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Abstract

Recently a new feature representation framework based on a topological tool called
persistent homology (and its persistence diagram summary) has gained much
momentum. A series of methods have been developed to map a persistence diagram
to a vector representation so as to facilitate the downstream use of machine learning
tools. In these approaches, the importance (weight) of different persistence features
are usually pre-set. However often in practice, the choice of the weight-function
should depend on the nature of the specific data at hand. It is thus highly desirable
to learn a best weight-function (and thus metric for persistence diagrams) from
labelled data. We study this problem and develop a new weighted kernel, called
WKPI, for persistence summaries, as well as an optimization framework to learn
the weight (and thus kernel). We apply the learned kernel to the challenging task
of graph classification, and show that our WKPI-based classification framework
obtains similar or (sometimes significantly) better results than the best results
from a range of previous graph classification frameworks on benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent
homology has started to attract momentum. The persistent homology is one of the most important
developments in the field of topological data analysis, and there have been fundamental developments
both on the theoretical front (e.g, [23, 10, 13, 8, 14, 5]), and on algorithms / implementations (e.g,
[43, 4, 15, 20, 29, 3]). On the high level, given a domain X with a function f : X — R on it, the
persistent homology summarizes “features” of X across multiple scales simultaneously in a single
summary called the persistence diagram (see the second picture in Figure 1). A persistence diagram
consists of a multiset of points in the plane, where each point p = (b, d) intuitively corresponds to
the birth-time (b) and death-time (d) of some (topological) features of X w.r.t. f. Hence it provides a
concise representation of X, capturing multi-scale features of it simultaneously. Furthermore, the
persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs), and
different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework
(Figure 1) has become popular. Specifically, given a collection of objects, say a set of graphs modeling
chemical compounds, one can first convert each shape to a persistence-based representation. The
input data can now be viewed as a set of points in a persistence-based feature space. Equipping this
space with appropriate distance or kernel, one can then perform downstream data analysis tasks (e.g,
clustering).
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Figure 1: A persistence-based data analysis framework.

The original distances for persistence diagram summaries unfortunately do not lend themselves easily
to machine learning tasks. Hence in the last few years, starting from the persistence landscape [7],
there have been a series of methods developed to map a persistence diagram to a vector representation
to facilitate machine learning tools [41, 1, 33, 12, 35]. Recent ones include Persistence Scale-Space
kernel [41], Persistence Images [1], Persistence Weighted Gaussian kernel (PWGK) [33], Sliced
Wasserstein kernel [12], and Persistence Fisher kernel [34].

In these approaches, when computing the distance or kernel between persistence summaries, the
importance (weight) of different persistence features are often pre-determined. In persistence images
[1] and PWGK [33], the importance of having a weight-function for the birth-death plane (containing
the persistence points) has been emphasized and explicitly included in the formulation of their kernels.
However, before using these kernels, the weight-function needs to be pre-set.

On the other hand, as recognized by [26], the choice of the weight-function should depend on the
nature of the specific type of data at hand. For example, for the persistence diagrams computed
from atomic configurations of molecules, features with small persistence could capture the local
packing patterns which are of utmost importance and thus should be given a larger weight; while
in many other scenarios, small persistence leads to noise with low importance. However, in general
researchers performing data analysis tasks may not have such prior insights on input data. Thus it is
natural and highly desirable to learn a best weight-function from labelled data.

Our work. We study the problem of learning an appropriate metric (kernel) for persistence sum-
maries from labelled data, and apply the learnt kernel to the challenging graph classification task.

(1) Metric learning for persistence summaries: We propose a new weighted-kernel (called WKPI),
for persistence summaries based on persistence images representations. Our WKPI kernel is positive
semi-definite and its induced distance is stable. A weight-function used in this kernel directly encodes
the importance of different locations in the persistence diagram. We next model the metric learning
problem for persistence summaries as the problem of learning (the parameters of) this weight-function
from a certain function class. In particular, the metric-learning is formulated as an optimization
problem over a specific cost function we propose. This cost function has a simple matrix view which
helps both conceptually clarify its meaning and simplify the implementation of its optimization.

(2) Graph classification application: Given a set of objects with class labels, we first learn a best
WKPI-kernel as described above, and then use the learned WKPI to further classify objects. We
implemented this WKPI-classification framework, and apply it to a range of graph data sets. Graph
classification is an important problem, and there has been a large literature on developing effective
graph representations (e.g, [25, 40, 2, 32, 44, 47, 38], including the very recent persistent-homology
enhanced WL-kernel [42]), and graph neural networks (e.g, graph neural networks [48, 39, 46, 45,
35, 31]) to classify graphs. The problem is challenging as graph data are less structured. We perform
our WKPI-classification framework on various benchmark graph data sets as well as new neuron-
cell data sets. Our learnt WKPI performs consistently better than other persistence-based kernels.
Most importantly, when compared with existing state-of-the-art graph classification frameworks, our
framework shows similar or (sometimes significantly) better performance in almost all cases than the
best results by existing approaches.

We note that [26] is the first to recognize the importance of using labelled data to learn a task-optimal
representation of topological signatures. They developed an end-to-end deep neural network for
this purpose, using a novel and elegant design of the input layer to implicitly learn a task-specific
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Figure 2: (a): As we sweep the curve bottom-up in increasing f-values, at certain critical moments
new 0-th homological features (connected components) are created, or destroyed (i.e, components
merge). For example, a component is created when passing x4 and killed when passing z¢, giving
rise to the persistence-point (fy, fg) in the persistence diagram (f; := f(z;)). (b) shows the graph of
a persistence surface (where z-axis is the function p 4), and (c) is its corresponding persistence image.

representation. Very recently, in a parallel and independent development of our work, Carriere
et al. [11] built an interesting new neural network based on the DeepSet architecture [49], which
can achieve an end-to-end learning for multiple persistence representations in a unified manner.
Compared to these developments, we instead explicitly formulate the metric-learning problem for
persistence-summaries, and decouple the metric-learning (which can also be viewed as representation-
learning) component from the downstream data analysis tasks. Also as shown in Section 4, our
WKPI-classification framework (using SVM) achieves better results on graph classification datasets.

2 Persistence-based framework

We first give an informal description of persistent homology below. See [22] for more detailed
exposition on the subject.

Suppose we are given a shape X (in our later graph classification application, X is a graph).
Imagine we inspect X through a filtration of X, which is a sequence of growing subsets of X:
X1 € Xo C--- C X, = X. As we scan X, sometimes a new feature appears in X;, and
sometimes an existing feature disappears upon entering X ;. Using the topological object called
homology classes to describe these features (intuitively components, independent loops, voids, and
their high dimensional counter-parts), the birth and death of topological features can be captured by
the persistent homology, in the form of a persistence diagram DgX . Specifically, for each dimension
k, Dg;, X consists of a multi-set of points in the plane (which we call the birth-death plane R?): each
point (b, d) in it, called a persistence-point, indicates that a certain k-dimensional homological feature
is created upon entering X and destroyed upon entering X 4. In the remainder of the paper, we often
omit the dimension k for simplicity: when multiple dimensions are used for persistence features, we
will apply our construction to each dimension and concatenate the resulting vector representations.

A common way to obtain a meaningful filtration of X is via the sublevel-set filtration induced by
a descriptor function f on X. More specifically, given a function f : X — R, let X<, := {z €
X | f(z) < a} be its sublevel-set at a. Let a; < az < --- < a, be n real values. The sublevel-set
filtration w.r.t. fis: X<q, € X<q, € -+ € X<, ; and its persistence diagram is denoted by Dgf.
Each persistence-point p = (a;,a;) € Dgf indicates the function values when some topological
features are created (when entering X <,,) and destroyed (in X<,;), and the persistence of this
feature is its life-time pers(p) = |a; — a;|. See Figure 2 (a) for a simple example where X = R. If
one sweeps X top-down in decreasing function values, one gets the persistence diagram induced by
the super-levelset filtration of X w.r.t. f in an analogous way. Finally, if one tracks the change of
topological features in the levelset f ~*(a), one obtains the so-called levelset zigzag persistence [9]
(which contains the information captured by the extended persistence [17]).

Graph Setting. Given a graph G = (V, E)), a descriptor function f defined on V' or E will induce
a filtration and its persistence diagrams. Suppose f : V' — R is defined on the node set of G
(e.g, the node degree). Then we can extend f to E by setting f(u,v) = max{f(u), f(v)}, and
the sublevel-set at a is defined as G<, := {c € VU E | f(0) < a}. Similarly, if we are given
f+ E — R, then we can extend f to V by setting f(u) = miny,e. ccr f(€). When scanning G



via the sublevel-set filtration of f, connected components in the swept subgraphs will be created
and merged, and new cycles will be created. The formal events are encoded in the O-dimensional
persistence diagram. The the 1-dimensional features (cycles), however, we note that cycles created
will never be killed, as they are present in the total space X = G. To this end, we use the so-called
extended persistence introduced in [17] which can record information of cycles.

Now given a collection of shapes =, we can compute a persistence diagram DgX for each X € =,
which maps the set = to a set of points in the space of persistence diagrams. There are natural
distances defined for persistence diagrams, including the bottleneck distance and the Wasserstein
distance, both of which have been well studied (e.g, stability under them [16, 18, 14]) with efficient
implementations available [27, 28]. However, to facilitate downstream machine learning tasks, it
is desirable to further map the persistence diagrams to another “vector” representation. Below we
introduce one such representation, called the persistence images [1], as our new kernel is based on it.

Let A be a persistence diagram (containing a multiset of persistence-points). Following [1], set
T : R? — R? to be the linear transformation! where for each (z,y) € R?, T(x,y) = (z,y — z). Let
T(A) be the transformed diagram of A. Let ¢,, : R> — R be a differentiable probability distribution

P E

with mean u € R2 (e.g, the normalized Gaussian where for any z € R?, du(z) = s 277

Definition 2.1 ([1]) Let o : R? — R be a non-negative weight-function for the persistence plane R2.
Given a persistence diagram A, its persistence surface p4 : R2 — R (w.r.t. o) is defined as: for any

2 €R? pa(2) = Yera) A(w)du(2).

The persistence image is a discretization of the persistence surface. Specifically, fix a grid on a
rectangular region in the plane with a collection P of N rectangles (pixels). The persistence image
for a diagram A is P14 = { PI[p] }pep consists of N numbers (i.e, a vector in RN ), one for each
pixel p in the grid P with PI[p] := ffp pa dydz.

The persistence image can be viewed as a vector in R"Y. One can then compute distance between
two persistence diagrams A; and A, by the Lo-distance ||PI; — PI;||2 between their persistence
images (vectors) PI; and PIs. The persistence images have several nice properties, including stability
guarantees; see [1] for more details.

3 Metric learning frameworks

Suppose we are given a set of n objects = (sampled from a hidden data space S), classified into
k classes. We want to use these labelled data to learn a good distance for (persistence image
representations of) objects from = which hopefully is more appropriate at classifying objects in the
data space S. To do so, below we propose a new persistence-based kernel for persistence images,
and then formulate an optimization problem to learn the best weight-function so as to obtain a good
distance metric for = (and data space S).

3.1 Weighted persistence image kernel (WKPI)

From now on, we fix the grid P (of size N) to generate persistence images (so a persistence image
is a vector in RY). Let p, be the center of the s-th pixel p, in P, for s € {1,2,--- , N}. We now
propose a new kernel for persistence images. A weight-function refers to a non-negative real-valued
function on R2.

'In fact, we can define our kernel without transforming the persistence diagram. We use the transformation
simply to follow the same convention as persistence images.



Definition 3.1 Ler w : R?2 — R be a weight-function. Given two persistence images PI
and PI', the (w-)weighted persistence image kernel (WKPI) is defined as: kw(PI,PI’) =

_ (PI(s)=PT'(s))?

N
dmwlps)em 2

Remark 0: We could use the persistence surfaces (instead of persistence images) to define the kernel
(with the summation replaced by an integral). Since for computational purpose, one still needs to
approximate the integral in the kernel via some discretization, we choose to present our work using
persistence images directly. Our Lemma 3.2 and Theorem 3.4 still hold (with slightly different
stability bound) if we use the kernel defined for persistence surfaces.

Remark 1: One can choose the weight-function from different function classes. Two popular choices
are: mixture of m 2D Gaussians; and degree-d polynomials on two variables.

Remark 2: There are other natural choices for defining a weighted kernel for persistence images. For
_ w(ps)(PI(s) =PI/ (s))2

example, we could use k(PI, PI') = Zivzl e 202, which we refer this as alt WKPI.
Alternatively, one could use the weight function used in PWGK kernel [33] directly. Indeed, we have
implemented all these choices, and our experiments show that our WKPI kernel leads to better results
than these choices for almost all datasets (see Supplement Section 2). In addition, note that PWGK
kernel [33] contains cross terms w(x) - w(y) in its formulation, meaning that there are quadratic
number of terms (w.r.t the number of persistence points) to calculate the kernel, making it more
expensive to compute and learn for complex objects (e.g, for the neuron data set, a single neuron tree
could produce a persistence diagrams with hundreds of persistence points).

Lemma 3.2 The WKPI kernel is positive semi-definite.

The rather simple proof of the above lemma is in Supplement Section 1.1. By Lemma 3.2, the
WKPI kernel gives rise to a Hilbert space. We can now introduce the WKPI-distance, which is the
pseudo-metric induced by the inner product on this Hilbert space.

Definition 3.3 Given two persistence diagrams A and B, let P14 and Plg be their corresponding
persistence images. Given a weight-function w : R? — R, the (w-weighted) WKPI-distance is:

Dy, (A, B) := \/ky(PIa, Pl4) + ky, (PIg, P1g) — 2k, (P14, PIp).

Stability of WKPI-distance. Given two persistence diagrams A and B, two traditional distances
between them are the bottleneck distance dp (A, B) and the p-th Wasserstein distance dyy (A, B).
Stability of these two distances w.r.t. changes of input objects or functions defined on them have
been studied [16, 18, 14]. Similar to the stability study on persistence images, below we prove
WKPI-distance is stable w.r.t. small perturbation in persistence diagrams as measured by dyy 1. (Very
informally, view two persistence diagrams A and B as two (appropriate) measures (with special
care taken to the diagonals), and dyy1 (A4, B) is roughly the “earth-mover” distance between them to
convert the measure corresponding to A to that for B.)

To simplify the presentation of Theorem 3.4, we use unweighted persistence images w.r.t. Gaussian,

meaning in Definition 2.1, (1) the weight function « is the constant function a@ = 1; and (2) the
. . . =
distribution ¢,, is the Gaussian ¢,,(z) = ﬁe 272 . (Our result below can be extended to the

case where ¢,, is not Gaussian.) The proof of the theorem below follows from results of [1] and can
be found in Supplement Section 1.2.

Theorem 3.4 Given a weight-function w : R? = R, set ¢;, = |lwl|oc = Sup,cge w(z). Given two
persistence diagrams A and B, with corresponding persistence images P14 and Plg, we have that:

D,(A,B) < \/% . U—lT - dw1(A, B), where o is the width of the Gaussian used to define our
WKPI kernel (Def. 3.1), and T is that for the Gaussian ¢,, to define persistence images (Def. 2.1).



Remarks: We can obtain a more general bound for the case where the distribution ¢,, is not Gaussian.
Furthermore, we can obtain a similar bound when our WKPI-kernel and its induced WKPI-distance
is defined using persistence surfaces instead of persistence images.

3.2 Optimization problem for metric-learning

Suppose we are given a collection of objects = = {X7,..., X,,} (sampled from some hidden data
space S), already classified (labeled) to & classes Cy, . . ., Ci. In what follows, we say that ¢ € C; if X;
has class-label j. We first compute the persistence diagram A; for each object X; € =. (The precise
filtration we use to do so will depend on the specific type of objects. Later in Section 4, we will
describe filtrations used for graph data). Let { Ay, . .., A,, } be the resulting set of persistence diagrams.
Given a weight-function w, its induced WKPI-distance between A; and A; can also be thought of as a
distance for the original objects X; and X ;; that is, we can set D, (X;, X;) := D,,(A;, A;). Our goal
is to learn a good distance metric for the data space S (where = are sampled from) from the labels.
We will formulate this as learning a best weight-function w* so that its induced WKPI-distance fits
the class-labels of X;’s best. Specifically, for any ¢t € {1,2,--- , k}, set:

costy,(t,t) = Z D.%(Ai, Aj); and  cost,(t,") = Z D, %(A;, Aj).
4,j€Cy i€Cy,je{1,2,-- ,n}

Intuitively, cost,,(t,t) is the total in-class (square) distances for C;; while cost,, (¢, -) is the total
distance from objects in class C; to all objects in =. A good metric should lead to relatively smaller
distance between objects from the same class, but larger distance between objects from different
classes. We thus propose the following optimization problem, which is related to k-way spectral
clustering where the distance for an edge (A;, A;) is D2(A;, A;):

Definition 3.5 (Optimization problem) Given a weight-function w : R? — R, the total-cost of

its induced WKPI-distance over Z is defined as: TC(w) :== SF_, Zzzigt; . The optimal distance

problem aims to find the best weight-function w* from a certain function class F so that the total-cost
is minimized; that is: TC™ = min,ecr TC(w); and w* = argmin,c zTC(w).

Matrix view of optimization problem. We observe that our cost function can be re-formulated
into a matrix form. This provides us with a perspective from the Laplacian matrix of certain graphs to
understand the cost function, and helps to simplify the implementation of our optimization problem,
as several programming languages popular in machine learning (e.g Python and Matlab) handle
matrix operations more efficiently (than using loops). More precisely, recall our input is a set = of n
objects with labels from & classes. We set up the following matrices:

L=G-NA; A=[Ay] . where Ajj =D,*(A4;,A;) fori,je{1,2,-- n}

N ifi=j
= R 0=1 4t J
G = [gij]nxna where 9ij = {0 lfl#.j
1 .
——— 1€C
H = [hy] oxn Where hy = \/costu (t,) ¢
! 0 otherwise
Viewing A as distance matrix of objects { X1, ..., Xy}, L is then its Laplacian matrix. We have the

following main theorem, which essentially is similar to the trace-minimization view of k-way spectral
clustering (see e.g, Section 6.5 of [30]). The proof for our specific setting is in Supplement 1.3.

Theorem 3.6 The total-cost can also be represented by TC(w) = k — Tr(HLHT), where Tr(-) is
the trace of a matrix. Furthermore, HGH T =1, whereListhe k x k identity matrix.

Note that all matrices, L, G, A, and H, are dependent on the (parameters of) weight-function w, and
in the following corollary of Theorem 3.6, we use the subscript of w to emphasize this dependence.

Corollary 3.7 The Optimal distance problem is equivalent to
min (k — Tr(H,L,HY)), subjectto H,G,H} =1



Solving the optimization problem. In our implementation, we use (stochastic) gradient descent to
find a (locally) optimal weight-function w* for the minization problem. Specifically, given a collection
of objects = with labels from & classes, we first compute their persistence diagrams via appropriate
filtrations, and obtain a resulting set of persistence diagrams {A;,..., A, }. We then aim to find

the best parameters for the weight-function w* to minimize 7Tr(HLH”) = Zle h¢Lh! subject to

HGHT = I (via Corollary 3.7). For example, assume that the weight-function w is from the class F
of mixture of m number of 2D non-negatively weighted (spherical) Gaussians. Each weight-function

w : R? — R € F is thus determined by 4m parameters {x,,y,, 0, w, | 7 € {1,2,--- ,m}} with
_ Ga—wr)?4Gy—yr)?
w(z) = wpe i . We then use (stochastic) gradient decent to find the best parameters

to minimize Tr(HLHY) subject to HGH?T = I. Note that the set of persistence diagrams / images
will be fixed through the optimization process.

From the proof of Theorem 3.6 (in Supplement 1.3), it turns out that condition HGH” = T is
satisfied as long as the multiplicative weight w,. of each Gaussian in the mixture is non-negative.
Hence during the gradient descent, we only need to make sure that this holds 2. It is easy to write out
the gradient of TC(w) w.r.t. each parameter {x,, Y, o, w, | ¥ € {1,2,--- ,m}} in matrix form.

T

For example, 8TC(“’) (Zt 15 aht LhT + hi 5.~ 8L hT + hy g’; ); where h; = [htl, hia, ..., hm]
is the ¢-th row Vector of H. While thlS does not 1mpr0ve the asymptotic complexity of computing
the gradient (compared to using the formulation of cost function in Definition 3.5), these matrix
operations can be implemented much more efficiently than using loops in languages such as Python
and Matlab. For large data sets, we use stochastic gradient decent, by sampling a subset of s << n
number of input persistence images, and compute the matrices H, D, L, G as well as the cost using
the subsampled data points. The time complexity of one iteration in updating parameters is Og\fQN ),
where N is the size of a persistence image (recall, each persistence image is a vector in R*Y). In
our implementation, we use Armijo-Goldstein line search scheme to update the parameters in each
(stochastic) gradient decent step. The optimization procedure terminates when the cost function
converges or the number of iterations exceeds a threshold. Overall, the time complexity of our
optimization procedure is O(Rs?N) where R is the number of iterations, s is the minibatch size, and
N is the size (# pixels) of a single persistence image.

4 Experiments

We show the effectiveness of our metric-learning framework and the use of the learned metric via
graph classification applications. In particular, given a set of graphs E = {G1, ..., G, } coming from
k classes, we first compute the unweighted persistence images A; for each graph G;, and apply the
framework from Section 3.1 to learn the “best” weight-function w* : R? — R on the birth-death
plane R? using these persistence images {A;,..., 4, } and their labels. We then perform graph
classification using kernel-SVM with the learned w*-WKPI kernel. We refer to this framework as
WKPI-classification framework. We show two sets of experiments. Section 4.1 shows that our learned
WKEPI kernel significantly outperforms existing persistence-based representations. In Section 4.2, we
compare the performance of WKPI-classification framework with various state-of-the-art methods
for the graph classification task over a range of data sets. More details / results can be found in
Supplement Section 2.

Setup for our WKPI-based framework. In all our experiments, we assume that the weight-
function comes from the class F of mixture of m 2D non-negatively weighted Gaussians as described
in the end of Section 3.2. We take m and the width o in our WKPI kernel as hyperparameters:
Specifically, we search among m € {3,4,5,6,7,8} and o € {0.001,0.01,0.1,1,10,100}. The
10 * 10-fold nested cross validation are applied to evaluate our algorithm: There are 10 folds in
outer loop for evaluation of the model with selected hyperparameters and 10 folds in inner loop for
hyperparameter tuning. We then repeat this process 10 times (although the results are extremely close
whether repeating 10 times or not). Our optimization procedure terminates when the change of the
cost function remains < 10~* or the iteration number exceeds 2000.

% In our implementation, we add a penalty term >
this in a “soft” manner.

= to total-cost k — Tr(HLH™), to achieve
r= p(w )



Table 1: Classification accuracy on neuron dataset. Our results are WKPI-km and WKPI-kc.

Datasets Existing approaches Alternative metric learning Our WKPI framework
PWGK SW PI-PL altWKPI trainPWGK WKPI-km  WKPI-kc
NEURON-BINARY | 80.5+£04 853407 83.7+0.3 | 82.1+2.1 84.6+2.4 89.6 £2.2  86.4+2.4
NEURON-MULTI 45.1+0.3  57.64+0.6 442403 | 54.3+2.3 49.7+2.4 56.61+2.7 59.31+2.3
Average 62.80 71.45 63.95 68.20 67.15 73.10 72.85

One important question is to initialize the centers of the Gaussians in our mixture. There are three
strategies that we consider. (1) We simply sample m centers in the domain of persistence images
randomly. (2) We collect all points in the persistence diagrams {A;, ..., A,} derived from the
training data =, and perform a k-means algorithm to identify m means. (3) We perform a k-center
algorithm to those points to identify m centers. Strategies (2) and (3) usually outperform strategy
(1). Thus in what follows we only report results from using k-means and k-centers as initialization,
referred to as WKPI-kM and WKPI-kC, respectively.

4.1 Comparison with other persistence-based methods

We compare our methods with state-of-the-art persistence-based representations, including the
Persistence Weighted Gaussian Kernel (PWGK) [33], original Persistence Image (PI) [1], and Sliced
Wasserstein (SW) Kernel [12]. Furthermore, as mentioned in Remark 2 after Definition 3.1, we
can learn weight functions in PWGK by the optimizing the same cost function (via replacing our
WKPI-distance with the one computed from PWGK kernel); and we refer to this as trainPWGK.
We can also use an alternative kernel for persistence images as described in Remark 2, and then
optimize the same cost function using distance computed from this kernel; we refer to this as altWKPI.
We will compare our methods both with existing approaches, as well as with these two alternative
metric-learning approaches (trainPWGK and altWKPI).

Generation of persistence diagrams. Neuron cells have natural tree morphology, rooted at the
cell body (soma), with dendrite and axon branching out, and are commonly modeled as geometric
trees. See Figure 1 in the Supplement for an example. Given a neuron tree 7, following [36], we use
the descriptor function f : T' — R where f(x) is the geodesic distance from x to the root of 7" along
the tree. To differentiate the dendrite and axon part of a neuron cell, we further negate the function
value if a point z is in the dendrite. We then use the union of persistence diagrams A induced by
both the sublevel-set and superlevel-set filtrations w.r.t. f. Under these filtrations, intuitively, each
point (b, d) in the birth-death plane R? corresponds to the creation and death of certain branch feature
for the input neuron tree. The set of persistence diagrams obtained this way (one for each neuron
tree) is the input to our WKPI-classification framework.

Results on neuron datasets. Neuron-Binary dataset consists of 1126 neuron trees from two
classes; while Neuron-Multi contains 459 neurons from four classes. As the number of trees is
not large, we use all training data to compute the gradients in the optimization process instead of
mini-batch sampling. Persistence images are both needed for the methodology of [1] and as input for
our WKPI-distance, and its resolution is fixed at roughly 40 x 40 (see Supplement 2.2 for details).
For persistence image (PI) approach of [1], we experimented both with the unweighted persistence
images (PI-CONST), and one, denoted by (PI-PL), where the weight function « : R?> — Ris a
simple piecewise-linear (PL) function adapted from what’s proposed in [1]; see Supplement 2.2
for details. Since PI-PL performs better than PI-CONST on both datasets, Table 1 only shows the
results of PI-PL. The classification accuracy of various methods is given in Table 1. Our results
are consistently better than other topology-based approaches, as well as alternative metric-learning
approaches; not only for the neuron datasets as in Table 1, but also for graph benchmark datasets
shown in Table 3 of Supplement Section 2.2, and often by a large margin. In Supplement Section 2.1,
we also show the heatmaps indicating the learned weight function w : R? — R.

4.2 Graph classification task

We use a range of benchmark datasets: (1) several datasets on graphs derived from small chemical
compounds or protein molecules: NCI1 and NCI109 [44], PTC [24], PROTEIN [6], DD [21]
and MUTAG [19]; (2) two datasets on graphs representing the response relations between users
in Reddit: REDDIT-5K (5 classes) and REDDIT-12K (11 classes) [48]; and (3) two datasets on



Table 2: Graph classification accuracy + standard deviation. Our results are last two columns.

Dataset Previous approaches Our approaches
RetGK WL DGK P-WL-UC PF PSCN GIN WKPI-kM  WKPI-kC
NCI1 845402 854403  80.3£0.5 85.61+0.3 81.7+£0.8  76.3+1.7 82.7+1.6 87.5+0.5 84.5+0.5
NCI109 - 84.5£0.2  80.3+0.3 85.1£0.3  78.5£0.5 - - 85.9+0.4 87.4+0.3
PTC 625+£1.6  554%15 60.1£25  635£1.6  624+1.8 623+£57 66.61+6.9 62.7+2.7 68.1+2.4
PROTEIN 75.840.6  71.24+0.8  75.7+0.5 759408 752421  75.0%25 76.242.6 78.54+0.4 75.24+0.4
DD 81.6+0.3  78.6+0.4 - 78.5+04 794408  76.242.6 - 82.0£0.5 80.3+£0.4
MUTAG 90.3+£1.1 84.4+15 874+£27 852403 85.6£1.7  89.0+4.4 90.0+8.8 85.8+2.5 88.31+2.6
IMDB-BINARY | 71.9£1.0  70.840.5 67.0£0.6  73.0£1.0 71.2+1.0 71.0£2.3 75.1£5.1 70.7£1.1 75.1£1.1
IMDB-MULTI 47.7£03  49.840.5 44.6+04 - 48.6+0.7 452428 523428 46.41+0.5 49.5+0.4
REDDIT-5K 56.1£0.5 512403  41.3£02 56.2+1.1  49.1£0.7 57.5+1.5 59.1+0.5 59.540.6
REDDIT-12K 48.7£0.2 32.64+03  32.2+0.1 47.6+£0.5 413404 - 47.44+0.6 48.440.5

IMDB networks of actors/actresses: IMDB-BINARY (2 classes), and IMDB-MULTT (3 classes).
See Supplement Section 2.2 for descriptions of these datasets, and their statistics (sizes of graphs etc).

Many graph classification methods have been proposed in the literature, with different methods
performing better on different datasets. Thus we include multiple approaches to compare with, to
include state-of-the-art results on different datasets: six graph-kernel based approaches: RetGK[50],
Weisfeiler-Lehman kernel (WL)[44], Weisfeiler-Lehman optimal assignment kernel (WL-OA)[32],
Deep Graphlet kernel (DGK)[48], the very recent persistent Weisfeiler-Lehman kernel (P-WL-UC)
[42], and Persistence Fisher kernel[34]; two graph neural networks: PATCHYSAN (PSCN) [39] and
Graph Isomorphism Network (GIN)[46].

Classification results. To generate persistence summaries, we need a meaningful descriptor func-
tion on input graphs. We consider two choices: (a) the Ricci-curvature function f. : G — R, where
fe(2) is the discrete Ricci curvature for graphs as introduced in [37]; and (b) Jaccard-index function
f7 : G — R which measures edge similarities in a graph. See Supplement 2.2 for details. Graph
classification results are in Table 2: Ricci curvature function is used for the small chemical com-
pounds datasets (NCI1, NCI9, PTC and MUTAG), while Jaccard function is used for proteins datasets
(PROTEIN and DD) and the social/IMDB networks (IMDB’s and REDDIT’s). Results of previous
methods are taken from their respective papers. Comparisons with more methods (including with
other topology-based methods such as SW [12]) are in Supplement Section 2.2. We rerun the two
best performing approaches GIN and RetGK using the exactly same nested cross validation setup as
ours. The results are also in Supplement Section 2.2, which are similar to those in Table 2.

Except for MUTAG and IMDB-MULTI, the performances of our WKPI-framework are similar
or better than the best of other methods. Our WKPI-framework performs well on both chemical
graphs and social graphs, while some of the earlier work tend to work well on one type of the graphs.
Furthermore, note that the chemical / molecular graphs usually have attributes associated with them.
Some existing methods use these attributes in their classification [48, 39, 50]. Our results however are
obtained purely based on graph structure without using any attributes. In terms of variance, the
standard deviations of our methods tend to be on-par with graph kernel based previous approaches;
and are usually much better (smaller) than the GNN based approaches (i.e, PSCN and GIN).

S Concluding remarks

This paper introduces a new weighted-kernel for persistence images (WKPI), together with a metric-
learning framework to learn the best weight-function for WKPI-kernel from labelled data. We apply
the learned WKPI-kernel to the task of graph classification, and show that our new framework
achieves similar or better results than the best results among a range of previous approaches.

In our current framework, only a single descriptor function of each input object is used to derive a
persistence-based representation. It will be interesting to extend our framework to leverage multiple
descriptor functions (so as to capture different types of information) effectively. Recent work on
multidimensional persistence would be useful in this effort. Another interesting question is to study
how to incorporate categorical attributes associated to graph nodes effectively. Real-valued attributed
can be used as a descriptor function to generate persistence-based summaries. But the handling of
categorical attributes via topological summary is much more challenging, especially when there is
no (prior-known) correlation between these attributes (e.g, the attribute is simply a number from
{1,2,---, s}, coming from s categories. The indices of these categories may carry no meaning).
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