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ABSTRACT-  20 

Coinfections of hosts by multiple pathogen species are ubiquitous, but predicting their impact on 21 

disease remains challenging. Interactions between coinfecting pathogens within hosts can alter 22 

pathogen transmission, with the impact on transmission typically dependent on the relative 23 

arrival order of pathogens within hosts (within-host priority effects). However, it is unclear how 24 

these within-host priority effects influence multi-pathogen epidemics, particularly when the 25 

arrival order of pathogens at the host population scale varies. Here we combined models and 26 

experiments with zooplankton and their naturally co-occurring fungal and bacterial pathogens to 27 

examine how within-host priority effects influence multi-pathogen epidemics. Epidemiological 28 

models parameterized with within-host priority effects measured at the single host scale 29 

predicted that advancing the start date of bacterial epidemics relative to fungal epidemics would 30 

decrease mean bacterial prevalence in a multi-pathogen setting, while models without within-31 

host priority effects predicted the opposite effect. We tested these predictions with experimental 32 

multi-pathogen epidemics. Empirical dynamics matched predictions from the model including 33 

within-host priority effects, providing evidence that within-host priority effects influenced 34 

epidemic dynamics. Overall, within-host priority effects may be a key element of predicting 35 

multi-pathogen epidemic dynamics in the future, particularly as shifting disease phenology alters 36 

the order of infection within hosts.  37 

 38 

  39 
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Introduction 40 

 Epidemics of infectious diseases can strongly influence natural, agricultural and human 41 

populations. They can result in rapid degradation of host health, regulate host population 42 

dynamics, and can even put species at risk of extinction [1–3]. Predicting the dynamics and 43 

severity of epidemics ahead of time is therefore imperative for timely public health interventions, 44 

such as limiting trade of infected livestock, or immunizing at-risk human and wildlife 45 

populations. However, the vast majority of host populations are coinfected by multiple pathogen 46 

species [4–7], and epidemics of different pathogens often alter one another’s trajectories. For 47 

instance, influenza epidemics historically increased population susceptibility to pneumonia [8]. 48 

Thus, understanding how coinfecting pathogens interact at the individual and population scales is 49 

essential to predicting epidemic dynamics and mitigating epidemic severity. 50 

 Co-occurring pathogens can increase or decrease one another’s epidemic severity by 51 

interacting at the individual host scale. Pathogens can interact by competing for resources such 52 

as nutrients or body tissue, by directly interfering with or facilitating one another (e.g. by 53 

producing bacteriocins), and/or by indirectly interacting via the immune system [9–12]. These 54 

within-host interactions alter host susceptibility, pathogen transmission rates, and the duration of 55 

infections, thus determining the rate at which pathogens transmit through a host population 56 

[13,14]. Therefore, the severity of an epidemic may be difficult to predict without knowing the 57 

identities of coinfecting pathogens and how they interact within hosts.  58 

While the many ways that pathogens interact within hosts are well documented [15], 59 

scaling these interactions up to predict epidemic severity has proven challenging because within-60 

host interactions are influenced by the order of pathogen arrival at multiple spatial scales [16]. 61 

Within-host interactions have a deterministic component based on fitness asymmetry between 62 



4 
 

pathogens, but can be modified by the order in which pathogens infect hosts, both in multi-strain 63 

coinfections [17] and in multi-species coinfections [18]. These within-host priority effects can 64 

alter both the strength and direction of within-host interactions [19], and can alter disease risk 65 

[20]. Furthermore, the first pathogen to spread through a host population during a multi-pathogen 66 

epidemic is likely to be the first pathogen to infect individual hosts [16,21]. Thus, differences in 67 

the arrival order of co-occurring epidemics can alter within-host interactions, and thereby could 68 

change epidemic dynamics. However, large enough inter-specific asymmetry in pathogen fitness 69 

within and across hosts could override context dependent within-host priority effects. In this 70 

scenario, infection order may not be important and will simply add “noise” to the dynamics of 71 

epidemics. Given that variation in timing of epidemics is common because pathogens typically 72 

respond differentially to seasonal forcings [22], it is important to understand whether within-host 73 

priority effects can alter epidemic severity, and whether measuring them will allow us to better 74 

predict future epidemic dynamics. 75 

One challenge to understanding the role of within-host priority effects in determining 76 

epidemic severity is that within-host priority effects may themselves be context dependent. Many 77 

studies have documented within-host priority effects experimentally [18,23–26], but these 78 

interactions are often measured in isolated hosts under ideal conditions that do not reflect the 79 

complex, stressful, and ever-changing environmental conditions hosts and pathogens experience 80 

during epidemics. For instance, host and pathogen populations at the start, peak, or end of an 81 

epidemic experience very different resource conditions [27], population densities [2], and 82 

age/stage structures [28] that could all modify within-host interactions and thus alter within-host 83 

priority effects. Consequently, measuring within-host interactions and priority effects 84 
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experimentally in isolated hosts may not allow us to understand their role in determining 85 

epidemic dynamics at the host population scale.  86 

 To help fill these conceptual gaps, we asked (1) how does relative epidemic start date 87 

interact with within-host priority effects to alter epidemic dynamics? And (2) does measuring 88 

within-host priority effects at the individual host scale improve our ability to predict multi-89 

pathogen epidemics? To answer these questions, we used individuals and populations of 90 

zooplankton coinfected with naturally co-occurring fungal and bacterial pathogens as a model 91 

system. We ran predictive epidemic models parameterized with or without within-host priority 92 

effects, and then tested the predictions of these models with experimental multi-pathogen 93 

epidemics. Predictive models with or without within-host priority effects showed clear 94 

qualitative differences in the impact of epidemic arrival order on epidemic dynamics, and our 95 

experimental epidemics qualitative matched patterns predicted only by our within-host priority 96 

effect model. Together, these results indicate that within-host priority effects interact with 97 

relative epidemic start date to alter multi-pathogen epidemic dynamics in our system, and that we 98 

might better predict multi-pathogen epidemics by taking within-host priority effects into account.  99 

Methods  100 

 We predict that epidemic timing will alter epidemic dynamics by creating feedback loops 101 

mediated by within-host priority effects. The first pathogen to enter a host population will most 102 

likely be the first pathogen to enter individual hosts in the first host generation of a multi-103 

pathogen epidemic. In later generations, epidemic arrival order will alter the order of infection at 104 

the single host scale indirectly. The arrival order in the first generation of hosts will determine 105 

the transmission of pathogens from those hosts, and thus the force of infection of both pathogens. 106 

When two pathogens circulate in a host population, the pathogen with the higher force of 107 



6 
 

infection will be more likely to infect hosts first [19]. Thus, the relative start dates of co-108 

occurring epidemics can indirectly alter the arrival order of pathogens at the single host scale 109 

several generations after the start of the epidemics. 110 

 It is intractable to measure these priority effect mediated feedback loops directly, as we 111 

would need to measure both the infection order of pathogens in each individual host, and the 112 

transmission of pathogens from those hosts, during an epidemic. Instead, we built predictive 113 

epidemic models parameterized with experiments conducted at the single host scale and ran 114 

these models with and without within-host priority mediated feedback loops. This approach 115 

allowed us to understand how these feedback loops influence multi-pathogen dynamics and 116 

isolate within-host priority effects from effects arising simply from co-infections. We then tested 117 

the qualitative predictions made by our epidemic models by running experimental multi-118 

pathogen epidemics in the lab.   119 

Study system 120 

 We built models to predict epidemic dynamics in the zooplankton species Daphnia 121 

dentifera (henceforth zooplankton). This zooplankton species is common in lakes in the 122 

midwestern United States [29]. In late summer, zooplankton populations commonly host 123 

pathogens, including the fungus Metschnikowia bicuspidata and the bacterium Pasteuria ramosa 124 

(henceforth fungus and bacterium). While lakes differ in their pathogen communities, the fungus 125 

and bacterium do co-occur in some lakes. Zooplankton ingest infectious spores of both 126 

pathogens while filtering for algae. After ingestion, spores replicate until host death, at which 127 

point they escape into the water column until they are ingested by a new host [30]. For this study, 128 

we used a clonal zooplankton line (“Mid37”) and pathogen isolates which had been grown in lab 129 

for several years (“Standard” fungus and “G/18” bacterium). 130 
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Epidemic models 131 

To predict the impact of within-host interactions and within-host priority effects on 132 

epidemic severity, and to test whether we can predict epidemic severity by measuring within-133 

host interactions experimentally, we ran multi-pathogen epidemic simulations parameterized 134 

with experimental measurements of within-host priority effects. We compared models which (i) 135 

included within-host interactions, (ii) included within-host interactions but not within-host 136 

priority effects, and (iii) did not include any within-host interactions (Figure 1). We include a no 137 

within-host interaction model to determine whether coinfection and epidemic arrival order alter 138 

epidemic dynamics purely by altering host population dynamics. 139 

We parameterized our model with within-host priority effects measured and fully 140 

described in [31]. Age-controlled hosts were singly infected, simultaneously coinfected, or 141 

sequentially infected, with either the bacterium or the fungus arriving four days after the other 142 

pathogen. Comparing glms with heteroscedasticity using the glht function in R [32], we 143 

determined that fungal spore yield (number of infectious spores in the host at death) was 144 

significantly lower in coinfected hosts the fungus arrived first in compared to other coinfected 145 

host classes. Bacterial spore load was significantly lower in coinfected hosts than singly infected 146 

hosts in all cases. To parameterize the within-host priority effects for this study, we used the 147 

R2jags package in R [33] to find Bayesian estimates of the mean values of fungal spores 148 

(normally distributed) and bacterial spores (poisson distributed) from each infected host class 149 

(Figure 1). We used a Bayesian approach to more efficiently carry forward uncertainty through 150 

nested layers of modelling (parameters estimated from single hosts were used to estimate 151 

parameters in single-pathogen epidemics, which were used to make predictions about multi-152 

pathogen epidemics).  153 
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 154 

 155 

Figure 1: Pathogen fitness in all models: those that contained within-host interactions/priority 156 

effects, corresponding to empirical data (“full model”), those that did not contain within-host 157 

priority effects (“no priority effects”), and those that did not contain any within-host interactions 158 

(“no interactions”). The fitness of pathogens was measured as average number of infectious 159 

spores released from hosts at death [31]. Points indicate relative spore yield of pathogens in 160 

coinfected hosts compared to mean spore yield of singly infected hosts when the fungus arrived 161 

first (Fun), when pathogens arrived at the same time (Simul), or when the bacterium arrived first 162 

(Bac). Blue points represent the bacterium, yellow points represent the fungus. The gray shading 163 

indicates the likelihood that a pathogen will be competitively excluded, ranging from 0 in the 164 

white to 1 in the darkest gray (see supplement for calculation). Bars indicate 95% of posterior 165 

estimate for each point. Raw data and relevant methods can be found in Clay et al. 2019.  166 

Here, we present our full model that includes both within-host interactions and within-host 167 

priority effects (Figure 2). See methods supplement for equations describing all models, and for 168 

discussion of model assumptions. We model epidemics as a discrete time SI system of 169 
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environmentally transmitted bacterial and fungal pathogens, with environmental spore pools 𝐵 170 

and 𝐹. Hosts may be susceptible (𝑆), singly infected (𝐼𝐵  or 𝐼𝐹), coinfected simultaneously (𝐶𝑠𝑖𝑚), 171 

sequentially infected with the fungus first (𝐶𝐹𝐵), or sequentially infected with the bacterium first 172 

(𝐶𝐵𝐹). Further, upon coinfection, pathogens may competitively exclude one another. Hosts in 173 

class 𝑋𝑖,𝑠𝑖𝑚, 𝑋𝑖,𝐹𝐵, or 𝑋𝑖,𝐵𝐹 were previously coinfected, but pathogen 𝑖 competitively excluded its 174 

competitor within the host. Once a pathogen has been competitively excluded, it cannot re-infect 175 

a host.  176 

 177 

Figure 2: Model flowchart, highlighting most likely transmission pathways for each multi-178 

pathogen experimental treatment, e.g. in our “Bacterium First” treatment, we predict susceptible 179 

individuals will first become singly infected by the bacterium (𝐼𝐵), and then coinfected (𝐶𝐵𝐹). 180 
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(Note, however, that all highlighted transmission pathways can occur in all treatments). Blue is 181 

used to indicate state variables and parameters related to the bacterium, including hosts singly 182 

infected by the bacterium (𝐼𝐵), bacterial infection (solid blue arrow), bacterial spore release 183 

(dashed blue arrow), and bacterium competitively excluding the fungus within hosts (dotted blue 184 

arrow). Similarly, yellow represents state variables and parameters related to the fungus, 185 

including hosts singly infected by the fungus, fungal infection, fungal spore release, and the 186 

fungus competitively excluding the fungus within hosts. Green represents coinfected hosts and 187 

simultaneous coinfection. Multi-colored lines mean that hosts can move back and forth between 188 

two classes. Line thickness represents relative rate, e.g. bacterial spore release is less from 189 

coinfected individuals than from singly infected individuals, and thus the bacterial spore release 190 

line is thinner from coinfected hosts. Note that competitive exclusion happens instantaneously 191 

upon coinfection, thus individuals move directly from singly infected individuals to cleared 192 

individuals in model equations.  193 

To differentiate between simultaneous coinfections (infections occur on the same day) 194 

and sequential coinfections (infections happen on different days), we model dynamics in discrete 195 

time, with a time step of one day. Dynamics of the susceptible class are given by 196 

𝑆𝑡+1 = 𝑆𝑡 + 𝑏𝑆𝑡−𝑗 (1 −
𝑁𝑡−𝑗

𝐾
)

⏞          
𝐵𝑖𝑟𝑡ℎ𝑠

− (𝜃𝐵,𝑡 + 𝜃𝐹,𝑡 − 𝜃𝐵,𝑡𝜃𝐹,𝑡)𝑆𝑡
⏞                

𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝑆𝑆𝑡⏞
𝐷𝑒𝑎𝑡ℎ𝑠

                     𝑒𝑞. 1 197 

Where 𝑏 is the number of offspring/host/day at low population density, 𝐾 is host carrying 198 

capacity, and 𝑁𝑡 is total population size at time 𝑡. In experimental, single-pathogen epidemics 199 

(described below), we observed no developing offspring in the brood chamber of any infected 200 

zooplankton. Thus, infected hosts do not give birth in our model. Hosts must go through a 201 

juvenile stage, lasting 𝑗 days, before they are counted as part of the susceptible, adult population. 202 
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Susceptible hosts become singly infected by feeding on spores in the water column. Thus, 𝜃𝑖,𝑡 is 203 

the proportion of hosts to become infected by pathogen 𝑖 at time 𝑡, given by  204 

𝜃𝐵,𝑡 = 𝑓𝑡𝜇𝐵𝐵𝑡                                                                  𝑒𝑞. 2 205 

𝜃𝐹,𝑡 = 𝑓𝑡𝜇𝐹𝐹𝑡                                                                   𝑒𝑞. 3 206 

Where 𝑓𝑡 is the total proportion of spores in the environment eaten by each host at time step 𝑡,  207 

and 𝜇𝑖 is the per spore infectivity of pathogen 𝑖 (eq. 2 and 3 were established to be mass action 208 

processes based on previous experiments, see supplement). We assume that pathogens do not 209 

alter host susceptibility to one another, as shown in [31]. In these prior experiments, we found 210 

that the order of infection of the fungal and bacterial pathogens only altered spore yield. We 211 

found no evidence of protection or immune suppression (prior exposure by one pathogen did not 212 

reduce or increase the likelihood of infection by the other pathogen). Thus, we assume that 213 

infection likelihood is not altered by the infection status of the host. The proportion of 214 

susceptible hosts to become simultaneously coinfected at time 𝑡 is 𝜃𝐵,𝑡𝜃𝐹,𝑡, and the proportion of 215 

susceptible hosts to become singly infected by pathogen 𝑖 is the proportion of susceptible hosts 216 

to become infected by pathogen 𝑖, minus the proportion of those hosts to also become 217 

simultaneously coinfected. At no point in our simulations does 𝜃𝐵,𝑡 or 𝜃𝐹,𝑡 become greater than 218 

one. Finally 𝑑𝑆 is the rate of intrinsic host mortality.  219 

Hosts singly infected by the fungus may become coinfected upon ingesting bacterial 220 

spores, and vice versa. Upon coinfection, the probability of remaining coinfected until death with 221 

no competitive exclusion is 𝜔𝑗, where 𝑗 is the coinfection class. 𝜆𝐵,𝑗 is the probability that the 222 

fungus will competitively exclude the bacterium, and 𝜆𝐹,𝑗 is the probability that the bacterium 223 

will competitively exclude the fungus. See supplement for calculation of competitive exclusion 224 



12 
 

probabilities. After the fungus is cleared from infected hosts, the hosts can become reinfected by 225 

the fungus, returning to their original coinfected class. Upon reinfection, the bacterium and the 226 

fungus may once again competitively exclude one another, with the original probabilities 227 

associated with that coinfected class. We assume that once the bacterium is excluded by the 228 

fungus, it cannot reinfect hosts, as the time between fungal infection and host death is relatively 229 

short. Finally, since fungal infection reduces host lifespan [31], all hosts infected by the fungus 230 

die at an increased rate (𝑑𝐹), with their death rate reverting to 𝑑𝑆 if the bacterium excludes the 231 

fungus. Thus, changes in the numbers of infected and coinfected hosts are then given by   232 

𝐼𝐵,𝑡+1 = 𝐼𝐵,𝑡 + (𝜃𝐵,𝑡(1 − 𝜃𝐹,𝑡))𝑆𝑡⏞          
𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝜃𝐹,𝑡𝐼𝐵,𝑡⏞    
𝐶𝑜𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝑆𝐼𝐵,𝑡⏞  
𝐷𝑒𝑎𝑡ℎ𝑠

                            𝑒𝑞. 4 233 

𝐼𝐹,𝑡+1 = 𝐼𝐹,𝑡 + (𝜃𝐹,𝑡(1 − 𝜃𝐵,𝑡))𝑆𝑡⏞          
𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝜃𝐵,𝑡𝐼𝐹,𝑡⏞    
𝐶𝑜𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝐹𝐼𝐹,𝑡⏞  
𝐷𝑒𝑎𝑡ℎ𝑠

                            𝑒𝑞. 5 234 

𝐶𝑠𝑖𝑚,𝑡+1 = 𝐶𝑠𝑖𝑚,𝑡 + 𝜃𝐵,𝑡𝜃𝐹,𝑡𝜔𝑠𝑖𝑚𝑆𝑡⏞        
𝐶𝑜𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

+ 𝜃𝐹,𝑡𝜔𝑠𝑖𝑚𝑋𝐵,𝑠𝑖𝑚,𝑡⏞          
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝐹𝐶𝑠𝑖𝑚,𝑡⏞    
𝐷𝑒𝑎𝑡ℎ𝑠

                 𝑒𝑞. 6 235 

    𝑋𝐵,𝑠𝑖𝑚,𝑡+1 = 𝑋𝐵,𝑠𝑖𝑚,𝑡 + 𝜃𝐵,𝑡𝜃𝐹,𝑡𝜆𝐹,𝑠𝑖𝑚𝑆𝑡⏞          
𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛

− 𝜃𝐹,𝑡𝑋𝐵,𝑠𝑖𝑚,𝑡(1 − 𝜆𝐹,𝑠𝑖𝑚)⏞              
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝑆𝑋𝐵,𝑠𝑖𝑚,𝑡⏞      
𝐷𝑒𝑎𝑡ℎ𝑠

  𝑒𝑞. 7 236 

𝑋𝐹,𝑠𝑖𝑚,𝑡+1 = 𝑋𝐹,𝑠𝑖𝑚,𝑡 + 𝜃𝐵,𝑡𝜃𝐹,𝑡𝜆𝐵,𝑠𝑖𝑚𝑆𝑡⏞          
𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛

+ 𝜃𝐹,𝑡𝜆𝐵,𝑠𝑖𝑚𝑋𝐵,𝑠𝑖𝑚,𝑡⏞          
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝐹𝑋𝐹,𝑠𝑖𝑚,𝑡⏞      
𝐷𝑒𝑎𝑡ℎ𝑠

       𝑒𝑞. 8 237 

𝐶𝐵𝐹,𝑡+1 = 𝐶𝐹,𝑡 + 𝜃𝐹,𝑡𝜔𝐵𝐹𝐼𝐵,𝑡⏞      
𝐶𝑜𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

+ 𝜃𝐹,𝑡𝜔𝐵𝐹𝑋𝐵,𝐵𝐹,𝑡⏞        
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝐹𝐶𝐹,𝑡⏞  
𝐷𝑒𝑎𝑡ℎ𝑠

                           𝑒𝑞. 9 238 

𝑋𝐵,𝐵𝐹,𝑡+1 = 𝑋𝐵,𝐵𝐹,𝑡 + 𝜃𝐹,𝑡𝜆𝐹,𝐵𝐹𝐼𝐵,𝑡⏞        
𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛

− 𝜃𝐹,𝑡𝑋𝐵,𝐵𝐹,𝑡(1 − 𝜆𝐹,𝐵𝐹)⏞              
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝑆𝑋𝐵,𝐵𝐹,𝑡⏞      
𝐷𝑒𝑎𝑡ℎ𝑠

  𝑒𝑞. 10 239 

𝑋𝐹,𝐵𝐹,𝑡+1 = 𝑋𝐹,𝐵𝐹,𝑡 + 𝜃𝐹,𝑡𝜆𝐵,𝐵𝐹𝐼𝐵,𝑡⏞        
𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛

+ 𝜃𝐹,𝑡𝜆𝐵,𝐵𝐹𝑋𝐵,𝐵𝐹,𝑡⏞          
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝐹𝑋𝐹,𝐵𝐹,𝑡⏞      
𝐷𝑒𝑎𝑡ℎ𝑠

        𝑒𝑞. 11 240 
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𝐶𝐹𝐵,𝑡+1 = 𝐶𝐹𝐵,𝑡 + 𝜃𝐵,𝑡𝜔𝐹𝐵𝐼𝐹,𝑡⏞      
𝐶𝑜𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

+ 𝜃𝐹,𝑡𝜔𝐹𝐵𝑋𝐵,𝐹𝐵,𝑡⏞        
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝐹𝐶𝐹𝐵,𝑡⏞    
𝐷𝑒𝑎𝑡ℎ𝑠

                      𝑒𝑞. 12 241 

𝑋𝐵,𝐹𝐵,𝑡+1 = 𝑋𝐵,𝐹𝐵,𝑡 + 𝜃𝐵,𝑡𝜆𝐹,𝐹𝐵𝐼𝐹,𝑡⏞        
𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛

− 𝜃𝐹,𝑡𝑋𝐵,𝐹𝐵,𝑡(1 − 𝜆𝐹,𝐹𝐵)⏞              
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝑆𝑋𝐵,𝐹𝐵,𝑡⏞      
𝐷𝑒𝑎𝑡ℎ𝑠

     𝑒𝑞. 13 242 

𝑋𝐹,𝐹𝐵,𝑡+1 = 𝑋𝐹,𝐹𝐵,𝑡 + 𝜃𝐵,𝑡𝜆𝐵,𝐹𝐵𝐼𝐹,𝑡⏞        
𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝐸𝑥𝑐𝑙𝑢𝑠𝑖𝑜𝑛

+ 𝜃𝐹,𝑡𝜆𝐵,𝐹𝐵𝑋𝐵,𝐹𝐵,𝑡⏞          
𝑅𝑒𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

− 𝑑𝐹𝑋𝐹,𝐹𝐵,𝑡⏞      
𝐷𝑒𝑎𝑡ℎ𝑠

         𝑒𝑞. 14 243 

 244 

 Infected hosts transmit spores into environmental spore pools upon death, whose 245 

dynamics are given by 246 

𝐵𝑡+1 = 𝐵𝑡 + 247 

𝑑𝑆𝛽𝐵(𝐵)(𝐼𝐵,𝑡 + 𝑋𝐵,𝐵𝐹,𝑡 + 𝑋𝐵,𝐹𝐵,𝑡 + 𝑋𝐵,𝑠𝑖𝑚,𝑡) + 𝑑𝐹𝛽𝐵(𝐵𝐹)𝐶𝐵𝐹,𝑡 + 𝑑𝐹𝛽𝐵(𝐹𝐵)𝐶𝐹𝐵,𝑡 + 𝑑𝐹𝛽𝐵(𝑠𝑖𝑚)𝐶𝑠𝑖𝑚,𝑡⏞                                                            
𝑆𝑝𝑜𝑟𝑒 𝑅𝑒𝑙𝑒𝑎𝑠𝑒

  248 

−𝛼𝐵𝐵𝑡⏞
𝐿𝑜𝑠𝑠

 − 𝑓𝑡𝜇𝐵𝐵𝑡𝑁𝑡⏞      
𝑈𝑝𝑡𝑎𝑘𝑒

                                                            𝑒𝑞. 15 249 

And 250 

𝐹𝑡+1 = 𝐹𝑡 + 251 

𝑑𝐹𝛽𝐹(𝐹)(𝐼𝐹,𝑡 + 𝑋𝐹,𝐵𝐹,𝑡 + 𝑋𝐹,𝐹𝐵,𝑡 + 𝑋𝐹,𝑠𝑖𝑚,𝑡) + 𝑑𝐹𝛽𝐹(𝐵𝐹)𝐶𝐵𝐹,𝑡 + 𝑑𝐹𝛽𝐹(𝐹𝐵)𝐶𝐹𝐵,𝑡 + 𝑑𝐹𝛽𝐹(𝑠𝑖𝑚)𝐶𝑠𝑖𝑚,𝑡⏞                                                            
𝑆𝑝𝑜𝑟𝑒 𝑅𝑒𝑙𝑒𝑎𝑠𝑒

 252 

−𝛼𝐹𝐹𝑡⏞
𝐿𝑜𝑠𝑠

− 𝑓𝑡𝐹𝑡𝑁𝑡⏞  
𝑈𝑝𝑡𝑎𝑘𝑒

                                                              𝑒𝑞. 16 253 

Where 𝛽𝑖(𝑗) represents of the number of spores 𝑖 released from host class 𝑗. Thus, all hosts that 254 

are infected by a given pathogen add spores of that pathogen to the environment upon death. We 255 

assume that if a pathogen is competitively excluded from a host, the host’s spore yield reverts to 256 
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that of a singly infected host. Spores have a loss rate (𝛼𝑖), which represents spore degradation 257 

and spores moving out of the system (e.g., due to settling), and fungal spores are removed from 258 

the environment by host feeding (𝑓) [34]. Bacterial spores, alternatively, can survive passage 259 

through the host gut, and thus are not removed by host feeding unless they actively infect the 260 

host [35].  261 

 Models were parameterized with a combination of three experiments. First, we measured 262 

lifespan and birthrates of uninfected hosts with a life table experiment (supplement). We then 263 

measured pathogen fitness (infectious spores released upon host death) in singly infected, 264 

sequentially infected, and simultaneously coinfected hosts [31]. Finally, we estimated carrying 265 

capacity and spore degradation from the uninfected and singly infected treatments of our 266 

experimental epidemics (supplement). All parameters were estimated with the R2jags package in 267 

R [33], in order to create Bayesian posterior distributions of parameter value probabilities. See 268 

supplement for full methods and all parameter values (Table S1).  269 

 To predict epidemic dynamics under shifting epidemic arrival order, we ran our model 270 

under conditions where fungal epidemics started a week before bacterial epidemics, where 271 

epidemics started simultaneously, and where bacterial epidemics started a week before fungal 272 

epidemics, matching our experimental treatments (Table 1). We simulated each scenario 1,000 273 

times, each time drawing parameters from posterior distributions of Bayesian parameter 274 

estimates (supplement). Within-host interactions and priority effects in this system primarily 275 

impact infectious spore production [31]. Thus, for our model with no within-host interactions, we 276 

set the spore release rate from all coinfected hosts equal to the spore release rate from singly 277 

infected hosts. For our model which included within-host interactions but no within-host priority 278 
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effects, we set the spore release rate of sequentially coinfected hosts equal to that of 279 

simultaneously coinfected hosts (Figure 1, see supplement for exact equations for each model).  280 

Testing model predictions 281 

 To test our epidemic model predictions empirically, we ran experimental multi-pathogen 282 

epidemics. We seeded 1 liter beakers of filtered pond water with 100 adult zooplankton each on 283 

day 1 of the experiment. On day 2, we homogenized singly infected zooplankton to create 284 

infectious spore slurries, and seeded beakers with either 190 fungal spores/ml, 1000 bacterial 285 

spores/ml, 190 fungal spores/ml and 1000 bacterial spores/ml, or a control dosage of ground up 286 

uninfected Daphnia. We repeated this procedure on day 9 to create populations with no 287 

epidemics, single-pathogen epidemics, or multi-pathogen epidemics with varying epidemic 288 

arrival orders (Table 1), with 8 replicate populations per treatment.  289 

Treatment No. Treatment Day 2 Treatment day 9 

1 Control Control 

2 Fungus Control 

3 Bacterium Control 

4 Fungus/Bacterium Control 

5 Fungus Bacterium 

6 Bacterium Fungus 

Table 1: Treatments in host population scale experiments. 290 

 To monitor host-pathogen dynamics, we subsampled 1/10th of each zooplankton 291 

population every 5 days, filtering out Daphnia and returning water to each replicate after 292 

sampling. Juveniles were counted and discarded. Adult individuals were homogenized and 293 
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infectious spores inside each adult were identified. We then categorized adult zooplankton as 294 

uninfected, singly infected by the fungus, singly infected by the bacterium, or coinfected. We ran 295 

the experiment for 67 days, ending when the majority of infected populations had gone extinct. 296 

We fed each replicate 20,000 Ankistrodesmus sp. cells per ml 4 days a week (Mon, Tue, Thu, 297 

Fri).  298 

Comparing models predictions and experimental epidemics 299 

To compare model predictions and empirical epidemics, we focused on treatment 300 

differences in three key metrics that characterize different aspect of epidemics: mean prevalence, 301 

epidemic length (time between first observed and last observed infected host), and integrated 302 

prevalence (the summed prevalence across all sampling dates). For each metric and pathogen, we 303 

first calculated significant pairwise differences between single pathogen epidemics and each 304 

multi-pathogen epidemic treatment. Second, for each pathogen we calculated the relationship 305 

between a metric and the relative timing of infection (day of fungal spore introduction – day of 306 

bacterial spore introduction) among our coinfected treatments. Residuals of the mean fell under 307 

gamma or normal distributions for all variables in each treatment. Thus, all comparisons were 308 

performed with the generalized linear model (glm) function in R [36]. 309 

Our models predicted that within-host priority effects resulted in testable differences in 310 

key aspect of epidemics (see results) across arrival treatments. Thus, if our no interaction model 311 

(Figure 1, “no interactions”) correctly predicts epidemic dynamics, then within-host interactions 312 

are not important drivers of epidemic dynamics in our system. If our no within-host priority 313 

effects model (Figure 1, “no  priority effects”) correctly predicts epidemic dynamics, then 314 

within-host interactions, but not within-host priority effects are important drivers of epidemic 315 

dynamics in our system. If only our full model (Figure 1, “full model”) predicts epidemic 316 
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dynamics, then we can conclude that within-host priority effects alter epidemic dynamics, and 317 

that by measuring them we can accurately predict epidemic dynamics a priori. If no models 318 

correctly predict epidemic dynamics, then measurements of within-host interactions made 319 

experimentally do not necessarily represent within-host interactions that occur during an 320 

epidemic.   321 

Results  322 

Model Predictions 323 

 Adding within-host priority effects to our predictive models altered the predicted impact 324 

of epidemic arrival order on bacterial epidemic dynamics. In all models, the presence of a fungal 325 

epidemic reduced the integrated prevalence, mean prevalence, and epidemic length of bacterial 326 

epidemics (Figure S2). All models also predicted the same impact of epidemic arrival order on 327 

bacterial epidemic length, with bacterial epidemics lasting longer when bacterial epidemics start 328 

before fungal epidemics. However, models disagreed on the impact of epidemic arrival order on 329 

mean prevalence. Models that did not include within-host interactions predicted no effect of 330 

epidemic arrival order on mean prevalence. Models that accounted for within-host interactions 331 

but not within-host priority effects predicted that mean prevalence would be higher when the 332 

bacterial epidemic started before the fungal epidemic than in other treatments. In sharp contrast, 333 

our full model (including within-host priority effects) predicted the opposite result: as bacterial 334 

epidemic start date moved later, and fungal epidemic start date moved earlier, mean bacterial 335 

prevalence should decrease (Figures 3, S2).  336 
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 337 

Figure 3: Empirical estimates of the impact of epidemic arrival order on mean bacterial 338 

prevalence and epidemic length match predictions made by our full model. The Y-axis shows the 339 

mean prevalence (A-D) and length (E-H) of bacterial epidemics in experiments (A,E) and in 340 

models when the fungal epidemic precedes the bacterial epidemic (“Fungus”), and when the 341 

bacterial epidemic precedes the fungal epidemic (“Bacterium”). Points for empirical data 342 

represent means with standard error across replicates, while model data is represented by 343 

boxplots of 1,000 model runs.  344 

 All models predicted no change in fungal epidemic dynamics due to coinfection or 345 

epidemic arrival order (Figure S3).  346 

Empirical single pathogen epidemic dynamics  347 

 Both pathogens spread readily through host populations. In single pathogen epidemics the 348 

fungus and the bacterium both reached 100% prevalence in all replicates, and maintained 349 

themselves in host populations until host populations went extinct (Figure 4,S3). Bacterial 350 
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epidemics reached 100% prevalence roughly 40 days after epidemic start date and stayed close to 351 

100% prevalence until populations went extinct (Figure 4E). Fungal epidemics spread much 352 

faster and first peaked near 100% prevalence at day 11 of our experiment, then proceeded to 353 

cycle through multiple epidemic peaks of varying intensity (Figure 4F).  354 

How do coinfection and epidemic timing alter empirical epidemic severity? 355 

 Coinfection and relative epidemic start date interacted to change epidemic dynamics. We 356 

saw coinfected individuals at a high rate in all coinfected treatments (Figure S4). Coinfection 357 

reduced the total size of all bacterial epidemics (integrated prevalence of infected individuals 358 

over time, hereafter referred to as integrated prevalence: only bacterium vs. fungus first p=0.017, 359 

only bacterium vs. simultaneous epidemics p=0.046, only bacterium vs. bacterium first p=0.048, 360 

Figure 3). The integrated prevalence did not significantly change with shifting epidemic start 361 

date (p=1.0). However, as bacterial epidemics shifted earlier and fungal epidemics shifter later, 362 

bacterial epidemics became longer (p=0.036), and had lower average prevalence (p=0.0015, 363 

Figure 3A,E, Figure 4B-D).  Overall these results indicate that relative epidemic start date in our 364 

system shaped how epidemics were distributed over time, though not their overall size. Fungal 365 

epidemics were not significantly different in integrated prevalence, mean prevalence, or length 366 

across any treatments (Table S2; fungal epidemics appear longer in singly infected populations 367 

in Figure 3F due to a single replicate).  368 
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 369 

Figure 4: Empirical bacterial epidemics (blue) changed with coinfection and epidemic arrival 370 

order, while fungal epidemics (yellow) did not. Y-axis shows prevalence (proportion) of hosts 371 

infected over the course of the epidemic. Prevalence includes both singly infected and coinfected 372 

hosts. Lines represent mean prevalence across non-extinct replicates, with ribbons representing 373 

95% confidence intervals at each time point. Coinfection reduced the integrated prevalence of all 374 

bacterial epidemics (B vs. E p=0.017, C vs. E p=0.046, D vs. E p=0.048). The integrated 375 

prevalence did not significantly change with shifting epidemic start date (p=1.0). As bacterial 376 

epidemics shifted earlier and fungal epidemics shifter later, bacterial epidemics became longer 377 
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(p=0.036), and had lower average prevalence (p=0.0015). Fungal epidemics were not 378 

significantly different between treatments. 379 

Testing model predictions with empirical dynamics 380 

 The dynamics of our experimental epidemics best matched predictions made by our full 381 

model. In cases where models agreed with one another (predicting that coinfection would reduce 382 

the integrated size of bacterial epidemics, and that bacterial epidemics would become shorter as 383 

the bacterial epidemic shifted later and the fungal epidemic shifted earlier), empirical epidemics 384 

matched the predictions of all models (Figure 3, E-H, Figure 4, B-E). However, as the bacterial 385 

epidemic shifted later and the fungal epidemic shifted earlier, our empirical data rejected the 386 

predictions of our no priority effect models that the mean prevalence of bacterial epidemics 387 

would increase or stay the same (Figure 3, C-D , Figure 4, B-E), instead supporting the 388 

prediction of our full model that the mean prevalence of bacterial epidemics should decrease.    389 

Discussion 390 

 In natural systems, the arrival order of pathogens within a host can determine the fitness 391 

and transmission of those pathogens. However, it is still unclear how these within-host priority 392 

effects can alter disease dynamics during multi-pathogen epidemics. Our study shows that in our 393 

system pathogen arrival order at the within-host scale interacts with pathogen arrival order at the 394 

host population scale to determine multi-pathogen epidemic dynamics. Specifically, we show 395 

that coinfection reduced epidemic size, while the relative start dates of co-occurring epidemics 396 

determined how epidemics were distributed over time. Predictive epidemic models only 397 

accurately captured qualitative multi-pathogen dynamics if they included within-host priority 398 

effects measured at the single host scale, indicating that within-host priority effects can be a 399 
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mechanism through which disease phenology alters multi-pathogen epidemics. Taken together, 400 

this evidence suggests that measuring within-host priority effects may increase our ability to 401 

predict multi-pathogen epidemics in the future, particular under shifting disease phenology.  402 

Mechanisms of single pathogen epidemics dynamics 403 

 The two pathogens in our study both created large epidemics, but exhibited different 404 

temporal dynamics. In our single pathogen treatments, the sustained high prevalence of the 405 

bacterium (Figure 3E) is likely driven by its low probability of degradation (Table S1), and 406 

because this bacterium can remain infectious after passing through host digestive tracts [35]. 407 

Therefore, the bacterial spore load in the environment, and thus the probability of infection, 408 

could remain high throughout our experiment. The cycling pattern in our fungal epidemics 409 

(Figure 3F) is due to the synchronized infection and mortality of infected host cohorts. After 410 

fungal spores are introduced to the environment, hosts will remove most of them via ingestion. A 411 

proportion of those hosts will become infected, and then all die roughly 10 to 12 days later due to 412 

fungus induced mortality, releasing spores back into the environment, and restarting the cycle. 413 

Mechanisms of multi-pathogen epidemics dynamics 414 

 Entering host populations before the fungus could have increased mean bacterial 415 

prevalence as the bacterium had time to spread without fungal interference, or could have 416 

decreased mean bacterial prevalence as the bacterium had the lowest fitness within coinfected 417 

hosts when it arrived first (Figure 1). Ultimately, we found that bacterial prevalence was lowest 418 

when bacterial epidemics had a head start (Figure 3,4). Our epidemic models tease apart the 419 

mechanics of how relative epidemic start date alters mean prevalence of the bacterium. Mean 420 

bacterial prevalence shrinks when the bacterium arrives first compared to when the fungus 421 
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arrives first because there is a high probability of competitive exclusion for the bacterium when 422 

it infects hosts before the fungus (Figure 1). Thus, as competitive exclusion of the bacterium 423 

increases due to within-host priority effects, the mean prevalence of the bacterium during the 424 

epidemic decreases. Therefore, in this system, within-host priority effects are strong enough for 425 

epidemic start date to change epidemic severity.    426 

 Fungal epidemic dynamics showed no change between treatments, despite our fungal 427 

pathogen experiencing stronger within-host priority effects than the bacterium (Figure 1). 428 

However, this pattern may be driven by epidemic saturation: fungal pathogens reached 100% 429 

prevalence very quickly in all single pathogen treatments. This high prevalence makes it difficult 430 

to detect if epidemics facilitate one another, as epidemic prevalence cannot exceed 100%. 431 

Furthermore, it suggests that the spore load of the fungus in the environment may have been far 432 

greater than necessary to infect all hosts. Under such conditions, fluctuations in infectious spore 433 

yields from co-infected hosts would have no effect on epidemic dynamics. This indicates that for 434 

pathogens with very high transmission and prevalence, such as some gut helminths in wildlife 435 

populations [37], their dynamics may not be impacted by interactions with other pathogens, or by 436 

relative epidemic timing.  437 

 Ultimately, how epidemic timing and within-host priority effects altered experimental 438 

epidemics depended on the type of within-host priority effects we observed. In our system, 439 

pathogens had lowest fitness when they infect coinfected hosts first (Figure 1). For the fungus, 440 

we hypothesize coinfection with the bacterium facilitates the fungus, as the bacterium causes 441 

gigantism via castration [38], allowing for hosts to contain more spores. However, if the fungus 442 

arrives first, it may disrupt bacterial castration, removing the facilitative effect. Further 443 

experiments are needed to confirm this hypothesis. For a system where within-host priority 444 
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effects take a different form, e.g. where pathogens have a fitness advantage from prior residency 445 

in hosts [17], the impact of shifting epidemic phenology will be different than that seen in our 446 

system. However, our results provide evidence that within-host priority effects can scale up by 447 

interacting with disease phenology, and may do so in other systems.   448 

Role of within host interactions 449 

 Overall, this study experimentally demonstrates that within-host priority effects can alter 450 

epidemic dynamics in our system by shifting pathogen fitness in coinfected hosts. Previous 451 

studies have demonstrated that sequential infections can alter epidemic severity if early arriving 452 

pathogens increase or decrease host susceptibility to further infection [11,16,20,39]. For instance, 453 

endemic infection by helminths makes tuberculosis invasion easier as helminths increase host 454 

susceptibility to microparasites [11]. Or, in certain grass hosts, the first arriving pathogen 455 

changes the likelihood of coinfection by all other pathogens in the system [16]. Previous theory 456 

further shows that within-host priority effects may alter disease dynamics not only by changing 457 

the likelihood of infection, but also by altering competitive outcomes within hosts, altering the 458 

ability of pathogens to spread through a previously infected population [40,41]. Our study adds 459 

to this body of work by providing experimental evidence that within-host competitive outcomes 460 

driven by infection order scale up to alter epidemic dynamics. These results may apply even 461 

when epidemics do not have separate start dates. This is because hosts will usually be infected 462 

first by the pathogen with the highest infection risk in a given system [16,21]. Thus, our results 463 

emphasize that we should examine the role of within-host priority effects in driving disease 464 

dynamics whenever a host population is infected by multiple pathogens.  465 

 Though within-host priority effects are important, they are not the only mechanism 466 

through which epidemic timing impacts epidemic dynamics in our system. We found that 467 
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between-host interactions, rather than within-host interactions, determined variation in epidemic 468 

length in our experiments. Between-host interactions occur when pathogens decrease the 469 

population size of susceptible hosts, decreasing the transmission of density-dependent pathogens 470 

[42]. In our experiments, bacterial epidemics were longer when the bacterium entered the 471 

population first than when the fungus entered the population first. This is because coinfection 472 

greatly decreased population density and drove host populations to extinction (Figure S5C-E). In 473 

total, the length of a bacterial epidemic was proportional to the time between when bacterium 474 

entered the host population, and when the host population went extinct. Similarly, in all of our 475 

models, bacterial epidemics are longest when the bacterium enters the population first (Figure 476 

2,4), because epidemics start when the bacterium enters the host population, and end when the 477 

host population goes extinct. Thus, within-host interactions are not needed to predict some 478 

aspects of how epidemic timing alters epidemic patterns. However, the strength of between-host 479 

interactions increases with pathogen prevalence [39], which depends in part on within-host 480 

interactions. Therefore, within-host interactions and between host interactions likely feed back 481 

on one another to determine epidemic severity.  482 

Making Predictions 483 

 Our results demonstrate that we can predict qualitative changes in multi-pathogen 484 

epidemic dynamics in our system. Specifically, our models parameterized with within-host 485 

priority effects correctly predicted that epidemic start date would alter the length and mean 486 

prevalence of bacterial epidemics (Figure 3,S2) but would not alter fungal epidemics (Figure 487 

S3). Our models did not predict quantitative epidemic dynamics (e.g. our full model could not 488 

predict pathogen prevalence at a specific time point in the epidemic, figure S6) because Daphnia 489 

sp. population dynamics are highly stochastic, follow boom and bust cycles, and depend on 490 
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asymmetric competition between different daphnia age classes [43,44]. We chose a simpler 491 

model that would not capture Daphnia population dynamics, but would better show the impact 492 

of within-host priority effects at the host-population scale. Further, qualitative disease 493 

predictions are highly valuable in identifying areas of concern, such as identifying where shifts 494 

in disease phenology will lead to an increase in epidemic severity.  495 

 Importantly, our model predicted the qualitative impact of within-host interactions a 496 

priori. Previous multi-pathogen epidemic models have accurately predicted epidemic patterns, 497 

but these models were parameterized by either observing or inferring within-host interactions 498 

during the epidemic the models were predicting [8,45,46]. The value of models with post-hoc 499 

parameterization lies in predicting multi-pathogen epidemics that occur in common spatial and 500 

temporal combinations. For instance, Abu-Raddad et al. (2006) predicted the dynamics of 501 

endemic strains of HIV and malaria in Kenya by observing endemic HIV/malaria interactions in 502 

Malawi. However, for novel pathogen combinations or arrival orders, experimentally measured 503 

within-host interactions must be used to predict how pathogen interactions will alter epidemic 504 

dynamics a priori. Our results indicate that this approach can accurately predict qualitative 505 

metrics, but also that we must take into account how within-host interactions will translate from 506 

a lab setting to a field setting, where pathogens face fundamentally different conditions [47]. For 507 

instance, for our models to make accurate predictions, we needed to assume that within-host 508 

competition between pathogens was higher during experimental epidemics than during the 509 

experiments performed on isolated hosts used to parameterize our predictive models (an 510 

assumption with empirical support, see supplement). How within-host interactions will change 511 

from field to lab settings will depend on within-host mechanisms. For instance, hosts rarely 512 

compete for resources during experimental measurements of within-host interactions 513 
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[25,26,31,48,49]. Within-host competition for resources may then increase when hosts compete 514 

for host resources in the field [50], but apparent competition via the immune system may 515 

decrease when hosts compete for resources [51]. Thus, to predict how changing ecology will 516 

qualitatively change multi-pathogen epidemics before they occur, researchers should examine 517 

the mechanisms underlying within-host priority effects, rather than simply measuring the impact 518 

of sequential infection on pathogen fitness in a lab setting.  519 

Conclusion 520 

 Infectious disease research now acknowledges that many pathogens usually circulate 521 

within host populations [52]. Epidemics of these pathogens occur in response to environmental 522 

conditions (temperature, rainfall), host population dynamics (aggregation, dispersal, foraging), or 523 

within-host conditions (seasonal weakening of immune systems)[22]. These variables are 524 

constantly changing, and as long as pathogens respond differentially to environmental or host 525 

cues, then epidemics will continue to fluctuate in their relative timing, and thus severity. Further, 526 

we expect to see shifts in environmental variables and host population dynamics under future 527 

climate conditions, potentially creating novel timing conditions of co-occurring epidemics. If we 528 

do not take both within-host interactions and within-host priority effects into account, we may 529 

become increasingly unable to predict epidemic severity in the future.  530 
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