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Evolution of microbial growth traits under serial dilution
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Selection of mutants in a microbial population depends on multiple cellular traits. In serial-
dilution evolution experiments, three key traits are the lag time when transitioning from starvation
to growth, the exponential growth rate, and the yield (number of cells per unit resource). Here
we investigate how these traits evolve in laboratory evolution experiments using a minimal model
of population dynamics, where the only interaction between cells is competition for a single lim-
iting resource. We find that the fixation probability of a beneficial mutation depends on a linear
combination of its growth rate and lag time relative to its immediate ancestor, even under clonal
interference. The relative selective pressure on growth rate and lag time is set by the dilution factor;
a larger dilution factor favors the adaptation of growth rate over the adaptation of lag time. The
model shows that yield, however, is under no direct selection. We also show how the adaptation
speeds of growth and lag depend on experimental parameters and the underlying supply of muta-
tions. Finally, we investigate the evolution of covariation between these traits across populations,
which reveals that the population growth rate and lag time can evolve a nonzero correlation even
if mutations have uncorrelated effects on the two traits. Altogether these results provide useful

guidance to future experiments on microbial evolution.

Laboratory evolution experiments in microbes have
provided insight into many aspects of evolution [IH3],
such as the speed of adaptation [4], the nature of epista-
sis [5], the distribution of selection coeflicients from spon-
taneous mutations [6], mutation rates [7], the spectrum
of adaptive genomic variants [§], and the preponderance
of clonal interference [9]. Despite this progress, links be-
tween the selection of mutations and their effects on spe-
cific cellular traits have remained poorly characterized.
Growth traits — such as the lag time when transitioning
from starvation to growth, the exponential growth rate,
and the yield (resource efficiency) — are ideal candidates
for investigating this question. Their association with
growth means they have relatively direct connections to
selection and population dynamics. Furthermore, high-
throughput techniques can measure these traits for hun-
dreds of genotypes and environments [I0HI3]. Numerous
experiments have shown that single mutations can be
pleiotropic, affecting multiple growth traits simultane-
ously [14, [15]. More recent experiments have even mea-
sured these traits at the single-cell level, revealing sub-
stantial non-genetic heterogeneity [10 I3} [16]. Several
evolution experiments have found widespread evidence of
adaptation in these traits [I7H20]. This data altogether
indicates that covariation in these traits is pervasive in
microbial populations.

There have been a few previous attempts to de-
velop quantitative models to describe evolution of these
traits. For example, Vasi et al. [I7] considered data af-
ter 2000 generations of evolution in Fscherichia coli to
estimate how much adaptation was attributable to differ-
ent growth traits. Smith [2I] developed a mathematical
model to study how different traits would allow strains to
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either fix, go extinct, or coexist. Wahl and Zhu [22] stud-
ied the fixation probability of mutations affecting differ-
ent growth traits separately (non-pleiotropic), especially
to identify which traits were most likely to acquire fixed
mutations and the importance of mutation occurrence
time and dilution factor. However, simple quantitative
results that can be used to interpret experimental data
have remained lacking. More recent work [23] 24] de-
rived a quantitative relation between growth traits and
selection, showing that selection consists of additive com-
ponents on the lag and growth phases. However, this did
not address the consequences of this selection for evolu-
tion, especially the adaptation of trait covariation.

In this work we investigate a minimal model of evolu-
tionary dynamics in which cells interact only by compe-
tition for a single limiting resource. We find that the
fixation probability of a mutation is accurately deter-
mined by a linear combination of its change in growth
rate and change in lag time relative to its immediate an-
cestor, rather than depending on the precise combination
of traits; the relative weight of these two components is
determined by the dilution factor. Yield, on the other
hand, is under no direct selection. This is true even in
the presence of substantial clonal interference, where the
mutant’s immediate ancestor may have large a fitness
difference with the population mean. We provide quan-
titative predictions for the speed of adaptation of growth
rate and lag time as well as their evolved covariation.
Specifically, we find that even in the absence of an in-
trinsic correlation between growth and lag due to muta-
tions, these traits can evolve a nonzero correlation due
to selection and variation in number of fixed mutations.
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I. MATERIALS AND METHODS
A. Model of population dynamics

We consider a model of asexual microbial cells in a
well-mixed batch culture, where the only interaction be-
tween different strains is competition for a single limiting
resource [23] 24]. Each strain k is characterized by a lag
time Ly, growth rate 7y, and yield Yy (see Fig. for a
two-strain example). Here the yield is the number of cells
per unit resource [I7], so that Ny (t)/Y} is the amount of
resources consumed by time ¢ by strain k, where Ny (t)
is the number of cells of strain k at time t. We define
R to be the initial amount of the limiting resource and
assume different strains interact only by competing for
the limiting resource; their growth traits are the same
as when they grow independently. When the population
has consumed all of the initial resource, the population
reaches stationary phase with constant size. The sat-
uration time t. at which this occurs is determined by
> traink Vi(te) /Y = R, which we can write in terms of
the growth traits as

Nol'kerk(tc_l’k)
=R,
Yy

>

strain k

(1)

where Ny is the total population size and zy is the fre-
quency of each strain k£ at the beginning of the growth
cycle. In Eq. []] we assume the time ¢, is longer than
each strain’s lag time Lg. Note that some of our nota-
tion differs from related models in previous work, some
of which used g for growth rate and A for lag time [23],
while others used A for growth rate [25]. Although it is
possible to extend the model to account for additional
growth traits such as a death rate or lag and growth on
secondary resources, here we focus on the minimal set
of traits most often measured in microbial phenotyping
experiments [TOHI2], [T4HT6), 18, 26].

We define the selection coefficient between each pair of
strains as the change in their log-ratio over the complete

growth cycle [27] [28]:

final initial

o (N g (A

Sij = final n initial
N; N;

=ri(te — Li) = rj(te — Ly),

(2)

where NiinitiaLl is the population size of strain ¢ at the
beginning of the growth cycle and Nf"2! is the population
size of strain 7 at the end. After the population reaches
stationary phase, it is diluted by a factor of D into a fresh
medium with amount R of the resource, and the cycle
repeats (Fig. [Th). We assume the population remains
in the stationary phase for a sufficiently short time such
that we can ignore death and other dynamics during this

phase [29] 30].

a log(Ni2(t))

Dilution\

No(l — ZE)

N().T

©
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~ 0
y=ryfr1 — 1

(Relative growth rate change)

FIG. 1. Model of selection on multiple microbial growth
traits. (a) Simplified model of microbial population growth
characterized by three traits: lag time L, growth rate r, and
yield Y. The total initial population size is Ny and the initial
frequency of the mutant (strain 2) is z. After the whole pop-
ulation reaches stationary phase (time t.), the population is
diluted by a factor D into fresh media, and the cycle starts
again. (b) Phase diagram of selection on mutants in the space
of their growth rate v = ro/r1—1 and lag time w = (La—L1)r1
relative to a wild-type. The slope of the diagonal line is In D.

Over many cycles of growth, as would occur in a lab-
ue oratory evolution experiment [T, 28] 3], the population
120 dynamics of this system are characterized by the set of
1 frequencies xy, for all strains as well as the matrix of se-
122 lection coefficients s;; and the total population size Ny
123 at the beginning of each cycle. In Supplementary Meth-
e ods (Secs. I, II, IIT) we derive explicit equations for the
125 deterministic dynamics of these quantities over multiple
126 cycles of growth for an arbitrary number of strains. In
127 the case of two strains, such as a mutant and a wild-type,
128 the selection coefficient is approximately

118

s=ylnD —w, (3)
where v = (ro — r1)/r1 is the growth rate of the mutant
relative to the wild-type and w = (Ly — Lq1)r; is the rel-
ative lag time. The approximation is valid as long as the
12 growth rate difference between the mutant and the wile-
133 type is small (Supplementary Methods Sec. IV), which
13 is true for most single mutations [6, B2]. This equation
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shows that the growth phase and the lag phase make
distinct additive contributions to the total selection co-
efficient, with the dilution factor D controlling their rel-
ative magnitudes (Fig. ) This is because a larger
dilution factor will increase the amount of time the pop-
ulation grows exponentially, hence increasing selection
on growth rate. Neutral coexistence between multiple
strains is therefore possible if these two selection com-
ponents balance (s = 0), although it requires an exact
tuning of the growth traits with the dilution factor (Sup-
plementary Methods Sec. III) [23| 24]. With a fixed dilu-
tion factor D, the population size Ny at the beginning of
each growth cycle changes according to (Supplementary
Methods Sec. I):

(4)

where Y = (3 aimx Tk/Ye) ! is the effective yield of
the whole population in the current growth cycle. In
this manner the ratio R/D sets the bottleneck size of the
population, which for serial dilution is approximately the
effective population size [31], and therefore determines
the strength of genetic drift.

B. Model of evolutionary dynamics

We now consider the evolution of a population as new
mutations arise that alter growth traits. We start with
a wild-type population having lag time Lg 100 and
growth rate rg = (In2)/60 ~ 0.012, which are roughly
consistent with E. coli parameters where time is mea-
sured in minutes [I7], [31]; we set the wild-type yield to
be Yy = 1 without loss of generality. As in experiments,
we vary the dilution factor D and the amount of resources
R, which control the relative selection on growth versus
lag (set by D, Eq. and the effective population size
(set by R/D, Eq. [4). We also set the initial population
size of the first cycle to Ng = RY/D.

The population grows according to the dynamics in
Fig. [Th. Each cell division can generate a new mutation
with probability ; = 1075; note this rate is only for muta-
tions altering growth traits, and therefore it is lower than
the rate of mutations anywhere in the genome. We gen-
erate a random waiting time 74 for each strain k until the
next mutation with instantaneous rate pry Ny (t). When
a mutation occurs, the growth traits for the mutant
are drawn from a distribution pyu¢(re, Le, Ya|r1, L1, Y1),
where r1, L1, Y7 are the growth traits for the background
strain on which the new mutation occurs and ro, Lo, Y5
are the traits for the new mutant. Note that since mu-
tations only arise during the exponential growth phase,
beneficial or deleterious effects on lag time are not real-
ized until the next growth cycle [20]. After the growth
cycle ceases (once the resource is exhausted according to
Eq. , we randomly choose cells, each with probability
1/D, to form the population for the next growth cycle.
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We will assume mutational effects are not epistatic
and scale with the trait values of the background strain,
so that puut(re, Le, Ya|r1, L1, Y1) = pmut(7,w,d), where
Y= (’)”2 —7"1)/7"1, w = (LQ —Ll)Tl, and 6 = (}/2 —Yl)/Yl
(Supplementary Methods Sec. V). Since our primary
goal is to scan the space of possible mutations, we fo-
cus on uniform distributions of mutational effects where
—0.02 < v < 0.02, —0.05 < w < 0.05, and —0.02 < § <
0.02. In the Supplementary Methods we extend our main
results to the case of Gaussian distributions (Sec. V)
as well as an empirical distribution of mutational effects
based on single-gene deletions in E. coli (Sec. VI) [33].

C. Data Availability

Data and codes are available upon request. File S1
contains the Supplementary Methods. File S2 contains
data of growth traits presented in Figure S3.

II. RESULTS

Fixation of mutations

We first consider the fixation statistics of new muta-
tions in our model. In Fig.|2a we show the relative growth
rates v and the relative lag times w of fixed mutations
against their background strains, along with contours of
constant selection coefficient s from Eq. [3] As expected,
fixed mutations either increase growth rate (y > 0), de-
crease lag time (w < 0), or both. In contrast, the yield
of fixed mutations is the same as the ancestor on average
(Fig. ); indeed, the selection coefficient in Eq. [3| does
not depend on the yields. If a mutation arises with sig-
nificantly higher or lower yield than the rest of the pop-
ulation, the bottleneck population size Ny immediately
adjusts to keep the overall fold-change of the population
during the growth cycle fixed to the dilution factor D
(Eq. 4). Therefore mutations that significantly change
yield have no effect on the overall population dynamics.

Figure also suggests that the density of fixed mu-
tations in the growth-lag trait space depends solely on
their selection coefficients, rather than the precise com-
bination of traits, as long as other parameters such as
the dilution factor D, the total amount of resource R,
and the distribution of mutational effects are held fixed.
Mathematically, this means that the fixation probability
o(7v,w) of a mutation with growth effect v and lag effect
w can be expressed as ¢(y,w) = ¢(yInD — w) = H(s).
To test this, we discretize the scatter plot of Fig. 2h and
compute the fixation probabilities of mutations as func-
tions of v and w (Supplementary Methods Sec. VII). We
then plot the resulting fixation probabilities of mutations
as functions of their selection coefficients calculated by
Eq. 3| (Fig. ,d,e,f). We test the dependence of the fixa-
tion probability on the selection coefficient over a range
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FIG. 2. Selection coefficient determines fixation probability. (a) The relative growth rates v and the relative lag times w of
fixed mutations against their background strain. Dashed lines mark contours of constant selection coefficient with interval
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SSWM regime (Eq. [5]), while the black line shows a numerical fit of the data points to Eq. |§| with parameters A = 0.1145 and
B =0.0801 in (c), A =0.0017 and B = 0.0421 in (e), and A = 0.2121 and B = 0.2192 in (f). In all panels mutations randomly
arise from a uniform distribution pmut with —0.02 < v < 0.02, —0.05 < w < 0.05, and —0.02 < ¢ < 0.02.
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of population dynamics regimes by varying the dilution
factor D and the amount of resources R.

For small populations, mutations generally arise and
either fix or go extinct one at a time, a regime known as
“strong-selection weak-mutation” (SSWM) [34]. In this
case, we expect the fixation probability of a beneficial
mutation with selection coefficient s > 0 to be [22, [35] 36]
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23 This is similar to the standard Wright-Fisher fixation
214 probability of 2s [37], but with a different prefactor due
25 to averaging over the different times in the exponential
26 growth phase at which the mutation can arise (Supple-
mentary Methods Sec. VIII). Indeed, we see this pre-
s dicted dependence matches the simulation results for the
small population size of Ny ~ R/D = 10° (Fig. [2k).

For larger populations, multiple beneficial mutations
will be simultaneously present in the population and in-
» terfere with each other, an effect known as clonal inter-
253 ference [38H43]. Our simulations show that, as for the
s SSWM case, the fixation probability depends only on the
255 selection coefficient (Eq. [3)) relative to the mutation’s im-
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mediate ancestor and not on the individual combination
of mutant traits (Fig. 2H,e,f), with all other population
parameters held constant. Previous work has determined
the dependence of the fixation probability on the selec-
tion coefficient under clonal interference using various ap-
proximations [38, [40H42]. Here, we focus on an empirical
relation based on Gerrish and Lenski [38]:

oci(s) = Ase*B/s, (6)

where A and B are two constants that depend on other
parameters of the population (D, R, and the distribu-
tion of mutational effects); we treat these as empirical
parameters to fit to the simulation results, although Ger-
rish and Lenski [38] predicted A = 2InD/(D — 1), i.e.,
the same constant as in the SSWM case (Eq. [5). The
e~ B/s factor in Eq. El comes from the probability that no
superior beneficial mutations appears before the current
mutation fixes. Since the time to fixation scales as 1/s,
we expect the average number of superior mutations to
be proportional to 1/s (for small s). This approximation
holds only for selection coefficients that are not too small
and therefore are expected to fix without additional ben-
eficial mutations on the same background; Eq. [f] breaks
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down for weaker beneficial mutations that typically fix
by hitchhiking on stronger mutations [40]. Nevertheless,
Eq. [f]matches our simulation results well for a wide range
of selection coefficients achieved in our simulations and
larger population sizes Ng ~ R/D > 10* (Fig. ,e,f).
Furthermore, the constant A we fit to the simulation data
is indeed close to the predicted value of 2In D/(D — 1),
except in the most extreme case of Ny ~ R/D = 10°
(Fig. [2F).

Altogether Fig. [2| shows that mutations with differ-
ent effects on cell growth — for example, a mutant that
increases the growth rate and a mutant that decreases
the lag time — can nevertheless have approximately the
same fixation probability as long as their overall effects
on selection are the same according to Eq. To test
the robustness of this result, we verify it for several addi-
tional distributions of mutational effects pyut(y,w,d) in
the Supplementary Methods: a Gaussian distribution of
mutational effects, including the presence of correlated
mutational effects (Fig. S1); a wider distribution of mu-
tational effects with large selection coefficients (Fig. S2);
and an empirical distribution of mutational effects esti-
mated from single-gene deletions in E. coli (Fig. S3). In
Fig. S4a we further test robustness by using the neu-
tral phenotype (orthogonal to the selection coefficient)
to quantify the range of v and w trait combinations that
nevertheless have the same selection coefficient and fixa-
tion probability, and in Fig. S4b we show that the selec-
tion coefficient on growth alone is insufficient to deter-
mine fixation probability.

While the dependence of fixation probability on the
selection coeflicient is a classic result of population ge-
netics [44], the existence of a simple relationship here is
nontrivial since, strictly speaking, selection in this model
is not only frequency-dependent [23] (i.e., selection be-
tween two strains depends on their frequencies) but also
includes higher-order effects [24] (i.e., selection between
strain 1 and strain 2 is affected by the presence of strain
3). Therefore in principle, the fixation probability of a
mutant may depend on the specific state of the popula-
tion in which it is present, while the selection coefficient
in Eq. |3| only describes selection on the mutant in com-
petition with its immediate ancestor. However, we see
that, at least for the parameters considered in our sim-
ulations, these effects are negligible in determining the
eventual fate of a mutation.

Adaptation of growth traits

As Fig.|3h shows, many mutations arise and fix over the
timescale of our simulations, which lead to predictable
trends in the quantitative traits of the population. We
first determine the relative fitness of the evolved pop-
ulation at each time point against the ancestral strain
by simulating competition between an equal number of
evolved and ancestral cells for one cycle, analogous to
common experimental measurements [Il, BI]. The result-
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ing fitness trajectories are shown in Fig.[3p. To see how
different traits contribute to the fitness increase, we also
calculate the average population traits at the beginning
of each cycle; for instance, the average population growth
rate at growth cycle n is rpop(1) = > 1nin k TeZTr(1). As
expected from Eq. [3] the average growth rate increases
(Fig. [Bt) and the average lag time decreases (Fig. [Bd)
for all simulations. In contrast, the average yield evolves
without apparent trend (Fig. [3k), since Eq. [3| indicates
no direct selection on yield. We note that, while the cells
do not evolve toward lower or higher resource efficiency
on average, they do evolve to consume resources more
quickly, since the rate of resource consumption (ry/Yj
for each cell of strain k) depends on both the yield as
well as the growth rate. Therefore the saturation time of
each growth cycle evolves to be shorter, consistent with
recent work from Baake et al. [45].

Figure [3] suggests relatively constant speeds of adap-
tation for the relative fitness, the average growth rate,
and the average lag time. For example, we can calculate
the adaptation speed of the average growth rate as the
averaged change in the average growth rate per cycle:

Werowth = (Tpop(n + 1) — 1pop(n)), (7)
where the bracket denotes an average over replicate pop-
ulations and cycle number. In the Supplementary Meth-
ods (Secs. IX and X) we calculate the adaptation speeds
of these traits in the SSWM regime to be

1RYyIn D
Wgrowth = J—QyTO(ln D) ( D_1 ’
o2 (uRYyIn D
= v [ 8
Wiag m( 51 > (8)
Wearow
Wiitness = g?aiom InD — I/Vlag"qu
0

where o, and o, are the standard deviations of the un-
derlying distributions of 7 and w for single mutations
(Pmut (77, w, 9)), ro is the ancestral growth rate and Yy the
ancestral yield (we assume the yield does not change on
average according to Fig. [3g). Furthermore, the ratio of
the growth adaptation rate and the lag adaptation rate
is independent of the amount of resource and mutation
rate in the SSWM regime:

Wgrowth

Wi (9)

2
g

= —r5—InD.
Uw

Equation |8] predicts that the adaptation speeds of the
average growth rate, the average lag time, and the rel-
ative fitness should all increase with the amount of re-
sources R and decrease with the dilution factor D (for
large D); even though this prediction assumes the SSWM
regime (relatively small Ny ~ R/D), it nevertheless holds
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age growth rate, (d) the evolved average lag time, and (e) the
evolved average yield. In all panels the dilution factor is
D =102, the amount of resource at the beginning of each cy-
cle is R = 107, and mutations randomly arise from a uniform
distribution pmut with —0.02 < v < 0.02, —0.05 < w < 0.05,
and —0.02 < § < 0.02.

across a wide range of R and D values (Fig. 7b,c), ex-
cept for R = 10® where the speed of fitness increase is
non-monotonic with D (Fig. ) The predicted adapta-
tion speeds in Eq. [8] also quantitatively match the sim-
ulated trajectories in the SSWM case (Fig. ,e,f); even

outside of the SSWM regime, the relative rate in Eq. [J]

remains a good prediction at early times (Fig. S5).

Evolved covariation between growth traits

We now turn to investigating how the covariation be-
tween traits evolves. We have generally assumed that in-
dividual mutations have uncorrelated effects on different
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traits. Campos et al. [33] recently systematically mea-
sured the growth curves of the single-gene deletions in F.
coli. We compute the relative growth rate, lag time, and
yield changes for the single-gene deletions compared with
the wild-type and find that the resulting empirical distri-
bution of relative growth traits changes shows very small
correlations between these traits (Fig. S3b,c), consistent
with our assumptions. We note that these measurements,
however, are subject to significant noise (Supplementary
Methods Sec. VI), and therefore any conclusions ulti-
mately require verification by further experiments.

Even in the absence of mutational correlations, selec-
tion may induce a correlation between these traits in
evolved populations. In Fig. [fh we schematically depict
how the raw variation of traits from mutations is dis-
torted by selection and fixation of multiple mutations.
Specifically, for a single fixed mutation, selection induces
a positive (i.e., antagonistic) correlation between the rela-
tive growth rate change and the relative lag time change.
Figure shows this for single fixed mutations, while
Fig. Bb,c shows this positive correlation between the av-
erage growth rate and the average lag time across popu-
lations that have accumulated the same number of fixed
mutations. For populations in the SSWM regime with
the same number of fixed mutations, the Pearson cor-
relation coefficient between the average growth rate and
the average lag time across populations is approximately
equal to the covariation of the relative growth rate change
~ and the relative lag time change w for a single fixed mu-
tation:

<’7w>ﬁxed - <’Y>ﬁxed <w>ﬁxed

T e — e (e — () )

(10)
where (-)fixed 18 an average over the distribution of sin-
gle fixed mutations (Supplementary Methods Sec. IX).
We can explicitly calculate this quantity in the SSWM
regime, which confirms that it is positive for uncorrelated
mutational effects with uniform or Gaussian distributions
(Supplementary Methods Sec. XI).

However, in evolution experiments we typically observe
populations at a particular snapshot in time, such that
the populations may have a variable number of fixed mu-
tations but the same number of total mutations that
arose and either fixed or went extinct (since the number
of total arising mutations is very large, we neglect its fluc-
tuation across populations). Interestingly, the variation
in number of fixed mutations at a snapshot in time causes
the distribution of growth rates and lag times across pop-
ulations to stretch into a negative correlation; this is an
example of Simpson’s paradox from statistics [46]. Fig-
ure [Bh shows this effect schematically, while Fig. [5{,e
show explicit results from simulations. An intuitive way
to understand the evolved negative correlation is to ap-
proximate the effects of all fixed mutations as determin-
istic, so that each fixed mutation increases the average
growth rate and decrease the average lag time by the
same amount. Therefore populations with a higher aver-
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FIG. 4. Speed of adaptation. The average per-cycle adaptation speed of (a) the average growth rate, (b) the average lag time,
and (c) the fitness relative to the ancestral population as functions of the dilution factor D and total amount of resources R.
The adaptation speeds are averaged over growth cycles and independent populations. (d) The average growth rate, (e) the
average lag time, and (f) the fitness relative to the ancestral population as functions of the number n of growth cycles. The
dilution factor is D = 10* and the total resource is R = 107, so the population is in the SSWM regime. The blue solid lines
are simulation results, while the dashed lines show the mathematical predictions in Eq. All panels show averages over 500
independent simulated populations, with mutations randomly arising from a uniform distribution pmut with —0.02 < v < 0.02,

—0.05 < w < 0.05, and —0.02 < 6 < 0.02.

age growth rate must have a larger number of fixed muta-
tions and thus also a shorter average lag time, leading to
a negative correlation between the average growth rates
and the average lag times. In the Supplementary Meth-
ods (Sec. X), we calculate this evolved Pearson correla-
tion coefficient across populations in the SSWM regime
to be approximately

<wa>ﬁxed
Povo & = = . (11)
<’Y >ﬁxed<w >ﬁxed

That is, the correlation of traits across populations with
multiple mutations is still a function of the distribution
of single fixed mutations, but it is not equal to the corre-
lation of single fixed mutations (Eq. . In the Supple-
mentary Methods (Sec. XI) we explicitly calculate peyo in
the SSWM regime for uncorrelated uniform and Gaussian
distributions of mutational effects, which shows that it is
negative. Furthermore, we prove that it must always be
negative for any symmetric and uncorrelated distribution
Pmut (7, w) (Supplementary Methods Sec. IX).

The predicted correlations in Egs. [10] and [T1] quantita-
tively match the simulations well in the SSWM regime
(Fig. [bk,e). While they are less accurate outside of the
SSWM regime, they nevertheless still produce the cor-
rect sign of the evolved correlation within the parame-

w0 ter regimes of our simulations (Fig. S6a,b,c). However,
o the signs of the correlations can indeed change depend-
w1 ing on the underlying distribution of mutational effects
462 Pmut (7, w, 8). For example, in the Supplementary Meth-
a3 ods we explore the effects of varying the mean mutational
s effects (Fig. S6d) — e.g., whether an average mutation
w5 has positive, negative, or zero effect on the growth rate
w6 — as well as the intrinsic mutational correlation between
a7 the relative growth rate change and the relative lag time
ss change (Fig. S6e).
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FIG. 5. Evolved patterns of covariation among growth traits. (a) Schematic of how selection and fixation of multiple mutations
shape the observed distribution of traits. The sign of the Pearson correlation coefficient between the average growth rate and
lag time depends on whether we consider an ensemble of populations with the same number of fixed mutations or the same
number of total mutation events. (b) Distribution of average growth rate and lag time for 1000 independent populations with
the same number of fixed mutations. Each color corresponds to a different number of fixed mutations (ny) indicated in the
legend. (c) Pearson correlation coefficient of growth rate and lag time for distributions in panel (b) as a function of the number
of fixed mutations. The dashed line is the prediction from Eq. (d) Same as (b) except each color corresponds to a set of
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SSWM regime by introducing random mutations one-by-one and determining their fixation from Eq. [5| with D = 103

III. DISCUSSION w05 environmental parameter, the dilution factor D. While
w06 previous work showed that this particular form of the se-
We have investigated a model of microbial evolution *’ lection coefficient determines the fixation probability of a
under serial dilution, which is both a common protocol ** single H}utatlon m the. SSWM regime [23], here we show
for laboratory evolution experiments [I, 6, 31, 47, E8] *° that this holds even in the presence of clonal interfer-
as well as a rough model of evolution in natural envi- °° €1C€ (Fig. vd’e’.f)’ which.appears to be widespread in
ronments with feast-famine cycles. While there has been ** %aboratory evolution experiments [EL 28, [49]. Our result
extensive work to model population and evolutionary dy- ** 13 therefore valuable for interpreting the abundant ex-
namics in these conditions [2} 35, (36} 38, 5], these models ** perimental data on mutant growth traits. We have also
have largely neglected the physiological links connecting * .calculated the adaptation r.ates of growth tr'aits ber cy.cle
mutations to selection. However, models that explicitly % the SSWM regime, which turn out tg merease W.lth
incorporate these features are necessary to interpret ex- * the amount of resource R and decrease with the dilution
perimental evidence that mutations readily generate vari- *” factgr D. These relzsults are cor_lﬁr.med by nume}rlcal Sun-
ation in multiple cellular traits, and that this variation is *® ulations anFi remain good predictions even outside of the
important to adaptation [I7H20]. Wah! and Zhu [22] de- *° SSWM regime. Furthermore, some of these results are
termined the relative fixation probabilities of mutations **° 1r.1dependent of the specific form of the selfectlon coefﬁ—
on different traits and the effects of mutation occurrence * ¢ient (Eq. [B). namely the fact that the fixation probabil-
time and dilution factor, but the role of pleiotropy and *? 1ty depe.nds only on the sel'ectlon coefficient (W}th other
evolutionary dynamics over many mutations were not *° population parameters besides the mutant traits being
considered. s held fixed) even in the clonal interference regime, and
In this paper, we have studied a model where muta- ** the expressions for the correlation coefficients of traits
tions can affect three quantitative growth traits — the lag ** between populations (Egs. [10]and '

time, the exponential growth rate, and the yield (Fig. ) s An important difference with the previous work on this
— since these three traits are widely measured for micro- sis model is that here we used a fixed dilution factor D,
bial populations. In particular, we have derived a simple sis which requires that the bottleneck population size Ny
expression (Eq. [3)) for the selection coefficient of a muta- s fluctuates as the population evolves. In contrast, previ-
tion in terms of its effects on growth and lag and a single sz ous work used a fixed Ny and variable D [23] [24]. We ob-
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served two important differences between these regimes.
First, in the case of fixed Ny and variable D, the fold-
change of the population during a single growth cycle,
which is approximately RY /Ny [23], determines the rela-
tive selection between growth and lag, since it determines
how long the population undergoes exponential growth.
Therefore one can experimentally tune this relative se-
lection by varying either the total amount of resources
R or the fixed bottleneck size Ny. However, when the
dilution factor D is fixed, the population fold-change is
always constrained to exactly equal D and therefore D
alone determines the relative selection on growth and lag
(Eq.B). The second difference is that, with fixed N and
variable D, the selection coefficient depends explicitly on
the effective yield Y and is therefore frequency-dependent
(Supplementary Methods Sec. IT), which enables the pos-
sibility of stable coexistence between two strains [23] [24].
However, for the fixed D case, the frequency dependence
of Y is exactly canceled by Ny (Eq. . Therefore there is
only neutral coexistence in this case, requiring the growth
and lag traits of the strains to follow an exact constraint
set by D (Supplementary Methods Sec. IIT).

A major result of our model is a prediction on the
evolution of covariation between growth traits. In par-
ticular, we have shown that correlations between traits
can emerge from selection and accumulation of multiple
mutations even without an intrinsic correlation between
traits from individual mutations (Figs. 5| and S6). We
have also shown that selection alone produces no corre-
lation between growth and yield, in the absence of corre-
lated mutational effects (Figs. [2b and 3e). This is impor-
tant for interpreting evolved patterns of traits in terms
of selective or physiological tradeoffs. Specifically, it em-
phasizes that the evolved covariation between traits con-
flates both the underlying supply of variation from muta-
tions as well as the action of selection and other aspects
of population dynamics (e.g., genetic drift, spatial struc-
ture, recombination), and therefore it is difficult to make
clear inferences about either aspect purely from the out-
come of evolution alone. For example, simply observing a
negative correlation between two traits from evolved pop-
ulations is insufficient to infer whether that correlation
is due to a physiological constraint on mutations (e.g.,
mutations cannot improve both traits simultaneously) or
due to a selective constraint (e.g., selection favors spe-
cialization in one trait or another).

These questions, of course, have been the foundation of
quantitative trait genetics [50]. Historically this field has
emphasized polymorphic populations with abundant re-
combination as are applicable to plant and animal breed-
ing. However, this regime is quite different from micro-
bial populations which, at least under laboratory con-
ditions, are often asexual and dominated by linkage be-
tween competing mutations [9,28,49]. We therefore need
a quantitative description of both between-population as
well as within-population covariation of traits of micro-
bial populations in this regime. In the present study, we
focus on between-population covariation in growth traits,
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but recent work by Gomez et al. [51] provides insight into
the case of within-population covariation. They showed
that a tradeoff across individuals within a population
evolves between two quantitative traits under positive,
additive selection; this suggests that while growth rate
and lag time will be negatively correlated across popu-
lations (Fig. ,e), they should be positively correlated
within populations.

Microbial growth traits should indeed be an ideal set-
ting for this approach due to abundant data, but con-
clusions on the nature of trait covariation have remained
elusive. Physiological models have predicted a negative
correlation between growth rate and lag time across geno-
types [52] 53], while models of single-cell variation in lag
times also suggests there should be a negative correla-
tion at the whole-population level [54]. However, ex-
perimental evidence has been mixed, with some stud-
ies finding a negative correlation [I3] [16], while others
found no correlation [10} [IT), [14]. Studies of growth-yield
correlations have long been motivated by r/K selection
theory, which suggests there should be tradeoffs between
growth rate and yield [55]. For instance, metabolic mod-
els make this prediction [56H58]. However, experimental
evidence has again been mixed, with some data show-
ing a tradeoff [26] [59] [60], while others show no correla-
tion [T5], 18] 19, [61] or even a positive correlation [I1, 47].
Some of this ambiguity may have to do with dependence
on the environmental conditions [I9] or the precise defini-
tion of yield. We define yield as the proportionality con-
stant of population size to resource (Eq. [1) and neglect
any growth rate dependence on resource concentration.
Under these conditions, we predict no direct selection
on yield, which means that the only way to generate a
correlation of yield with growth rate is if the two traits
are constrained at the physiological level, so that muta-
tional effects are correlated. In such cases yield could
evolve but only as a spandrel [62] [63]. Ultimately, we
believe more precise single-cell measurements of these
traits, both across large unselected mutant libraries as
well as evolved strains, are necessary to definitively test
these issues [33].
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