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Selection of mutants in a microbial population depends on multiple cellular traits. In serial-
dilution evolution experiments, three key traits are the lag time when transitioning from starvation
to growth, the exponential growth rate, and the yield (number of cells per unit resource). Here
we investigate how these traits evolve in laboratory evolution experiments using a minimal model
of population dynamics, where the only interaction between cells is competition for a single lim-
iting resource. We find that the fixation probability of a beneficial mutation depends on a linear
combination of its growth rate and lag time relative to its immediate ancestor, even under clonal
interference. The relative selective pressure on growth rate and lag time is set by the dilution factor;
a larger dilution factor favors the adaptation of growth rate over the adaptation of lag time. The
model shows that yield, however, is under no direct selection. We also show how the adaptation
speeds of growth and lag depend on experimental parameters and the underlying supply of muta-
tions. Finally, we investigate the evolution of covariation between these traits across populations,
which reveals that the population growth rate and lag time can evolve a nonzero correlation even
if mutations have uncorrelated effects on the two traits. Altogether these results provide useful
guidance to future experiments on microbial evolution.

Laboratory evolution experiments in microbes have9

provided insight into many aspects of evolution [1–3],10

such as the speed of adaptation [4], the nature of epista-11

sis [5], the distribution of selection coefficients from spon-12

taneous mutations [6], mutation rates [7], the spectrum13

of adaptive genomic variants [8], and the preponderance14

of clonal interference [9]. Despite this progress, links be-15

tween the selection of mutations and their effects on spe-16

cific cellular traits have remained poorly characterized.17

Growth traits — such as the lag time when transitioning18

from starvation to growth, the exponential growth rate,19

and the yield (resource efficiency) — are ideal candidates20

for investigating this question. Their association with21

growth means they have relatively direct connections to22

selection and population dynamics. Furthermore, high-23

throughput techniques can measure these traits for hun-24

dreds of genotypes and environments [10–13]. Numerous25

experiments have shown that single mutations can be26

pleiotropic, affecting multiple growth traits simultane-27

ously [14, 15]. More recent experiments have even mea-28

sured these traits at the single-cell level, revealing sub-29

stantial non-genetic heterogeneity [10, 13, 16]. Several30

evolution experiments have found widespread evidence of31

adaptation in these traits [17–20]. This data altogether32

indicates that covariation in these traits is pervasive in33

microbial populations.34

There have been a few previous attempts to de-35

velop quantitative models to describe evolution of these36

traits. For example, Vasi et al. [17] considered data af-37

ter 2000 generations of evolution in Escherichia coli to38

estimate how much adaptation was attributable to differ-39

ent growth traits. Smith [21] developed a mathematical40

model to study how different traits would allow strains to41

either fix, go extinct, or coexist. Wahl and Zhu [22] stud-42

ied the fixation probability of mutations affecting differ-43

ent growth traits separately (non-pleiotropic), especially44

to identify which traits were most likely to acquire fixed45

mutations and the importance of mutation occurrence46

time and dilution factor. However, simple quantitative47

results that can be used to interpret experimental data48

have remained lacking. More recent work [23, 24] de-49

rived a quantitative relation between growth traits and50

selection, showing that selection consists of additive com-51

ponents on the lag and growth phases. However, this did52

not address the consequences of this selection for evolu-53

tion, especially the adaptation of trait covariation.54

In this work we investigate a minimal model of evolu-55

tionary dynamics in which cells interact only by compe-56

tition for a single limiting resource. We find that the57

fixation probability of a mutation is accurately deter-58

mined by a linear combination of its change in growth59

rate and change in lag time relative to its immediate an-60

cestor, rather than depending on the precise combination61

of traits; the relative weight of these two components is62

determined by the dilution factor. Yield, on the other63

hand, is under no direct selection. This is true even in64

the presence of substantial clonal interference, where the65

mutant’s immediate ancestor may have large a fitness66

difference with the population mean. We provide quan-67

titative predictions for the speed of adaptation of growth68

rate and lag time as well as their evolved covariation.69

Specifically, we find that even in the absence of an in-70

trinsic correlation between growth and lag due to muta-71

tions, these traits can evolve a nonzero correlation due72

to selection and variation in number of fixed mutations.73
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I. MATERIALS AND METHODS74

A. Model of population dynamics75

We consider a model of asexual microbial cells in a76

well-mixed batch culture, where the only interaction be-77

tween different strains is competition for a single limiting78

resource [23, 24]. Each strain k is characterized by a lag79

time Lk, growth rate rk, and yield Yk (see Fig. 1a for a80

two-strain example). Here the yield is the number of cells81

per unit resource [17], so that Nk(t)/Yk is the amount of82

resources consumed by time t by strain k, where Nk(t)83

is the number of cells of strain k at time t. We define84

R to be the initial amount of the limiting resource and85

assume different strains interact only by competing for86

the limiting resource; their growth traits are the same87

as when they grow independently. When the population88

has consumed all of the initial resource, the population89

reaches stationary phase with constant size. The sat-90

uration time tc at which this occurs is determined by91 ∑
strain k Nk(tc)/Yk = R, which we can write in terms of92

the growth traits as93

∑
strain k

N0xke
rk(tc−Lk)

Yk
= R, (1)

where N0 is the total population size and xk is the fre-94

quency of each strain k at the beginning of the growth95

cycle. In Eq. 1 we assume the time tc is longer than96

each strain’s lag time Lk. Note that some of our nota-97

tion differs from related models in previous work, some98

of which used g for growth rate and λ for lag time [23],99

while others used λ for growth rate [25]. Although it is100

possible to extend the model to account for additional101

growth traits such as a death rate or lag and growth on102

secondary resources, here we focus on the minimal set103

of traits most often measured in microbial phenotyping104

experiments [10–12, 14–16, 18, 26].105

We define the selection coefficient between each pair of106

strains as the change in their log-ratio over the complete107

growth cycle [27, 28]:108

sij = ln

(
Nfinal

i

Nfinal
j

)
− ln

(
N initial

i

N initial
j

)
= ri(tc − Li)− rj(tc − Lj),

(2)

where N initial
i is the population size of strain i at the109

beginning of the growth cycle andNfinal
i is the population110

size of strain i at the end. After the population reaches111

stationary phase, it is diluted by a factor of D into a fresh112

medium with amount R of the resource, and the cycle113

repeats (Fig. 1a). We assume the population remains114

in the stationary phase for a sufficiently short time such115

that we can ignore death and other dynamics during this116

phase [29, 30].117
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FIG. 1. Model of selection on multiple microbial growth
traits. (a) Simplified model of microbial population growth
characterized by three traits: lag time L, growth rate r, and
yield Y . The total initial population size is N0 and the initial
frequency of the mutant (strain 2) is x. After the whole pop-
ulation reaches stationary phase (time tc), the population is
diluted by a factor D into fresh media, and the cycle starts
again. (b) Phase diagram of selection on mutants in the space
of their growth rate γ = r2/r1−1 and lag time ω = (L2−L1)r1
relative to a wild-type. The slope of the diagonal line is lnD.

Over many cycles of growth, as would occur in a lab-118

oratory evolution experiment [1, 28, 31], the population119

dynamics of this system are characterized by the set of120

frequencies xk for all strains as well as the matrix of se-121

lection coefficients sij and the total population size N0122

at the beginning of each cycle. In Supplementary Meth-123

ods (Secs. I, II, III) we derive explicit equations for the124

deterministic dynamics of these quantities over multiple125

cycles of growth for an arbitrary number of strains. In126

the case of two strains, such as a mutant and a wild-type,127

the selection coefficient is approximately128

s ≈ γ lnD − ω, (3)

where γ = (r2 − r1)/r1 is the growth rate of the mutant129

relative to the wild-type and ω = (L2 − L1)r1 is the rel-130

ative lag time. The approximation is valid as long as the131

growth rate difference between the mutant and the wile-132

type is small (Supplementary Methods Sec. IV), which133

is true for most single mutations [6, 32]. This equation134



3

shows that the growth phase and the lag phase make135

distinct additive contributions to the total selection co-136

efficient, with the dilution factor D controlling their rel-137

ative magnitudes (Fig. 1b). This is because a larger138

dilution factor will increase the amount of time the pop-139

ulation grows exponentially, hence increasing selection140

on growth rate. Neutral coexistence between multiple141

strains is therefore possible if these two selection com-142

ponents balance (s = 0), although it requires an exact143

tuning of the growth traits with the dilution factor (Sup-144

plementary Methods Sec. III) [23, 24]. With a fixed dilu-145

tion factor D, the population size N0 at the beginning of146

each growth cycle changes according to (Supplementary147

Methods Sec. I):148

N0 =
RȲ

D
, (4)

where Ȳ = (
∑

strain k xk/Yk)
−1 is the effective yield of149

the whole population in the current growth cycle. In150

this manner the ratio R/D sets the bottleneck size of the151

population, which for serial dilution is approximately the152

effective population size [31], and therefore determines153

the strength of genetic drift.154

B. Model of evolutionary dynamics155

We now consider the evolution of a population as new156

mutations arise that alter growth traits. We start with157

a wild-type population having lag time L0 = 100 and158

growth rate r0 = (ln 2)/60 ≈ 0.012, which are roughly159

consistent with E. coli parameters where time is mea-160

sured in minutes [17, 31]; we set the wild-type yield to161

be Y0 = 1 without loss of generality. As in experiments,162

we vary the dilution factorD and the amount of resources163

R, which control the relative selection on growth versus164

lag (set by D, Eq. 3) and the effective population size165

(set by R/D, Eq. 4). We also set the initial population166

size of the first cycle to N0 = RY0/D.167

The population grows according to the dynamics in168

Fig. 1a. Each cell division can generate a new mutation169

with probability µ = 10−6; note this rate is only for muta-170

tions altering growth traits, and therefore it is lower than171

the rate of mutations anywhere in the genome. We gen-172

erate a random waiting time τk for each strain k until the173

next mutation with instantaneous rate µrkNk(t). When174

a mutation occurs, the growth traits for the mutant175

are drawn from a distribution pmut(r2, L2, Y2|r1, L1, Y1),176

where r1, L1, Y1 are the growth traits for the background177

strain on which the new mutation occurs and r2, L2, Y2178

are the traits for the new mutant. Note that since mu-179

tations only arise during the exponential growth phase,180

beneficial or deleterious effects on lag time are not real-181

ized until the next growth cycle [20]. After the growth182

cycle ceases (once the resource is exhausted according to183

Eq. 1), we randomly choose cells, each with probability184

1/D, to form the population for the next growth cycle.185

We will assume mutational effects are not epistatic186

and scale with the trait values of the background strain,187

so that pmut(r2, L2, Y2|r1, L1, Y1) = pmut(γ, ω, δ), where188

γ = (r2 − r1)/r1, ω = (L2 −L1)r1, and δ = (Y2 − Y1)/Y1189

(Supplementary Methods Sec. V). Since our primary190

goal is to scan the space of possible mutations, we fo-191

cus on uniform distributions of mutational effects where192

−0.02 < γ < 0.02, −0.05 < ω < 0.05, and −0.02 < δ <193

0.02. In the Supplementary Methods we extend our main194

results to the case of Gaussian distributions (Sec. V)195

as well as an empirical distribution of mutational effects196

based on single-gene deletions in E. coli (Sec. VI) [33].197

C. Data Availability198

Data and codes are available upon request. File S1199

contains the Supplementary Methods. File S2 contains200

data of growth traits presented in Figure S3.201

II. RESULTS202

Fixation of mutations203

We first consider the fixation statistics of new muta-204

tions in our model. In Fig. 2a we show the relative growth205

rates γ and the relative lag times ω of fixed mutations206

against their background strains, along with contours of207

constant selection coefficient s from Eq. 3. As expected,208

fixed mutations either increase growth rate (γ > 0), de-209

crease lag time (ω < 0), or both. In contrast, the yield210

of fixed mutations is the same as the ancestor on average211

(Fig. 2b); indeed, the selection coefficient in Eq. 3 does212

not depend on the yields. If a mutation arises with sig-213

nificantly higher or lower yield than the rest of the pop-214

ulation, the bottleneck population size N0 immediately215

adjusts to keep the overall fold-change of the population216

during the growth cycle fixed to the dilution factor D217

(Eq. 4). Therefore mutations that significantly change218

yield have no effect on the overall population dynamics.219

Figure 2a also suggests that the density of fixed mu-220

tations in the growth-lag trait space depends solely on221

their selection coefficients, rather than the precise com-222

bination of traits, as long as other parameters such as223

the dilution factor D, the total amount of resource R,224

and the distribution of mutational effects are held fixed.225

Mathematically, this means that the fixation probability226

ϕ(γ, ω) of a mutation with growth effect γ and lag effect227

ω can be expressed as ϕ(γ, ω) = ϕ(γ lnD − ω) ≡ ϕ(s).228

To test this, we discretize the scatter plot of Fig. 2a and229

compute the fixation probabilities of mutations as func-230

tions of γ and ω (Supplementary Methods Sec. VII). We231

then plot the resulting fixation probabilities of mutations232

as functions of their selection coefficients calculated by233

Eq. 3 (Fig. 2c,d,e,f). We test the dependence of the fixa-234

tion probability on the selection coefficient over a range235



4

-5 0 5 10 15 20

10
-3

-0.05

0

0.05

-5 0 5 10 15 20

10
-3

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

2

2.5

3

3.5

10
-4

0 0.05 0.1
0

0.002

0.004

0.006

0.008

0.01

0 0.05 0.1
0

1

2

3

4

5

6

10
-3

0 0.05 0.1 0.15 0.2
0

1

2

3

4
10

-4 ec

d f

a

b

Selection coefficient

F
ix

a
ti
o

n
 p

ro
b

a
b

ili
ty

Selection coefficient

F
ix

a
ti
o

n
 p

ro
b

a
b

ili
ty

Selection coefficient

F
ix

a
ti
o

n
 p

ro
b

a
b

ili
ty

Selection coefficient

F
ix

a
ti
o

n
 p

ro
b

a
b

ili
ty

FIG. 2. Selection coefficient determines fixation probability. (a) The relative growth rates γ and the relative lag times ω of
fixed mutations against their background strain. Dashed lines mark contours of constant selection coefficient with interval
∆s = 0.015 while the solid line marks s = 0. (d) Same as (a) but for relative growth rate γ and the relative yield δ. The
red dots mark the relative yield of fixed mutations averaged over binned values of the relative growth rate γ. In (a) and (d),
D = 102 and R = 107. (b,c,e,f) Fixation probability of mutations against their selection coefficients for different amounts of
resource R and dilution factors D as indicated in the titles. The red dashed line shows the fixation probability predicted in the
SSWM regime (Eq. 5), while the black line shows a numerical fit of the data points to Eq. 6 with parameters A = 0.1145 and
B = 0.0801 in (c), A = 0.0017 and B = 0.0421 in (e), and A = 0.2121 and B = 0.2192 in (f). In all panels mutations randomly
arise from a uniform distribution pmut with −0.02 < γ < 0.02, −0.05 < ω < 0.05, and −0.02 < δ < 0.02.

of population dynamics regimes by varying the dilution236

factor D and the amount of resources R.237

For small populations, mutations generally arise and238

either fix or go extinct one at a time, a regime known as239

“strong-selection weak-mutation” (SSWM) [34]. In this240

case, we expect the fixation probability of a beneficial241

mutation with selection coefficient s > 0 to be [22, 35, 36]242

ϕSSWM(s) =
2 lnD

D − 1
s. (5)

This is similar to the standard Wright-Fisher fixation243

probability of 2s [37], but with a different prefactor due244

to averaging over the different times in the exponential245

growth phase at which the mutation can arise (Supple-246

mentary Methods Sec. VIII). Indeed, we see this pre-247

dicted dependence matches the simulation results for the248

small population size of N0 ∼ R/D = 103 (Fig. 2c).249

For larger populations, multiple beneficial mutations250

will be simultaneously present in the population and in-251

terfere with each other, an effect known as clonal inter-252

ference [38–43]. Our simulations show that, as for the253

SSWM case, the fixation probability depends only on the254

selection coefficient (Eq. 3) relative to the mutation’s im-255

mediate ancestor and not on the individual combination256

of mutant traits (Fig. 2d,e,f), with all other population257

parameters held constant. Previous work has determined258

the dependence of the fixation probability on the selec-259

tion coefficient under clonal interference using various ap-260

proximations [38, 40–42]. Here, we focus on an empirical261

relation based on Gerrish and Lenski [38]:262

ϕCI(s) = Ase−B/s, (6)

where A and B are two constants that depend on other263

parameters of the population (D, R, and the distribu-264

tion of mutational effects); we treat these as empirical265

parameters to fit to the simulation results, although Ger-266

rish and Lenski [38] predicted A = 2 lnD/(D − 1), i.e.,267

the same constant as in the SSWM case (Eq. 5). The268

e−B/s factor in Eq. 6 comes from the probability that no269

superior beneficial mutations appears before the current270

mutation fixes. Since the time to fixation scales as 1/s,271

we expect the average number of superior mutations to272

be proportional to 1/s (for small s). This approximation273

holds only for selection coefficients that are not too small274

and therefore are expected to fix without additional ben-275

eficial mutations on the same background; Eq. 6 breaks276
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down for weaker beneficial mutations that typically fix277

by hitchhiking on stronger mutations [40]. Nevertheless,278

Eq. 6 matches our simulation results well for a wide range279

of selection coefficients achieved in our simulations and280

larger population sizes N0 ∼ R/D > 104 (Fig. 2d,e,f).281

Furthermore, the constant A we fit to the simulation data282

is indeed close to the predicted value of 2 lnD/(D − 1),283

except in the most extreme case of N0 ∼ R/D = 106284

(Fig. 2f).285

Altogether Fig. 2 shows that mutations with differ-286

ent effects on cell growth — for example, a mutant that287

increases the growth rate and a mutant that decreases288

the lag time — can nevertheless have approximately the289

same fixation probability as long as their overall effects290

on selection are the same according to Eq. 3. To test291

the robustness of this result, we verify it for several addi-292

tional distributions of mutational effects pmut(γ, ω, δ) in293

the Supplementary Methods: a Gaussian distribution of294

mutational effects, including the presence of correlated295

mutational effects (Fig. S1); a wider distribution of mu-296

tational effects with large selection coefficients (Fig. S2);297

and an empirical distribution of mutational effects esti-298

mated from single-gene deletions in E. coli (Fig. S3). In299

Fig. S4a we further test robustness by using the neu-300

tral phenotype (orthogonal to the selection coefficient)301

to quantify the range of γ and ω trait combinations that302

nevertheless have the same selection coefficient and fixa-303

tion probability, and in Fig. S4b we show that the selec-304

tion coefficient on growth alone is insufficient to deter-305

mine fixation probability.306

While the dependence of fixation probability on the307

selection coefficient is a classic result of population ge-308

netics [44], the existence of a simple relationship here is309

nontrivial since, strictly speaking, selection in this model310

is not only frequency-dependent [23] (i.e., selection be-311

tween two strains depends on their frequencies) but also312

includes higher-order effects [24] (i.e., selection between313

strain 1 and strain 2 is affected by the presence of strain314

3). Therefore in principle, the fixation probability of a315

mutant may depend on the specific state of the popula-316

tion in which it is present, while the selection coefficient317

in Eq. 3 only describes selection on the mutant in com-318

petition with its immediate ancestor. However, we see319

that, at least for the parameters considered in our sim-320

ulations, these effects are negligible in determining the321

eventual fate of a mutation.322

Adaptation of growth traits323

As Fig. 3a shows, many mutations arise and fix over the324

timescale of our simulations, which lead to predictable325

trends in the quantitative traits of the population. We326

first determine the relative fitness of the evolved pop-327

ulation at each time point against the ancestral strain328

by simulating competition between an equal number of329

evolved and ancestral cells for one cycle, analogous to330

common experimental measurements [1, 31]. The result-331

ing fitness trajectories are shown in Fig. 3b. To see how332

different traits contribute to the fitness increase, we also333

calculate the average population traits at the beginning334

of each cycle; for instance, the average population growth335

rate at growth cycle n is rpop(n) =
∑

strain k rkxk(n). As336

expected from Eq. 3, the average growth rate increases337

(Fig. 3c) and the average lag time decreases (Fig. 3d)338

for all simulations. In contrast, the average yield evolves339

without apparent trend (Fig. 3e), since Eq. 3 indicates340

no direct selection on yield. We note that, while the cells341

do not evolve toward lower or higher resource efficiency342

on average, they do evolve to consume resources more343

quickly, since the rate of resource consumption (rk/Yk344

for each cell of strain k) depends on both the yield as345

well as the growth rate. Therefore the saturation time of346

each growth cycle evolves to be shorter, consistent with347

recent work from Baake et al. [45].348

Figure 3 suggests relatively constant speeds of adap-349

tation for the relative fitness, the average growth rate,350

and the average lag time. For example, we can calculate351

the adaptation speed of the average growth rate as the352

averaged change in the average growth rate per cycle:353

Wgrowth = ⟨rpop(n+ 1)− rpop(n)⟩, (7)

where the bracket denotes an average over replicate pop-354

ulations and cycle number. In the Supplementary Meth-355

ods (Secs. IX and X) we calculate the adaptation speeds356

of these traits in the SSWM regime to be357

Wgrowth = σ2
γr0(lnD)

(
µRY0 lnD

D − 1

)
,

Wlag = −σ2
ω

r0

(
µRY0 lnD

D − 1

)
,

Wfitness =
Wgrowth

r0
lnD −Wlagr0,

(8)

where σγ and σω are the standard deviations of the un-358

derlying distributions of γ and ω for single mutations359

(pmut(γ, ω, δ)), r0 is the ancestral growth rate and Y0 the360

ancestral yield (we assume the yield does not change on361

average according to Fig. 3e). Furthermore, the ratio of362

the growth adaptation rate and the lag adaptation rate363

is independent of the amount of resource and mutation364

rate in the SSWM regime:365

Wgrowth

Wlag
= −r20

σ2
γ

σ2
ω

lnD. (9)

Equation 8 predicts that the adaptation speeds of the366

average growth rate, the average lag time, and the rel-367

ative fitness should all increase with the amount of re-368

sources R and decrease with the dilution factor D (for369

largeD); even though this prediction assumes the SSWM370

regime (relatively smallN0 ∼ R/D), it nevertheless holds371
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FIG. 3. Dynamics of evolving populations. (a) Frequencies of
new mutations as functions of the number n of growth cycles.
Example trajectories of (b) the fitness of the evolved popula-
tion relative to the ancestral population, (c) the evolved aver-
age growth rate, (d) the evolved average lag time, and (e) the
evolved average yield. In all panels the dilution factor is
D = 102, the amount of resource at the beginning of each cy-
cle is R = 107, and mutations randomly arise from a uniform
distribution pmut with −0.02 < γ < 0.02, −0.05 < ω < 0.05,
and −0.02 < δ < 0.02.

across a wide range of R and D values (Fig. 4a,b,c), ex-372

cept for R = 108 where the speed of fitness increase is373

non-monotonic with D (Fig. 4c). The predicted adapta-374

tion speeds in Eq. 8 also quantitatively match the sim-375

ulated trajectories in the SSWM case (Fig. 4d,e,f); even376

outside of the SSWM regime, the relative rate in Eq. 9377

remains a good prediction at early times (Fig. S5).378

Evolved covariation between growth traits379

We now turn to investigating how the covariation be-380

tween traits evolves. We have generally assumed that in-381

dividual mutations have uncorrelated effects on different382

traits. Campos et al. [33] recently systematically mea-383

sured the growth curves of the single-gene deletions in E.384

coli. We compute the relative growth rate, lag time, and385

yield changes for the single-gene deletions compared with386

the wild-type and find that the resulting empirical distri-387

bution of relative growth traits changes shows very small388

correlations between these traits (Fig. S3b,c), consistent389

with our assumptions. We note that these measurements,390

however, are subject to significant noise (Supplementary391

Methods Sec. VI), and therefore any conclusions ulti-392

mately require verification by further experiments.393

Even in the absence of mutational correlations, selec-394

tion may induce a correlation between these traits in395

evolved populations. In Fig. 5a we schematically depict396

how the raw variation of traits from mutations is dis-397

torted by selection and fixation of multiple mutations.398

Specifically, for a single fixed mutation, selection induces399

a positive (i.e., antagonistic) correlation between the rela-400

tive growth rate change and the relative lag time change.401

Figure 2a shows this for single fixed mutations, while402

Fig. 5b,c shows this positive correlation between the av-403

erage growth rate and the average lag time across popu-404

lations that have accumulated the same number of fixed405

mutations. For populations in the SSWM regime with406

the same number of fixed mutations, the Pearson cor-407

relation coefficient between the average growth rate and408

the average lag time across populations is approximately409

equal to the covariation of the relative growth rate change410

γ and the relative lag time change ω for a single fixed mu-411

tation:412

ρfixed ≈ ⟨γω⟩fixed − ⟨γ⟩fixed⟨ω⟩fixed√
(⟨γ2⟩fixed − ⟨γ⟩2fixed)(⟨ω2⟩fixed − ⟨ω⟩2fixed)

,

(10)
where ⟨·⟩fixed is an average over the distribution of sin-413

gle fixed mutations (Supplementary Methods Sec. IX).414

We can explicitly calculate this quantity in the SSWM415

regime, which confirms that it is positive for uncorrelated416

mutational effects with uniform or Gaussian distributions417

(Supplementary Methods Sec. XI).418

However, in evolution experiments we typically observe419

populations at a particular snapshot in time, such that420

the populations may have a variable number of fixed mu-421

tations but the same number of total mutations that422

arose and either fixed or went extinct (since the number423

of total arising mutations is very large, we neglect its fluc-424

tuation across populations). Interestingly, the variation425

in number of fixed mutations at a snapshot in time causes426

the distribution of growth rates and lag times across pop-427

ulations to stretch into a negative correlation; this is an428

example of Simpson’s paradox from statistics [46]. Fig-429

ure 5a shows this effect schematically, while Fig. 5d,e430

show explicit results from simulations. An intuitive way431

to understand the evolved negative correlation is to ap-432

proximate the effects of all fixed mutations as determin-433

istic, so that each fixed mutation increases the average434

growth rate and decrease the average lag time by the435

same amount. Therefore populations with a higher aver-436
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FIG. 4. Speed of adaptation. The average per-cycle adaptation speed of (a) the average growth rate, (b) the average lag time,
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The adaptation speeds are averaged over growth cycles and independent populations. (d) The average growth rate, (e) the
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dilution factor is D = 104 and the total resource is R = 107, so the population is in the SSWM regime. The blue solid lines
are simulation results, while the dashed lines show the mathematical predictions in Eq. 8. All panels show averages over 500
independent simulated populations, with mutations randomly arising from a uniform distribution pmut with −0.02 < γ < 0.02,
−0.05 < ω < 0.05, and −0.02 < δ < 0.02.

age growth rate must have a larger number of fixed muta-437

tions and thus also a shorter average lag time, leading to438

a negative correlation between the average growth rates439

and the average lag times. In the Supplementary Meth-440

ods (Sec. X), we calculate this evolved Pearson correla-441

tion coefficient across populations in the SSWM regime442

to be approximately443

ρevo ≈ ⟨γω⟩fixed√
⟨γ2⟩fixed⟨ω2⟩fixed

. (11)

That is, the correlation of traits across populations with444

multiple mutations is still a function of the distribution445

of single fixed mutations, but it is not equal to the corre-446

lation of single fixed mutations (Eq. 10). In the Supple-447

mentary Methods (Sec. XI) we explicitly calculate ρevo in448

the SSWM regime for uncorrelated uniform and Gaussian449

distributions of mutational effects, which shows that it is450

negative. Furthermore, we prove that it must always be451

negative for any symmetric and uncorrelated distribution452

pmut(γ, ω) (Supplementary Methods Sec. IX).453

The predicted correlations in Eqs. 10 and 11 quantita-454

tively match the simulations well in the SSWM regime455

(Fig. 5c,e). While they are less accurate outside of the456

SSWM regime, they nevertheless still produce the cor-457

rect sign of the evolved correlation within the parame-458

ter regimes of our simulations (Fig. S6a,b,c). However,459

the signs of the correlations can indeed change depend-460

ing on the underlying distribution of mutational effects461

pmut(γ, ω, δ). For example, in the Supplementary Meth-462

ods we explore the effects of varying the mean mutational463

effects (Fig. S6d) — e.g., whether an average mutation464

has positive, negative, or zero effect on the growth rate465

— as well as the intrinsic mutational correlation between466

the relative growth rate change and the relative lag time467

change (Fig. S6e).468
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III. DISCUSSION469

We have investigated a model of microbial evolution470

under serial dilution, which is both a common protocol471

for laboratory evolution experiments [1, 6, 31, 47, 48]472

as well as a rough model of evolution in natural envi-473

ronments with feast-famine cycles. While there has been474

extensive work to model population and evolutionary dy-475

namics in these conditions [2, 35, 36, 38, 45], these models476

have largely neglected the physiological links connecting477

mutations to selection. However, models that explicitly478

incorporate these features are necessary to interpret ex-479

perimental evidence that mutations readily generate vari-480

ation in multiple cellular traits, and that this variation is481

important to adaptation [17–20]. Wahl and Zhu [22] de-482

termined the relative fixation probabilities of mutations483

on different traits and the effects of mutation occurrence484

time and dilution factor, but the role of pleiotropy and485

evolutionary dynamics over many mutations were not486

considered.487

In this paper, we have studied a model where muta-488

tions can affect three quantitative growth traits — the lag489

time, the exponential growth rate, and the yield (Fig. 1a)490

— since these three traits are widely measured for micro-491

bial populations. In particular, we have derived a simple492

expression (Eq. 3) for the selection coefficient of a muta-493

tion in terms of its effects on growth and lag and a single494

environmental parameter, the dilution factor D. While495

previous work showed that this particular form of the se-496

lection coefficient determines the fixation probability of a497

single mutation in the SSWM regime [23], here we show498

that this holds even in the presence of clonal interfer-499

ence (Fig. 2c,d,e,f), which appears to be widespread in500

laboratory evolution experiments [9, 28, 49]. Our result501

is therefore valuable for interpreting the abundant ex-502

perimental data on mutant growth traits. We have also503

calculated the adaptation rates of growth traits per cycle504

in the SSWM regime, which turn out to increase with505

the amount of resource R and decrease with the dilution506

factor D. These results are confirmed by numerical sim-507

ulations and remain good predictions even outside of the508

SSWM regime. Furthermore, some of these results are509

independent of the specific form of the selection coeffi-510

cient (Eq. 3), namely the fact that the fixation probabil-511

ity depends only on the selection coefficient (with other512

population parameters besides the mutant traits being513

held fixed) even in the clonal interference regime, and514

the expressions for the correlation coefficients of traits515

between populations (Eqs. 10 and 11).516

An important difference with the previous work on this517

model is that here we used a fixed dilution factor D,518

which requires that the bottleneck population size N0519

fluctuates as the population evolves. In contrast, previ-520

ous work used a fixed N0 and variable D [23, 24]. We ob-521
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served two important differences between these regimes.522

First, in the case of fixed N0 and variable D, the fold-523

change of the population during a single growth cycle,524

which is approximately RȲ /N0 [23], determines the rela-525

tive selection between growth and lag, since it determines526

how long the population undergoes exponential growth.527

Therefore one can experimentally tune this relative se-528

lection by varying either the total amount of resources529

R or the fixed bottleneck size N0. However, when the530

dilution factor D is fixed, the population fold-change is531

always constrained to exactly equal D and therefore D532

alone determines the relative selection on growth and lag533

(Eq. 3). The second difference is that, with fixed N0 and534

variable D, the selection coefficient depends explicitly on535

the effective yield Ȳ and is therefore frequency-dependent536

(Supplementary Methods Sec. II), which enables the pos-537

sibility of stable coexistence between two strains [23, 24].538

However, for the fixed D case, the frequency dependence539

of Ȳ is exactly canceled by N0 (Eq. 4). Therefore there is540

only neutral coexistence in this case, requiring the growth541

and lag traits of the strains to follow an exact constraint542

set by D (Supplementary Methods Sec. III).543

A major result of our model is a prediction on the544

evolution of covariation between growth traits. In par-545

ticular, we have shown that correlations between traits546

can emerge from selection and accumulation of multiple547

mutations even without an intrinsic correlation between548

traits from individual mutations (Figs. 5 and S6). We549

have also shown that selection alone produces no corre-550

lation between growth and yield, in the absence of corre-551

lated mutational effects (Figs. 2b and 3e). This is impor-552

tant for interpreting evolved patterns of traits in terms553

of selective or physiological tradeoffs. Specifically, it em-554

phasizes that the evolved covariation between traits con-555

flates both the underlying supply of variation from muta-556

tions as well as the action of selection and other aspects557

of population dynamics (e.g., genetic drift, spatial struc-558

ture, recombination), and therefore it is difficult to make559

clear inferences about either aspect purely from the out-560

come of evolution alone. For example, simply observing a561

negative correlation between two traits from evolved pop-562

ulations is insufficient to infer whether that correlation563

is due to a physiological constraint on mutations (e.g.,564

mutations cannot improve both traits simultaneously) or565

due to a selective constraint (e.g., selection favors spe-566

cialization in one trait or another).567

These questions, of course, have been the foundation of568

quantitative trait genetics [50]. Historically this field has569

emphasized polymorphic populations with abundant re-570

combination as are applicable to plant and animal breed-571

ing. However, this regime is quite different from micro-572

bial populations which, at least under laboratory con-573

ditions, are often asexual and dominated by linkage be-574

tween competing mutations [9, 28, 49]. We therefore need575

a quantitative description of both between-population as576

well as within-population covariation of traits of micro-577

bial populations in this regime. In the present study, we578

focus on between-population covariation in growth traits,579

but recent work by Gomez et al. [51] provides insight into580

the case of within-population covariation. They showed581

that a tradeoff across individuals within a population582

evolves between two quantitative traits under positive,583

additive selection; this suggests that while growth rate584

and lag time will be negatively correlated across popu-585

lations (Fig. 5d,e), they should be positively correlated586

within populations.587

Microbial growth traits should indeed be an ideal set-588

ting for this approach due to abundant data, but con-589

clusions on the nature of trait covariation have remained590

elusive. Physiological models have predicted a negative591

correlation between growth rate and lag time across geno-592

types [52, 53], while models of single-cell variation in lag593

times also suggests there should be a negative correla-594

tion at the whole-population level [54]. However, ex-595

perimental evidence has been mixed, with some stud-596

ies finding a negative correlation [13, 16], while others597

found no correlation [10, 11, 14]. Studies of growth-yield598

correlations have long been motivated by r/K selection599

theory, which suggests there should be tradeoffs between600

growth rate and yield [55]. For instance, metabolic mod-601

els make this prediction [56–58]. However, experimental602

evidence has again been mixed, with some data show-603

ing a tradeoff [26, 59, 60], while others show no correla-604

tion [15, 18, 19, 61] or even a positive correlation [11, 47].605

Some of this ambiguity may have to do with dependence606

on the environmental conditions [19] or the precise defini-607

tion of yield. We define yield as the proportionality con-608

stant of population size to resource (Eq. 1) and neglect609

any growth rate dependence on resource concentration.610

Under these conditions, we predict no direct selection611

on yield, which means that the only way to generate a612

correlation of yield with growth rate is if the two traits613

are constrained at the physiological level, so that muta-614

tional effects are correlated. In such cases yield could615

evolve but only as a spandrel [62, 63]. Ultimately, we616

believe more precise single-cell measurements of these617

traits, both across large unselected mutant libraries as618

well as evolved strains, are necessary to definitively test619

these issues [33].620
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