||| ≥ 𝜖

}
≤ 1

𝜖2

( ∞∑
k=N

VarMproc(i.j)[monn(yk,… , yk−na ,uk−1,… ,uk−nb)]

k2
+ C
N(1−q)

)
,

and, hence, the rate of convergence is directly connected to the cross moments of the output of the system. Note that if
these moments are bounded the rate of convergence is of the order O(N(1−q)).

The conditions of the theoremabove are rather general and state that, if the output of the system is “well behaved” then
empirical averages of functions of the collected data can be used of estimate the matrixN and, hence, the coefficients
of the subsystems.

Although these condition are rather abstract, it turns out that there is a an important special case where Theorem
2 can be applied, namely, the case when the SARX system is uniformly exponentially stable and the noise is normally
distributed.

Corollary 1. Let the SARX system in (22) be uniformly exponentially stable, and the noise distribution is zero mean normal,
that is, 𝜖k ∼ N(0, 𝜎2). Assumemoreover that the dynamics of switching 𝛿k at time k are independent from input uk and output
yk. Then the conditions of Theorem 2 are satisfied, and therefore as N → ∞,

̂proc
N −proc

N → 0 a.s.

Proof. See Appendix. ▪

As a result, the empirical average computed using the noisy measurements (where expected values of monomials are
replaced by the averages of the measured monomial values) converges to the desired matrix in Equation (25). Therefore
we propose the following algorithm for identification of a SARX system.

Algorithm 3 (SARX system identification). Let na, nb, n and some parameters of the noise be given.

Step 1. Compute matrix

̂proc
N = 1

N

N∑
k=1

Mproc[monn(yk,… , yk−na ,uk−1,… ,uk−nb)].

Step 2. Let cn be the singular vector associated with the minimum singular value of ̂proc
N .

Step 3. Determine the coefficients of the subsystems from the vector cn.

5 ESTIMATING UNKNOWN NOISE PARAMETERS

We now address the case where the distribution of the noise is not completely known. In particular, as previously men-
tioned, in this article it is assumed that the distribution of the noise is known except for a few parameters. For simplicity
of exposition, we consider the case where the noise has one scalar unknown parameter 𝜃. The reasoning can be extended
to any case where the set of allowable parameters can be efficiently gridded/searched.

Recall that throughout this article we assume that the noise density f(x|𝜃) and the corresponding momentsmi(𝜃) are
continuous functions of 𝜃. The following fact is an immediate consequence of this assumption.

Fact 1. Consider the matricesN(𝜃) defined in (9) (whose dependence on the moments of noise is described in Lemma
1) andproc

N (𝜃) defined in (25) (whose dependence on the moments of noise is described in Lemma 4). Moreover, con-
sider their estimates ̂N(𝜃) and ̂proc

N (𝜃). Then,proc
N (𝜃), ̂N(𝜃), and ̂proc

N (𝜃) and the respective singular values are
continuous functions of 𝜃.

Furthermore, we have the following result that is a consequence of the definition of thematricesN(𝜃) andproc
N (𝜃).
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Lemma 5. Let 𝜃∗ be the true value of the parameter 𝜃. ThenN(𝜃∗) (respectivelyproc
N (𝜃∗)) is rank deficient.

Finally, we have the following result which is an immediate consequence of the convergence results in Theorems 1
and 2.

Lemma 6. Let 𝜎min(.) denote the minimum singular value. Then, for the cause of measurement noise, we have

lim
N→0

𝜎min[N(𝜃)] − 𝜎min[̂N(𝜃)] = 0 for all admissible 𝜃

and, for the case of process noise, we have

lim
N→0

𝜎min[proc
N (𝜃)] − 𝜎min[̂proc

N (𝜃)] = 0 for all admissible 𝜃.

Given the convergence results above, the true value of 𝜃 will result in matrices ̂N(𝜃) (̂proc
N (𝜃) for process noise)

with a “very small” minimum singular value, especially for large values of N. For this reason, estimation of the noise
parameter 𝜃 can be performed by minimizing the minimum singular value of ̂N(𝜃) (for process noise ̂proc

N (𝜃)) over
the allowable values. More precisely, we propose the following algorithm

Algorithm 4 (Joint SARMAX system and noise parameter identification). Let na, nb, n, 𝜃min, and 𝜃max be given.

Step 1. Compute matrix ̂N(𝜃) (or ̂proc
N (𝜃) for process noise) as a function of the noise parameter 𝜃.

Step 2. Find the value 𝜃∗ ∈ [𝜃min, 𝜃max] that minimizes the minimum singular value of ̂N(𝜃) (or ̂proc
N (𝜃) for process

noise).
Step 3. Let cn be associated singular vector.
Step 4. Determine the coefficients of the subsystems from the vector cn.

Remark 2. Note that the optimization in step 2 is in general nonconvex, but it can be solved via an easily implementable
line search, given the continuity of the minimum singular value with respect to 𝜃. However, the solution 𝜃∗ might not be
unique, that is, there might exist several values of 𝜃 that lead to a minimum singular value very close to zero. In practice,
our experience has been that, for sufficiently large N, the above algorithm provides both a good estimate of the systems
coefficients, and noise parameters; especially if we take 𝜃∗ to be the smallest value of 𝜃 for which the minimum singular
value of ̂N (̂proc

N ) is below a given threshold.

Remark 3. In the algorithm above, minimizing the minimum singular value can be replaced by minimizing the determi-
nant since both are zero for rank deficient matrices. A case where this might be preferable is when the noise is Gaussian
with zero mean and unknown variance. In this case, the determinant of ̂N(𝜃) and ̂proc

N (𝜃) are polynomial function of
the variance and, hence, minimization can be performed by looking at the real zeros of the derivative of the determinant
with respect to 𝜃.

6 NUMERICAL RESULTS

In this section, we present some numerical examples that illustrate the effectiveness of the proposed approach.

6.1 SARMAX system identification

In the following example, we address the problem of identifying a two-mode switched system of the form (11)-(12), whose
true coefficients are a1 = 0.3, b1 = 1, a2 = −0.5, and b2 = −1.Measurement noise is assumed to be zeromeanwith normal
distribution. In the numerical examples presented, N = 106 input-output data are given. True and identified coefficients
for different variances of noise are presented in Table 1. Variance of noise and noise to output ratio for each experiment
are also shown in this table. The provided noise to output ratio (𝛾) is defined as

𝛾 = max |𝜂|
max |y| . (30)
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TABLE 1 Identifying polynomial coefficients for different values of noise variance and different SARMAX
system run

Experiment Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7 Value 8 Value 9

# 1 −(a1 + a2) −(b1 + b2) a1 a2 a1 b2 + b1 a2 b1 b2 𝜸 𝝈2 𝝈̂2

True parameters 1 0.2 0 −0.15 −0.8 −1 — — —

Identification 1 1 0.2002 0.0001 −0.1503 −0.7989 −0.9996 0.2410 0.1 0.1000

Identification 2 1 0.2002 0.0011 −0.1510 −0.7974 −1.0004 0.5187 0.5 0.4980

Identification 3 1 0.1977 0.0046 −0.1548 −0.7997 −0.9966 0.6494 1 1.0010

Identification 4 1 0.2120 0.0003 −0.1485 −0.8006 −1.0017 0.8516 2 1.9950

F IGURE 1 Estimation error of system coefficients [Colour
figure can be viewed at wileyonlinelibrary.com]

104 105 106
10-3

10-2

10-1

Results are as expected even for high values of noise in comparison to output. As it is illustrated in Table 1, the identi-
fied parameters are very close to true values, which demonstrates the convergence of proposed algorithm even for small
signal to noise ratio. Moreover, the algorithm requires a very small computational effort. For the case of 106 measure-
ments and using an off-the-shelf core i5 laptop with 8 Gigs of RAM, the running time is between 7 and 8 seconds, which
shows the effectiveness of approach for very large datasets.

The error between true coefficients of system and estimated coefficients, ||cn − ĉn||2∕||cn||2, as a function of num-
ber of measurements, N, is depicted in Figure 1 for different values of noise variance. As it can be seen from
Figure 1, the error decreases as the number of measurements increases. Rate of convergence is fast, despite the fact
that, in some of the experiments, a large amount of noise is used. It should be noted that these results are for
one experiment and given that this is a realization of a random process, error is not always decreasing. For all val-
ues of noise variance, error will eventually decrease and the estimated values of coefficients converge to the true
values.

Nowwe consider estimation of the individual subsystems. For the abovementioned example, Table 2 shows the values
of subsystems coefficients for different experiments related to different values of noise variance. As we see in this table
the values of coefficients are very close to the true values, even when the noise variance is high with noise magnitude in
average around 85% of the signal magnitude.

Several experiments are done for the problem of identifying a four-mode switched system of the form (11)-(12), where
each subsystem is of order 2. The systems have been created randomly. Measurement noise is assumed to be zero mean
with normal distribution andN = 5 × 106 input-output data are given. Experiments have been done for different systems
and different variances of noise. As two examples, for randomly generated systems with variance of noise 𝜎2 = 0.1 and
𝜎2 = 0.3, the error between true and estimated coefficients of the system, ||cn − ĉn||2∕||cn||2, is 0.03 and 0.16, respectively.
Note that the size of the vector cn is, in this case, 35, indicating that the identification problem here is more complex than
previous ones. Hence, a slightly larger error in estimation is expected.

http://wileyonlinelibrary.com
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Submodels' True Variance Variance Variance Variance

coefficients values 𝝈2 = 0.1 𝝈2 = 0.5 𝝈2 = 1 𝝈2 = 2

a1 0.3 0.3002 0.2981 0.3006 0.2938

b1 1 0.9988 1.0007 0.9412 1.0031

a2 −0.5 −0.4996 −0.5000 −0.5006 −0.5059

b2 −1 −0.9999 −0.9991 −1.0004 −1.0011

TABLE 2 Identifying submodels' coefficients for different
values of noise variance in SARMAX systems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

(A) Case 1: true noise variance 2 = 1 .

43210
0

0.5

1

1.5

2

(B) Case 2: true noise variance 2 = 2 .

F IGURE 2 Estimation of noise variance using Algorithm 3, for ARMAX system consisting two subsystems of order 1 [Colour figure
can be viewed at wileyonlinelibrary.com]

The estimation of noise variance based on the structure of matrixMk is shown in Table 1 as 𝜎̂2. The estimates of noise
variance are very close to the true values of variance. By knowing the structure of matrixMk, the dependence of every
entry on the moments of noise, and the relation in between these moments and the unknown variance (see Section 1.2),
we are able to estimate the noise parameter (in this case, noise variance). This illustrates the capability of the proposed
algorithm to estimate both system and noise parameters even for large values of noise.

Several examples of the process of estimating the unknown variance of noise are shown in Figures 2 and 3. Figure 2
shows the results for ARMAX system consisting two subsystems of order 1, where Figure 2A is for the case of given
data contaminated with noise of variance 1, and Figure 2B is for data with measurement noise of variance 2. By tak-
ing 𝜎∗ as the smallest local minimum, the estimated variance for both cases in Figure 2A,B is very close to the true
values.

Figure 3 demonstrates the estimation of unknown variance of noise for ARMAX system consisting four subsystems of
order 2, where Figure 3A is for the case of given data contaminated with noise of variance 0.1, Figure 3B is for data with
measurement noise of variance 0.3. By taking 𝜎∗ as the smallest local minimum, the estimated variances for both cases
in Figure 3 are very close to the true values.

6.2 SARX system identification

In this section's examples, we address the problemof identifying a two-mode switched systemof the formof Equation (27),
whose true coefficients are, again, a1 = 0.3, b1 = 1, a2 = −0.5, and b2 = −1. Process noise is assumed to be zero mean
with normal distribution. A total number ofN = 106 input-output data are given for each experiment. True and identified
coefficients for different variances of noise are presented in Table 3. Noise to output ratio and estimate of noise variance
for each experiment are also shown in this table.

http://wileyonlinelibrary.com
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(A) True noise variance 2 = 0 .1.
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(B) True noise variance 2 = 0 .3.

F IGURE 3 Estimation of noise variance using Algorithm 3, for ARMAX system consisting four subsystems of order 2 [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 3 Identifying polynomial coefficients for different values of noise variance and different SARX system
run

Experiment Value 1 Value 2 Value 3 Value 4 Value 5 Value 6 Value 7 Value 8 Value 9

# 1 −(a1 + a2) −(b1 + b2) a1 a2 a1 b2 + b1 a2 b1 b2 𝜸 𝝈2 𝝈̂2

True parameters 1 0.2 0 −0.15 −0.8 −1 — — —

Identification 1 1 0.2006 −0.0011 −0.1504 −0.8011 −1.0001 0.2657 0.1 0.1

Identification 2 1 0.1991 −0.0001 −0.1506 −0.8029 −1.0007 0.5044 0.5 0.5

Identification 3 1 0.1960 −0.0008 −0.1499 −0.7963 −1.0032 0.5656 1 1

Identification 4 1 0.2052 0.0084 −0.1493 −0.8050 −1.0036 0.7649 2 2

Once again we see that the proposed approach is very effective. As depicted in Table 3, the error in the identification
of the system's parameters is very small, which demonstrates the convergence of proposed algorithm even for small signal
to noise ratio. Again, the algorithm requires a very small computational effort. For the case of 106 measurements and
using the same off-shelf computer as before, the running time is between 2 and 9 seconds. Again, this shows how well
the proposed approach scales with the number of measurements.

The estimation error, ||cn − ĉn||2∕||cn||2, as a function of number of measurements, N, is depicted in Figure 4 for dif-
ferent values of noise variance. As it can be seen from Figure 4, the error again decreases as the number of measurements
increases. For all values of noise variance, error will eventually decrease and the estimated values of coefficients converge
to the true values.

For the abovementioned example, Table 4 shows the values of subsystems coefficients for different experiments using
different values of noise variance. The values of coefficients are very close to the true values, evenwhen the noise variance
is high with noise magnitude in average around 76% of the signal magnitude.

The estimation of noise variance based on the structure ofmatrixMproc
k is shown in Table 3 as 𝜎̂2. As it can be seen from

the results obtained, we can efficiently and simultaneously estimate the system's coefficients and the noise variance. This
illustrates the capability of the proposed algorithm to estimate both system and noise parameters even for large values of
noise.

Two examples of the process of estimating the unknown variance of process noise are shown in Figure 5; where
Figure 5A is for the case of given data with process noise of variance 1, and Figure 5B is for data with process noise of
variance 2. By taking 𝜎∗ as the smallest local minimum, the estimated variance for both cases in Figure 5A,B is the true
values.

http://wileyonlinelibrary.com
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Submodels' True Variance Variance Variance Variance

coefficients values 𝝈2 = 0.1 𝝈2 = 0.5 𝝈2 = 1 𝝈2 = 2

a1 0.3 0.3001 0.3011 0.2782 0.2987

b1 1 1.0006 1.0022 0.9724 0.9978

a2 −0.5 −0.5008 −0.5004 −0.4959 −0.5100

b2 −1 −0.9995 −1.0007 −1.0012 −1.0096

TABLE 4 Identifying submodels' coefficients for different
values of noise variance in SARX systems

6.2.1 Average behavior of the algorithm

We examine the average behavior of the algorithm proposed in this article for randomly generated stable discrete ARX
systems. Systems are randomly generated using the drss command of MATLAB, which ensures system poles are ran-
dom and stable with possible exception of poles at 1. Randomly selected systems are considered to be of the form of
Equation (27) with order 1, that is, na = 1 and nb = 1, and switched system considered to include two submodels, that is,
n = 2. The average behavior of system is tested for different values of noise variance. In each case, 100 randomexperiments
were run for the total number of measurements N = 106.

The average behavior of the system is shown in Table 5. Normalized error is shown by 𝛽 and computed as

𝛽 = ‖cn − ĉn‖‖cn‖ .

For different values of variance of noise 𝜎2 = 0.1, 0.3, 0.5, 0.7, the average mean and variance of normalized error
are computed and shown in Table 5. In each experiment consisting of 100 runs of system, the average of noise
to output ratio (𝛾) is computed and shown in Table 5. Note that for some of the randomly generated systems the
value of noise to output ratio is close to 1. Also average of elapsed time for running the algorithm is shown in
Table 5.

As we see in this table, for different values of noise variance, the average of difference in identified coefficients in
comparison with the true values is really small. This happens even in the case of large noise to output ratio. For example,
in the case of 𝜎2 = 0.3, the average of normalized error is just 0.73% and this is with having approximately 48% noise to
output ratio in average. Hence, the algorithm can recover the original system efficiently, with very low estimation error
and in a short period of time.

http://wileyonlinelibrary.com


HOJJATINIA et al. 19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(A) Case 1: true noise variance 2 = 1 .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(B) Case 2: true noise variance = 2 = 2 .
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TABLE 5 Average behavior of algorithm for different values of
noise variance for randomly generated 100 SARX systems Noise variance

Mean
of 𝜷

variance
of 𝜷

Mean
of 𝜸

Mean of
elapsed time

0.1 0.0025 1.3564e−05 0.4259 2.9393

0.3 0.0073 3.3339e−04 0.4799 2.8286

0.5 0.0083 2.8769e−04 0.5373 2.7683

0.7 0.0111 5.1764e−04 0.5452 2.8888

7 CONCLUDING REMARKS

In this article, we propose methodologies to identify the coefficients of SARMAX and SARX processes and unknown
noise parameters, starting from partial information of the noise and given input-output data. The approach is shown
to be particularly efficient in the case of large amount of data. The approach only requires the computation of singular
value decomposition of a specially constructed input-output Veronese matrix. The ensuing singular vector is then related
to the switched system parameters to be identified. We prove that the estimated parameters converge to the true ones
as the number of measurements grows. Numerical simulations show a low estimation error, even in the case of large
measurement and process noise. Also, in cases that noise distribution is not completely known, simulation results show
very efficient estimation of unknown noise parameters.
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APPENDIX

A1. Proof of Theorem 1
For simplicity of presentation, let

M̂k
.
= M[monn(yk,… , yk−na ,uk−1,… ,uk−nb)].

We first note that, given the assumptions made on the noise, uk and xk, the entries of M̂k have a variance uniformly
bounded for all k. Moreover

k > l + na ⇒ M̂k and M̂l are independent.

Hence, by Kolmogorov's strong law of large numbers27 we have

1
L

L∑
l=1

M̂k+l(na+1) −
1
L

L∑
l=1

E[M̂k+l(na+1)] → 0 a.s.

as L → ∞. To establish speed of convergence, let us look at the (i, j) entry of thematrices above. Asmentioned, there exists
a 𝜎i,j so that

Var
[
M̂k(i, j)

] ≤ 𝜎
2
i,j for k = 1, 2,… .

Then, the results in the proof of theorem 2.3.10 in Reference 27 imply that, for any 𝜖 > 0

Prob

{
max
L≥J

|||||| 1L
L∑
l=1

M̂k+l(na+1)(i, j) −
1
L

L∑
l=1

E[M̂k+l(na+1)(i, j)]
|||||| > 𝜖

}
≤ 𝜎

2
i,j

𝜖2

(
1
J
+
∑
k≥J+1

k−2
)
.

In other words, for large J

Prob

{
max
L≥J

|||||| 1L
L∑
l=1

M̂k+l(na+1)(i, j) −
1
L

L∑
l=1

E[M̂k+l(na+1)(i, j)]
|||||| > 𝜖

}
≤ O(1∕J).

Since

E[M̂k] = Mk for all positive integer k

and applying the results above for k = 1, 2,… ,na + 1, we conclude that

1
N

N∑
j=1

M̂j −
1
N

N∑
j=1

Mj → 0 a.s.

as N → ∞ and the convergence rate is O(1∕N).

A2. Convergence properties of sums of dependent random variables

Theorem 3. [26] Let {Xn,n ≥ 1} be a sequence of square-integrable random variables and suppose that there exists a
sequence of constants {𝜌k, k ≥ 1} such that

sup
n≥1
|Cov (Xn, Xn+k)| ≤ 𝜌k k ≥ 1 (A1)

holds. Let {bn,n ≥ 1} be a sequence of positive constants satisfying
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n = O(bn).

Suppose that

∞∑
n=1

(Var Xn)(log n)2

b2n
< ∞ (A2)

and

∞∑
k=1

𝜌k
kq

< ∞ for some 0 ≤ q < 1. (A3)

Then

n∑
i=1

Xi − E[Xi]
bi

converges a.s. as n → ∞, (A4)

and if bn ↑, the strong law of large number holds, i.e.

lim
n→∞

∑n
i=1(Xi − E[Xi])

bn
= 0 a.s. (A5)

A3. Proof of Corollary 1
If assumptions of Corollary 1 hold, the SARX systembehaves like linear time varying (LTV) system. In general, the impulse
response of the discrete LTV system at time k is described by

yk =
k∑

m=0
g(k,m) 𝜖m + Rk(u) + Rk(ic), (A6)

where Rk(u) is the response to the system input u and Rk(ic) is the response to initial condition. Since the SARX system is
uniformly exponentially stable andmoments of input and noise are bounded, the responses Rk(u) and Rk(ic) are bounded.
On the other hand, the computation of expected value of outputmonomials is a linear combination of the expected values
of three responses above. Since the responses Rk(u) and Rk(ic) are bounded, in the following reasoning, we concentrate
on the response to noise. Hence, consider the impulse response of SARX system to be of the form

yk =
k∑

m=0
g(k,m) 𝜖m. (A7)

The discrete time LTV system introduced in Equation (A7) is exponentially stable if and only if there exists a constantM
and 0 < a < 1 such that |g(k,m)| ≤ M a(k−m) ∀k ≥ m. (A8)

If we consider the vector matrix format of Equation (A7), that is,

⎛⎜⎜⎜⎝
y0
y1
⋮
yN

⎞⎟⎟⎟⎠ =
⎛⎜⎜⎜⎝
g(0, 0) 0 … 0
g(1, 0) g(1, 1) … 0
… … … …

g(N, 0) g(N, 1) … g(N,N)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
𝜖0
𝜖1
⋮
𝜖N

⎞⎟⎟⎟⎠
or equivalently

y = A 𝝐, (A9)
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where y is the vector of outputmeasurement and 𝝐 is the vector of noisemeasurement for all the time.Note that covariance
of y is computed as

Cov(y) = E [y y⊤] − E [y] E [y⊤]. (A10)

Since we consider noise to have zero mean normal distribution, output has also normal distribution and is mean is zero.
Hence, the covariance of y in Equation (A10) is

Cov(y) = E [y y⊤] = A E [𝝐 𝝐⊤] A⊤ = m2 A A⊤, (A11)

wherem2 is the second moment or variance of the noise.
Considering the case where assumptions of Theorem 1 hold, we use several steps of reasoning to show the conditions

of Theorem 2 are satisfied and that the algorithm in this article converges.

1. We assumed that SARX system is uniformly exponentially stable, input is bounded, andmoments of noise up to order
4n are bounded.

2. Step (1) leads to having the expected value of output monomial up to order 2n bounded and therefore the variance of
output monomials is bounded.

3. Steps (1) and (2) lead to the conditions of Theorem 2 being satisfied.
4. As a result, the strong law of large numbers holds for the monomials of system output up to order 2n and the average

of the results obtained from a large number of experiments converges to the desired value in Equation (25) almost
surely. In other words, Theorem 1 holds and ̂proc

N −proc
N → 0 a.s., as N → ∞.

Now, we prove every step from reasoning above:
1. Input and moments of noise are bounded:
Based on Assumption 2, input is given and bounded, and moments of noise up to order 4n are bounded.
2. Expected value of output monomial up to order 2n are bounded:
Switched system is uniformly exponentially stable and input is bounded. Moreover, noise is assumed to have zero

meannormal distributionwith boundedmoments, so outputmoments are also bounded. Therefore, the outputmonomial
zk as in Equation (29) is a monomial of normal random variables, so its expectation is bounded. As a result, the variance
of output monomials is also bounded.

3. Conditions of Theorem 2 are satisfied.
Let us consider zk as a monomial of output up to order 2n as defined in Equation (29), then

Cov (zk, zk+l) = E [zk zk+l] − E [zk] E [zk+l]. (A12)

Since the noise is considered to be zero mean normal, output monomials have multivariate normal distribution. Hence,
we are able to compute higher order moments of the multivariate normal distribution in terms of its covariance matrix
based on Isserlis' theorem,28 which is as follows:

Isserlis' theorem28 If (X1,X2,… ,X2n+1),∀n = 1, 2,… are zero mean multivariate Normal random variables, then

E [X1 X2 · · · X2n] =
∑ ∏

E [XiXj] (A13)

and

E [X1 X2 · · · X2n+1] = 0, (A14)

where the notation
∑ ∏

means summing over all distinct ways of partitioning X1,X2,… ,X2n into pairs Xi,Xj, which
yields to (2n)!∕(2nn!) terms in the sum.

By using the results of Isserlis Theorem for computing the value E [zk zk+l] in Equation (A12), we have

Cov (zk zk+l) =
w∑
h=1

qh𝜎ih jh , (A15)
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where |ih − jh| ≥ l and w ≤ (4n)!∕(22n (2n)!) considering that the maximum order of monomial zk and zk+l can each
be 2n. Distance |ih − jh| is the distance from the diagonal of covariance matrix of output, which is introduced by
Equation (A11), and 𝜎i j is the ijth entry of the covariance matrix of output. Note that 𝜎ih jh is the part of 𝜎i j where|ih − jh| ≥ l, and qh is the remaining part. Hence, in Eq. (A15) we consider the elements of covariance matrix of y with
largest distance as 𝜎ih jh , and put the rest as qh.

Since the system is uniformly exponentially stable, the system impulse response decays exponentially, therefore
by going farther from diagonals of the covariance matrix, the entries of covariance matrix of output 𝜎i js decrease
exponentially and distance |ih − jh| decays proportionally with the distance from the diagonal.

First, we prove that for Cov (zk, zk+l) =
∑w

h=1 qh𝜎ih jh in Equation (A15), we always have |ih − jh| ≥ l. For computing
E [zk zk+l] in Equation (A12), there are two cases that might happen:

1. The case that time indices of 𝜎ih jh involved in computing E [zk zk+l] , are always with the interval |ih − jh| ≥ l.
2. The case that time some indices of 𝜎ih jh involved in computing E [zk zk+l] , are in the interval |ih − jh| < l.

First case lines with the fact that in computing the expected value of each pair based on Isserlis' theorem, there exists
at least one entry of covariance matrix called 𝜎ih jh that the distance |ih − jh| ≥ l. For the second case, if there is no entry
with the distance |ih − jh| ≥ l, then that means the entry is separated into the multiplication of terms. In other words,
there is one term that is related to the first monomial zk, and the other term is related to the second monomial zk+l. So
that the multiplication of these terms is cancelled by the E [zk]E [zk+l] term in Equation (A12).

Now that we have proved there is always distance |ih − jh| ≥ l in computing the Cov (zk, zk+l) in Equation (A15), it
is time to find an upper bound for the Cov (zk, zk+l) and call it 𝜌l.

As we have shown in Equation (A8), |g(k,m)| ≤ Ma(k−m)∀k ≥ m, where M is a constant and 0 < a < 1. Because the
distance |ih − jh| ≥ l, then

𝜎ih jh ≤ M̃ al,

for some constant M̃. Hence,

Cov (zk, zk+l) =
w∑
h=1

qh𝜎ih jh ≤ C al, (A16)

where C is a constant. Therefore, we pick

𝜌l(C, a) = C al, (A17)

where 0 < a < 1.
Now, we prove

∞∑
k=1

(Var zk)(log k)2

k2
< ∞ (A18)

holds. In step (2), we have proved that variance of outputmonomials (Var zk) is bounded.Moreover,
∑∞

k=1
(log k)2

k2
is known

to be bounded and converges, so Equation (A18) holds.
The last condition of Theorem 2 that we need to prove is

∞∑
l=1

𝜌l
lq

< ∞ for some 0 ≤ q < 1. (A19)

By considering 𝜌l = Cal and q = 0, Equation (A19) becomes

∞∑
l=1

𝜌l
lq

=
∞∑
l=1

𝜌l =
∞∑
l=1

C al < ∞ 0 ≤ a < 1. (A20)
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Hence, we have shown that Equation (A19) holds.
4. Strong law of large numbers holds for system output monomials
As it has shown in previous steps, the conditions of Theorem 3 are satisfied for SARX system identification in this

article, so

lim
N→∞

∑N
k=1(Xk − E[Xk])

k
= 0 a.s. (A21)

In other words, strong law of large numbers holds for the system output and its monomials.
Now that we have proved strong law of large numbers holds for monomials of system output, the direct result is that

strong law of large numbers holds for theM[monn(yk,… , yk−na ,uk−1,… ,uk−nb)] and accordingly as N → ∞,

1
N

N∑
k=1

M[monn(yk,… , yk−na ,uk−1,… ,uk−nb)] −
1
N

N∑
k=1

E[M[monn(yk,… , yk−na ,uk−1,… ,uk−nb)]] → 0 a.s.,

which based on notations in Theorem 1, Lemma 4, and Equation (25), it is: as N → ∞,

̂proc
N −proc

N → 0 a.s.


