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The real Ginibre ensemble consists of n x n real matrices X whose en-
tries are i.i.d. standard normal random variables. In sharp contrast to the
complex and quaternion Ginibre ensemble, real eigenvalues in the real Gini-
bre ensemble attain positive likelihood. In turn, the spectral radius R, =
max| <<y |zj(X)| of the eigenvalues z;(X) € C of a real Ginibre matrix
X follows a different limiting law (as n — o00) for z;(X) € R than for
zj(X) € C\ R. Building on previous work by Rider and Sinclair (Ann. Appl.
Probab. 24 (2014) 1621-1651) and Poplavskyi, Tribe and Zaboronski (Ann.
Appl. Probab. 27 (2017) 1395-1413), we show that the limiting distribution
of max .z cR 2 j (X) admits a closed-form expression in terms of a distin-
guished solution to an inverse scattering problem for the Zakharov—Shabat
system. As byproducts of our analysis, we also obtain a new determinantal
representation for the limiting distribution of max ., .cr z;(X) and extend
recent tail estimates in (Ann. Appl. Probab. 27 (2017) 1395-1413) via non-
linear steepest descent techniques.

1. Introduction and statement of results. This paper is foremost concerned with the
derivation of an integrable system for the limiting distribution function

lim IP( max z;(X) 5ﬁ+t), teR,

n—00 \jiz;eR

of the largest real eigenvalue of a random matrix X € R"*" chosen from the real Ginibre
ensemble.

DEFINITION 1.1 (Ginibre [23] (1965)). A random matrix X € R"*" is said to belong to

the real Ginibre ensemble (GinOE) if its entries are independently chosen with pdf’s
l e_ %sz'k

21 ’

Equivalently, the joint pdf of all the independent entries equals

X =11

1<j,k<n

1<j,k<n.

_1.2 _1.2 _lyun 2 1.2 1 T
e 2k = (2m) 2% eI Lik=1 Nk = (2r) 27 e 2 WXXT),

The GinOE displays certain similarities to the classical Gaussian Orthogonal Ensemble
(GOE) but the presence of both, real and complex eigenvalues introduces also new phenom-
ena. For instance, on a global scale, Wigner’s semicircle law in the GOE is replaced by the
following circular law [15]: let

1
px(s,t)=—#1<j<n:Nz;X) <s5,3z;X) <1}, s,1€R
n
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denote the empirical spectral distribution of the eigenvalues {z; (X)}’J“.:1 of a matrix X €

GinOE, then the random measure wyx/+/n converges almost surely (as n — 00) to the uni-
form distribution on the unit disk; see Figure 1 below.

REMARK 1.2. The circular law is a universal limiting law: it holds true for any n x n
random matrix X whose entries are i.i.d. complex random variables with mean zero and
variance one; see [31] and references therein to the long and rich history of the circular law.

On a local scale, Figure 1 indicates that fluctuations of the spectral radius R, =
max| < j<p |2;(X)| around /n behave differently depending on whether z; e Rorz; € C\R.
And indeed, the above mentioned saturn effect was quantified recently and the following
central limit theorem derived.

THEOREM 1.3 (Rider, Sinclair [28] (2014); Poplavskyi, Tribe, Zaboronski [27] (2017)).
Let {z; (X)}’}-:l denote the eigenvalues of a n x n random matrix X € GinOE. Then

1 ,—t

. Vo 1 1.
lim P (X)) < — 4 ——)=e"2* , relR
L (j:zr?ea(é(\R|ZJ( =+ i 4/4)/,1) ©
with y, = In(n/2m (In n)?)). In addition,
(1.1) AE;P(HMXzﬂX)fV%+4)=VMﬁﬂn—Txthqwﬂl, teR,

Jizj€R

where x; is the operator of multiplication by X +00)(X), the characteristic function of
(t,400) CR,and T : L*(R) — L2(R) the trace-class integral operator with kernel

1 [ 2 2
(1.2) anZ—/ e~ (HTe= 01" gy
T Jo
Moreover,
> 1
(1.3) Iry=1 —/ G(x)((l —Tyx: rLZ(R))_ g)(x) dx
'

with g(x) = %e_xz and G(x) = ffoo g(y)dy.

REMARK 1.4. The limit (1.1) was first established in [28]; however, the result contained
an algebraic error in the formula for I';. This mistake was subsequently fixed in [27] which
resulted in the compact formula (1.3).
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FI1G. 1. The circular law for 1000 real (rescaled) Ginibre matrices of varying dimensions n X n in comparison
with the unit circle boundary. We plot n = 2,4, 8, 16 from left to right. A saturn effect is clearly visible on the real
line.
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When compared to the GOE, (1.1) plays the analogue of the celebrated Tracy—Widom edge
law for the largest eigenvalue Apax, cf. [33]. Indeed we recall that in the GOE, as n — oo,

Amax = V2n + lFl,
2ns
with the cdf
(1.4) Fi(t) = /det(l — K, 1 ,2@)Fr. 1 €R,

where K : L>(R) — L%(R) is the integral operator with Airy kernel K (x, y) = fooo Ai(x +
u) Ai(y + u) du in terms of the Airy function Ai(z), [26]. Moreover (see, e.g., [21], Section
9.7),

ﬁ:l—/ A (A=K X T2y~ " A () dx;
(1.5) "
A(x) =/ Ai(y)dy.

—0o0

1.1. An integrable system for (1.1). The formal similarities between (1.4), (1.5) and
(1.1), (1.3) are quite obvious, still while the operator K is of integrable type in the sense
of [25], that is, has a kernel of the form

Tg)
S

=G0 eo=|NG

this is not true for T with kernel (1.2); see explicitly [28], Section 4. For this reason, nei-
ther the standard Tracy—Widom method [32] used in the derivation of an integrable system
(a.k.a. a closed-form expression) for the limiting distribution function (1.1) nor the Riemann—
Hilbert problem based techniques of Borodin and Deift [9] are directly applicable. However,
as we will show below, the situation with (1.2) is not too bad, since the operator T x; is of
integrable type up to Fourier conjugation; see Proposition 3.3 below. This observation com-
bined with certain additional manipulations for the Fredholm determinant and the factor I',
in (1.1) (see Sections 2, 3 and 4 below) yields an explicit integrable system for F(¢) and a
subsequent closed-form, Tracy—Widom-like, formula. In fact, we shall state the sought after
closed-form expression for the following generalization of (1.1) that contains a generating
function parameter y € [0, 1],

F(t;y) = Jdet(l =y Tx: [ 120) sy

(L.7) 00

with T’y :=1— y/ Gx)((A—=yTyx FLz(R))_lg)(x)dx.
t

The main result of our paper (see Theorem 1.6 below) is a closed-form expression for F(¢; y)
in terms of a distinguished solution to an inverse scattering problem for the Zakharov—Shabat
(ZS) system [1, 34]. As it is standard in scattering theory, we shall formulate this inverse
problem as a Riemann—Hilbert problem (RHP):

RIEMANN-HILBERT PROBLEM 1.5. For any (x,y) € R x [0, 1], determine X(z) =
X(z; x, y) € C**? such that:

(1) X(z) is analytic for z € C\ R and has a continuous extension on the closed upper and
lower half-planes.
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(2) The limiting values X4 (z) = lim¢ o X(z £ i€), z € R satisfy the jump condition
. 2 - —2ixz
X+ (@) =X_(2) {1 )| rize ]

(18) r(Z)CZixz 1

zeRwithr(z) =r(z;y) = _iﬁe—%zz_
(3) As z — oo, we require the normalization
X@) =I+Xiz7 + X0z + 0(7); X; =X;(x, y) = [x/* (. V)]?,k:l.

Note that r(z; y) € S(R), the Schwartz space on the line, but |7 ||cc = sup,cg I7(2)] < 1
only for y € [0, 1). Hence r(z; y), the so-called reflection coefficient, does not belong to
the standard Beals—Coifman class of reflection coefficients (cf. [3, 4]) in the case (1.1) most
relevant to the GinOE. For this reason, we will prove unique solvability of RHP 1.5 for all
(x,y) € Rx [0, 1], and thus also existence of the coefficients X, (x, y) directly in the sections
below. We now present our main result.

THEOREM 1.6. Forany (t,y) € R x [0, 1],

(1.9) (F(t;y))zzeXp[_;t/too(x_t)‘y(%”/) 2dx]

x {coshpu(t; y) — /y sinh u(t; y)},

=)
ML Y ) = 2/, )’2,)/ X,

and where y = y(x; y) : R x [0, 1] — iR equals y(x; y) := 2iX112(x, y) in terms of the ma-
trix coefficient X1(x, v) in condition (3) of RHP 1.5 above.

using the abbreviation

Identity (1.9) is the analogue of the Tracy—Widom Painlevé-II formula for Fi(¢) in case
y = 1; see [33]. For y € [0, 1), our definition (1.7) is motivated by the generating function
of the soft-edge scaled (¢, +00) gap probabilities for the superimposed (cf. [21], Section 6.6)
orthogonal ensemble

0dd(OE, (™) U OE, (e ™).

In this context, (1.9) is the direct analogue of [21], (9.150), modulo the replacement of the
Painlevé-1I transcendent with the above solution entry y(x; ) of RHP 1.5. Also, somewhat
similar formulzto the type of (1.9) appear in the computation of edge eigenvalue gap proba-
bilities in the GOE and Gaussian Symplectic Ensemble (GSE) in terms of Painlevé transcen-
dents; see [13].

REMARK 1.7. Another possible motivation for the introduction of y in (1.7) could arise
from studying a thinned version of the real eigenvalues in the GinOE, that is, from analyzing
the point process

X = (X)X eR)Y, 1=n()=n,
obtained from X = {z;(X) € R}?:l with X € GinOE by independently removing each real
eigenvalue with likelihood y € [0, 1]. For GOE, the largest eigenvalue distribution function
after thinning admits a Painlevé closed-form expression (see [10], (1.6)) in case of GinOE
the corresponding result is unknown. It is also not immediately clear whether (1.7) has a
probabilistic interpretation in the thinned superimposed orthogonal ensemble. We plan to
address this question in a future publication.
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REMARK 1.8. We prove existence of y(x;y) for (x,y) € R x [0, 1] in Theorem 3.9
and continuity of y(x; y),x € R for any fixed y € [0, 1] in Lemma 2.1 and Corollary 3.6.
Moreover, we show that y(x; y) for (x, y) € R x [0, 1] is purely imaginary and

(1.10) yx;y) = 2i\/ze—4x2(l + (’)(e—4x2))’ X —> +00,
/4

that is, the right-hand side in (1.9) is well-defined.

Returning to the aforementioned comparison between GinOE and GOE, we see from (1.9)
and [33], (53), that, overall, the main difference in GinOE arises from the presence of the
inverse scattering type RHP 1.5 and its solution entry y(x; y) instead of the more common
Painlevé transcendents in the Gaussian invariant ensembles. For this reason, we shall briefly
review a few selected aspects of the integrability theory of RHP 1.5; see [1, 3, 4, 34] for more
details.

1.2. The Zakharov—Shabat system in a nutshell. Note that
U(z):=X(z)e ™%, zeC\R

solves a RHP with a x-independent jump on R, thus %\Il_1 is an entire function. In fact,
using condition (3) in RHP 1.5 and Liouville’s theorem, we find

g : 1 0o xJ?
(1.11) a={—1za3+21 [-X%l (; }}\p.
But since RHP 1.5 enjoys the symmetry
= 0 1
(1.12) X(z;x,y)=01X(@ x, )01, z€C\R;o =[1 0],

we learn that Xi“(x, y) = Xl-zz(x, y) as well as X?l(x, y) = Xl.lz(x, y), and thus with y =
2iX1? from (1.11),

v . 0
(1.13) —={—1zo*3+|:_ y}}\IIEU(z;x,y)\Il.

ox y 0
This celebrated first-order system, known as the ZS-system, is directly related to several of
the most interesting nonlinear evolution equations in 1 4+ 1 dimensions which are solvable
by the inverse scattering method. For instance, in order to solve the Cauchy problem for the
defocusing nonlinear Schrodinger equation,

iy + e =207y =0,  y(x,0) = yox) € SR);

(1.14)
y=y(x,1):R?* > C,

one first computes the reflection coefficient r(z) € S(R) associated to the initial data yg
through the direct scattering transform. A basic fact of the scattering theory for the Zhakarov—
Shabat system (1.13) states that this transform, that is, the map yg — r, is a bijection from
S(R) onto S(R) N {r : ||Ir]loc = sup,eg [7(2)| < 1}; cf. [3]. Second, one considers RHP 1.5
above subject to the replacement

o2z eZi(thz-‘,-xz)’ {eR,
and provided this problem is solvable, its (unique) solution in turn leads to a solution of

(1.14) with y(x,0) = yo(x) via the formula y(x,t) = 2iXi2(x, t). Thus, in order to solve
(1.14), one must solve the t-modified RHP 1.5 (a.k.a. the inverse scattering transform) for
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the given reflection coefficient 7 (z), determined under the aforementioned bijection yg — r.
Returning now to our context, we see that (1.9) therefore depends on a distinguished solution
y(x; y) of the inverse scattering transform for the Zakharov—Shabat system (1.13) subject to

. . . 1.2
the reflection coefficient r(z; y) = —i/ye” 4%

REMARK 1.9. As outlined above, the operator T x; is of integrable type once viewed in
Fourier space. This idea was first used in the analysis of single and multitime processes in
[5, 6]. Specifically, [5, 6] showed that certain matrix Fredholm determinants are expressible
as determinants of integrable matrix kernels, and thus connected to RHPs. As a direct appli-
cation of this technique, Bertola and Cafasso rederived for instance the Adler—van Moerbeke
PDE for the joint distributions of the Airy-2 process by Riemann—Hilbert techniques. Our
approach to the GinOE and (1.7) is clearly inspired by these works.

1.3. Tail asymptotics. The advantage of the exact formula (1.9) lies in the fact that
y = y(x; ) admits a Riemann—Hilbert formulation as outlined in RHP 1.5. Thus its large
space/long time behavior can be systematically computed via nonlinear steepest descent tech-
niques [12] and this paths the way to large tail estimates for (1.7). We summarize our second
result.

COROLLARY 1.10. Lety €[0, 1] and F(t; y) be defined as in (1.7). Then, as t — +00,

(1.15) F(t;y)=1-— %erfc(r)%—(?(y%t_le_mz),
in terms of the complementary error function erfc(z); cf. [26], 7.2.2. On the other hand, as
t— —00,

1
(1.16) Pty =e"Pmom) 1 +oM).  mk)=—7=Liy»).

in terms of the polylogarithm Lis(z) (cf. [26], 25.12.10) and with a t-independent positive
Sfactor no(y).

Estimate (1.15) for y = 1 is standard and known from [20], say. The leading order in (1.16)
for y = 1 was obtained by Forrester [22] and also by Poplavskyi, Tribe and Zaboronski [27]
using an interesting connection to coalescence processes. Here, we employ nonlinear steepest
descent techniques to confirm (1.15) for all y € [0, 1] and derive (1.16) for y € [0, 1).

The paper [22] also discusses the thinned version of the real eigenvalues, or equivalently,
the generating function for the probability of the number of eigenvalues. Namely, the dis-
cussions in the third paragraph of [22], Section 4, claim a leading order term which, after
evaluating the integral [22], (4.1), explicitly, is the same as our 7 (y) with y = 2& — &2
where 1 — £ denotes the removal probability of an eigenvalue. As mentioned above in Re-
mark 1.7, it is interesting to consider the relationship between our F(¢; ) and the thinned
version.

REMARK 1.11. As can be seen from (1.16), the left tails of F(¢; y) in the leading or-
der decay to zero exponentially fast for all y € (0, 1]. This is in sharp contrast to the GOE
where In Fi (t) ~ 5;1% as t = —o0 and In Fy (t; y) ~ —22(—1)*2 for y € (0, 1) fixed with
v = —In(1 —y) < +o0; cf. [10]. This means that the large negative x behavior of ‘?s(y(%; ¥))
cannot be as sensitive to a small change in y € (0, 1] near y = 1 as the corresponding behav-
ior for the Painlevé-II transcendent u(x; y); see Figure 4 below for a visualization.
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T T T
——— GinOE —— GinOE
GOE

GOE

FIG. 2. The distribution function F(t) of the largest real GinOE eigenvalue in red versus GOE Tracy—Widom
F1(t) in blue. The plots are generated in MATLAB with m = 50 quadrature points using the Nystrom method with
Gauss—Legendre quadrature. On the left cdfs, on the right pdfs.

1.4. Numerical comparison. The closed-form expression (1.9) is not as optimal for nu-
merical purposes as a single Fredholm determinant formula, compare the discussions in
[8]. For this reason, we derive a new determinantal formula for the limiting distribution
of max;:;;er z;(X) in our third result below. This identity is completely analogous to the
Ferrari—-Spohn formula [16] in the GOE.

THEOREM 1.12. Let F(t) be defined as in (1.1). Then
(1.17) F(t) =det(1 — Sx: [12w))s

where S : L*>(R) — L*(R) is the integral operator with kernel

1 1 2
1.18 S(x,y) = ——e a0t¥)7,
( ) (x. ) Zﬁe

Identity (1.17) allows us to numerically simulate several statistical quantities of
max;.; ;e Zj(X) by implementing Bornemann’s algorithm [8] in MATLAB. In more de-
tail, we discretize the determinant (1.17) by the Nystrdm method using a Gauss—Legendre
quadrature rule with m = 50 quadrature points. Once the values of the cdf are then numer-
ically accessible, computing associated quantities such as moments is straightforward. We
summarize a few values in Table 1 below.

In the upcoming figures, we first plot the distribution function F(¢) of the largest real
eigenvalue in the GinOE in comparison to Fi(t), the cdf of the largest eigenvalue in the
GOE; compare Figure 2. After that, we compare the asymptotic expansions (1.15) and (1.16)
to our numerical results in Figure 3.

A closed-form computation of ng(y) in (1.16) is beyond the methods developed in this
paper. In [22], (2.26), (2.30), Forrester derives a closed-form series representation for 7o (1),

TABLE 1
Some moments of the GinOE in comparison to GOE moments

Ensemble Mean Variance Skewness Kurtosis

GinOE (1.1) —1.30319 3.97536 —1.76969 5.14560
GOE (1.4) —1.20653 1.60778 0.29346 0.16524
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F1G. 3.  We double-check (1.15) on the left and (1.16) on the right (in a semilogarithmic plot) against the nu-
merically computed values of F(t; 1) based on (1.17) with ng(1) = 0.75277069. Once more, we have used the
Nystrom method with a Gauss—Legendre quadrature rule and m = 50 quadrature points.

namely

11 &
expIn2— 24— ~|-7+ Z ~ 1.06470738.
4  4r - «/m(n —

N

However, after using a simple approximation for no(1) obtained by numerically computing
the ratio of F(z; 1) from (1.17) and em(V* for large negative ¢, our result

no(1) = 0.75277069,

does not match [22], (2.26), (2.30). This discrepancy needs to be further investigated.1 Fi-
nally, in the remaining Figure 4 we showcase the qualitatively different asymptotic behaviors
of i‘s(y(%; y)) on one hand and u#(x; y) on the other, compare Remark 1.11.

1.5. Outline of paper. Toward the end of our Introduction, we now offer a short outline
for the remaining sections of the paper. In Section 2, we first summarize a few basic properties
of the operator T on L?(R) with kernel (1.2) and show that T x; is indeed of integrable type

FI1G. 4. We compare S(y(%; y)) on the left to u(x;y) on the right for varying values of y. While the solu-
tion entry y(x;y) to RHP 1.5 decays to zero as x — —oo for all y € (0, 1], this is not true for the Painlevé-I1
transcendent.

1 After the submission of this manuscript, there appeared the preprint [17] in which the authors derive an explicit
formula for ng(1); see [17], (2), (3). Their result aligns with our above numerical prediction.
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[25], up to Fourier conjugation. Still, instead of deriving an integrable system for F(z; y) at
this point we employ further simplification steps in Section 3 that allow to match the thereby
obtained RHP 3.4 almost immediately with RHP 1.5. This will in turn prove the first part
of Theorem 1.6 in (3.26) below once combined with appropriate right tail estimates that we
derive by nonlinear steepest descent arguments; compare Section 3.4. These steps are then
followed up in Section 4 by an explicit evaluation of I';,, in (1.7) in terms of Riemann—Hilbert
data, and the second part in (1.9) is then also proven. While carrying out the aforementioned
steps, we derive estimate (1.15) en route and complete the proof of Corollary 1.10 afterwards
in Section 5. The nonlinear steepest descent techniques for the left tail are standard except for
the appearance of certain collapsing jump contours. For this reason, we provide the necessary
small norm estimates of the underlying (unbounded) Cauchy operators in Appendix A. The
paper closes with the derivation of (1.17) in Section 6 which heavily relies on the proof
technique presented in [16] for the corresponding GOE result.

2. Preliminary steps. We begin with the following result which is standard for, say, the
Airy operator (see, for instance, [2], Lemma 6.15) but which does not appear in the literature
for T x;, to the best of our knowledge.

LEMMA 2.1. Forevery t € R, the self-adjoint operator T y; satisfies 0 <T x; <1, and
thus | T x| < 1. Moreover, 1 — y T x, is invertible on L*(R) for all y € [0, 1].

PROOF. Recall the Gaussian integral
1 o ~
@2.1) e = N / eI Gy xR,
—0o0
and note that for f € L?(R),

1 o0 o0 G+ )2 2
0=(/f, Tth>L2(R)=;/O ‘/ e T fi(x)dx| du
—0oQ0

< l/OO ’/OO e () dx
T J—ocol) -0

where we abbreviate f;(x) := f(X) X(:,+00) (x). Hence, with (2.1), we compute
1

o 2 124 :
/ e T S dr = — / e fi(=y)e" dy = Vg (~u),
—00 \/E —00

a iy : : 12
vihere fi(y) = ﬁ ffooo fr(x)e™Y* dy is the Fourier transform of f; and g(y) :=e %Y x
ft(—=y). Thus together in (2.2),

0=<{f,Txf)r2w)

< / (=) du = / g Pdy = / 1| Fi(—y)[Pdy

2.2)

2
du,

(2.3) 00 00 00
5/ <ﬁ<—y>}2dy=/ |ft<y>|2dys/ FPdy

=/ e,

using Plancherel’s theorem in the first and third equality. Hence 0 < T x; < 1 and by self-
adjointness also

ITxll= sup [f. Txf)el <1
1112 @=1
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IS
|

R

1 1

FIG. 5. An admissible choice for the contour T in (2.5).

For invertibility, we assume there is f € LZ(R), not identically zero, such that y T x; f = f
with y € (0, 1]. By (2.3), we must therefore have equality

o
~ 2
(f, Tth>L2(R) = V/ |g(—u)| du,
—o0
but from (2.2) (without estimating) then also
* 2
(LT ) emwy = V/O |g(—w)|” du.
So g(u) =0 for u < 0, that is,
o0 2
(2.4) / e W7 f(x)dx =0 foru <O.
t

Using analytic properties of the exponential, we then conclude that (2.4) must also hold for
u > 0 and, therefore, f =0, a contradiction. [

Our next steps will make use of a slight generalization of (2.1), namely the following

contour integral formula: for any smooth nonself-intersecting contour I" oriented from oo - e'*

to 0o - e with o € (37”, 57”) and B € (—%, %); see, for example, Figure 5, we have

2 1 1,2
2.5 = [ e ERg) xeR.
(2.5 e 2ﬁ/re X

Now fix (x,y) € R2 throughout and substitute (2.5) twice into (1.2), once with the (4)
sign in (2.5) and once with the (—) sign:

1 L2002y s .
T(x, y) — / / e—Z(X +w )e—l(X)»—yw) |:/ e—lu(k—w) du] dwda.
2m)? Jr, Jr, 0

So provided we choose (A, w) € ', x I'y, such that Jw > JA,

1 o~ 1 02w —i(xr—yw)
(2.6) Tx,y)= —/ / - dw dA.
272 Jr, Jr, (A —w)

Next, we use the residue theorem.

LEMMA 2.2. Suppose w € Iy, satisfies Sw > 0. Then for any y,t e R:y #t,

(2.7) L ooei(u—w)(y—t) du _

271 J_ o w—w

X(t,4+00) (¥).
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Sp

—R+1iR R+iR

R R Ry

FIG. 6. Red contour ¥ (R) in the upper half-plane consisting of two vertical pieces X1 3 (left, right), top piece
Yy aswellas [—R, R] C R.

PROOF. The integral on the left-hand side in (2.7) is well-defined under the given as-
sumptions and can be evaluated as follows: define the entire function f(u) :=e*©=9 e C
and consider for y > ¢ a contour integral of f along the closed rectangle ¥ (R) shown in
Figure 6 where R > |w| + 1 and w € C: Jw > 0 is fixed. By the residue theorem,

1 d :
(28) : f(/-’L) /'L — elw(y—t)’
271 Jx (R n—w

and since with some C = C(w) > 0

C
’ < — 0 aswell as

du
J(w = RO -1

213 m—w

’ <Ce RO-D 50, as R— +oo,

F(w =
P m—

identity (2.7) follows for y > ¢ from (2.8) in the limit R — +o0.

For y < t, we evaluate the contour integral (2.8) along an analogous contour X_(R) in
the lower half-plane, however this time the residue theorem does not yield a nonvanishing
contribution. Hence, (2.7) follows also for y < ¢ in the limit R — +oc0. [

Let us now choose I'), =R in (2.6) and I',, = I' as any smooth nonself-intersecting contour
in the upper w half-plane. Together with Lemma 2.2, we find

T (x, Y)X(t,400) (V)

(2 9) —1xk —l(kz-i-wz)—it(u—w) eiyu q
. d dudi.
/ / oo 27 [(27T)2/r h—w)w—p) “’} N

=E(A, 1)

Thus, provided we let F : LY(R) N L2(R) — L2(R) denote the standard Fourier transform,
that is,

L/oo e ™ f)dr, xeR

V2 J o ’ ’

which extends to a unitary operator on L?(R) by classical theory, then (2.9) shows that T x;
on L%(R) is simply equal to the operator composition F EF~! where E : L>(R) — L*(R) is
the integral operator on L2(R) with kernel E (X, i) given in (2.9). In order to verify certain
regularity properties of E (and other operators to follow), it will be convenient to abide to the
following convention.

f)=FHx) =

CONVENTION 2.3. From now on, we shall think of our operators T x;, E and F as
acting, not on L2(R, dx), but on an extended space L%, |[dA]) (where R C @ C C for some
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oriented contour 2 to be specified below and |d\| is the arc-length measure) and to have
kernel

Text(A, ) :=T A, ) X(t,400) W XR(A), (A, 1) € 2 X L2,
as well as Eext(h, 1) := E(\, 1) xg %) xr (1) and Fexe(h, p) = #e‘““m(k)m(u).

T

Provided we modify the distributional kernel of the identity in accordance with Conven-
tion 2.3, equation (2.9) thus establishes the operator identity,

1=yTx TLZ(R) =1—yText FLZ(Q)
= -Fext(l - VEext TLZ(Q))]:;“I, Y € [0, 1].

The main motivation behind Convention 2.3 comes from the following result.

(2.10)

LEMMA 2.4. The operator Eext on L>(Q=RuUT, |dA|) with kernel given in Conven-
tion 2.3 is trace-class.

PROOF. Observe the factorization Eey = E1Ey where Eq : L2(2, |dA]) — L2(2, |dA|)
has kernel
1 e 37 —gw’
Ei(h, w) = -——xr () xr (w),

2 A—w
and E : L2(S2, |[dA]) — L%(2, |dA|) has kernel

1 e—%wz—it(u—w)

Ex(w, u) = 2——XF(w)XR(/L)-
T w— N

But both, E; and E», are Hilbert—Schmidt integral operators on L3(S, |dA|) since

2 .
//!Ej(m,zz)\ [dz1||dz2] <00, j=1,2,
QJQ
s0 Eex = E1 E5 is trace-class on L%(2, [dA]). O

Observe that E.y is already of integrable type in the sense of [25] once we use partial
fractions. Still, it is preferable to massage Eex: a bit further: Introduce M : L2(2, |dA]) —

L3(S2, |[dA|) as multiplication by e_%kz xr(A),

(MFYN) =e 5% xg(W) £ (), f e LA, |dA]),

and note that both operators Eex¢ = (EcxtM)M ~land N := M~ 1E.M are trace-class on
L2(, |dA]).

REMARK 2.5. The operator N has kernel
1 e~ § (WP Hi?) = qw it (w—p)
N, ) = )2 /F O —w)w — ) dwxr (M) xr (1),
and is therefore trace-class since it can be factorized into N = Ny N, where N; : L3(R,
|dx|) — L?(S2, |dA|) have Hilbert—Schmidt kernels
— g +uw?)

Ni(A, w) = ZﬁXR(A)XF(w),

@2.11)

o~ g WD)+ (w—p)

No(w, ) = xr(w) xr ().

1
21 w— U
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~R+i(6+R) R+i(6+ R)

—R+i8 R+1i6

Rv

FIG. 7. Red contour % (R) in the upper half-plane consisting of two vertical pieces %1 3 (left, right), top piece
Yy aswell as [—R +15, R + i8] C R+ 6.

Concluding our preliminary steps, we note that by the conjugation invariance of the Fred-
holm determinant and Sylvester’s determinant identity [24], Chapter 1V, (5.9),
det(] — )/TXI rL2(R))

2.10 _
2.12) O det(1 — y Eex I12(0y) = det(1 — y (EeaM)M ™" [12(0))

=det(l — y M~ EexM [ 2()) =det(1 = ¥ N [12(q))-

3. Riemann-Hilbert problem and proof of Theorem 1.6, part 1. The seemingly
quickest way to derive the first parts of (1.9) makes use of the factorization N = N{N3 in
(2.11) and a subsequent operator identity that further simplifies our above 1 — N [;2q.

3.1. Fredholm determinant identities. We begin with the following lemma which im-
proves the statement of Remark 2.5 at the cost of further extending €2.

LEMMA 3.1. The integral operators N; : LZ(SQZ, |[dA]) — LZ(SQZ, |dA|) with kernels

(2.11) defined on the extended space Q=Qu (R + 18) for some sufficiently small § > 0
are trace-class.

PROOF. We keep A € R and w € I' (as before with I" any smooth nonself-intersecting
contour in the upper half-plane) fixed throughout. Now choose 0 < § < Jw and observe that

1 dv 1
2ti Jpgis A=) —w)  A—w’
Indeed, the integral in the left-hand side of (3.1) is well-defined and with X (R) as shown in
Figure 7, where R > |w| + 1, we find from residue theorem
1 dv 1
2 Sy =W —w)  A—w
But with some C = C(w, A) > 0,

3.1

(3.2)

dv C
/ —’5——)0 as well as
53 A=V)(v—w) R

dv C

— | <——0, asR— +oo,
x, A=V)(v—w) R

so identity (3.1) follows from (3.2) in the limit R — +o0c. Now use (3.1) and rewrite (2.11)

in the following way:

e s +w?)

1
NiGLw) = o /R o et )
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so that N; = N1 Ni2 where Ny : LZ(SOZ, [dA]) — LZ(SOZ, |[dA]) have Hilbert—Schmidt kernels

152
8
Nit(A,v) = — XRA) XR+is (V),
27i A —v
1 e_%wz
Np(v,w) = 3 XR+is (V) xr (w).
TV —w

Similarly with (3.2) for Na(w, n) in (2.11),
1 — § (W2 Hp?)+it (w—p)
No(w, p) = — / dvxr(w) xr(®),
4in? Jryis (v —w)(v —w)

and thus N = N1 N with Ny; : L2(S02, [dA]) — Lz(fz, |dX]) once more Hilbert—Schmidt,

—%w2+itw
Naj(w,v) = TiXF(W)XRH(S(V),
1 V—w
| e—sni—itu
Ny, n) = - XR+is (V) XR (1)

Hence, N; and N, are trace-class on L2(892, |dA]) as claimed. [

The last lemma allows us to compute for j =1, 2,

tr Nj Nj(A, A)dA =0,
L2(Q) &

thatis, N; are traceless and even more, they are nilpotent on LQ(Q |dA|) with N3 2 =0 (simply
recall that R is disjoint from I'). The last observation lies at the heart of the followmg useful
operator identity.

LEMMA 3.2. We have on LZ(SOZ, [dA]),

(3.3) (1= YN 1= Y (N1 + M)A = JYN) ' =1 -y NNy

PROOF. By nilpotency of N;, we know that 1 — N; is invertible on LZ(Q |[dA]), in fact

\/_N Lz(Q) 1+\/7N] FLZ(SO?)’ .]: 1’2

Now substitute the latter into the left-hand side of (3.3), multiply out and simplify using
N; 2 = 0. The desired equality follows at once. []

Since all factors in (3.3) are of the form identity plus trace-class (by Lemma 3.1 and the
triangle inequality for the trace norm) we are allowed to use the multiplicative nature of the
Fredholm determinant [24], Chapter II, (5.1), and conclude from (3.3),

det(1 + /Y N1 [ 5 5) det(l = /7 (N1 + N2) |
(3.4) x det(1+yNa| , )
—=det(1 — yNi N> |

Lz(é))
L2()

).

L2(Q)
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But from the Plemelj—Smithies formula [24], Chapter II, Theorem 3.1, and our previous
comments about vanishing traces and nilpotency of N,

00 k
y2 :
(3.5) det(1 = VN I 5.8 =exp[—z o N}‘} =1, j=12,
=1 K 2@

that is, we have just established the following Fredholm determinant equality.

PROPOSITION 3.3. We have

(3.6) det(1 = yTxi [12) =det(1 = G [, 5),

L2(Q)

where G : L2(SO2, |[dA]) — LZ(SO2, |[dA|) is trace class with kernel

fT(A)g(w)
A=

G(hy 113 y) = V7 (N1 Ghy ) + Na (A, ) = L M) eRxQ,

and

(3.7) f()»)_\/zezli)‘z () ( )—e_%uz xr(w)
' =V 2r e |1 BT A e ym(w) |

PROOF. Use (2.12), (3.4) and (3.5). The formule (3.7) for the kernel of G = ./ (N1 +
N») are read off from (2.11) and this completes our proof. []

3.2. Riemann—Hilbert problem. The following RHP is our starting point for the deriva-
tion of the ZS system (1.13) and in turn (1.9). This problem is naturally associated with the
integrable operator G in (3.6) by classical theory; cf. [25].

RIEMANN-HILBERT PROBLEM 3.4 (Its, Izergin, Korepin, Slavnov [25] (1990)). For
any t €R, y €10, 1], determine Y(z) = Y(z; t, v) € C**? such that:

(1) Y(z) is analytic for z € C\ Q and we orient Q =R UT from “left to right” as shown
in Figure 8 below.

(2) The boundary values Y +(z) from the left/right side of the oriented contour Q2 exist and
are related by the jump condition

. —12 itz
Yi() = Y_() Lo Wre s Tw@ | g
—iy/ye M xr(2) 1

(3) As z — 00, we have

Y@ =1+Yiz ' +02), Y=Yty =[¥a, y)]jkzl.

FI1G. 8. The oriented jump contour 2 =R U T in RHP 3.4 with an admissible choice for T in the upper half-
plane.



GINIBRE MEETS ZAKHAROV-SHABAT 475

The general theory of [25] (see also [2], Section 5.6) asserts that for an integrable integral
operator (such as our G on L2(S2 |dA])) its resolvent R = (1 — G)~! — 1, if existent, is again
of integrable type with kernel

FT(AD)G
Ruduy>=—il7§9, FO)=((1-G |

(3.8) A=
G =(1-G"T1,¢)8)Ww).

Most importantly, R can be computed in terms of the solution to RHP 3.4,

)M (L),

L2(Q)

(3.9) Fo)=Y+(0f2), GGk =(Y"2(2) 'gk). ze,

where the choice of limiting values (4) is immaterial. Thus, RHP 3.4 is (uniquely) solvable

if and only if 1 — G is invertible on L2(S°2). Furthermore, the solution Y(z) to RHP 3.4 takes
the form

da
(3.10) Y(z)=H—/F(A)gT(A)—, z¢ Q.
Q A=z

We now prove solvability of RHP 3.4 using two different arguments:
i. Argument 1: By Proposition 3.3,

(3.11) det(1 — yTxr 112y = det(1 — G teR,yel0,1].

TLQ(EZ)),

The left-hand side in (3.11) is nonvanlshmg by Lemma 2.1 and since G is trace-class this

implies that 1 — G is invertible on L2(Q |[dA]) forallt e R, y € [0, 1]; cf. [24], Theorem 6.1.
Thus RHP 3.4 is solvable for all € R, y € [0, 1]; cf. [25].

ii. Argument 2: We provide a solvability proof for RHP 3.4 based on a vanishing lemma
argument (a standard technique in Riemann—Hilbert analysis; cf. [18, 19, 35]).

LEMMA 3.5 (Vanishing lemma). Lett € R,y €0, 1] and suppose Y satisfies conditions
(1) and (2) in RHP 3.4 above but instead of condition (3) we enforce

Y(z) = O(z_l), 7 — 00.
Then Y =0.

PROOF. Let A denote the open region in between R and I". Introduce the auxiliary func-

tion
1 0 A
. €A,
N(z) := Y(2) _iﬁe—%zz-mz 1B

I ze€C\ A,

and note that N(z) also satisfies N(z) = O(z 1), z — oo. However, N(z) is jump-free on I,
instead we have collapsed the jumps to the real line,

Ca—iZ? . —122-itz
(3.12) N+(z)=N_(z)|: _lf”_e;zﬂzz 1*/761 ) ] zeR.
—i/ye

Next, define H(z) = N(z)N(2) for z € C \ R where NT is the Hermitian conjugate of N.
Since H is analytic in the upper z-plane, continuous down to the real line and decays of



476 J. BAIK AND T. BOTHNER

O(z7?) as z — oo, we find from Cauchy’s theorem fR H, (z) dz = 0. We add to this equation
its Hermitian conjugate,

0= / (N} @NL(2) + N_(2)NL ()} dz

—0o0

00 -1z
(3.:12)2/ {N_(z) [1 - Voe : ﬂ Ni(z)}dZ-

(3.13)

Reading off the diagonal entries in (3.13) we find in turn
N2l 2 -122 22,12
[ INT P ye i) + NPz
—0o0

—0= / (N @1 - ye 27) + N2 (@)} dz,

so that N_(z) = 0 by continuity of N_(z) on R, and thus with (3.12) also N4 (z) = 0. In
summary, N(z) is analytic for Jz > 0, continuous for Iz > 0 and we have

IN@z)| <C, Iz >0, sup|N4(z)| =0.
zeR

Hence, by Carlson’s theorem (cf. [29], Theorem 5.1.2 and Corollary 5.1.3), N(z) = 0 for
Jz > 0. Dealing with Jz < 0 in a similar fashion, we establish triviality of N(z) in the whole
z-plane, and thus also Y(z) =0. O

COROLLARY 3.6. The Riemann—Hilbert problem 3.4 for Y(z; t,y) has a unique solu-
tion for every t e R,y € [0, 1]. Moreover, the coefficient Y (¢, y) is continuous in t € R for
every y € [0, 1].

PROOF. The RHP 3.4 is equivalent to a singular integral equation (cf. [25]), which can
be stated using a Fredholm operator of index zero. The above vanishing lemma then states
that the kernel of this operator is trivial, that is, the operator itself is onto. Thus the singular
integral equation, equivalently the RHP, is solvable. We refer the interested reader to [35]
for more on this subject. Once solvability is established, uniqueness follows from a standard
Liouville argument: by RHP 3.4, the scalar function det Y (z) is entire, approaching unity at
infinity, that is, for any solution of the RHP we have detY(z) = 1. Thus, given two solutions
Y:(z) and Y2 (z) to RHP 3.4, we consider Q(z) = Y;(2)Y2(z)~! which is again entire. Since
in addition Q(z) — I as z — oo, equality of Y and Y; follows from another application of
Liouville’s theorem. Finally, continuity of Y;(-, y) for fixed y € [0, 1] follows from conti-
nuity of the jump matrix, the fact that RHP 3.4 is solvable for all (¢, ) € R x [0, 1] and a
standard small norm argument. [

3.3. The ZS-system. We are now prepared to take the first step in the proof of Theo-
rem 1.6, namely the derivation of a closed-form expression for det(1 — y T x; [2(r))- First,
we state a standard connection formula between the same determinant and RHP 3.4.

PROPOSITION 3.7. Forany fixedt e R,y € [0, 1],

B
(3.14) o Indet(1 =y T x; [ 2g) = —iY 72, ),

in terms of the matrix Y(t,y) = [Yljk (¢, y)]ik:1 defined in condition (3) of RHP 3.4.
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PROOF. Through (3.11) and the Jacobi variation formula,

) )
Zndet(1 —y T T2y "= o Indet(1 =G |

ot )

L2(Q)

_,0G
(3.15) = - u (-6~
2 ot

» 9G
= —/,/;(I—G) ()»,M)a—(u,)»)dud?»-
QJo t

But from (3.7) we can compute explicitly the 7-derivative,

4G B B fl(k)} _[gl(u)}
o ) =180, f@)—[fzm el PR

which gives back in (3.15),

? . .
e o Indet(l =y T [12) = —1/6((1 =Gl )82 di

@B _; /Q F>()ga(h) da.
Now use (3.10) and take the limit z — o0, z ¢ €2,
Y@ =1+ [ Fgtan+06)
so that by comparison with RHP 3.4, condition (3),

3.17) Y1=/F()\)gT()L)d)Lz/OF(A)gT(A)dA.
Q Q

Identity (3.17) used in the right-hand side of (3.16) implies (3.14) and completes our proof.
O

Second, we derive the ZS-system (1.13) from RHP 3.4 as follows: Define (compare the
proof of Lemma 3.5)
1 0}
ZEA,

(3.18) N(Z) 3=Y(Z) [_iﬁe—%zz—l—itz 1
I zeC\ A,

where A lies in between R and I'. As noted before, N(z) solves the problem summarized
below.

RIEMANN-HILBERT PROBLEM 3.8. Foranyt € R,y € [0, 1], the matrix-valued func-
tion N(z) =N(z; 1, y) € C**? has the following properties:

(1) N(z) is analytic for z € C\ R and has a continuous extension on the closed upper and
lower half-planes.

(2) The square integrable boundary values N+ (z) = lim¢ 0 N(z Li€), z € R obey the jump
condition

_ -1z _ —12—irz
(3.19) N @) =N_(p| 'Tre  TWrew . zeR.
—iyeTsF 1
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(3) As z — oo, the leading order behavior of N(z) remains unchanged from condition (3)
in RHP 3.4,

N@) =1+Y(t, 1)z +0(z 7).

A simple check between RHP 3.8 and RHP 1.5 for X(z; x, y) reveals their equality subject
to the identifications

NG ) =X(z; L y),
(3.20) 2

z€C\R,teR,y €[0, 1], with r(z) = r(z; y) = —i/ye 5.

For this reason, we now establish solvability of RHP 1.5, and thus, in turn, existence of
y(x;p):

THEOREM 3.9. The RHP 1.5 for X(z; x, y) withr(z;y) = —iﬁe_%zz is uniquely solv-
able for every (x,y) e R x [0, 1].

PROOF. Observing the similarities between (3.12) and (1.8), one first derives a vanish-
ing lemma in the style of Lemma 3.5, that is, assumes X satisfies conditions (1) and (2) in
RHP 1.5 but instead X(z) = O(z 1), z = oco. Now define H(z) = X(2)X'(2),z € C\ R and
conclude fR H, (z) dz = 0 so that, analogous to (3.13),

o0 . 2
0— 2/ (X_(2) |:1 — |r§)z, 2] (1)] XT_(Z)}dZ-

This equation allows us to deduce X_(z) = 0, and thus also X (z) = 0. By Carlson’s theo-
rem, we then find X(z) = 0 in the whole z-plane and the vanishing lemma is proven. After
that, the proof argument of Corollary 3.6 applies verbatim to X(z; x, y) and Theorem 3.9
follows. [J

Next, a short remark about (obvious) symmetries in RHP 1.5; see also (1.12).

PROPOSITION 3.10. Besides (3.20) we also have Y(t,y) = Xl(%, y),(, y) e R x
[0, 1] and for any (x,y) € R x [0, 1],

- 1
(3.21) X(z; x,y) =01X(Z; x, y)o1, ZGC\R;C”:[? 0]’

from which we learn that
11 21 :
(3.22) X' =XPwy), X uy) =X y), i€l

Furthermore, for any (x,y) € R x [0, 1],

(3.23) X(z;x,y) =02X(—2z; x, y)o2, ZG(C\R;@:[? 61}

which leads to
XM, y) = (=D XPx, p),

(3.24) 21 i+1 12
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PROOF. The connection between Y and X follows from (3.20). For (3.21), respectively
(3.23), use unique solvability of RHP 1.5 as 01X(Z; x, )01, respectively, 0o X(—z; x, y)o2,
solve the same problem. [

And finally, the following straightforward and standard steps, compare Section 1.2 above:
As we already know,
U(z):=X(z)e ™% zeC \ R,

solves (1.11). However, by definition,

y=y0y) =2X P00 y) = ) ) 2ixd o).

Moreover, expanding %‘I"l up to O(z72) as z — oo, we obtain from comparison with
(1.11),

Xy | —xPx¥ X2 — x|2x??

i 1[—X%1+X%1X}' X%IXP }
so in the (22)-entry,
(3.25) S I

ox 2

We summarize by combining (3.14), Proposition 3.10 and (3.25),

92 3.14
ﬁlndet(l —vTxe l2mw)) b

<@®_w<3 )
= 4)’2,)’

Indet(1 —yTx; [ 12(r))

(3.26) | oo
:_Z[ (x=1)

for some f-independent c;. The fastest way to show ¢; = 0 follows from a comparison of the
t — 400 asymptotic expansion in the left- and right-hand side of (3.26).

a 22 i0 22(.1
Sily2g =L L x2(y
i YOy =g n Xt y)|

2

’

so that after integration

X 2
y<§; V)} dx +c1(y)t +ca(y)

3.4. Right tail asymptotics I. Begin with
0k
det(1—yT 2 =exp| — — tr (T k,
( yTx: I (R)) P|: /;1 X LZ(]R)( Xt) :|

and use that, as t — +00,

[e.e] 1 T (e e]
tr (Txt)z/ T(x,x)dx:—\/j/ erfc(«/ix)dx
L2(R) t 2V 2 Jy

1 erfc(+/21) N
_ET(lJrO(t ),

(3.27)

together with
keZe: | i (Tx)f| = Clerfev20)', € 0,1 +oc.
L2(R)

In summary,
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LEMMA 3.11. Ast— +o0,

rf 2
det(1 =y T [pagey) =1— \/%_n%f”(l +O(72).

On the other hand, we will now derive the large ¢-expansion for the right-hand side of
(3.26) from a Deift-Zhou nonlinear steepest descent analysis [12] of RHP 3.8. The re-
sults will in turn verify (1.10), and thus, after integration in (3.26) and comparison with
Lemma 3.11, show that ¢; = 0. The detailed steps of the nonlinear steepest descent analysis
are standard: assume ¢ > 0 throughout and first rescale while simultaneously opening lenses,

1

0
[iﬁe_t29+(z) 1:| S € (0’ 6)7

T(z;t,y):=N(@zt;t, )31 —i e—t29_(z)
(3.28) . N4Z 1

I else,

:| Sz € (=46,0),

with § > 0 fixed.

We abbreviate 61 (z) := }‘(z2 F4iz) and keeping the sign charts of 84 (z) in mind (see Figure 9
below) the function T(z) solves the following RHP.

RIEMANN-HILBERT PROBLEM 3.12. Foranyt € R.g, y €10, 1] the transformed func-
tion T(z) = T(z; t,y) € C**2 defined in (3.28) has the following properties.

(1) T(z) is analytic for z € C\ {Iz = £8} and both straight lines are oriented from left to
right; see Figure 10 below.
(2) Along the two straight lines,

1 0
T (2)=T-(2) [_iﬁe_ﬂm(z) 1] Sz=34,

and

. —126_(2)
Ti(2)=T_(2) [(1) 1“/761 ] , Sz=-4.

-10 -8 6 -4 2

2 4 6 8 10 -10 -8 - -4 2

ygz 522 2 4 6 8 10
FI1G. 9. The sign charts of 04+(z2) on the left and 6_(z) on the right. We indicate in red values z € C where
RO+ (2) < 0 and in blue where RO+ (z) > 0. Also I0+(z) = 0 is highlighted along the dash—dotted black straight

lines.
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F1G. 10. The oriented jump contour Iz = +6 in RHP 3.12.

(3) As z — o0, the leading order behavior in RHP 3.8 remains formally unchanged,
T@=1+Ti.y)z" +O0(?). Tit.y) =Y. )"
The stationary points of the exponents 6 (z) are z+ = £2i and we denote by . the steep-
est descent contours passing through z+ along which JI64(z) = 0. Explicitly,
vy NzeR,Jz=2; y—: NzeR,Jz=-2.

Note that both contours y+ lie in the domain where N6+ (z) > 0 (see Figure 9) so we are
allowed to choose § =2 in RHP 3.12 to match those steepest descent contours. After that,
applying standard arguments of the classical Laplace method, we derive the following esti-
mates for the jump matrix G(z; ¢, y) in condition (2) of RHP 3.12.

PROPOSITION 3.13. There exist positive constants ty and c such that
2
. —t
”GT('?t’ ]/) _H||L°°(3§Z=:|:2,|dzl) EC\/?C s

I
HGT(, t, )/) - H||L2(3§Z=:|:2,|dz|) S C\/?t 2e t .
hold true for all t > ty and y € [0, 1].
These estimates show by general theory [12] that RHP 3.12 is uniquely solvable in

L3(37 = £2, |dz|) for t > 1y, y € [0, 1] and its solution can be computed from the integral
equation

1 dx
(3.29) T)=I+— T_-A)(Gr(r) —I)——, [z#=£2,
271 Jyn==+2 A=z
using that
_L 2
(3.30) ITC 1 9) =T 2 ez S €VP1 2 Vi =10,y €[0.1].

In particular, see condition (3) in RHP 3.12 and (3.29),
it
Vi) =iy =5 [ TG0 -Da,
T J3r=%2
so that with (3.30) and Proposition 3.13, as t — +o0,

it
Yi(t,y) = 21_71 /w—iz(GT(M —T)dr+ (’)(ye_z’z)

(3.31)

Ui/\;?e_tz + O(ye_2t2).

By Proposition 3.10 and the identity y(x; y) = 2iX 112(x, y) we then find (1.10), namely

y(x:y) =2X12 0, y) =2iY22x, y) = 21\/26—4);2 L O(e), o too,
T
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and with this back in the right-hand side of (3.26),

o L[ eo(i)
. 4 ; X y 2, Y

Hence, comparing Lemma 3.11 to (3.32) in (3.26) we find ¢; = 0 and have therefore shown

1 [e'e) 2
(3.33) det(l = y T [py) =exp| = / a=ny(5ir)] o],
t

where y = y(x; ¥) : R — iR is related to the inverse scattering problem for (1.13) with the
indicated reflection coefficient.? This verifies the first partin (1.9).

2
dx = O(yt_ze_mz), t — +o0.

4. Proof of Theorem 1.6, part 2. Our goal in this section is to show that the integral

Fypy=1- y/ Gx)((1—=yTx [Lz(R))_lg)(x) dx,
4.1) '

x2

1
reR;glx)=—=e",

N

equals

4.2) Iy =cosh|:—%/t y(%; y) dx:| — ﬁsinh[—%/t y(%; y) dx],

which, in turn, will complete the proof of Theorem 1.6, identity (1.9), through (1.3). We start
by introducing

W (1) =y / G =T T2 ' g) (@) dx
t

=/OO Qy(x;t)/x g’ (w)dvdx, (¢,¥)eRx[0,1],
t —00
where
OV (x;0):=(1—yTyx sz(R))_lg’”)(X), g’ (x) = yg(x), x eR.

PROPOSITION 4.1. Forany (t,y) e R x [0, 1],

d
O ==Y =y T 2@~ GO,
(4.3) .

67 (1) = / ¢ () dy.

—00

in terms of Y1 from RHP 3.4, condition (3).

PROOF. Start by recalling (2.10), the definition of the operator M before Remark 2.5,
the definition of the operator N (see Remark 2.5, and Lemma 3.2) identity (3.3),

1 — )/TX; rLZ(R)
= Fext(1 = ¥ Eext [12(0) Foxt = FeuM (1 =y N |
= FetM(1 = J¥N1 [ 507"

X (=Gl )0 =J7N2 [ e) ' MTUFG

-1 -1
Lz(é))M fext

4.4)

2Plroposition 3.10 together with y(x;y) = 2ix12(x, y) shows that y(x; y) is purely imaginary for (x,y) €
R x [0, 1].
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With (4.1), we now compute
M Fole) 0 2 [ L e a0 2 fico
Since f1 IS L*(R) is supgorted on the real line only, it thus lies in the kernel of the operator
Ny : L3, |dA]) — L3(R, |dA|), compare (2.11). Hence,
(4.5) (-G rL2(§’z))_1(1 —VrN sz(;Z))M_] et 870

=((1=G e M0 E A,

in terms of F(A) = F1(A; t, y) defined in (3.8). But any function in the range of the operator
N> will be supported on I" # R only, compare again (2.11). Hence we have Ran(N;) C
Ker(Fext) by Convention 2.3 and, therefore, from (4.4) and (4.5), with (x, ¢, y) € R? x [0, 1],

Q7 (x;1) L [7 im ~5%° £y (1) dA
X, = — (] c 1
\/27'[ —00

1 —ixA,—gA2
=\/T_n 56 e 3 XR()\)FI()\,)(D\,

As an important special case, we learn from the last equation that (compare (3.7) and (3.17))

(4.6)

(4.7) oY (t; 1) =Yt y), (t,y)eRxI0,1].

At this point, z-differentiate u” (¢), using (4.7),

d t
au”(l) =—Yi2(t,y) /_Oo g’ (v)dv

+/OO[2QV(x;t)}/x g’ (v)dvdx
¢ Lot —o0

and recall the following basic fact (cf. [32], (2.10), or [21], (9.132))

(4.8)

%Qy(x; 1) =—R”(x,0) Q" (t;1) = —RY (x, ) Y{2(z, ),

where RY (x, y) is the kernel of the resolvent integral operator (1 — y T x; | L2(R))71 =1+
R” [[2(w)- Thus, back in (4.8),

t (0,0 X
G 0=-1uwy [ gw-vley [ ®an [ ¢wawa
— 0 t —o0

=-Y*(, y)/ (I =yTx FLZGR))_I(XJ)/ g’ (v)dvdx
t —00

==Yt (A= yTx [ 2w) ' GY) (@),

where we used self-adjointness of T x;. Identity (4.3) is proven. [J

PROPOSITION 4.2. Forany (t,y) e R x [0, 1],

t

4.9) (M=yTx I2my) ' GY) (1) = / (A=yTx 2wy 87) () dy.

—0o0
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PROOF. Identity (4.9) follows from Proposition B.1 and Corollary B.2 in Appendix B
with the operator identifications K = y T, that is, ¢ (x) = g¥(x) = ¥ (x), and the choice of
interval I = (—o0, 0) C R. In detail, for y € [0, 1) we use Corollary B.2 with x = ¢ and the
Neumann series representation (recall Lemma 2.1) to deduce

(A= yTx Tr2@) ™ GY) (@)

(4.10) 0 »
- / (1= YT o) € + 1) dy.

—00

which is the right-hand side in (4.9) after a shift. For y = 1, we take the limit y 1 1 in (4.10).
OJ

REMARK 4.3. Identity (4.9) is the y-generalization of the corresponding equality in
[27], (2.6), (2.8), (2.10).

The strategy is now to derive a coupled system of differential equations for the auxiliary
function

t
AT (1) == / (1= yTxr Tpamy)~'g”) () dx

4.11) ‘°1° t
(4.6) —ixa —422
= —— e e 8 XR()»)F](A)dA]dx
A/ 2 /—oo |:/§;2

and the (closely related) quantity

1 t
BY S
(4.12) © V2 /—oo

(t,y) e R x [0, 1],

[ / e ey p () Fy(0) dk} dx,
Q

where F>()) = F>(A; ¢, y) is given in (3.8). Imposing boundary conditions, we then compute
the unique solutions (AY (), BY (t)) and obtain (4.2) through (4.9) and integration in (4.3).

LEMMA 4.4. The functions AY (t) and BY (t) defined in (4.11), (4.12) for (t,y) € R x
[0, 1] satisfy the differential equations

dAY . dBY .
(4.13) - =YPEB Yy, =iy AT,
with boundary conditions AY (t) — /v, BY(t) — 0 as t — +o00. The quantity Y1(t,y) =
[Yl]k(t, )/)]ik:l occurred first in RHP 3.4, condition (3).

PROOF. When t-differentiating (4.11) and (4.12), we require the partial derivatives
%()\; t,y) with A € R. For these use (3.9) with, say, the (—) limiting value in place, and

(3.18),
(4.14) F(L) =N_(Wf(L), AreR.

But N(A)ﬁ_%m73 obeys the rescaled Zakharov—Shabat system (compare (1.11)),

0 i i 12 :
E(N(k)e_flhﬂ) — {_%)\0-3 +i |: 221 Y(l) ]}N()\')e—itk({g’
-1



GINIBRE MEETS ZAKHAROV-SHABAT 485

so that in turn from (4.14),

oF i T P
— ) =1—=A L IF(L
= "3“[4121 O}} )

i of
+ %AN_(A)@f(A) +N-()5- (). reR.
But once we substitute (3.7) and (3.9) into this vector equation we find
0k 12 0F . .21
(4.15) ?(A) =iY|"F2(X), W(M =iAF(A) —1Y] F1(A).

Now ¢-differentiate A” (¢) first,

dAY 1 4 . oF
“r / [ / e e () L (k)dk} dx
KPR = I ] a1
1 .
+ = / e i 8 yp (O F (1) dA,
Q

use (4.15), (4.12) in the first integral and (3.7), (3.17) in the second, that is,

dA” 1 12
— =1iY{“B” +Y,|".
TR + 1
Similarly, for BY (¢): differentiate
dBY 1 ! o 152 0F,
R — e e 8 xp(M)— () dk] dx
dr LV, 21 /—oo |:/Q X at

1

1 .
= / e e yp () Fa (1) dA,
T JQ

and use (4.15), (4.11) in the first term and (3.7), (3.17) in the second,

dBY 1 r 93 - 1,2
(4.16) ENE; / 5[/9 e mOR®) dk} &
. —0

—iy2'AY + v,

But from the Riemann-Lebesgue lemma (using that e_%kz xR(A)F2 (L) € L'(R) by Cauchy-—
Schwarz)
lim [ e e yp () Fa(h) di =0,

[x]—00 EZ

so we can simplify (4.16) further and obtain with (3.7), (3.17) in the end

dBY

o= —Y2 —ivPlAY 4 v = —iv?lar,
Since Y112 =Y 121 (compare Proposition 3.10) is known, the system (4.13) fully determines
(AY (t), BY (t)) once we impose boundary conditions. And for this we can use the asymptotic
results derived in Proposition 3.13 and (3.30). In detail, we trace back our steps through (3.9),
(3.18) and (3.28),

teR: Fi)=N"@)fi()=T" (;)fl @,
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and use that from (3.29) and (3.30),

)
e!

1+ |z|

4.17) T_(2) =]I+(’)(
Thus,

), t —> 4+o00,zeR.

1 t
AT () = STG(1+0E™)), 1 — +o0; G(1) = = /_Ooe—yz dy.

which shows that AY (1) — /v in the same limit. Quite similarly,

zeR: F@=N'@)fix) =T (;)fl (2),

so that with (4.17), BY (t) = O(ﬁe_’z) =o0(1) as t — +o00 and this completes our proof.
O

By means of (3.31), we now simply check that the unique solution to the system (4.13)
with the imposed boundary conditions is given by

AY (1) = ﬁcosh[/oo Y{2(x,y) dx} — sinh[/oo Yi2(x, y)dx],
t t

(t,y) e R x [0, 1],

(4.18)

and

BY (1) =i(1 —cosh[/oo Yllz(x, y) dx} + ﬁsinh[/oo Yllz(x, y)dx]),
t t

(t,y) e Rx[0,1].
Now we combine (4.3), (4.9) and (4.11),
d
GO =-1 A0,

integrate using (4.18) (with the normalization u? (t) — 0 as t — ©0),

(4.19) u’ (1) =1+ ﬁsinh[/ Y{2(x,y) dx} — cosh[/ Y{2(x,y) dx},

t t
and recall that I';), = 1 — u”(¢). This confirms (4.2), and thus, after combining I';,, with
(3.33) also Theorem 1.6.

4.1. Right tail asymptotics II. Since we have already established Lemma 3.11, we are
now left with (4.2) and its large positive f-expansion. But since with (3.31),

Y2, y) = \/ge"z L O(ye ™), 1 o0,y €0, 1],

we obtain at once,

o0
/ Yllz(x, y)dx = g erfc(t) + O(ytile*w),

t
and thus in turn with (4.19) and the relation I';, =1 — u? (¢),

LEMMA 4.5. Ast — +oo,

Iy =1- %erfc(t) + (’)(y%t_le_mz).

The combination of Lemma 3.11 and 4.5 with the known asymptotic behavior of erfc(z)
(cf. [26], 7.12.1) proves (1.15) once substituted into (1.7).
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5. Left tail asymptotics—proof of Corollary 1.10, expansion (1.16). Our goal in this
section is to prove expansion (1.16) for values y € (0, 1)° that are either fixed or approach
y =1 at a controlled rate. These goals will be achieved by deriving the analogue of (3.31) for
t — —oo through a nonlinear steepest descent analysis of RHP 3.8 and subsequent integration
in (1.9).

5.1. Initial steps. We fix y € (0, 1) and first rescale similar to (3.28),

(5.1) T(z;t,y) :=N(—zt;t,y), z€eC\R,t<0
so that the jump condition for T(z; ¢, ) reads as
1.2.2 2
1_ *jl‘ Z 3 —1 9+(Z)
(52) T () =T-() [ | J_V"’_,ze o VY ° . zeR
—i/ye " 7"

Thus, opposed to the + — 400 analysis, the subscripts in 8+ (z) have flipped in the exponents,
that is, transformation (3.28) is no longer helpful in view of the sign chart Figure 9. Instead
we employ a g-function transformation which will swap the diagonal entries in (5.2) and
modify the off-diagonal ones accordingly. In detail, the upcoming g-function will be defined
in terms of the Cauchy transform of

h(xit,y):=—In(l —ye 2%), xeR,ye(0,1),1 <0,

and for this reason we shall collect a few of its relevant analytical properties below.

PROPOSITION 5.1. Forany y € (0, 1) and t < 0, the function h(-;t, y) exists in LP (R)
for all 1 < p < 0o and is real-analytic. Moreover, using the principal branch of the loga-
rithm, that is,In: C\ (—00,0] - C withInz =1In|z| +iargz and arg z € (—n, 7], it extends
analytically into the horizontal strip

and we have the total integral identity

(5.3) /OO hxst, y)de = @Li;(w,

—o0 I7]

in terms of the polylogarithm Lis(z); cf. [26], 25.12.10.

PROOF. Integrability on R follows from the inequality 1 — ye_%tzx2 >1—y>0and
the estimate

h(x;t,y)= (’)(ye_%tzxz), x — Foo0.

For analyticity, we simply compute the preimage of (—oo, 0] C R under the map C > z —
1 t2Z2

1—ye 2

2 _ _ye_%ﬁ((mz)z—(sz)z)COS(IZmZgZ),

1,22 1

2002 _(x-)2) . .
) = ye 2" (O =G gin (2 R2372),

thatis, 1 — ye_%’2Z2 is purely real along the family of curve I, , : t?Rz3z = nmw, n € Z, so in
particular real negative on the imaginary axis for |Jz| > /—21Iny /|t| and along the parts of
the black colored hyperbolas I'; , shown in Figure 11 that lie inside the red colored regions.
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-3

-4 -4
-4 3 2 - 0 1 2 3 4 -4 -3 2 -1 0
Rz Rz

1 2 3 4

1
F1G. 11. The sign charts of s(z;t,y) =1 — ye_ftzzz with y = 0.9 for t =1 on the left and t =2 on the
right. In red values z € C where Ns(z; t, y) < 0 and in blue where Ns(z; t,y) > 0. Also Is(z;t, y) = 0 along the
dash—dotted black curves.

Since IT;;, excludes those parts, analyticity of h(z; ¢, y) follows easily and the remaining
integral (5.3) is standard. [

In order to proceed, we now introduce the g-function,

1 © h(s;t,
54 g =gzt y) = —/ his:t.y) ds, zeC\R
271 J_oo S —2

and consider the following transformation after (5.1):
(5.5) S(z:t,y) :=T(z;t,y)e 9%, zeC\R.

Since h(-; ¢, y) is of Hoelder class on R for all y € (0, 1) and ¢ < 0, the classical Plemelj—
Sokhotski formula applies and we arrive at the RHP below.

RIEMANN-HILBERT PROBLEM 5.2. Foranyt <0 and y € (0, 1), the function S(z) =
S(z;t,y) € C**2 defined in (5.5) has the following properties:

(1) S(z) is analytic for z € C\ R and admits continuous boundary values on the closed
upper and lower half-planes.
(2) Along the real axis, with S+(z) =lim, 0S(z £1i€),z € R,

1 i ye 9+ @
(56) S+ (Z) = S—(Z) [ . —l‘2¢ (Z) ﬁ _11222 ’ z€ R’
—i/ye™ " l—ye 2

where

1 ® h(s;t,
$+(2) =p+(zit,y) = Qi(Z)iEPV/ (s:8,¥) ds, zeR.

oo 2(s —2)
(3) Asz— 00,2 ¢ R,
io3

S@)=1+81(t, )z ' +0(™?),  Sit,y)=Tit,y) - "

Li%(y).

3We shall discard the trivial case y = 0 for technical purposes.
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[z = Oty
Q0 / Rz
[z = —0ty

FIG. 12.  The oriented jump contour Xy in RHP 5.4. We fix z1 = =2, 203 = —1 £18;y, 24,5 = 1 £ 18y and
26 = 2 as location of the six vertices.

Our next step relies on the matrix factorization

[ 1 _4V@;e—ﬂ¢+@>}

lt2Z2

_iﬁe*l%—(z) 1—ye 2

1 Oll1 =i ye—f2¢+(z)
:Lﬁe—ﬂw 1] {0 e  2€R,

and the lemma below.

6.7

LEMMA 5.3. The function

. Lo ~ [T hGssty)
p()=¢(z;t,y) = 4(z 4izsgn(3z)) + = sgn(3z) /_OO pTPg ds

1
—t—zh(z;t,)/), ZGHZV\R

defined with the principal branch of the logarithm (see Proposition 5.1) is analytic in T1;, \R
forall y € (0,1) and t <0. Moreover,

leiigfb(z tie) =¢+(2), zeR.

PROOF. Since h(-; 1, y) is of Hoelder class on R and analytic in I1;, by Proposition 5.1,
the claims follow easily from the Plemelj—Sokhotski theorem. [J

More precisely, we introduce for any y € (0, 1) and t <O,

1 iyye*@
[O ﬁl ceQ =G,

M(z;t,y) :=8(z;t,y) 1 0
’ y —i\/?e_tz‘m) | 7 € Q= Q2(81y),
I else,

Vv=Tny 1}’

il T2

(5.8)

with 0 < §;, := min{

which leads to the RHP formulated on the red contour Xy in Figure 12 and with the following
characteristics.

RIEMANN-HILBERT PROBLEM 5.4. Forany y € (0, 1) and t <0, the function M(z) =
M(z; t,y) € C**? has the following properties:
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(1) M(z) is analytic for z € C\ v and all eight straight lines are oriented from left to
right; see Figure 12.
(2) The square integrable limiting values obey

i ye @]
M, (z) =M_(2) (1) iVre , z€XMN{zeC:3z>0};
and

M,(z)=M_(2) zeEmMN{zeC:3z<0});

—iﬁe_’2¢(1) 1

as well as

2
1 —i e 179+(2)
44 12,2 |5 zeR\ [-2,2].

_iﬁe—l%f(z) 1—ye 2

By construction (see Lemma 5.3 and equation (5.7)), there is no jump along (—2,2) C R.
(3) For large |z|, the leading order asymptotic behavior of RHP 5.2 is unchanged,

M, (z) =M_(2) [

M) =1+81t,y)z '+ 073, z— .

We now proceed with the necessary small norm estimates for the jump matrix Gm(z; ¢, )
in condition (2) of RHP 5.4. And since we are about to investigate the limit ¥ 1 1 in the
upcoming sections we shall already now indicate the y-dependency in all error estimates.

PROPOSITION 5.5.  There exists positive universal constants ty, ¢ such that for any y €
O, D),

1 2
y 7 e—l 5[1/

||GM(a z, )/) - H“LOO(EM,\C[Z\) =< Clﬁ’

(5.9)
yie 1
||GM(';t, y)_]I”LZ(EM,\dZ\) §C2ﬁ|t| z,

hold true for all (—t) > ty.

PROOF. For z € R\ [-2, 2], we clearly have ||Gm(-; ¢, ) — || = (’)(e_’z) in L2N L™,
and thus no contribution to the leading order in (5.9). Next, for z € C\ R,

2
e 170x(2) i [ h(s;t,
efﬂq&(z) — ﬁexp[i—/ %ds],
1—)/6 172 T )0 §—Z

so we have to estimate three factors. With the parametrizations z = z(A) = A £ 18y, A €
[—1, 1], we find

2 2 1,252 1
e~ 00| < o=y =477 —4

|1 — ye_%fzzz()»){ — [1 _ 2ye—%t2(k2—51y) COS(lzkaty) + yze—tz(kz—Btzy)]%

exp[ii/ h(s,t,)/)ds]‘:exp[_&_y/ h(s;t,y) ds:|.
T ) s —2(3) T oo (s — N2+ 83,

and

(5.10)
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Hence,

o170+ () y—%e_tzs,y

sup = )

rel-1111 1 — ye= 2720 1=y
and since the integrand in (5.10) is nonnegative we have therefore established the above L™
estimate. For the L? estimate, we use Laplace’s method for the factor exp[—tQGi (2)] and
the same reasonings that were used in the second and third while deriving the previous L*°

estimate. For the four slanted straight lines consider, say, z = z(A) = A — 2 & iAd;), with
A €0, 1]. Then

‘e—ﬂ@i(z(k))’ _ e_%,2@2(1_afy)—4x(1—5,y)+4)’

as well as
11— ye 220 = [1 = 2ye 27O 2280) cog (120 (3 — 2)8,)
4y 2e 0272285
and
i [ h(s;t,y)
exp[i;/_wmdsﬂ
(5.11) :exp[—mw /oo h(s;t,y) ds].
T Jooo (s = A +2)2 4+ 2287,
Thus
o—120+(2(0)) o 2(1-82)
rel0 1 — ye 1720 | T a1t 1-8)]

which is of subleading order for y € (0, 1) when compared to (5.9); see (5.7). By nonnega-
tivity of the integrand in (5.11), we have therefore completed our proof. [

Since we are dealing with a (¢, y)-dependent contour in RHP 5.4 (the hexagon in Figure 12
is collapsing to the real axis as t — —oo or y 1 1), the general framework of [12] is not
directly applicable to Proposition 5.5. Still, using somewhat similar ideas as in [7], the results
of Appendix A below guarantee unique solvability of RHP 5.4 in L2(Zyy, |dz|) for all (=) >
to and either any fixed y € (0, 1) or y 1 1 at a certain controlled rate.

THEOREM 5.6. For any fixed 0 < € <2, RHP 5.4 is uniquely solvable in L*(Zw, |dz|)
for (—t) sufficiently large and all 0 < y <1 — |t|~€. Moreover,

1-£
Si(t,y)= lim z(M(z; 1, y) =) = O(J¢r|~Fee I 2
5.12) 11, y) = lim 2 y) =1)=0(| )

V(=t)>1,0<y <1 —[t|™".

5.2. Left tail asymptotics. In order to complete the derivation of (1.16), we first recall
(3.14), transformations (3.18), (5.1), (5.5), (5.8),

d L. 022
Elndet(l —vTxi l2w) = «/T_NLI%(V) +itS77(t, p).

Thus, with Theorem 5.6 and an indefinite ¢-integration,
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PROPOSITION 5.7. For any fixed 0 < € < 2, there exist positive constants to = to(€) and
¢ = c(€) such that
t
Indet(l — yTx: [12r)) = —=Liz(y) + Di(y) +ri(t,y),
VXt IL2R) N 14 Y

forall (—t) >thand O <y <1 —|t|~€. The term D1(y) is t-independent and we record the
error estimate

_€
—11'"2

Ir1(1, )| < c(e)]r] 2 V(=) > t0and 0 <y <1 —|1| <.

Next, we use the estimate (based again on the transformations (3.18), (5.1), (5.5), (5.8) and
Theorem 5.6)

t

o0 t
/ Y112<x,y>dx=1<y)—/ Y112<x,y>dx=1<y)+/ xS2(x, ) dx
t —0

—00
3¢~ 5
=1(y) +O(|t]2%e ),
where I (y) denotes the total integral of Yllz(x, y) over x € R. From this, with (4.19) and
I/, =1 —u”(t) we obtain in turn
PROPOSITION 5.8. For any fixed 0 < € < 2, there exist positive constants to = to(€) and
¢ = c(€) such that

InTyy, = Da(y) + r2(t, v)

forall (—t) >tyand O <y <1 —|t|~€. The term D (y) is t-independent and we record the
error estimate

3¢ —It\l_% —€
Ira(t, )| < c(e)lt]2e V(-)>1tgand 0 <y <1—|r|"¢.
Once we combine Propositions 5.7 and 5.8, Corollary 1.10, expansion (1.16) follows eas-
ily.
6. Proof of Theorem 1.12. The following lines are near copies of the argument given in
[16] in the derivation of the analogue of (1.17) for the GOE. First, by (1.1) and (1.3),
(6.1) (F(t))2 =det(l1 = Tx: [L2@)lr = det(l —(T+U®V) TLZ(r,oo))’

where U ® V denotes the finite rank integral operator on L (¢, 0o) with kernel
1 _» *
VOV =8GO, = G0= [ gy,
VT oo
that is, U is the operator which multiplies by g(x) and V the integral operator with kernel

G (y). Indeed, (6.1) follows by noting that for any operator A we have A(U @ V) = (AU ®
V), applying the factorization

det(1 = (T +U® V) [ 12(.00))
=det(1 = T [12(.00) det(1 = A =T) ' U R V) I12(1.00))-

and using the eigenvector/value equation

(=T U V) I12(.00) F)(X)

(6.2)

63) o .
=[/ GO =T I12.00) "))y |F0),
t
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where

F)=(1=T 12,000 ' 8) ().}
Precisely, (6.3) computes the finite rank operator determinant in (6.2) as

det(1—(1=T)""(U V) [12¢.00)
=1- / GO =T I124,00) " &) dy =T,
t

and (6.1) follows from (6.2) since det(1 — T [Lz(,,oo)) =det(l1 — Ty, rLZ(R))' Second, it will
be more convenient to move the 7-dependency in the right-hand side of (6.1) into the integral
operators,

(6.4) (F())> =det(l — (T, + U; ® V) [120.00). 1 ER,

where T} : L?(0, 00) — L?(0, 00) has kernel T} (x, y) = T (x +1, y +1), compare (1.2), U; is
multiplication by g(x + ¢) and V; has kernel G(y + ¢). Third, we note that 7; = S;S; where
S; : L%(0, 00) = L2(0, 00) has kernel

1
Si(x,y) = ——e~ GV,

N

x,y>0.

LEMMA 6.1. Foreveryt € R, the operator S; satisfies ||S;|| < 1 and 1 F S; are invertible
on L*(0, 00).

PROOF. Since $; is self-adjoint, we have for any f € L2(0, 00),

”Stf”%Z(o’oo) = (Slfa Stf)LZ(O,oo) = (f’ S1‘2f>L2(O,oo) = (f’ th)Lz(O,oo)

(2.3)
=<

(f, f)Lz(0,00)

and, therefore,

I1S:ll=" sup  lIS: fllz200,00) = I-
15 11120,00)=1

Also, (1 —-8S)1+S8)=04+S)(1—-S,)=1—T; on LZ(O, 00) and since 1 — T; is invertible
by Lemma 2.1,soare 1l £ S;. U

The last lemma allows us to transform the right-hand side in (6.4) through the following
factorization:

det(1— (S} +U: ® V) [22(0.00))
6.5) = det(l = S [12(0.00) det(1+ S = (1= 507 (U ® V) 1120,00))
=det(l — S; [12(0.00)) det(1 4+ S — (U @ W) [12(0.00))

4Identity (6.3) follows directly from the definitions of the underlying operators U, V and (1 — T)~1. A similar
computation in the GOE can be found in [21], Chapter 9.7, (9.128).
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where W multiplies by the characteristic function yxg (x).2 To get to (6.5), we have used that
for any operator A we have A(U ® V) = (U ® A*V) in terms of the real adjoint A* and that

Gu+m=1—A Si0e, ) dy = ((1 = i 112(0.00)) X0) (),

1 x>0,

xol) = {0 x <O.

Continuing with (6.5), another factorization yields
det(l + St — (Uz ® W) rLz(O,oo))
=det(1+ S/ [12(0.00) det(1 = (1 + ) U @ W) [12(0.00))

(6.6) =det(1 + 8 [12(0,00))

X {1 _/0 XO(y)((l + S rLz(O’OO))_lg)(y-F[)dy}’

where we have used a variation of the eigenvector/value trick (6.3) in the last equality. Since

glx+1) =/O St (x, y)do(y) dy = (S:80) (x); /0 f@)do(x)dx := f(0),

for any test function f we can simplify the second factor in (6.6) further,

I—A o)L+ St 1120000 ' 8) (3 + 1)y

(6.7) :/0 X0 (1= (L4878t T12(0,00))30) (v) dy

=/O xoO)((L+ S fLZ(o,oo))_lfSO)(y) dy

= (XOa (I+S; rLZ(O,oo))_150>L2((),OO)-
The proof of Theorem 1.12 would thus be completed through (6.5), (6.6), (6.7) and the iden-
tity det(1 — S; | L2(0.00)) = det(1 — Sy, | L2(R)) if we manage to proof the following:
det(l — St rLz(0,00))

= det(l + S[ rLz(O,OO))<XO’ (1 + Sl’ FL2(0,OO))_180>L2(0,00)’ te R,

or equivalently (taking logarithmic derivatives, then observing the unity normalization of all
three factors in (6.8) as t — 400, using Lemma 6.1 and self-adjointness),
1 dS,) 1d

—1
ar = —55 1n<60, (1 + S[ rLz(0,00)) XO)LZ(O,OO)'

(6.8)

(6.9) tr ((1 — 5%

L2(0,00)

But integrating by parts in the left-hand side of (6.9) with %St(x, y) = %S,(x, y) =
%St (x, y) shows that (cf. [16], Lemma 2),

1

ds,
n—189r\ 2\—1
e (=S ) = =500 (1= S7'S: Ti20.0) 81200

5 Evidently, xo and the later on used §( are not in L%(0, 00). Still, using regularity and decay properties of the
involved integral kernels all subsequent Fredholm determinant and inner product manipulations are justifiable, we
refer the interested reader to [33], Section VIII.
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so we need to establish the equality

1
(80, (1= 87) ™81 T12(0,00)80) 2(0.00)
(6.10)

d _
= a 11’1(6(), (1 + Sz rLZ(O,oo)) 1X0>L2(0,oo)'

LEMMA 6.2 ([16], Lemma 3). Let Ag denote multiplication by do(x), and D (= %)
differentiation. Then

d _ _ _ _
(6.11) L (+5) = (1 =827, D+ (1-82)7"'s,a0(1 + 57"

PROOF. Integrating by parts, we easily find that DS, = —S; Ao — S; D, or equivalently

Multiplying this last identity by (1 — S?)~! from the left and (1+ S;)~! from the right (recall
Lemma 6.1),

—(A+S)'DSA+S) " =1 =SS D+ (1 =SS A1+ S)7",

and the last left-hand side equals precisely %(1 + S,)~! because of the simple fact that
d ds;
—(+S) == +SH =1+,
dt( +51) (I+S) a (I+S)

and £.5;(x,y) = L§,(x, y). Identity (6.11) is thus proven. [J

We now use (6.11) in the right-hand side of (6.10) (suppressing at times the Hilbert space
references for compact notation),

d _
a 11'1((80, (1 + Sl rLz(O,oo)) 1X0>L2(O,OO)
(b0, %(1 + S fL2(o,oo))_1X0>L2(o,oo)
(80, (1 + S; fLZ(o,oo))_IX0>L2(o,oo)
Dxo=0 (80, (1 = SH™'S; Ao(1 + S~ x0)
(80, (1 4+ S)~ ! x0)
(80, (1 = ) ~" 5,80} (80, (1 + S ~" x0)
(80, (14 S~ x0)
-1
= (80, (1= 7)™ St 112(0,00))30)2(0.00)
which is (6.10). In turn, the proof of Theorem 1.12 is thus completed.

APPENDIX A: SMALL NORM ESTIMATES FOR COLLAPSING CONTOURS

The jump contour Xp; of RHP 5.4 collapses for large (—¢) to the real axis and we shall
invoke ideas from [7] in the solution of the underlying singular integral equation ([7] does
not apply verbatim to RHP 5.4 as we are not dealing with contracting disk contours, for those
the scaling invariance of z~! dz is central).

Write Xy = U?-:l % as union of the eight straight lines shown in Figure 13 below and

suppose p € L?(Zm, |dz]) is a 2 x 2 matrix-valued function which is Lipschitz on X; and
that satisfies

1 dr
(A1) p@ =145 [ p()(GuG) -]
1 Jxyp

A—2zZ_

, Z€EXj,
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PP
1

Rz

.
e

FI1G. 13.  The oriented jump contour Xy = U§:1 X in RHP 5.4.

where z_ denotes the limiting value of the integral from the right-hand side. The explicit
form of the jump matrix Gym(z) = Gm(z; ¢, ) is stated in RHP 5.4, condition (2).

LEMMA A.1. Oneach X, the function
1 dx
M@ =T+ 5 [ pt)(Gu ~D; 7 zeC\zu
271 Sy, A—2Z

satisfies

Mi(z) =M_(2)Gm(2), z€Z;.

PROOF. Since M_(z) = p(z) for z € X; the jump behavior of the Cauchy transform
implies

M, (z) —M_(2) = p(2)(Gm(z) — I)
=M_(2)(Gm(z) = 1), zeZX;. a0

We shall now solve (A.1) in L2(Zp, |dz|) by the Neumann series

P =1+ p(2);

k=1

1
ok(2) = —/ pk—1(A) (Gm () —T)
M

) ZEEM,k€Z>]
2mi =

A—zZ_
po(z) =1,

and thus need to estimate pi(z). Recall that L?(Zy, |dz]) is the space of (matrix-valued)
measurable functions such that

%
1120z = | /}S @il < oo,
M

Let C ;:tj denote the Cauchy operators on L?(Zyy, |dz]),

p(s) ds

ct =i _— ey,
(C3,0)(@ =lim 55— Grioam
which obey (cf. [30], Chapter II, or [2], Section 5.5)
+ T =i + - o—; .
C):j — CE]_ =id, C):j + Czj = 1H2]., a.e.on Xj;

(A.2) 1 ds
(Hs; p)(2) = —pv/ pO)—.
T T, —Ss
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PROPOSITION A.2 ([11], Theoreme I). If an oriented contour I' C C, given by the para-
metric equations

={zeC:Nz=1eR,Iz=9¢()}
satisfies a uniform Lipschitz condition, that is, there exists M > 0 such that
lp(x) — ()| < M|x — |,

then there exists a universal Co > 0 such that

(A3) IHE £l 24z < Co(+ MU £l 20 jaz)-

Observe that our eight pieces X; fit into the context of Proposition A.2 with a (7, y)-
independent constant M, thus we are now prepared to the derive our central estimate.

THEOREM A.3. Forany y € (0,1) and t <0, let X = U§:1 X denote the (t,y)-
dependent contour of RHP 5.4. Then there exists a universal constant K > 0 such that

-1
(A4) ||H2Mf||L2():M,\dz\) = Kln(éty )||f||L2(2M,\dz|)-

PROOF. We show that for some K > 0,
|(H2M (X):j f)v XEkg)LZ(EMJdZD{

< KIn(8; ) 2 mppiaen 18 2y iz 1< J k<8

Indeed, for j = k this follows at once from (A.3) and for j # k we use the following estimates
(derived from the Cauchy—Schwarz inequality while using polar coordinates and standard

manipulations)
/ /1 |f (x +18y)8(y — uszy)|dxdy
Ja—n2+482,

<C; 111(3;_], )||f||L2(24,|dz|)||g||L2(25,\dz\);
o0 o0
/ / lf(x)g(y)l dx dy
0 Jo Jx—y)2+ 8} a2
< 111(5,_),1)||f||L2(0 o) 18l 2(0,00)>  €Cj > 0;

If(x)g(y)l
/ / drdy < G311 1l 120,00 12 1 22(0.00)- -

From estimate (A.4), we derive the operator norm estimate

| Hey ll L2(5p.1dzpy) < K ln(8t_yl), K > 0 universal
and then in turn, with (A.2),
(AS) I C%M ||L2(EM,|dz|) < %(K + 1)1n(8,_y1) Y(=t)>tg,y € (0,1).
Returning now to the iterates {ox(z)}7, introduced above, we have

pe(@) = (Cxy [Pk—1(GM = D]) (@), z € Zm.
But

| k=1 Gm =Dl 125y 10z = NGMC 1Y) =T ooy« 10k=111 22 (0, 121
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and for all (—¢) > 19,y € (0, 1),

o1l 2(sa1azn = I Cpg (GM = D 1250, 1020)

1 B
< K+ D) [6MC 6 7) =1 205y 102y

so that with Proposition 5.5,

PROPOSITION A.4. There exist positive universal constants to, ¢ such that for any y €
0, 1),
128,

i
okl L2y, 0z = (Cln(5ty )1—

k
)7 VD ke,

Thus, given any 0 < € < 2, Proposition A.4 implies convergence of the Neumann series
I+ 372, pi(z) in L?(Zm, |dz]) for sufficiently large (—¢) > o and any y € (0, 1) such that
0 <y <1—[t|~¢. At this point, using p(z), we define

(A.6) M(z) =1+ i p(M)(Gm((A) — H)d—k, z€C\ Zm,
27t sy A—2Z

which coincides with the function M(z) defined by (5.7) (compare Lemma A.1 and the argu-
ment in [7], (A.37)-(A.39), near a triple point, a point on Xp; where three arcs meet). Thus,
compare RHP 5.4,

Si(t,y) = lim z(M(z) —1I) = zi/ pM(GMM) —I)dr =) Si(,y),
77— 00 T M =0
where

Skt ) =5 /E L0 (Gu(h) —T) .
M

Since for (=) > 19 and y € (0, 1), with C; > 0,
k>1: ||Slk(f, V)” <C ||,0k||L2(2M,|dZ|) ||GM('§ t,y)— H”Lz(EM,IdzI)

2 2
e ! Sty ke—t Sty
< Ci <cln(8fyl) T )

k=0: ”Slk(t’ V)” =< C2 HGM(7 z, V) - H||L1(EM,|dZ|)

we can now sum all inequalities from k = 0 to k = 4-00: for any fixed € € (0, 2),

1—€
Si(t,y)=0(t7 e 2) V(=) > 19,0 <y <1— 1|,
This completes the proof of Theorem 5.6.

APPENDIX B: PERMUTING RESOLVENT AND INTEGRATION

Let ¢ and v be two functions on R that decay exponentially fast at +o00. Introduce
o
K(x,y):= / ¢p(x+ )Yy +s)ds, x,yeR,
0

and the corresponding integral operator K on L?(R) with kernel K (x, y). For any function
f, we shall denote by f,(x) := f(x + y) the horizontal translation of f by —y. Then we
have the following.
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PROPOSITION B.1. Forany x,y,t € Rand k € Z>1, we have
(B.1) (K xe Tr2@)*dy) () = (K xe [ 12) bar) , (0).

PROOF. We prove (B.1) inductively using

K(x,y):/ dx+u—t)Y(y+u—t)du.
t

Indeed, for k = 1, we have

(K X 125 y) () = / K(x. $)p(s +y)ds
t

=/ / dx+u—t)Y(s+u—1)p(s+ y)duds,
t t

so that by Fubini’s theorem,

(K Xt Tr2r) @y)(x) :/ K(y+t,u)¢pu+x—t)du=(Kx: [p2mw) ¢x—1)y ().
1

For general k, assuming that (B.1) is true for k — 1,

(K e Tray) ey) ()

= / K, $)((Kxe 2" dy) (s) ds
t

- / KG9 (K i T ), () ds
t

= / / K(x,s)(K x: [Lz(R))k_l(t +y,wpu+s—t)duds,
t t

and thus again by Fubini’s theorem
o0
(K xe 1@ dy) @) = [ (K 2@ ™ @+ v ) (K e 1 2@y $u—e) () dut.
R) R) R)
t
Now apply the base case k = 1 result and derive
o0
(KX To@) @)@ = [ (Kxe 112 ™ @4y, w) (K e 1 12@) br—e) () du
R) R) R)
1

= ((KXt fLZ(R))k¢x—z)(f +y)= ((KXt [LZ(]R))k(px—t)y(t)v
which completes the proof. [J

The above Proposition B.1 leads to the following useful corollary.
COROLLARY B.2. Let
O (x) = /¢y(X) dy,
I

where I is a subset of R. Then, for any x,t e R and k € Z>1,

(B.2) (KXt Tr2@)) @) (x) = /1 ((K xe Tr2my) as) , () .

499
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PROOF. We have by linearity and (B.1),

(K xe Tr2) @) (x) = (K xt rLz(Rpk[ /1 ¢y<->dy} (x)
= /I((KXz [Lz(R))kqby)(x)dy

@D /I((KXz fL2(R))k¢x—t)y(f) dy. 0
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