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ABSTRACT-

Coinfections of hosts by multiple pathogen species are ubiquitous, but predicting their impact on
disease remains challenging. Interactions between coinfecting pathogens within hosts can alter
pathogen transmission, with the impact on transmission typically dependent on the relative
arrival order of pathogens within hosts (within-host priority effects). However, it is unclear how
these within-host priority effects influence multi-pathogen epidemics, particularly when the
arrival order of pathogens at the host population scale varies. Here we combined models and
experiments with zooplankton and their naturally co-occurring fungal and bacterial pathogens to
examine how within-host priority effects influence multi-pathogen epidemics. Epidemiological
models parameterized with within-host priority effects measured at the single host scale
predicted that advancing the start date of bacterial epidemics relative to fungal epidemics would
decrease mean bacterial prevalence in a multi-pathogen setting, while models without within-
host priority effects predicted the opposite effect. We tested these predictions with experimental
multi-pathogen epidemics. Empirical dynamics matched predictions from the model including
within-host priority effects, providing evidence that within-host priority effects influenced
epidemic dynamics. Overall, within-host priority effects may be a key element of predicting
multi-pathogen epidemic dynamics in the future, particularly as shifting disease phenology alters

the order of infection within hosts.
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Introduction

Epidemics of infectious diseases can strongly influence natural, agricultural and human
populations. They can result in rapid degradation of host health, regulate host population
dynamics, and can even put species at risk of extinction [1-3]. Predicting the dynamics and
severity of epidemics ahead of time is therefore imperative for timely public health interventions,
such as limiting trade of infected livestock, or immunizing at-risk human and wildlife
populations. However, the vast majority of host populations are coinfected by multiple pathogen
species [4—7], and epidemics of different pathogens often alter one another’s trajectories. For
instance, influenza epidemics historically increased population susceptibility to pneumonia [8].
Thus, understanding how coinfecting pathogens interact at the individual and population scales is

essential to predicting epidemic dynamics and mitigating epidemic severity.

Co-occurring pathogens can increase or decrease one another’s epidemic severity by
interacting at the individual host scale. Pathogens can interact by competing for resources such
as nutrients or body tissue, by directly interfering with or facilitating one another (e.g. by
producing bacteriocins), and/or by indirectly interacting via the immune system [9-12]. These
within-host interactions alter host susceptibility, pathogen transmission rates, and the duration of
infections, thus determining the rate at which pathogens transmit through a host population
[13,14]. Therefore, the severity of an epidemic may be difficult to predict without knowing the

identities of coinfecting pathogens and how they interact within hosts.

While the many ways that pathogens interact within hosts are well documented [15],
scaling these interactions up to predict epidemic severity has proven challenging because within-
host interactions are influenced by the order of pathogen arrival at multiple spatial scales [16].

Within-host interactions have a deterministic component based on fitness asymmetry between
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pathogens, but can be modified by the order in which pathogens infect hosts, both in multi-strain
coinfections [17] and in multi-species coinfections [18]. These within-host priority effects can
alter both the strength and direction of within-host interactions [19], and can alter disease risk
[20]. Furthermore, the first pathogen to spread through a host population during a multi-pathogen
epidemic is likely to be the first pathogen to infect individual hosts [16,21]. Thus, differences in
the arrival order of co-occurring epidemics can alter within-host interactions, and thereby could
change epidemic dynamics. However, large enough inter-specific asymmetry in pathogen fitness
within and across hosts could override context dependent within-host priority effects. In this
scenario, infection order may not be important and will simply add “noise” to the dynamics of
epidemics. Given that variation in timing of epidemics is common because pathogens typically
respond differentially to seasonal forcings [22], it is important to understand whether within-host
priority effects can alter epidemic severity, and whether measuring them will allow us to better

predict future epidemic dynamics.

One challenge to understanding the role of within-host priority effects in determining
epidemic severity is that within-host priority effects may themselves be context dependent. Many
studies have documented within-host priority effects experimentally [18,23-26], but these
interactions are often measured in isolated hosts under ideal conditions that do not reflect the
complex, stressful, and ever-changing environmental conditions hosts and pathogens experience
during epidemics. For instance, host and pathogen populations at the start, peak, or end of an
epidemic experience very different resource conditions [27], population densities [2], and
age/stage structures [28] that could all modify within-host interactions and thus alter within-host

priority effects. Consequently, measuring within-host interactions and priority effects
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experimentally in isolated hosts may not allow us to understand their role in determining

epidemic dynamics at the host population scale.

To help fill these conceptual gaps, we asked (1) how does relative epidemic start date
interact with within-host priority effects to alter epidemic dynamics? And (2) does measuring
within-host priority effects at the individual host scale improve our ability to predict multi-
pathogen epidemics? To answer these questions, we used individuals and populations of
zooplankton coinfected with naturally co-occurring fungal and bacterial pathogens as a model
system. We ran predictive epidemic models parameterized with or without within-host priority
effects, and then tested the predictions of these models with experimental multi-pathogen
epidemics. Predictive models with or without within-host priority effects showed clear
qualitative differences in the impact of epidemic arrival order on epidemic dynamics, and our
experimental epidemics qualitative matched patterns predicted only by our within-host priority
effect model. Together, these results indicate that within-host priority effects interact with
relative epidemic start date to alter multi-pathogen epidemic dynamics in our system, and that we

might better predict multi-pathogen epidemics by taking within-host priority effects into account.

Methods

We predict that epidemic timing will alter epidemic dynamics by creating feedback loops
mediated by within-host priority effects. The first pathogen to enter a host population will most
likely be the first pathogen to enter individual hosts in the first host generation of a multi-
pathogen epidemic. In later generations, epidemic arrival order will alter the order of infection at
the single host scale indirectly. The arrival order in the first generation of hosts will determine
the transmission of pathogens from those hosts, and thus the force of infection of both pathogens.

When two pathogens circulate in a host population, the pathogen with the higher force of
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infection will be more likely to infect hosts first [19]. Thus, the relative start dates of co-
occurring epidemics can indirectly alter the arrival order of pathogens at the single host scale

several generations after the start of the epidemics.

It is intractable to measure these priority effect mediated feedback loops directly, as we
would need to measure both the infection order of pathogens in each individual host, and the
transmission of pathogens from those hosts, during an epidemic. Instead, we built predictive
epidemic models parameterized with experiments conducted at the single host scale and ran
these models with and without within-host priority mediated feedback loops. This approach
allowed us to understand how these feedback loops influence multi-pathogen dynamics and
isolate within-host priority effects from effects arising simply from co-infections. We then tested
the qualitative predictions made by our epidemic models by running experimental multi-

pathogen epidemics in the lab.

Study system

We built models to predict epidemic dynamics in the zooplankton species Daphnia
dentifera (henceforth zooplankton). This zooplankton species is common in lakes in the
midwestern United States [29]. In late summer, zooplankton populations commonly host
pathogens, including the fungus Metschnikowia bicuspidata and the bacterium Pasteuria ramosa
(henceforth fungus and bacterium). While lakes differ in their pathogen communities, the fungus
and bacterium do co-occur in some lakes. Zooplankton ingest infectious spores of both
pathogens while filtering for algae. After ingestion, spores replicate until host death, at which
point they escape into the water column until they are ingested by a new host [30]. For this study,
we used a clonal zooplankton line (“Mid37”") and pathogen isolates which had been grown in lab

for several years (“Standard” fungus and “G/18” bacterium).
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Epidemic models

To predict the impact of within-host interactions and within-host priority effects on
epidemic severity, and to test whether we can predict epidemic severity by measuring within-
host interactions experimentally, we ran multi-pathogen epidemic simulations parameterized
with experimental measurements of within-host priority effects. We compared models which (i)
included within-host interactions, (ii) included within-host interactions but not within-host
priority effects, and (iii) did not include any within-host interactions (Figure 1). We include a no
within-host interaction model to determine whether coinfection and epidemic arrival order alter

epidemic dynamics purely by altering host population dynamics.

We parameterized our model with within-host priority effects measured and fully
described in [31]. Age-controlled hosts were singly infected, simultaneously coinfected, or
sequentially infected, with either the bacterium or the fungus arriving four days after the other
pathogen. Comparing glms with heteroscedasticity using the glht function in R [32], we
determined that fungal spore yield (number of infectious spores in the host at death) was
significantly lower in coinfected hosts the fungus arrived first in compared to other coinfected
host classes. Bacterial spore load was significantly lower in coinfected hosts than singly infected
hosts in all cases. To parameterize the within-host priority effects for this study, we used the
R2jags package in R [33] to find Bayesian estimates of the mean values of fungal spores
(normally distributed) and bacterial spores (poisson distributed) from each infected host class
(Figure 1). We used a Bayesian approach to more efficiently carry forward uncertainty through
nested layers of modelling (parameters estimated from single hosts were used to estimate
parameters in single-pathogen epidemics, which were used to make predictions about multi-

pathogen epidemics).
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Figure 1: Pathogen fitness in all models: those that contained within-host interactions/priority
effects, corresponding to empirical data (“full model”), those that did not contain within-host
priority effects (“no priority effects”), and those that did not contain any within-host interactions
(“no interactions”). The fitness of pathogens was measured as average number of infectious
spores released from hosts at death [31]. Points indicate relative spore yield of pathogens in
coinfected hosts compared to mean spore yield of singly infected hosts when the fungus arrived
first (Fun), when pathogens arrived at the same time (Simul), or when the bacterium arrived first
(Bac). Blue points represent the bacterium, yellow points represent the fungus. The gray shading
indicates the likelihood that a pathogen will be competitively excluded, ranging from 0 in the
white to 1 in the darkest gray (see supplement for calculation). Bars indicate 95% of posterior

estimate for each point. Raw data and relevant methods can be found in Clay et al. 2019.

Here, we present our full model that includes both within-host interactions and within-host
priority effects (Figure 2). See methods supplement for equations describing all models, and for

discussion of model assumptions. We model epidemics as a discrete time SI system of
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(Cgr)- Further, upon coinfection, pathogens may competitively exclude one another. Hosts in
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Figure 2: Model flowchart, highlighting most likely transmission pathways for each multi-
pathogen experimental treatment, e.g. in our “Bacterium First” treatment, we predict susceptible

individuals will first become singly infected by the bacterium (Ig), and then coinfected (Cgp).
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(Note, however, that all highlighted transmission pathways can occur in all treatments). Blue is
used to indicate state variables and parameters related to the bacterium, including hosts singly
infected by the bacterium (I), bacterial infection (solid blue arrow), bacterial spore release
(dashed blue arrow), and bacterium competitively excluding the fungus within hosts (dotted blue
arrow). Similarly, yellow represents state variables and parameters related to the fungus,
including hosts singly infected by the fungus, fungal infection, fungal spore release, and the
fungus competitively excluding the fungus within hosts. Green represents coinfected hosts and
simultaneous coinfection. Multi-colored lines mean that hosts can move back and forth between
two classes. Line thickness represents relative rate, e.g. bacterial spore release is less from
coinfected individuals than from singly infected individuals, and thus the bacterial spore release
line is thinner from coinfected hosts. Note that competitive exclusion happens instantaneously
upon coinfection, thus individuals move directly from singly infected individuals to cleared

individuals in model equations.

To differentiate between simultaneous coinfections (infections occur on the same day)
and sequential coinfections (infections happen on different days), we model dynamics in discrete

time, with a time step of one day. Dynamics of the susceptible class are given by

Births .
N Infection Deaths
t—j ——
Se+1 =S¢ + bS;_; (1 — Tj) — (8¢ + Or ¢ — 05,405 )S: — dsS; eq.1

Where b is the number of offspring/host/day at low population density, K is host carrying
capacity, and N, is total population size at time t. In experimental, single-pathogen epidemics
(described below), we observed no developing offspring in the brood chamber of any infected
zooplankton. Thus, infected hosts do not give birth in our model. Hosts must go through a

juvenile stage, lasting j days, before they are counted as part of the susceptible, adult population.

10
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Susceptible hosts become singly infected by feeding on spores in the water column. Thus, 6; ; is

the proportion of hosts to become infected by pathogen i at time t, given by

Ot = fegBe eq.2

Okt = felrF: eq.3

Where f; is the total proportion of spores in the environment eaten by each host at time step ¢,
and y; is the per spore infectivity of pathogen i (eq. 2 and 3 were established to be mass action
processes based on previous experiments, see supplement). We assume that pathogens do not
alter host susceptibility to one another, as shown in [31]. In these prior experiments, we found
that the order of infection of the fungal and bacterial pathogens only altered spore yield. We
found no evidence of protection or immune suppression (prior exposure by one pathogen did not
reduce or increase the likelihood of infection by the other pathogen). Thus, we assume that
infection likelihood is not altered by the infection status of the host. The proportion of
susceptible hosts to become simultaneously coinfected at time t is 8p +0F ¢, and the proportion of
susceptible hosts to become singly infected by pathogen i is the proportion of susceptible hosts
to become infected by pathogen i, minus the proportion of those hosts to also become
simultaneously coinfected. At no point in our simulations does 6 ; or 8, become greater than

one. Finally d; is the rate of intrinsic host mortality.

Hosts singly infected by the fungus may become coinfected upon ingesting bacterial
spores, and vice versa. Upon coinfection, the probability of remaining coinfected until death with
no competitive exclusion is wj, where j is the coinfection class. Ap ; is the probability that the
fungus will competitively exclude the bacterium, and A ; is the probability that the bacterium

will competitively exclude the fungus. See supplement for calculation of competitive exclusion

11



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

probabilities. After the fungus is cleared from infected hosts, the hosts can become reinfected by
the fungus, returning to their original coinfected class. Upon reinfection, the bacterium and the
fungus may once again competitively exclude one another, with the original probabilities
associated with that coinfected class. We assume that once the bacterium is excluded by the
fungus, it cannot reinfect hosts, as the time between fungal infection and host death is relatively
short. Finally, since fungal infection reduces host lifespan [31], all hosts infected by the fungus
die at an increased rate (dy), with their death rate reverting to d if the bacterium excludes the

fungus. Thus, changes in the numbers of infected and coinfected hosts are then given by

Infection Coinfection  Deaths
Igti1 = Ipe + (0p(1 — O0p))St — Opilpe — dslpy eq.4
Infection Coinfection  Deaths
Ipipr =Ipe + (Opc(1 = 05:))St — Opelpy — dplp, eq.5
Coinfection Reinfection Deaths
Csimt+1 = Csimt + 05,:0p t WsimSt + Op t WsimXp simt — ArCsim,t eq.6
Competitive Exclusion Reinfection Deaths

XB,sim,t+1 = XB,sim,t + HB,tBF,t/lF,simSt - 9F,tXB,sim,t(1 - AF,sim) - dSXB,sim,t eq. 7

Competitive Exclusion Reinfection Deaths

XF,sim,t+1 = XF,sim,t + HB,tHF,tAB,simSt + HF,t/lB,simXB,sim,t - dFXF,sim,t eq.8

Coinfection Reinfection Deaths
Cprt+1 = Crp + HF,t(UBFIB,t + 9F,thFXB,BF,t - dFCF,t eq.9
Competitive Exclusion Reinfection Deaths
—_——
Xppri+1 = Xppre T BF,tAF,BFIB,t - 9F,tXB,BF,t(1 - AF,BF) - dSXB,BF,t eq.10
Competitive Exclusion Reinfection Deaths
—_——
Xppri+1 = Xpprt +  Orildpprlp:  + OpiApprXppr: — ArXFpr: eq.11
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Coinfection Reinfection Deaths

Crgt+1 = Crp¢ + O0ptwpplp: + Op tWppXp rp e — AdpCrp ¢ eq.12
Competitive Exclusion Reinfection Deaths
—_———
XB,FB,t+1 = XB,FB,t + HB,tAF,FBIF,t - QF,tXB,FB,t(l - AF,FB) - dSXB,FB,t eq' 13
Competitive Exclusion Reinfection Deaths
—_———
XF,FB,t+1 = XF,FB,t + BB,t/lB,FBIF,t + HF,t/lB,FBXB,FB,t - dFXF,FB,t eq' 14

Infected hosts transmit spores into environmental spore pools upon death, whose

dynamics are given by

Biy1 =By +

Spore Release

dsBe) Ut + Xpprt + Xpre: + Xpsime) + AeBrrr)Cort + ArBrFe)Crat + ArBr(sim)Csim,t

Loss Uptake
—agB; — fiupBN; eq.15
And
Fepr=F +

Spore Release

dpBrryUr,: + Xpprt + Xprpt + Xpsime) + AdeBrir)Core + AdrBrre)Cree + ArBr(sim)Csim,t

Loss Uptake
— —_—
_aFFt _ftFtNt eq.16

Where By represents of the number of spores i released from host class j. Thus, all hosts that

are infected by a given pathogen add spores of that pathogen to the environment upon death. We

assume that if a pathogen is competitively excluded from a host, the host’s spore yield reverts to

13



257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

that of a singly infected host. Spores have a loss rate («;), which represents spore degradation
and spores moving out of the system (e.g., due to settling), and fungal spores are removed from
the environment by host feeding (f) [34]. Bacterial spores, alternatively, can survive passage
through the host gut, and thus are not removed by host feeding unless they actively infect the

host [35].

Models were parameterized with a combination of three experiments. First, we measured
lifespan and birthrates of uninfected hosts with a life table experiment (supplement). We then
measured pathogen fitness (infectious spores released upon host death) in singly infected,
sequentially infected, and simultaneously coinfected hosts [31]. Finally, we estimated carrying
capacity and spore degradation from the uninfected and singly infected treatments of our
experimental epidemics (supplement). All parameters were estimated with the R2jags package in
R [33], in order to create Bayesian posterior distributions of parameter value probabilities. See

supplement for full methods and all parameter values (Table S1).

To predict epidemic dynamics under shifting epidemic arrival order, we ran our model
under conditions where fungal epidemics started a week before bacterial epidemics, where
epidemics started simultaneously, and where bacterial epidemics started a week before fungal
epidemics, matching our experimental treatments (Table 1). We simulated each scenario 1,000
times, each time drawing parameters from posterior distributions of Bayesian parameter
estimates (supplement). Within-host interactions and priority effects in this system primarily
impact infectious spore production [31]. Thus, for our model with no within-host interactions, we
set the spore release rate from all coinfected hosts equal to the spore release rate from singly

infected hosts. For our model which included within-host interactions but no within-host priority

14
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effects, we set the spore release rate of sequentially coinfected hosts equal to that of

simultaneously coinfected hosts (Figure 1, see supplement for exact equations for each model).

Testing model predictions

To test our epidemic model predictions empirically, we ran experimental multi-pathogen
epidemics. We seeded 1 liter beakers of filtered pond water with 100 adult zooplankton each on
day 1 of the experiment. On day 2, we homogenized singly infected zooplankton to create
infectious spore slurries, and seeded beakers with either 190 fungal spores/ml, 1000 bacterial
spores/ml, 190 fungal spores/ml and 1000 bacterial spores/ml, or a control dosage of ground up
uninfected Daphnia. We repeated this procedure on day 9 to create populations with no
epidemics, single-pathogen epidemics, or multi-pathogen epidemics with varying epidemic

arrival orders (Table 1), with 8 replicate populations per treatment.

Treatment No. Treatment Day 2 Treatment day 9
1 Control Control

2 Fungus Control

3 Bacterium Control

4 Fungus/Bacterium Control

5 Fungus Bacterium

6 Bacterium Fungus

Table 1: Treatments in host population scale experiments.

To monitor host-pathogen dynamics, we subsampled 1/10™ of each zooplankton
population every 5 days, filtering out Daphnia and returning water to each replicate after

sampling. Juveniles were counted and discarded. Adult individuals were homogenized and

15
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infectious spores inside each adult were identified. We then categorized adult zooplankton as
uninfected, singly infected by the fungus, singly infected by the bacterium, or coinfected. We ran
the experiment for 67 days, ending when the majority of infected populations had gone extinct.
We fed each replicate 20,000 Ankistrodesmus sp. cells per ml 4 days a week (Mon, Tue, Thu,

Fri).

Comparing models predictions and experimental epidemics

To compare model predictions and empirical epidemics, we focused on treatment
differences in three key metrics that characterize different aspect of epidemics: mean prevalence,
epidemic length (time between first observed and last observed infected host), and integrated
prevalence (the summed prevalence across all sampling dates). For each metric and pathogen, we
first calculated significant pairwise differences between single pathogen epidemics and each
multi-pathogen epidemic treatment. Second, for each pathogen we calculated the relationship
between a metric and the relative timing of infection (day of fungal spore introduction — day of
bacterial spore introduction) among our coinfected treatments. Residuals of the mean fell under
gamma or normal distributions for all variables in each treatment. Thus, all comparisons were

performed with the generalized linear model (glm) function in R [36].

Our models predicted that within-host priority effects resulted in testable differences in
key aspect of epidemics (see results) across arrival treatments. Thus, if our no interaction model
(Figure 1, “no interactions”) correctly predicts epidemic dynamics, then within-host interactions
are not important drivers of epidemic dynamics in our system. If our no within-host priority
effects model (Figure 1, “no priority effects”) correctly predicts epidemic dynamics, then
within-host interactions, but not within-host priority effects are important drivers of epidemic

dynamics in our system. If only our full model (Figure 1, “full model”) predicts epidemic

16



317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

dynamics, then we can conclude that within-host priority effects alter epidemic dynamics, and
that by measuring them we can accurately predict epidemic dynamics a priori. If no models
correctly predict epidemic dynamics, then measurements of within-host interactions made
experimentally do not necessarily represent within-host interactions that occur during an

epidemic.

Results

Model Predictions

Adding within-host priority effects to our predictive models altered the predicted impact
of epidemic arrival order on bacterial epidemic dynamics. In all models, the presence of a fungal
epidemic reduced the integrated prevalence, mean prevalence, and epidemic length of bacterial
epidemics (Figure S2). All models also predicted the same impact of epidemic arrival order on
bacterial epidemic length, with bacterial epidemics lasting longer when bacterial epidemics start
before fungal epidemics. However, models disagreed on the impact of epidemic arrival order on
mean prevalence. Models that did not include within-host interactions predicted no effect of
epidemic arrival order on mean prevalence. Models that accounted for within-host interactions
but not within-host priority effects predicted that mean prevalence would be higher when the
bacterial epidemic started before the fungal epidemic than in other treatments. In sharp contrast,
our full model (including within-host priority effects) predicted the opposite result: as bacterial
epidemic start date moved later, and fungal epidemic start date moved earlier, mean bacterial

prevalence should decrease (Figures 3, S2).

17



337

338

339

340

341

342

343

344

345

346

347

348

349

350

Empirical Data Full Model No Pri. Effects No Interactions

- - A B C $ i D

0.754

0.504

4+

Mean Prevalence

2 E . v OF 'G ' H
1)
T oo ] + . + H +
< + : + : +
o] .
nD .
404 .
w -
—
2
201
% .
E =
Q- - "
= Fungus  Bacterium Fungus  Bacterium Fungus  Bacterium Fungus  Bacterium

First Arriving Pathogen

Figure 3: Empirical estimates of the impact of epidemic arrival order on mean bacterial
prevalence and epidemic length match predictions made by our full model. The Y-axis shows the
mean prevalence (A-D) and length (E-H) of bacterial epidemics in experiments (A,E) and in
models when the fungal epidemic precedes the bacterial epidemic (“Fungus”), and when the
bacterial epidemic precedes the fungal epidemic (“Bacterium”). Points for empirical data
represent means with standard error across replicates, while model data is represented by

boxplots of 1,000 model runs.

All models predicted no change in fungal epidemic dynamics due to coinfection or

epidemic arrival order (Figure S3).
Empirical single pathogen epidemic dynamics

Both pathogens spread readily through host populations. In single pathogen epidemics the
fungus and the bacterium both reached 100% prevalence in all replicates, and maintained

themselves in host populations until host populations went extinct (Figure 4,S3). Bacterial
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epidemics reached 100% prevalence roughly 40 days after epidemic start date and stayed close to
100% prevalence until populations went extinct (Figure 4E). Fungal epidemics spread much
faster and first peaked near 100% prevalence at day 11 of our experiment, then proceeded to

cycle through multiple epidemic peaks of varying intensity (Figure 4F).

How do coinfection and epidemic timing alter empirical epidemic severity?

Coinfection and relative epidemic start date interacted to change epidemic dynamics. We
saw coinfected individuals at a high rate in all coinfected treatments (Figure S4). Coinfection
reduced the total size of all bacterial epidemics (integrated prevalence of infected individuals
over time, hereafter referred to as integrated prevalence: only bacterium vs. fungus first p=0.017,
only bacterium vs. simultaneous epidemics p=0.046, only bacterium vs. bacterium first p=0.048,
Figure 3). The integrated prevalence did not significantly change with shifting epidemic start
date (p=1.0). However, as bacterial epidemics shifted earlier and fungal epidemics shifter later,
bacterial epidemics became longer (p=0.036), and had lower average prevalence (p=0.0015,
Figure 3A,E, Figure 4B-D). Overall these results indicate that relative epidemic start date in our
system shaped how epidemics were distributed over time, though not their overall size. Fungal
epidemics were not significantly different in integrated prevalence, mean prevalence, or length
across any treatments (Table S2; fungal epidemics appear longer in singly infected populations

in Figure 3F due to a single replicate).

19



369

370

371

372

373

374

375

376

377

Fungus only Fungus first Same Bacterium first Bacterium only
i A B C D E
)
z
3 0.75
©
>
)
=
o 0.50
[
1
2
3 0.251
11]
0.001 - L
1.001 F G H J
)
L 0.751
L
©
>
£ 050
©
g
= 0.251
i
20 40 60 20 40 60 20 40 60 20 40 60 20 40 60
Day

Figure 4: Empirical bacterial epidemics (blue) changed with coinfection and epidemic arrival
order, while fungal epidemics (yellow) did not. Y-axis shows prevalence (proportion) of hosts
infected over the course of the epidemic. Prevalence includes both singly infected and coinfected
hosts. Lines represent mean prevalence across non-extinct replicates, with ribbons representing
95% confidence intervals at each time point. Coinfection reduced the integrated prevalence of all
bacterial epidemics (B vs. E p=0.017, C vs. E p=0.046, D vs. E p=0.048). The integrated
prevalence did not significantly change with shifting epidemic start date (p=1.0). As bacterial

epidemics shifted earlier and fungal epidemics shifter later, bacterial epidemics became longer
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(p=0.036), and had lower average prevalence (p=0.0015). Fungal epidemics were not

significantly different between treatments.

Testing model predictions with empirical dynamics

The dynamics of our experimental epidemics best matched predictions made by our full
model. In cases where models agreed with one another (predicting that coinfection would reduce
the integrated size of bacterial epidemics, and that bacterial epidemics would become shorter as
the bacterial epidemic shifted later and the fungal epidemic shifted earlier), empirical epidemics
matched the predictions of all models (Figure 3, E-H, Figure 4, B-E). However, as the bacterial
epidemic shifted later and the fungal epidemic shifted earlier, our empirical data rejected the
predictions of our no priority effect models that the mean prevalence of bacterial epidemics
would increase or stay the same (Figure 3, C-D , Figure 4, B-E), instead supporting the

prediction of our full model that the mean prevalence of bacterial epidemics should decrease.

Discussion

In natural systems, the arrival order of pathogens within a host can determine the fitness
and transmission of those pathogens. However, it is still unclear how these within-host priority
effects can alter disease dynamics during multi-pathogen epidemics. Our study shows that in our
system pathogen arrival order at the within-host scale interacts with pathogen arrival order at the
host population scale to determine multi-pathogen epidemic dynamics. Specifically, we show
that coinfection reduced epidemic size, while the relative start dates of co-occurring epidemics
determined how epidemics were distributed over time. Predictive epidemic models only
accurately captured qualitative multi-pathogen dynamics if they included within-host priority

effects measured at the single host scale, indicating that within-host priority effects can be a
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400  mechanism through which disease phenology alters multi-pathogen epidemics. Taken together,
401  this evidence suggests that measuring within-host priority effects may increase our ability to

402  predict multi-pathogen epidemics in the future, particular under shifting disease phenology.

403  Mechanisms of single pathogen epidemics dynamics

404 The two pathogens in our study both created large epidemics, but exhibited different

405  temporal dynamics. In our single pathogen treatments, the sustained high prevalence of the

406  bacterium (Figure 3E) is likely driven by its low probability of degradation (Table S1), and

407  because this bacterium can remain infectious after passing through host digestive tracts [35].

408  Therefore, the bacterial spore load in the environment, and thus the probability of infection,

409  could remain high throughout our experiment. The cycling pattern in our fungal epidemics

410  (Figure 3F) is due to the synchronized infection and mortality of infected host cohorts. After

411  fungal spores are introduced to the environment, hosts will remove most of them via ingestion. A
412  proportion of those hosts will become infected, and then all die roughly 10 to 12 days later due to

413  fungus induced mortality, releasing spores back into the environment, and restarting the cycle.

414  Mechanisms of multi-pathogen epidemics dynamics

415 Entering host populations before the fungus could have increased mean bacterial

416  prevalence as the bacterium had time to spread without fungal interference, or could have

417  decreased mean bacterial prevalence as the bacterium had the lowest fitness within coinfected
418  hosts when it arrived first (Figure 1). Ultimately, we found that bacterial prevalence was lowest
419  when bacterial epidemics had a head start (Figure 3,4). Our epidemic models tease apart the
420  mechanics of how relative epidemic start date alters mean prevalence of the bacterium. Mean

421  bacterial prevalence shrinks when the bacterium arrives first compared to when the fungus
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arrives first because there is a high probability of competitive exclusion for the bacterium when
it infects hosts before the fungus (Figure 1). Thus, as competitive exclusion of the bacterium
increases due to within-host priority effects, the mean prevalence of the bacterium during the
epidemic decreases. Therefore, in this system, within-host priority effects are strong enough for

epidemic start date to change epidemic severity.

Fungal epidemic dynamics showed no change between treatments, despite our fungal
pathogen experiencing stronger within-host priority effects than the bacterium (Figure 1).
However, this pattern may be driven by epidemic saturation: fungal pathogens reached 100%
prevalence very quickly in all single pathogen treatments. This high prevalence makes it difficult
to detect if epidemics facilitate one another, as epidemic prevalence cannot exceed 100%.
Furthermore, it suggests that the spore load of the fungus in the environment may have been far
greater than necessary to infect all hosts. Under such conditions, fluctuations in infectious spore
yields from co-infected hosts would have no effect on epidemic dynamics. This indicates that for
pathogens with very high transmission and prevalence, such as some gut helminths in wildlife
populations [37], their dynamics may not be impacted by interactions with other pathogens, or by

relative epidemic timing.

Ultimately, how epidemic timing and within-host priority effects altered experimental
epidemics depended on the type of within-host priority effects we observed. In our system,
pathogens had lowest fitness when they infect coinfected hosts first (Figure 1). For the fungus,
we hypothesize coinfection with the bacterium facilitates the fungus, as the bacterium causes
gigantism via castration [38], allowing for hosts to contain more spores. However, if the fungus
arrives first, it may disrupt bacterial castration, removing the facilitative effect. Further

experiments are needed to confirm this hypothesis. For a system where within-host priority
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effects take a different form, e.g. where pathogens have a fitness advantage from prior residency
in hosts [17], the impact of shifting epidemic phenology will be different than that seen in our
system. However, our results provide evidence that within-host priority effects can scale up by

interacting with disease phenology, and may do so in other systems.

Role of within host interactions

Overall, this study experimentally demonstrates that within-host priority effects can alter
epidemic dynamics in our system by shifting pathogen fitness in coinfected hosts. Previous
studies have demonstrated that sequential infections can alter epidemic severity if early arriving
pathogens increase or decrease host susceptibility to further infection [11,16,20,39]. For instance,
endemic infection by helminths makes tuberculosis invasion easier as helminths increase host
susceptibility to microparasites [11]. Or, in certain grass hosts, the first arriving pathogen
changes the likelihood of coinfection by all other pathogens in the system [16]. Previous theory
further shows that within-host priority effects may alter disease dynamics not only by changing
the likelihood of infection, but also by altering competitive outcomes within hosts, altering the
ability of pathogens to spread through a previously infected population [40,41]. Our study adds
to this body of work by providing experimental evidence that within-host competitive outcomes
driven by infection order scale up to alter epidemic dynamics. These results may apply even
when epidemics do not have separate start dates. This is because hosts will usually be infected
first by the pathogen with the highest infection risk in a given system [16,21]. Thus, our results
emphasize that we should examine the role of within-host priority effects in driving disease

dynamics whenever a host population is infected by multiple pathogens.

Though within-host priority effects are important, they are not the only mechanism

through which epidemic timing impacts epidemic dynamics in our system. We found that
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between-host interactions, rather than within-host interactions, determined variation in epidemic
length in our experiments. Between-host interactions occur when pathogens decrease the
population size of susceptible hosts, decreasing the transmission of density-dependent pathogens
[42]. In our experiments, bacterial epidemics were longer when the bacterium entered the
population first than when the fungus entered the population first. This is because coinfection
greatly decreased population density and drove host populations to extinction (Figure S5C-E). In
total, the length of a bacterial epidemic was proportional to the time between when bacterium
entered the host population, and when the host population went extinct. Similarly, in all of our
models, bacterial epidemics are longest when the bacterium enters the population first (Figure
2,4), because epidemics start when the bacterium enters the host population, and end when the
host population goes extinct. Thus, within-host interactions are not needed to predict some
aspects of how epidemic timing alters epidemic patterns. However, the strength of between-host
interactions increases with pathogen prevalence [39], which depends in part on within-host
interactions. Therefore, within-host interactions and between host interactions likely feed back

on one another to determine epidemic severity.

Making Predictions

Our results demonstrate that we can predict qualitative changes in multi-pathogen
epidemic dynamics in our system. Specifically, our models parameterized with within-host
priority effects correctly predicted that epidemic start date would alter the length and mean
prevalence of bacterial epidemics (Figure 3,S2) but would not alter fungal epidemics (Figure
S3). Our models did not predict quantitative epidemic dynamics (e.g. our full model could not
predict pathogen prevalence at a specific time point in the epidemic, figure S6) because Daphnia

sp. population dynamics are highly stochastic, follow boom and bust cycles, and depend on
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asymmetric competition between different daphnia age classes [43,44]. We chose a simpler
model that would not capture Daphnia population dynamics, but would better show the impact
of within-host priority effects at the host-population scale. Further, qualitative disease
predictions are highly valuable in identifying areas of concern, such as identifying where shifts

in disease phenology will lead to an increase in epidemic severity.

Importantly, our model predicted the qualitative impact of within-host interactions a
priori. Previous multi-pathogen epidemic models have accurately predicted epidemic patterns,
but these models were parameterized by either observing or inferring within-host interactions
during the epidemic the models were predicting [8,45,46]. The value of models with post-hoc
parameterization lies in predicting multi-pathogen epidemics that occur in common spatial and
temporal combinations. For instance, Abu-Raddad et al. (2006) predicted the dynamics of
endemic strains of HIV and malaria in Kenya by observing endemic HIV/malaria interactions in
Malawi. However, for novel pathogen combinations or arrival orders, experimentally measured
within-host interactions must be used to predict how pathogen interactions will alter epidemic
dynamics a priori. Our results indicate that this approach can accurately predict qualitative
metrics, but also that we must take into account how within-host interactions will translate from
a lab setting to a field setting, where pathogens face fundamentally different conditions [47]. For
instance, for our models to make accurate predictions, we needed to assume that within-host
competition between pathogens was higher during experimental epidemics than during the
experiments performed on isolated hosts used to parameterize our predictive models (an
assumption with empirical support, see supplement). How within-host interactions will change
from field to lab settings will depend on within-host mechanisms. For instance, hosts rarely

compete for resources during experimental measurements of within-host interactions
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[25,26,31,48,49]. Within-host competition for resources may then increase when hosts compete
for host resources in the field [50], but apparent competition via the immune system may
decrease when hosts compete for resources [51]. Thus, to predict how changing ecology will
qualitatively change multi-pathogen epidemics before they occur, researchers should examine
the mechanisms underlying within-host priority effects, rather than simply measuring the impact

of sequential infection on pathogen fitness in a lab setting.

Conclusion

Infectious disease research now acknowledges that many pathogens usually circulate
within host populations [52]. Epidemics of these pathogens occur in response to environmental
conditions (temperature, rainfall), host population dynamics (aggregation, dispersal, foraging), or
within-host conditions (seasonal weakening of immune systems)[22]. These variables are
constantly changing, and as long as pathogens respond differentially to environmental or host
cues, then epidemics will continue to fluctuate in their relative timing, and thus severity. Further,
we expect to see shifts in environmental variables and host population dynamics under future
climate conditions, potentially creating novel timing conditions of co-occurring epidemics. If we
do not take both within-host interactions and within-host priority effects into account, we may

become increasingly unable to predict epidemic severity in the future.
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