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Abstract

We consider the spherical spin glass model defined by a combination of the pure 2-spin

spherical Sherrington–Kirkpatrick Hamiltonian and the ferromagnetic Curie–Weiss Hamil-

tonian. In the large system limit, there is a two-dimensional phase diagram with respect to

the temperature and the coupling strength. The phase diagram is divided into three regimes;

ferromagnetic, paramagnetic, and spin glass regimes. The fluctuations of the free energy

are known in each regime. In this paper, we study the transition between the ferromagnetic

regime and the paramagnetic regime in a critical scale.

Keywords Free energy · Spherical SK model · Phase transition · Spiked random matrices

1 Introduction

We consider a disordered system defined by random Gibbs measures whose Hamiltonian is

the sum of a spin glass Hamiltonian and a ferromagnetic Hamiltonian. Depending on the

strength of the coupling constant and the temperature, the system may exhibit several phases

in the large system limit. The paper is concerned with the fluctuations of the free energy near

the boundary between two phases known as ferromagnetic and paramagnetic regimes.

Consider the sum of the pure 2-spin spherical Sherrington–Kirkpatrick (SSK) Hamiltonian

and the Curie–Weiss (CW) Hamiltonian. We call this sum the SSK + CW Hamiltonian. We

denote the coupling constant by J and the inverse temperature by β. We consider the random
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Fig. 1 Phase diagram for SSK +
CW model. Here, β is the inverse

temperature and J is the coupling

constant
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Gibbs measure with the SSK + CW Hamiltonian. The focus of this paper is on the free

energy.

The limiting free energy was obtained non-rigorously by Kosterlitz et al. [21] in 1976.

When J = 0, this formula is the explicit evaluation of the Crisanti–Sommers formula [15]

(which was proved rigorously by Talagrand [26]) in the case of the pure 2-spin SSK. The

Crisanti–Sommers formula is the spherical version of the Parisi formula [24,27]. The formula

of Kosterlitz, Thouless, and Jones shows a two-dimensional phase transition: see Fig. 1. The

three regimes are determined by the condition that max{1, 1
2β

, J } is equal to 1 (spin glass

regime), 1
2β

(paramagnetic regime) or J (ferromagnetic regime). The limiting free energy is

analytic with respect to both β and J in each regime, but not on the boundary.

Recently, the authors of [5] showed that the result of Kosterlitz, Thouless, and Jones is

rigorous. Furthermore, the authors also evaluated the distribution of the fluctuations of the

free energy in each regime. (The case when J = 0 was obtained earlier in [3].) The order

of the fluctuations are N−2/3, N−1, N−1/2 and the limiting distributions are Tracy–Widom,

Gaussian, and Gaussian in the spin glass, paramagnetic regime, ferromagnetic regime, respec-

tively. In the same paper, the transition between the spin glass regime and the ferromagnetic

regime was also studied. However, the other two transitions and the triple point were left

open. The goal of this paper is to describe the transition between the paramagnetic regime

and and the ferromagnetic regime.

Another system which combines a spin glass and a ferromagnetic model is the SSK with

an external field. The difference between the CW Hamiltonian and an external field is that

one is a quadratic function and the other is a linear function of the spin variables. These two

models are related; see [12] for a one-sided inequality. For the spin glass with external field,

the fluctuations of the free energy were computed recently in [13,14] when the coupling

constant is positive (for both SSK and SK (Sherrington–Kirkpatrick) cases with general spin

interactions). However, the transitions are not obtained except for certain large deviation

results [16,18]. One of the interests of the SSK + CW model is that it is an easier model

which can be analyzed in detail in the transitional regimes.

1.1 Model

Let

SN−1 = {σ = (σ1, . . . , σN ) ∈ R
N : σ 2

1 + · · · + σ 2
N = N } (1.1)
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1486 J. Baik et al.

be a sphere in R
N of radius

√
N . Define the SSK + CW Hamiltonian by

HN (σ ) = HSSK
N (σ ) + HCW

N (σ ), σ ∈ SN−1 (1.2)

where

HSSK
N (σ ) = 1√

N

N
∑

i, j=1

Ai jσiσ j , HCW
N (σ ) = J

N

N
∑

i, j=1

σiσ j = J

N

(

N
∑

i=1

σi

)2

. (1.3)

Here J is the coupling constant. The random coefficients Ai j satisfy Ai j = A j i and Ai j ,

i ≤ j , are independent centered random variables. We call Ai j disorder variables. The precise

conditions are given in Definition 1.1 below. Note that as a function of σ , HCW
N (σ ) is large

when the coordinates of σ have same sign. On the other hand, the maximizers σ of HSSK
N (σ )

depend highly on {Ai j }.
With β > 0 representing the inverse temperature, the free energy and the partition function

are defined by

FN = 1

N
log Z N , Z N =

∫

SN−1

eβ HN (σ )dωN (σ ) (1.4)

where ωN is the normalized uniform measure on SN−1. Note that FN and Z N are random

variables since they depend on the disorder variables Ai j . The free energy and the partition

function depend on the parameters β and J ,

FN = FN (β, J ), Z N = Z N (β, J ). (1.5)

Since the Curie–Weiss Hamiltonian is a quadratic function of the spin variable, we can

write the SSK + CW Hamiltonian as HN (σ ) =
∑N

i, j=1 Mi jσiσ j where Mi j = 1√
N

Ai j + J
N

are non-centered random variables. In terms of matrix notations,

HN (σ ) = σ T Mσ , M = 1√
N

A + J

N
11

T (1.6)

with A = (Ai j )1≤i, j≤N , 1 = (1, . . . , 1)T , M = (Mi j )1≤i, j≤N , and σ = (σ1, . . . , σN )T . The

non-centered random symmetric matrix M is an example of a real Wigner matrix perturbed

by a deterministic finite rank matrix. Such matrices are often called spiked random matrices.

We will use the eigenvalues of spiked random matrices in our analysis of the free energy.

We assume the following conditions on the disorder variables.

Definition 1.1 (Assumptions on disorder variables) Let Ai j , i ≤ j , be independent real

random variables satisfying the following conditions:

◦ All moments of Ai j are finite and E[Ai j ] = 0 for all i ≤ j .

◦ For all i < j , E[A2
i j ] = 1, E[A3

i j ] = W3, and E[A4
i j ] = W4 for some constants W3 ∈ R

and W4 ≥ 0.

◦ For all i , E[A2
i i ] = w2 for a constant w2 ≥ 0.

Set Ai j = A j i for i > j . Let A = (Ai j )
N
i, j=1 and we call it a Wigner matrix (of zero mean).

Definition 1.2 (Eigenvalues of non-zero mean Wigner matrices) Let M be the N × N sym-

metric matrix defined in (1.6). We call it a Wigner matrix of non-zero mean 1. Its eigenvalues

are denoted by

1 In [5], we consider the case when the diagonal entries of M have mean J ′
N

and the off-diagonal entries have

mean J
N

where J and J ′ are allowed to be different. However, in this case, M = 1√
N

+ J
N

11
T + J ′−J

N
I

where I is the identity matrix. This only shifts all eigenvalues by a deterministic small number. As we will

see in Remark 2.1, it is not more general than the case with J ′ = J .
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Ferromagnetic to Paramagnetic Transition in Spherical Spin Glass 1487

λ1 ≥ λ2 ≥ · · · ≥ λN . (1.7)

We introduce the following terminology.

Definition 1.3 (High probability event) We say that an N -dependent event ΩN holds with

high probability if, for any given D > 0, there exists N0 > 0 such that

P(Ωc
N ) ≤ N−D

for any N ≥ N0.

1.2 Previous Results in Each Regime

We review the results on the fluctuations in each regime obtained in [5]. We state two types of

results: one in terms of the eigenvalues of M and the other in terms of limiting distributions.

Set

J̃ := max{J , 1}. (1.8)

It was shown in [5] that the following holds with high probability. In both ferromagnetic and

the spin glass regimes (given by J̃ > 1
2β

), with any ε > 0,

FN = F̃N +
(

β − 1

2 J̃

)(

λ1 − J̃ − 1

J̃

)

+ o
(

N−1+ε
)

. (1.9)

In the paramagnetic regime (given by J̃ < 1
2β

),

FN = F̃N − 1

2N

N
∑

i=1

log

(

2β + 1

2β
− λi

)

+ o(N−1). (1.10)

Here, F̃N is a deterministic function of N , β, J . The above results show that the fluctuations

of FN are determined, to the leading order, by the top eigenvalue λ1 in the ferromagnetic and

spin glass regimes, while they are determined by all eigenvalues in the paramagnetic regime.

A limit theorem for FN follows if we use limit theorems for the eigenvalues of random

matrices. The relevant random matrices are Wigner matrices of non-zero mean in (1.6). For

such random matrices, the following is known [11,25] (see [6] for complex matrices):
{

N 2/3 (λ1 − 2) ⇒ TW1 if J < 1,

N 1/2
(

λ1 − J − 1
J

)

⇒ N (W3(J−2 − J−4), 2(1 − J−2)) if J > 1,
(1.11)

where the convergences are in distribution. Here TW1 denotes the GOE Tracy–Widom dis-

tribution and N (a, b) denotes the Gaussian distribution of mean a and variance b. The

dichotomy is due to the effect of the non-zero mean; if J is not large enough (i.e. J < 1),

then the influence of the non-zero mean is negligible to contribute to the fluctuations of the

top eigenvalue. For J < 1, the top eigenvalue is close to the second eigenvalue with order

O(N−2/3+ε). But for J > 1, the difference of the top eigenvalue and the second eigenvalue

is of order O(1).

On the other hand, the following is also known (see [5, Theorem 1.6]): if a function ϕ is

smooth in an open interval containing the interval [−2, J̃ + J̃−1], then

N
∑

i=1

ϕ(λi ) − N

∫ 2

−2

ϕ(x)dσscl(x) ⇒ N ( f , a), dσscl(x) :=
√

4 − x2

2π
dx, (1.12)
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1488 J. Baik et al.

for some explicit constants f , a. This result is applicable to the paramagnetic regime.

Together, we have the following asymptotic results obtained in Theorem 1.4 of [5] (with

a small correction in [4]):

(i) (Spin glass regime) If β > 1
2

and J < 1, then

1

β − 1
2

N 2/3 (FN − F) ⇒ TW1 . (1.13)

(ii) (Paramagnetic regime) If β < 1
2

and β < 1
2J

, then

N (FN − F) ⇒ N ( f1, α1) . (1.14)

(iii) (Ferromagnetic regime) If J > 1 and β > 1
2J

, then

√
N (FN − F) ⇒ N

(

f ′
2, α

′
2

)

. (1.15)

for some deterministic function F = F(β, J ) and some explicit constants f1, α1, f ′
2 and α′

2

depending on β and J .

1.3 Results

We state the results on the transition between the paramagnetic regime and the ferromagnetic

regime. The boundary between these two regimes is given by the equation 1
2β

= J with

J > 1. In the transitional regime, the correct scaling turns out to be the following: let J > 1

be fixed and let β = βN be given by

2β = 1

J
+ B√

N
(1.16)

with fixed B ∈ R. The following is the first main result of this paper. This relates the free

energy with the eigenvalues of M .

Theorem 1.1 Let β be given by (1.16). Then, for every 0 < ε < 1
8

,

FN = F̃N − 1

2N

N
∑

i=2

g(λi ) + 1

N
Q(χN ) + O

(

N−3/2+4ε
)

, (1.17)

with high probability as N → ∞, where

F̃N = β(J + J−1) − 1

2
− 1

2
log(2β) + 1

N

(

1

4
log N + log

β√
π

)

, (1.18)

χN :=
√

N (λ1 − J + J−1) and g(z) := log(J + J−1 − z). Also,

Q(x) = s(x)

2(s(x) − x)
− s(x)2

4(J 2 − 1)
+ log(s(x) − x)

2
+ log I

(

(s(x) − x)2

J 2 − 1

)

(1.19)

with

s(x) = x − B(J 2 − 1) +
√

(x + B(J 2 − 1))2 + 4(J 2 − 1)

2
(1.20)

and

I(α) =
∫ ∞

−∞

e− α
4 t2+ it

2

√
1 + it

dt, (1.21)

where the square root denotes the principal branch.
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The Formula (1.17) shows a combined contribution from λ2, . . . , λN and a distinguished

contribution from λ1. Compare the formula with (1.9) and (1.10).

Now we state a result analogous to (1.14) and (1.15). This follows if we have limit theorems

for Q(χN ) and
∑N

i=2 g(λi ). From the second part of (1.11), Q(χN ) converges to an explicit

function of a Gaussian random variable. On the other hand,
∑N

i=2 g(λi ) is different from
∑N

i=1 g(λi ) by one term. It is not difficult to show that removing one term does not affect the

fluctuations much and the fluctuations are still given by a Gaussian random variable similar

to (1.12); see Theorem 2.1 in the next section. In random matrix theory, these sums are

known as partial linear statistic and linear statistic, respectively. The main technical part of

this paper is to evaluate the joint distribution of Q(χN ) and
∑N

i=2 g(λi ). We show that jointly

they converge in distribution to a bivariate Gaussian variable with an explicit covariance. See

the next section for the precise statement. These results are interesting on their own in random

matrix theory. Putting together, we obtain the following result.

Theorem 1.2 We have

N

(

FN − 1

4J 2
− B

2J
√

N
− log N

4N
− B2 J 2

4N

)

⇒ G1 + Q(G2) (1.22)

in distribution as N → ∞ where G1 and G2 are bivariate Gaussian random variables with

E[G1] = 1

4
log(J 2 − 1) + w2 − 2

4J 2
+ W4 − 3

8J 4
+ log

1

2
√

π J
, (1.23)

Var[G1] = −1

2
log(1 − J−2) + w2 − 2

4J 2
+ W4 − 3

8J 4
, (1.24)

E[G2] = W3(J−2 − J−4), Var[G2] = 2(1 − J−2), (1.25)

and

Cov(G1, G2) = W3(J−2 − J−4)

2
. (1.26)

Note that G1 and G2 do not depend on B. The function Q is defined in (1.19).

Note that if the third moment W3 of Ai j with i �= j is zero, then G1 and G2 are independent

Gaussians.

The above result is consistent with the results on ferromagnetic and paramagnetic regimes

if we let formally B → +∞ and B → −∞, respectively. One can show that when B → +∞,

Q(G2) dominates G1. Furthermore, while Q(G2) is not Gaussian, upon proper normalization,

it converges to a Gaussian as B → +∞. See Fig. 2. On the other hand, when B → −∞, the

leading two terms of Q(G2) are constants and the random part is smaller than G1. See Sect. 6

for details.

Let us comment on the other transitions in the phase digram in Fig. 1. As mentioned

before, the transition between the spin glass and ferromagnetic regimes was discussed in [5].

Note that (1.9) is valid in both regimes. It was shown that if we let β > 1/2 be fixed and

consider N -dependent J = 1 + wN−1/3, then for each w ∈ R, (1.9) still holds. Now, for

such J , it was shown in [9] that N 2/3(λ1 − 2) ⇒ TW1,w where TW1,w is a one-parameter

family of random variables interpolating TW and Gaussian distributions. Hence, we obtain

the fluctuations for the transitional regime.

On the other hand, the transition between the spin glass and paramagnetic regimes is an

open question. By matching the fluctuation scales in both regimes, we expect that the critical

scale is β = 1
2

+ O(
√

log N

N 1/3 ).
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1490 J. Baik et al.

Fig. 2 a Probability density function of Q(G2) for B = −1, 0, 1, b probability density function of normalized

Q(G2) resembles a Gaussian density as B → +∞

1.4 Organization

The rest of the paper is organized as follows. In Sect. 2, we first state new results on random

matrices. They are given in Theorem 2.1 (partial linear statistics) and Theorem 2.2 (joint

convergence). Using them, we derive Theorem 1.2 from Theorem 1.1. In Sect. 3, we prove

Theorem 1.1. In the next two sections, we prove the random matrix results stated in Sect. 2;

Theorem 2.1 in Sect. 4 and Theorem 2.2 in Sect. 5. In Sect. 6, we show that Theorem 1.2 is

consistent with the previous results on ferromagnetic and paramagnetic regimes.

2 Results onWigner Matrices with Non-zeroMean

In order to prove Theorem 1.2 from Theorem 1.1, we need some new results on random

matrices. We need (i) a limit theorem for partial linear statistics
∑N

i=2 g(λi ) and (ii) a joint

convergence of the large eigenvalue and partial linear statistics. These results are interesting

on their own in random matrix theory. We state them here and prove them in Sects. 4 and 5

below. Using these results, we prove Theorem 1.2 in Sect. 2.3.

Recall that the N × N symmetric matrix M is given by M = 1√
N

A + J
N

11
T where

A = (Ai j ) is a symmetric matrix with independent entries for i ≤ j satisfying the conditions

given in Definition 1.1 and 1 = (1, . . . , 1)T . The matrix M is called a Wigner matrix with a

non-zero mean J
N

. Recall that we assume

J > 1. (2.1)

The eigenvalues of M are denoted by λ1 ≥ · · · ≥ λN .

It is known that λ1 is close to J + J−1 with high probability and λ2, . . . , λN are in

a neighborhood of [−2, 2] with high probability. See Lemma 3.2 below for the precise

statement.
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2.1 Partial Linear Statistics

A linear statistic is the sum of a function of the eigenvalues. The fluctuations of linear statistics

for Wigner matrices and other random matrix ensembles are of central interest in the random

matrix theory; see, for example, [2,19,22]. For Wigner matrices with non-zero mean, the

following result was obtained in Theorem 1.6 and Remark 1.7 of [5]. Set

Ĵ = J + J−1. (2.2)

Let ϕ : R → R be a function which is analytic in an open neighborhood of [−2, Ĵ ] and has

compact support. Then, as N → ∞, the random variable

NN (ϕ) :=
N
∑

i=1

ϕ(λi ) − N

∫ 2

−2

ϕ(x)dσscl(x) ⇒ N (M(ϕ), V (ϕ)) (2.3)

where

M(ϕ) = 1

4
(ϕ(2) + ϕ(−2)) − 3

2
τ0(ϕ) − J−1τ1(ϕ) + (w2 − 2)τ2(ϕ)

+ (W4 − 3)τ4(ϕ) + ϕ( Ĵ ) −
∞
∑


=2

J−
τ
(ϕ),

V (ϕ) = (w2 − 2)τ1(ϕ)2 + (W4 − 3)τ2(ϕ)2 + 2

∞
∑


=1


τ
(ϕ)2.

(2.4)

Here, W4 = E[A4
12], w2 = E[A2

11], and

τ
(ϕ) = 1

π

∫ 2

−2

ϕ(x)
T
(x/2)√

4 − x2
dx = 1

2π

∫ π

−π

ϕ(2 cos(θ)) cos(
θ)dθ, (2.5)

where T
(t) are the Chebyshev polynomials of the first kind.

We are interested in a partial linear statistic,
∑N

i=2 ϕ(λi ). See [7,23] for other types of

partial linear statistics. The partial linear static
∑N

i=2 ϕ(λi ) is the linear statistic minus one

term ϕ(λ1). Since λ1 → Ĵ in probability (see the second part of (1.11)), by (2.3), Slutsky’s

theorem implies that

N
∑

i=2

ϕ(λi ) − N

∫ 2

−2

ϕ(x)dσscl(x) ⇒ N (M(ϕ) − ϕ( Ĵ ), V (ϕ)).

Since this follows from (2.3), this is true assuming that ϕ is analytic in an open neighborhood

of [−2, Ĵ ]. However, we are interested in the test function ϕ(x) = g(x) = log( Ĵ − x) (see

(1.17)). Since this function is not analytic at x = Ĵ , the above simple argument does not

apply. Nonetheless, if we adapt the proof of (2.3), one can show that it is enough to assume

that the test function is analytic in a neighborhood of the interval [−2, 2], not of [−2, Ĵ ].

Theorem 2.1 Let J > 1. Then for every test function ϕ which is analytic in a neighborhood

of [−2, 2],

N
(2)
N (ϕ) :=

N
∑

i=2

ϕ(λi ) − N

∫ 2

−2

ϕ(x)dσscl(x) ⇒ N (M (2)(ϕ), V (2)(ϕ)) (2.6)
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1492 J. Baik et al.

as N → ∞ with

M (2)(ϕ) =1

4
(ϕ(2) + ϕ(−2)) − 3

2
τ0(ϕ) − J−1τ1(ϕ) + (w2 − 2)τ2(ϕ)

+ (W4 − 3)τ4(ϕ) −
∞
∑


=2

J−
τ
(ϕ),

(2.7)

and V (2)(ϕ) = V (ϕ) where V (ϕ) is defined in (2.4).

Note that

M (2)(ϕ) = M(ϕ) − ϕ( Ĵ ) (2.8)

for ϕ analytic in a neighborhood of [−2, Ĵ ].

Remark 2.1 We comment on a case when the test function depends on N . Consider the

function ϕN defined by

ϕN (x) = ϕ(x) + φ(x)

N
+ O(N−2)

uniformly for x in a neighborhood of [−2, 2] for analytic functions ϕ and φ. Define the

corresponding linear statistic

N
(2)
N (ϕN ) :=

N
∑

i=2

ϕN (λi ) − N

∫ 2

−2

ϕN (x)dσscl(x)

=N
(2)
N (ϕ) + 1

N

(

N
∑

i=2

φ(λi ) − N

∫

φ(x)dσscl(x)

)

+ O

(

1

N

)

.

(2.9)

By Theorem 2.1, the second order term converges to zero in probability. Thus, N
(2)
N (ϕN ) and

N
(2)
N (ϕ) converge to the same Gaussian distribution. The same argument also applies to full

linear statistics; this is used in Remark 5.1 below. Now, the claim in footnote1 is verified by

noting that ϕ(x + J ′−J
N

) = ϕ(x) + ϕ′(x)(J ′−J )
N

+ O(N−2).

2.2 Joint Convergence of the Largest Eigenvalue and Linear Statistics

By Theorem 2.1 and the second part of (1.11), the partial linear statistic and the largest eigen-

value each converge to Gaussian distributions individually. The following theorem shows that

they converge jointly to a bivariate Gaussian with an explicit covariance.

Theorem 2.2 Let J > 1. Then for ϕ(x) which is analytic in a neighborhood of [−2, 2],
N

(2)
N (ϕ) :=

∑N
i=2 ϕ(λi ) − N

∫ 2
−2 ϕ(x)dσscl(x) and χN :=

√
N (λ1 − Ĵ ) converges jointly

in distribution to a bivariate Gaussian variable with mean

(M (2)(ϕ), W3(J−2 − J−4)) (2.10)

and covariance
(

V (2)(ϕ) 2W3τ2(ϕ)(1 − J−2)

2W3τ2(ϕ)(1 − J−2) 2(1 − J−2)

)

. (2.11)

The proof of this theorem, given in Sect. 5, is the main technical part of this paper. We

prove the theorem first for the Gaussian case, and then use an interpolation argument.
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2.3 Proof of Theorem 1.2

We now derive Theorem 1.2 from Theorem 1.1 using the results on the eigenvalues stated

in the previous two subsections. The term Q(χN ) converges to Q(G2) in distribution from

Theorem 2.2. Consider the rest. It was shown in (A.5) of [3] that for g(z) = log(J + J−1 −z),

∫

g(z)dσscl(x) = 1

2J 2
+ log J . (2.12)

Inserting 2β = J−1 + B N−1/2 and using the Taylor expansion log(1+ B J√
N

) = B J√
N

− B2 J 2

2N
+

O(N−3/2),

F̃N − 1

2

∫

g(z)dσscl(x) = 1

4J 2
+ B

2J
√

N
+ log N

4N

+ 1

N

[

B2 J 2

4
+ log

1

2
√

π J

]

+ O(N−3/2).

(2.13)

We can evaluate M (2)(g) using (2.7) of [5] which evaluated the M(h) with h(x) = log(2β +
1

2β
− x): (note that J ′ = J here)

M (2)(g) = lim
β→ 1

2J

(

M(h) − log

(

2β + 1

2β
− J − J−1

))

= − 1

2
log(J 2 − 1) − w2 − 2

2J 2
− W4 − 3

4J 4
.

(2.14)

The variance V (2)(g) = V (g), which is independent of J , is given by 4 times (3.13) of [3]

if we replace 2β by J−1:

V (2)(g) = −2 log(1 − J−2) + 1

J 2
(w2 − 2) + 1

2J 4
(W4 − 3). (2.15)

For the covariance term, we have τ2(g) = − 1
2J 2 from (A.17) of [3]. Hence, from Theorem

2.1 and 2.2, we obtain the result.

3 Proof of Theorem 1.1

The proof follows the steps for the proof of the Theorem 1.5 of [5] for paramagnetic and

ferromagnetic regimes with necessary adjustments. The analysis is based on applying a

method of steepest-descent to a random integral. The location of the critical point is important.

In the transitional regime, the critical point is close to the largest eigenvalue but not as close

as the ferromagnetic case. On the other hand, the critical point is away from the largest

eigenvalue in the paramagnetic case. See Sect. 3.2 below for details.

3.1 Preliminaries

The following formula is a simple result in [21].

Lemma 3.1 ([21]; also Lemma 1.3 of [3]) Let M be a real N × N symmetric matrix with

eigenvalue λ1 ≥ λ2 ≥ · · · ≥ λN . Then for fixed β > 0,
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∫

SN−1

eβσ T Mσ dwN (σ ) = CN

∫ γ+i∞

γ−i∞
e

N
2 G(z)dz, (3.1)

where

G(z) = 2βz − 1

N

N
∑

i=1

log(z − λi ) (3.2)

and γ is any constant satisfying γ > λ1, the integration contour is the vertical line from

γ − i∞ to γ + i∞, the log function is defined in the principal branch, and

CN = Γ (N/2)

2π i(Nβ)N/2−1
. (3.3)

Here Γ (z) denotes the Gamma function.

Let M be a Wigner matrix with non-zero mean as in (1.6). Then its eigenvalues λi are

random variables, and hence the above result gives a random integral representation of the

partition function. In [3,5], the above random integral was evaluated using the method of

steepest-descent for different choices of random matrices. The key ingredient in controlling

the error term is a precise estimate for the eigenvalues which are obtained in the random

matrix theory.

Lemma 3.2 (Rigidity of eigenvalues: Theorem 2.13 of [17] and Theorem 6.3 of [20]) For

each positive integer k ∈ [1, N ], set k̂ := min{k, N + 1 − k}. Let γk be the classical location

defined by
∫ ∞

γk

dσscl(x) = 1

N

(

k − 1

2

)

. (3.4)

Then, for every 0 < ε < 1
2

,

|λk − γk | ≤ k̂−1/3 N−2/3+ε (3.5)

for all k = 2, 3, . . . , N with high probability. Furthermore, for fixed J > 1, recall Ĵ =
J + J−1,

|λ1 − Ĵ | ≤ N−1/2+ε (3.6)

holds with high probability.

From the rigidity, it is easy to obtain the following law of large numbers for eigenvalues.

Corollary 3.1 (c.f. Lemma 5.1 of [3] ) Fix δ > 0, let { fα}α∈I ⊂ C1[−2 − δ, 2 + δ] be a

family of monotonic increasing functions satisfying

supα∈I maxx | fα(x)| ≤ C0 and supα∈I maxx | f ′
α(x)| ≤ C1. Then, for every 0 < ε < 1,

sup
α∈I

∣

∣

∣

∣

∣

1

N

N
∑

i=2

fα(λi ) −
∫ 2

−2

fα(x)dσscl(x)

∣

∣

∣

∣

∣

= O
(

N−1+ε
)

(3.7)

with high probability.

Proof Let f = fα for some α ∈ I . The absolute value on the left hand-side is bounded above

by
∣

∣

∣

∣

∣

1

N

N
∑

i=2

f (λi ) − 1

N

N
∑

i=2

f (γi )

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

1

N

N
∑

i=2

f (γi ) −
∫ 2

−2

f (x)dσscl(x)

∣

∣

∣

∣

∣

. (3.8)
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By Lemma 3.2,

∣

∣

∣

∣

∣

1

N

N
∑

i=2

( f (λi ) − f (γi ))

∣

∣

∣

∣

∣

≤ max | f ′(x)|
N

N
∑

i=2

|λi − γi | ≤ C0

N 1−ε
(3.9)

with high probability. On the other hand, set γ̂ j by

∫ 2

γ̂ j

dσscl(x) = j

N
, j = 1, 2, . . . , N , (3.10)

and by convention γ̂0 = 2. As f (x) is a monotonic increasing function, for i = 2, 3, . . . , N −
1,

∫ γ̂i

γ̂i+1

f (x)dσscl(x) ≤ 1

N
f (γi ) ≤

∫ γ̂i−2

γ̂i−1

f (x)dσscl(x). (3.11)

Thus,
∣

∣

∣

∣

∣

1

N

N
∑

i=2

f (γi ) −
∫ 2

−2

f (x)dσscl(x)

∣

∣

∣

∣

∣

≤ 3 max | f (x)|
N

≤ 3C1

N
. (3.12)

Since the upper bounds are independent of f , we obtain the result. 
�

3.2 Steepest-Descent Analysis

We now apply steepest descent analysis to the integral in Lemma 3.1. We deform the contour

to pass a critical point and show that the main contribution to the integral comes from a small

neighborhood of the critical point. For G(z) given in (3.2), it is easy to check that all solutions

of G ′(z) = 0 are real-valued, and there is a unique critical point γ which lies in the interval

(λ1,∞) (see [5, Lemma 4.1]).

Note that since G is random, the critical point is also random. For the paramagnetic regime,

it was shown in [5] that γ − λ1 = O(1) with high probability. In the same paper, it was also

shown that in the ferromagnetic regime, γ − λ1 = O(N−1+ε) with high probability. The

following lemma establishes a corresponding result for the transitional regime; it shows that

γ − λ1 = O(N− 1
2 +ε) with high probability.

Lemma 3.3 (Critical point) Recall that (see (1.16)) J > 1 is fixed and 2β = 2βN = 1
J

+ B√
N

with fixed B ∈ R. Then, for every 0 < ε < 1
4

,

γ = λ1 + −χN − B(J 2 − 1) +
√

(χN + (J 2 − 1)B)2 + 4(J 2 − 1)

2
√

N
+ O

(

N−1+ε
)

(3.13)

with high probability, where we set χN :=
√

N (λ1 − Ĵ ).

Note that γ given above is larger than λ1 with high probability since the term in the big

parenthesis is positive.

Proof Set

θ := −χN − B(J 2 − 1) +
√

(χN + (J 2 − 1)B)2 + 4(J 2 − 1)

2
. (3.14)
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Note that θ > 0. By the rigidity of λ1, we have |χN | ≤ N
ε
4 and hence, θ ≤ N

ε
3 with high

probability. On the other hand, using −a +
√

a2 + b2 = b2
√

a2+b2+a
,

θ = 2(J 2 − 1)
√

(J 2 − 1)B + χN )2 + 4(J 2 − 1) + ((J 2 − 1)B + χN )
,

and hence θ ≥ C N− ε
4 for some constant C > 0 with high probability. Hence,

N− ε
3 ≤ θ ≤ N

ε
3 (3.15)

with high probability. Set

γ± := λ1 + θ√
N

± N−1+ε . (3.16)

By the above properties of θ , we have γ± > λ1 with high probability. We will show that

G ′(γ−) < 0 and G ′(γ+) > 0 with high probability. Since G ′(z) is a monotone increasing

function for real z in the interval (λ1,∞), this shows that γ− < γ < γ+ with high probability,

proving the lemma.

Recall that λ1 → Ĵ in probability. Let us write

γ± = J + 1

J
+ φ√

N
± N−1+ε, φ := θ + χN (3.17)

where χN =
√

N (λ1 − Ĵ ). Note that φ = O(N
ε
3 ) with high probability. Now, notice that

G ′(z) = 2β − 1

N

N
∑

i=2

1

z − λi

− 1

N (z − λ1)
. (3.18)

We apply Corollary 3.1 to the family of the function { 1
z−x

}z>2+c for some constant c > 0

and obtain

G ′(γ±) = 2β −
γ± −

√

γ 2
± − 4

2
+ O(N−1+ ε

3 ) − 1

N (γ± − λ1)

with high probability. By (3.17),

γ± −
√

γ 2
± − 4

2
= 1

J
− 1

J 2 − 1

(

φ√
N

± N−1+ε

)

+ O(N−1+ 2ε
3 ).

By (3.16),

1

N (γ± − λ1)
= 1

θ
√

N

(

1 ∓ N− 1
2 +ε

θ
+ O

(

N−1+2ε

θ2

)

)

.

Using the formula of 2β and the estimate (3.15) for 1
θ

, we find that

G ′(γ±) = 1√
N

(

B + φ

J 2 − 1
− 1

θ

)

±
(

1

J 2 − 1
+ 1

θ2

)

N−1+ε + O(N−1+ 2ε
3 ) (3.19)

with high probability since 0 < ε < 1
4

. By the definition of θ , the leading term is zero. The

coefficient of the second term is positive. Hence we find that G ′(γ−) < 0 and G ′(γ+) > 0,

and we obtain the lemma. 
�
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Then we have the following lemma.

Lemma 3.4 Set

s = sN :=
√

N (γ − J − J−1) and Δ = ΔN :=
√

N (γ − λ1) = sN − χN . (3.20)

Then, for every ε > 0,

s = χN − B(J 2 − 1) +
√

(χN + (J 2 − 1)B)2 + 4(J 2 − 1)

2
+ O(N− 1

2 +ε) (3.21)

with high probability. We also have

|s| ≤ N ε and N−ε ≤ Δ ≤ N ε (3.22)

with high probability.

Proof The previous lemma implies (3.21). The first part of (3.22) follows from the fact that

χN = O(N ε) with high probability. The second part is the estimate (3.15) in the proof of

the previous lemma. 
�

We also need the following lemma.

Lemma 3.5 For every 0 < ε < 1,

1

N

N
∑

i=2

1

(γ − λi )2
= 1

J 2 − 1
+ O(N−1+ε) (3.23)

with high probability.

Proof This follows from Corollary 3.1 applied to f (x) = 1
(γ−x)2 . 
�

The following auxiliary lemma is used to estimate an error in the steepest descent analysis.

Lemma 3.6 Define

Im(α) :=
∫ ∞

−∞

tm

√
1 + it

e− α
4 t2+ it

2 dt (3.24)

for non-negative integers m and α > 0, where the square root is the defined on the principal

branch. We set I(α) := I0(α); see (1.21). Then,

I(α) =
√

4π

α
(1 + O(α−1)) as α → +∞, (3.25)

I(α) =
√

8π

e
(1 + O(α)) as α → 0+, (3.26)

and for every m ≥ 0,

Im(α) is uniformly bounded for α ∈ (0,∞). (3.27)

A particular consequence is that the derivative I
′(α) = − 1

4
I2(α) is uniformly bounded for

α > 0. Furthermore, I(α) > 0 for all α > 0.
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Proof Consider (3.25). Applying the method of steepest-descent to I(α) =
∫∞
−∞ g(t)eαh(t)dt

with h(z) = − z2

4
and g(z) = 1√

1+iz
e

iz
2 , we find that

I(α) = eαh(zc)

√
α

[
√

2π

|h′′(zc)|
g(zc) + O(α−1)

]

=
√

4π

α
(1 + O(α−1)) (3.28)

as α → +∞. For Im(α), using
∫∞
−∞ yme−αy2

dy = O(α−(m+1)/2), we find that

Im(α) = O
(

α− m+1
2

)

as α → +∞. (3.29)

Consider the limit α → 0+. After the change of the variables t = z/α,

I(α) = e− 1
4α

√
α

∫ ∞

−∞

e− (z−i)2

4α

√
α + iz

dz. (3.30)

The integrand is analytic in the complex plane minus the vertical line from iα to i∞. Note

that the saddle point is i and it is on the branch cut. We show that the main contribution to

the integral comes from the branch point z = iα. We deform the contour so that it consists

of the following four line segments: L1 from i − ∞ to i on the left half-plane, L2 from i to

iα lying on the left of the branch cut, L3 from iα to i lying on the right of the branch cut, and

L4 from i to i + ∞ lying on the right-half plane. On L4, setting z = i + √
αx ,

∫

L4

e− (z−i)2

4α

√
α + iz

dz =
√

α

∫ ∞

0

e− x2

4

√

α − 1 + i
√

αx
dx = O(

√
α) (3.31)

as α → 0. Similarly, the integral over L1 is also of the same order. On the other hand, setting

z = iα + iy,

∫

L2∪L3

e− (z−i)2

4α

√
α + iz

dz = 2

∫ 1−α

0

e
(α+y−1)2

4α

√
y

dy = 2e
(α−1)2

4α

∫ 1−α

0

e
y
2 + y2−2y

4α

√
y

dy. (3.32)

The function y2 − 2y decreases as y increases from y = 0 to y = 1. Hence the main

contribution to the integral comes near the point y = 0. Using Watson’s lemma,

∫ 1−α

0

e
y
2 + y2−2y

4α

√
y

dy = Γ (1/2)
√

2α(1 + O(α)). (3.33)

Combining together and using Γ (1/2) = √
π , we obtain (3.26). For Im(α), the analysis is

same except that we use

∫ 1−α

0

(iα + iy)m e
y
2 + y2−2y

4α

√
y

dy = O(αm+1/2). (3.34)

Hence, we find that for m ≥ 0, Im(α) = O(1) as α → 0+. Together with (3.29), this implies

the uniform boundness of Im(α).

For the positiveness of I(α), we first write it as

I(α) =
∫ ∞

−∞

e− α
4 t2+ i

2 (t−arctan t)

(1 + t2)1/4
dt =

∫ ∞

0

2e− α
4 t2

(1 + t2)1/4
cos

(

1

2
(t − arctan t)

)

dt . (3.35)
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The function θ(t) = t − arctan t is monotone increasing. We use the inverse function,

t = t(θ), to change the variables and find that

I(α) = 2

∫ ∞

0

e− α
4 t2 (1 + t2)3/4

t2
cos

(

θ

2

)

dθ, t = t(θ). (3.36)

Since e− α
4 t(θ)2

is positive and monotone decreasing in θ , we obtain I (α) > 0 for every α > 0

if we show that (i)

∫ π

0

(1 + t2)3/4

t2
cos

(

θ

2

)

dθ ≥ −
∫ 3π

π

(1 + t2)3/4

t2
cos

(

θ

2

)

dθ, (3.37)

and (ii)

(−1)k

∫ (2k+1)π

(2k−1)π

(1 + t2)3/4

t2
cos

(

θ

2

)

dθ, k = 1, 2, 3, . . . , (3.38)

is decreasing in k. (i) can be verified numerically. On the other hand, (ii) follows immediately

from the fact (1 + t2)3/4/t2 is a decreasing function of t . This completes the proof. 
�

We now evaluate the integral in (3.1) using the steepest descent analysis.

Lemma 3.7 Fix J > 1 and let 2β = J−1 + B N−1/2. Consider G(z) defined in (3.2). Then,

for every 0 < ε < 1
8

,

∫ γ+i∞

γ−i∞
e

N
2 G(z)dz = iΔe

N
2 G(γ )

√
N

I(F ′′(γ )Δ2)
(

1 + O(N− 1
2 +4ε)

)

(3.39)

with high probability, where

F(z) = 2βz − 1

N

N
∑

i=2

log(z − λi ) − 1

N
log(γ − λ1) − z − γ

N (γ − λ1)
(3.40)

and I(α) is defined in (1.21). Recall that Δ =
√

N (γ − λ1) (see Lemma 3.4.)

Proof We choose the γ , which defines the contour, as the critical point of G(z). The path of

steepest-descent is locally a vertical line near the critical point. It turns out that, instead of

using the path of steepest-descent, it is enough to proceed the analysis using the straight line

γ + iR globally. This choice was also made for the analysis in the paramagnetic regime in

[5].

We first write, using the function F(z),

∫ γ+i∞

γ−i∞
e

N
2 G(z)dz = e

N
2 G(γ )

∫ γ+i∞

γ−i∞
e

N
2 (G(z)−F(z))+ N

2 (F(z)−G(γ ))dz. (3.41)

From the definitions of G(z) and F(z),

e
N
2 (G(z)−F(z)) =

√

γ − λ1

z − λ1
e

z−γ
2(γ−λ1) . (3.42)

Changing the variables z = γ + it N−1/2 and using the notation Δ =
√

N (γ − λ1),

∫ γ+i∞

γ−i∞
e

N
2 G(z)dz = ie

N
2 G(γ )

√
N

∫ ∞

−∞

e
it

2Δ

√

1 + it
Δ

e
N
2 (F(γ+it N−1/2)−G(γ ))dt . (3.43)
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It is easy to check that the part of the integral with |t | ≥ N ε is small. To show this, we

first note that

�
(

N

(

F

(

γ + it√
N

)

− G(γ )

))

= −�
N
∑

i=2

log

(

γ − λi + it N−1/2

γ − λi

)

≤ − N − 1

2
log

(

1 + c2t2

N

)

with high probability for some constant c > 0, since there is a constant c > 0 such that

c ≤ γ − λi ≤ 1
c

for all i = 2, . . . , N , with high probability. Hence,

∣

∣

∣

∣

∣

∣

∫ ∞

N ε

e
it

2Δ

√

1 + it
Δ

e
N
2 (F(γ+i t N−1/2)−G(γ )dt

∣

∣

∣

∣

∣

∣

≤
∫ ∞

N ε

e
− N−1

2 log
(

1+ c2 t2

N

)

dt

≤
∫ N

N ε

e− c2

8 N 2ε

dt +
∫ ∞

N

1

(c2 N−1t2)N/4
dt = O

(

e−N ε
)

+ O
(

N−N/8
)

(3.44)

with high probability.

Consider the part |t | ≤ N ε . Note that F(z) satisfies F(γ ) = G(γ ), F ′(γ ) = G ′(γ ) = 0,

and for each m ≥ 2, F (m)(z) = O(1) uniformly for z in a small neighborhood of γ (by

Corollary 3.1). For m = 2, by Lemma 3.5,

c1 ≤ F ′′(γ ) ≤ c2 (3.45)

for some constants 0 < c1 < c2, uniformly in N . By Taylor expansion, for |t | ≤ N ε ,

F(γ + it N−1/2) − G(γ ) = − F ′′(γ )t2

2N
− iF ′′′(γ )t3

6N 3/2
+ O

(

N−2+4ε
)

(3.46)

and hence,

e
N
2 (F(γ+it N−1/2)−G(γ )) = e− F ′′(γ )t2

4

(

1 − iF ′′′(γ )t3

12N 1/2
+ O

(

N−1+6ε
)

)

. (3.47)

Therefore,

∫ N ε

−N ε

e
it

2Δ

√

1 + it
Δ

e
N
2

(

F(γ+it N−1/2)−G(γ )
)

dt

=
∫ ∞

−∞

e
it

2Δ
− F ′′(γ )

4 t2

√

1 + it
Δ

dt − iF ′′′(γ )

12N 1/2

∫ ∞

−∞

t3e
it

2Δ
− F ′′(γ )

4 t2

√

1 + it
Δ

dt + O
(

N−1+6ε
)

= Δ I(F ′′(γ )Δ2) − iF ′′′(γ )Δ4

12N 1/2
I3(F ′′(γ )Δ2) + O

(

N−1+6ε
)

. (3.48)

By (3.45) and Lemma 3.4, c1 N−ε ≤ F ′′(γ )Δ2 ≤ c2 N ε . Hence, Lemma 3.6 implies that

I(F ′′(γ )Δ2) ≥ cN−ε (3.49)

for some constant c > 0. Hence, using Lemma 3.4, Lemma 3.6, and the uniform boundedness

of F ′′′(γ ), we find that (3.48) is equal to

Δ I(F ′′(γ )Δ2)
(

1 + O
(

N− 1
2 +4ε

))

(3.50)
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if 0 < ε < 1
8

. Thus, using (3.49) and Lemma 3.4 again, we conclude that

∫ γ+i∞

γ−i∞
e

N
2 G(z)dz = iΔe

N
2 G(γ )

√
N

I(F ′′(γ )Δ2)
(

1 + O
(

N−1/2+4ε
))

. (3.51)


�

3.3 Proof of Theorem 1.1

Proof of Theorem 1.1 From Lemma 3.1 and Lemma 3.7, for every 0 < ε < 1
8

,

Z N = CN

iΔe
N
2 G(γ )

√
N

I(F ′′(γ )Δ2)
(

1 + O
(

N− 1
2 +4ε

))

(3.52)

with high probability. Using Stirling’s formula,

CN = Γ (N/2)

2π i(Nβ)N/2−1
=

√
Nβ

i
√

π(2βe)N/2

(

1 + O
(

N−1
))

, (3.53)

thus we find that FN = 1
N

log Z N satisfies

FN = 1

2
(G(γ ) − 1 − log(2β)) + 1

N

(

log

(

βΔ√
π

)

+ log I(F ′′(γ )Δ2)

)

+ O
(

N− 3
2 +4ε

)

(3.54)

with high probability.

Let us consider G(γ ). Since γ and Ĵ = J + J−1 are away from λ2, . . . , λN with high

probability,

log(γ − λi ) = log( Ĵ − λi ) − log

(

1 − γ − Ĵ

γ − λi

)

= log( Ĵ − λi ) + γ − Ĵ

γ − λi

+ (γ − Ĵ )2

2(γ − λi )2
+ O(|γ − Ĵ |3)

(3.55)

for i = 2, . . . , N , where we also use that γ − Ĵ = O(N− 1
2 +ε) with high probability (see

Lemma 3.4). Then, using Lemma 3.5 and the fact that G ′(γ ) = 2β − 1
N

∑N
i=1

1
γ−λi

= 0,

1

N

N
∑

i=2

log(γ − λi ) = 1

N

N
∑

i=2

log( Ĵ − λi ) + 2β(γ − Ĵ )

− γ − Ĵ

N (γ − λ1)
+ (γ − Ĵ )2

2(J 2 − 1)
+ O

(

N− 3
2 +3ε

)

with high probability. Hence, from the formula of G(z) in (3.2),

G(γ ) = 2β Ĵ− 1

N

N
∑

i=2

log( Ĵ − λi )

− 1

N

(

log

(

Δ√
N

)

+ sN

Δ
−

s2
N

2(J 2 − 1)

)

+ O
(

N− 3
2 +3ε

)
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using the notations sN =
√

N (γ − Ĵ ) and Δ =
√

N (γ − λ1) in Lemma 3.4. Thus,

FN =β Ĵ − 1

2
− 1

2
log(2β) − 1

2N

N
∑

i=2

log( Ĵ − λi ) + 1

4N
log N

+ 1

N

(

sN

2Δ
−

s2
N

4(J 2 − 1)
+ log

√
Δβ√
π

+ log I(F ′′(γ )Δ2)

)

+ O
(

N− 3
2 +4ε

)

.

(3.56)

To conclude Theorem 1.1, we use (i) the fact that Δ = sN − χN , (ii) the asymptotic (3.21)

of sN in terms of χN , (iii) the fact that F ′′(γ ) = 1
J 2−1

+ O(N−1+ε) which follows from

Lemma 3.5, and (iv) the fact that I
′(α) is uniformly bounded for α > 0 (see Lemma 3.6). 
�

4 Partial Linear Statistics

This section is devoted to a proof of Theorem 2.1 on partial linear statistics. The proof is a

simple modification of [5] for the linear statistics of all eigenvalues, which, in turn, follows

the proof of [1,2] for the case when the random matrix has zero mean.

4.1 Proof of Theorem 2.1

Recall Ĵ := J + J−1 denotes the classical location of the largest eigenvalue of a Wigner

matrix of non-zero mean. Fix (N -independent) constants a− < −2 and 2 < a+ < Ĵ . Let Γ

be the rectangular contour whose vertices are (a− ± iv0) and (a+ ± iv0) for some v0 ∈ (0, 1].
The contour is oriented counter-clockwise. For a test function ϕ(x) which is analytic in a

neighborhood of [−2, 2], we consider

N
(2)
N (ϕ) :=

N
∑

i=2

ϕ(λi ) − N

∫

R

ϕ(x)dσscl(x)

=
∮

Γ

ϕ(z)

[

N
∑

i=2

1

z − λi

− N

∫

R

dσscl(x)

z − x

]

dz = − 1

2π i

∮

Γ

ϕ(z)ξ
(2)
N dz

(4.1)

where

ξ
(2)
N (z) :=

N
∑

i=2

1

λi − z
− N

∫

R

1

x − z
dσscl(x). (4.2)

Decompose Γ into Γu ∪ Γd ∪ Γl ∪ Γr ∪ Γ0, where

Γu ={z = x + iv0 : a− ≤ x ≤ a+}, (4.3)

Γd ={z = x − iv0 : a− ≤ x ≤ a+}, (4.4)

Γl ={z = a− + iy : N−δ ≤ |y| ≤ v0}, (4.5)

Γr ={z = a+ + iy : N−δ ≤ |y| ≤ v0}, (4.6)

Γ0 ={z = a− + iy : |y| < N−δ} ∪ {z = a+ + iy : |y| < N−δ} (4.7)
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for some δ > 0. In the proof of Theorem 1.6 in [5], the authors showed that

ξN (z) :=
N
∑

i=1

1

λi − z
− N

∫

R

1

x − z
dσscl(x) = ξ

(2)
N (z) + 1

λ1 − z
(4.8)

converges weakly to a Gaussian process with mean b(z) = b(2)(z) + 1

Ĵ−z
and covariance

Γ (zi , z j ) = Γ (2)(zi , z j ) where b(2)(z) and Γ (2)(zi , z j ) are given in the proposition below.

Since for each fixed z ∈ C+, 1
λ1−z

→ 1

Ĵ−z
in probability (by Lemma 3.2), it is natural to

expect the following result for a partial sum.

Proposition 4.1 Let

s(z) =
∫

1

x − z
dσscl(x) = −z +

√
z2 − 4

2
(4.9)

be the Stieltjes transform of the semicircle measure. Fix a constant c > 0 and a path K ⊂ C+
such that �z > c for z ∈ K. Then the process {ξ (2)

N (z) : z ∈ K} converges weakly to a

Gaussian process with the mean

b(2)(z) = s(z)2

1 − s(z)2

( −J

1 + Js(z)
+ (w2 − 1)s(z) + s′(z)s(z) + (W4 − 3)s(z)3

)

− 1

Ĵ − z
(4.10)

and the covariance matrix

Γ (2)(zi , z j ) = s′(zi )s
′(z j )

(

(w2 − 2) + 2(W4 − 3)s(zi )s(z j ) + 2

(1 − s(zi )s(z j ))2

)

.

(4.11)

Remark 4.1 Note that as z → Ĵ ,

s(z)2

1 − s(z)2

J

1 + Js(z)
= s′(z)

1
J

+ s(z)
= 1

z − Ĵ
+ s′′( Ĵ )

s′( Ĵ )
+ O(z − Ĵ ). (4.12)

Hence, b(2)(z) is analytic near Ĵ and thus analytic for z ∈ C \ [−2, 2].
In order to complete the proof of Theorem 2.1, we will prove the following lemma.

Lemma 4.1 Define the events

ΩN := {λ1 ≥ Ĵ − N−1/3, λ2 ≤ 2 + N−1/3} (4.13)

which satisfies P(Ωc
N ) < N−D for any fixed (large) D > 0. Then for some δ > 0,

lim
v0→0+

lim sup
N→∞

∫

Γ#

E |ξ (2)
N (z)1ΩN

|2dz = 0, (4.14)

where Γ# can be Γr , Γl or Γ0.

From the explicit formulas (4.10) and (4.11), it is easy to check that

lim
v0→0+

∫

Γ#

E |ξ (2)(z)|2dz = 0. (4.15)

Proposition 4.1, Lemma 4.1 and (4.15) imply that N
(2)
N (ϕ) converges in distribution to a

Gaussian random variable with the following mean and variance:

− 1

2π i

∮

Γ

ϕ(z)b(2)(z)dz,
1

(2π i)2

∮

Γ

∮

Γ

ϕ(z1)ϕ(z2)Γ (z1, z2)dz1dz2. (4.16)
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It is direct to check that these are equal to M (2)(ϕ) and V (2)(ϕ) (see [5, Sect. 4.2]). We thus

obtain Theorem 2.1.

4.2 Proof of Proposition 4.1

From Theorem 7.1 of [8], we need to show (i) the finite-dimensional convergence of ξ
(2)
N (z)

to a Gaussian vector with desired mean and variance, and (ii) the tightness of ξ
(2)
N (z). We will

base our proof on the corresponding properties of ξN (z) obtained in [5]. Let us first recall

the limit theorem for ξN (z).

Lemma 4.2 ([5, Proposition 4.1] ) Let s(z) and K defined in the same way as in Proposition

4.1. Then, the process {ξN (z) : z ∈ K} converges weakly to a Gaussian process {ξ(z) : z ∈ K}
with the mean

b(z) = s(z)2

1 − s(z)2

(

− J

1 + Js(z)
+ (w2 − 1)s(z) + s′(z)s(z) + (W4 − 3)s(z)3

)

(4.17)

and the covariance matrix

Γ (zi , z j ) = s′(zi )s
′(z j )

(

(w2 − 2) + 2(W4 − 3)s(zi )s(z j ) + 2

(1 − s(zi )s(z j ))2

)

.

(4.18)

Let z1, z2, . . . , z p are p distinct points in K. The above lemma implies that the random

vector (ξN (zi ))
p
i=1 converges weakly to a p-dimensional Gaussian distribution with the mean

(b(zi ))
p
i=1 and the covariance matrix Γ (zi , z j ). Since the distance between K and λ1 is

bounded below, 1
λ1−zi

→ 1

Ĵ−zi

in probability for i = 1, . . . , p. Hence, by Slutsky’s theorem,

(ξ
(2)
N (zi ))

p
i=1 converges weakly to a p-dimensional Gaussian distribution vector with the mean

(b(2)(zi ))
p
i=1 and the covariance matrix Γ (2)(zi , z j ), where

b(2)(z) = b(z) − 1

Ĵ − z
, (4.19)

and Γ (2)(zi , z j ) = Γ (zi , z j ).

From Theorem 12.3 of [8], in order to show the tightness of a random process (ζN (z))z∈K,

it is sufficient to show that (i) (ζN (z))N is tight for a fixed z, and (ii) the following Hölder

condition holds: for some N -independent constant K > 0,

E |ζN (z1) − ζN (z2)|2 ≤ K |z1 − z2|2, z1, z2 ∈ K. (4.20)

In [5], the authors considered the random process ζN (z) := ξN (z) − E[ξN (z)], and proved

that it satisfies conditions (i) and (ii). Now, we consider ξ
(2)
N (z) := ζ

(2)
N + E[ξN (z)], where

ζ
(2)
N (z) := ζN (z) − 1

λ1−z
. Since E[ξN (z)] converges, it is enough to check that (ζ

(2)
N (z))N

satisfies conditions (i) and (ii). Now for a fixed z, the tightness of (ζN (z))N and the bound-

edness of 1
λ1−z

imply that (ζ
(2)
N (z))N is tight. On the other hand, since ζN (z) satisfies the

Hölder condition and �z ≥ c for z ∈ K,

E |ζ (2)
N (z1) − ζ

(2)
N (z2)|2 ≤ 2 E |ζN (z1) − ζN (z2)|2 + 2 E

∣

∣

∣

∣

1

λ1 − z1
− 1

λ1 − z2

∣

∣

∣

∣

2

≤ 2K |z1 − z2|2 + 2|z1 − z2|2
c4

=
(

K + 2

c4

)

|z1 − z2|2.
(4.21)
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Thus {ξ (2)
N (z), z ∈ K} is tight. This completes the proof of Proposition 4.1.

4.3 Proof of Lemma 4.1

For z ∈ Γ0, we notice that |ξ (2)
N 1ΩN

| ≤ C N and then

∫

Γ0

E |ξ (2)
N 1ΩN

|2 ≤ C N 2−δ . (4.22)

Thus (4.14) holds for Γ0 with δ > 2. For Γr and Γl , it is sufficient to show E |ξ (2)
N |2 < K

for some N -independent constant K > 0. The authors in [5] showed2 that E |ξN (z)|2 < K .

Hence, for z ∈ Γr ,

|ξ (2)
N (z)1ΩN

|2 ≤ 2|ξN (z)1ΩN
|2 + 2

∣

∣

∣

∣

1

λ1 − z
1ΩN

∣

∣

∣

∣

2

. (4.23)

The lemma then follows from the fact that | 1
λ1−z

1ΩN
| is bounded.

5 Joint Distribution of �N andN
(2)

N
(')

As before, let A be a random symmetric matrix of size N whose entries are (up to the

symmetry condition) independent centered random variables satisfying Definition 1.1. Let

M = 1√
N

A + J
N

11
T where J > 1. Let λ1 ≥ · · · ≥ λN be the eigenvalues of M .

Let χN =
√

N (λ1 − Ĵ ) denoting the rescaled largest eigenvalue. Given an analytic func-

tion ϕ(x), recall the partial linear statistics N
(2)
N (ϕ) =

∑N
i=2 ϕ(λi ) − N

∫ 2
−2 ϕ(x)dσscl(x).

We saw in the previous sections that χN and N
(2)
N (ϕ) converge individually to Gaussian

random variables. In this section, we consider the joint distribution and prove Theorem 2.2.

In Sect. 5.1, we first prove Theorem 2.2 assuming that the disorder variables are Gaussian

random variables. In Sect. 5.2, the general disorder variables are considered using an inter-

polation trick.

5.1 Asymptotic Independence for the GOE Case

Let the off-diagonal entries of A be Gaussian random variables of variance 1 and the diagonal

entries be Gaussian random variables of variance 2. In random matrix theory, the random

symmetric matrix H = 1√
N

A is said to belong to the Gaussian orthogonal ensemble (GOE).

A special property of GOE, compared with general random symmetric matrices, is that the

probability measure of GOE is invariant under orthogonal conjugations.

The following result is basically in [10].

Lemma 5.1 Let ( 1√
2

Ai i , Ai j , yi )1≤i< j≤N be i.i.d. standard Gaussian random variables. Let

H = 1√
N

A with A = (Ai j )1≤i, j≤N and let Y = 1√
N

(y1, . . . , yN )T . Define G(z) = (H −
z I )−1 for z ∈ C\[−2 − δ, 2 + δ], which is well defined with high probability for fixed δ > 0.

2 Even though it is stated in Lemma 4.2 of [5] that the lemma holds for sufficiently small δ > 0, the proof of

it is valid for any δ > 0, and we use δ > 2 for our purpose.
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Then, for z ∈ R\[−2 − δ, 2 + δ],

nN (z) :=
√

N (Y ∗G(z)Y − 1

N
Tr(G(z))) ⇒ n(z) (5.1)

where n = n(z) := N

(

0, 2
∫

dσscl (x)

(x−z)2

)

is a Gaussian random variable.

Proof of Lemma 5.1 We follow the idea presented in [10]. By Theorem 5.2 of [10], it is enough

to check the following three conditions for G: (i) There exists an N -independent constant a

such that ‖G‖ ≤ a with high probability, (ii) 1
N

Tr G2 converges to a constant in probability,

and (iii) 1
N

∑N
i=1 G2

i i converges to a constant in probability. They follow from rigidity of

eigenvalue (Lemma 3.2), law of large numbers (Corollary 3.1), and local law ([17, Theorem

2.9]), respectively. 
�

We are now ready to prove the following property of GOE matrices.

Proposition 5.1 For H defined in Lemma 5.1, denote its eigenvalues by ρ1 ≥ ρ2 ≥ · · · ≥ ρN .

For fixed k, consider a random vector (X1
N , X2

N , . . . , X k
N ) whose entries are real measurable

functions of those eigenvalues, i.e., X i
N = X i

N (ρ1, ρ2, . . . , ρN ) for i = 1, 2, . . . , k. Suppose

there is a random vector (X i )k
i=1 such that (X i

N )k
i=1 ⇒ (X i )k

i=1 as N → ∞. Then for

nN and n defined as in (5.1), (X1
N , X2

N , . . . , X k
N , nN ) ⇒ (X1, X2 . . . , X k, n), where n is

independent from (X1, X2, . . . , X k).

Proof For the convergence, it is enough to show (i) (X1
N , X2

N . . . , X k
N , nN ) is tight, and (ii)

convergence of characteristic function. The tightness follows from the tightness of individual

random vector (variable), which is a consequence of individual convergence.

For (ii), consider the eigenvalue decomposition H = O P OT , where P = diag(ρ1, ρ2, . . . ,

ρN ) and O is an orthogonal matrix. Since the H is orthogonal invariant, P and O are inde-

pendent. Set X = OT Y . Then X = 1√
N

(x1, . . . , xN ) where x1, . . . , xN are i.i.d standard

Gaussian (X is also independent with P).

Now, nN = Y ∗G(z)Y − 1
N

TrG(z) = 1
N

∑N
i=1

x2
i −1

ρi −z
. Since E[et x2

1 ] = 1√
1−2t

, we find that

for any t ∈ iR, the conditional expectation over X given P satisfies

EX

[

etnN
∣

∣P
]

= EX

[

e
t√
N

∑N
i=1

x2
i
−1

ρi −z
∣

∣P
]

=
N
∏

i=1

e
− 1

2 log(1− 2t√
N (ρi −z)

)− t√
N (ρi −z) .

Note that (X1
N , X2

N , . . . , X k
N ) only depends on the eigenvalues, and hence it is independent

of X . Thus, for any u1, u2, . . . , uk, t ∈ iR,

E

[

e
∑k

j=1 u j X
j
N +tnN

]

= E

[

e
∑k

j=1 u j X
j
N

N
∏

i=1

e
− 1

2 log(1− 2t√
N (ρi −z)

)− t√
N (ρi −z2)

]

. (5.2)

Since − 1
2

log(1 − 2z) − z = z2 + O(z3) as z → 0, using Corollary 3.1,

N
∏

i=1

e
− 1

2 log(1− 2t√
N (ρi −z)

)− t√
N (ρi −z)

= e
1
N

∑N
i=1

t2

(ρi −z)2
+O(N

− 1
2 )

= e
t2
∫

1

(x−z)2
dσscl (x)+O(N

− 1
2 ) = E

[

etn(z)
]

eO(N
− 1

2 )

(5.3)
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with high probability. Denote this high probability event by ΩN . Then,

lim
N→∞

E

[

e
∑k

j=1 u j X
j
N +tnN

]

= lim
N→∞

(

E

[

e
∑k

j=1 u j X
j
N +tnN

∣

∣ΩN

]

P(ΩN ) + E

[

e
∑k

j=1 u j X
j
N +tnN

∣

∣Ωc
N

]

P(Ωc
N )

)

(5.4)

= E

[

e
∑k

j=1 u j X j
]

E

[

etn(z)
]

,

since t, u1, u2, . . . , uk ∈ iR and hence all exponents are pure imaginary. Note that the char-

acteristic function of (X1, . . . , X k, n) is equal to the product of the characteristic functions

of individual random vector (variable). Thus n(z) is independent from (X1, . . . , X k). This

completes the proof. 
�

Corollary 5.1 Fix δ > 0, consider z1 ∈ C\R and z2 ∈ R\[−2−δ, 2+δ]. Recall s(z)defined in

(4.9). Then (Tr(G(z1))− Ns(z1), nN (z2)) converges in distribution to independent Gaussian

random variables.

Proof Note that Tr(G(z1))−Ns(z1) is complex, we consider the random vector (�(Tr(G(z1))

− Ns(z1)),�(Tr(G(z1)) − Ns(z1))). By Proposition 5.1, it is enough to show that

(�(Tr(G(z1)) − N (s1)),�(Tr(G(z1)) − Ns(z1)) converges to a Gaussian random vector.

Consider the expression z1 = E + iη for ε, η ∈ R and η �= 0. Recalling the definition of

linear statistics NN (ϕ) defined in (2.3), we have

�(Tr(G(z1) − Ns(z1))) = NN (ϕr ), ϕr (x) = x − E

(x − E)2 + η2
,

and

�(Tr(G(z1) − Ns(z1)) = NN (ϕi ), ϕi (x) = η

(x − E)2 + η2
.

That is, they are both linear statistics. Then Corollary then follows from Theorem 1.1 of [2].


�

Remark 5.1 When we prove Theorem 2.2 for GOE, we use Proposition 5.1 and Corollary

5.1 with N -dependent zi . First, for a fixed z2 ∈ R\[−2 − δ, 2 + δ] for some δ > 0, let

z̃2 = z̃2(N ) :=
√

N+1
N

z2. Using the exactly same argument in the proof of Lemma 5.1,

one can show nN (z̃2) ⇒ n(z2). Since the (5.3) still holds for z̃2 and n(z2), the asymptotic

independence in Proposition 5.1 is still valid, i.e.

(X1
N , X2

N , . . . , X k
N , nN (z̃2)) ⇒ (X1, X2 . . . , X k, n(z2)),

where n(z2) is independent from (X1, X2, . . . , X k). Second, for z1 ∈ C\R, consider z̃1 =
z̃1(N ) :=

√

N+1
N

z1. Notice that

1

x − z̃1
= 1

x − z1
+ z1

2N (x − z1)2
+ O(N−2).

Then, by the discussion in Remark 2.1, Tr(G(z̃1)) − Ns(z̃1) = NN ( 1
x−z̃1

) converges to a

Gaussian random variable. Now, putting together, for z̃1 and z̃2 defined as above, (Tr(G(z̃1))−
Ns(z̃1), nN (z̃2)) converge jointly to independent Gaussian random variables.
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We now prove Theorem 2.2 for the case where the disorder belongs to GOE.

Proof (Proof of Theorem 2.2 when A belongs to GOE) Recall that λi are the eigenvalues of

M = 1√
N

A + J
N

11
T with A from the GOE. Since the means and variances follow from [10]

and Theorem 2.1, it is enough to prove the asymptotic independence of χN and N
(2)
N (ϕ).

(Notice that that W3 = 0 for Gaussian Ai j .) Now, for any analytic test function ϕ, the partial

linear statistics can be expressed as (see (4.2)) an integral of

ξ
(2)
N (z) =

N
∑

i=2

1

λi − z
− N

∫

R

1

x − z
dσscl(x), z ∈ C\R. (5.5)

Then according to Lemma 4.1 and what follows, it is enough to prove that χN and ξ
(2)
N (z)

are asymptotically independent for fixed z ∈ C \ R. Let

ξN (z) = ξ
(2)
N (z) + 1

λ1 − z
= Tr(M − z I )−1 − Ns(z).

Since 1
λ1−z

→ 1

Ĵ−z
in probability, it is enough to prove that χN and ξN (z) are asymptotically

independent.

Since the GOE is orthogonal invariant, for every deterministic matrix U , the eigenvalues

of A + U have the same distribution as A + OU OT for any orthogonal matrix O . Thus, we

may consider the following equivalent model:

M = 1√
N

A + diag(J , 0, . . . , 0). (5.6)

Following the proof of Theorem 2.2 in [10], we write

M =
[

A11√
N

+ J Y ∗

Y M̂

]

. (5.7)

Since det(M − z I ) = det(M̂ − z I )
(

A11√
N

+ J − z − Y ∗Ĝ(z)Y
)

with

Ĝ(z) := (M̂ − z IN−1)
−1 =

(

1√
N

Â − z IN−1

)−1

, (5.8)

the largest eigenvalue of M satisfies

λ1 = J + A11√
N

− Y ∗Ĝ(λ1)Y (5.9)

if λ1 is not an eigenvalue of M̂ , which holds with high probability. Using the resolvent formula

twice, we write

Ĝ(λ1) = Ĝ( Ĵ ) + (Ĝ(λ1) − Ĝ( Ĵ )) = Ĝ( Ĵ ) + (λ1 − Ĵ )Ĝ(λ1)Ĝ( Ĵ )

= Ĝ( Ĵ ) + (λ1 − Ĵ )Ĝ( Ĵ )2 + (λ1 − Ĵ )2Ĝ(λ1)Ĝ( Ĵ )2.

Hence,

λ1 − Ĵ = A11√
N

− 1

J
− Y ∗Ĝ(λ1)Y

= A11√
N

− 1

J
− Y ∗Ĝ( Ĵ )Y + (λ1 − Ĵ )Y ∗Ĝ( Ĵ )2Y + (λ1 − Ĵ )2Y ∗Ĝ(λ1)Ĝ( Ĵ )2Y
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with high probability. Moving all terms with factor λ1 − Ĵ to the left and taking it out as a

common factor, we arrive at

χN =
√

N (λ1 − Ĵ ) =
A11 −

√
N
(

1
J

+ Y ∗Ĝ( Ĵ )Y
)

1 + Y ∗Ĝ( Ĵ )2Y + (λ1 − Ĵ )Y ∗Ĝ(λ1)Ĝ( Ĵ )2Y
(5.10)

with high probability.

Note that M̂ and Y satisfy the setting of Corollary 5.1 up to the scaling factor

√

N
N−1

. Set

Ỹ =
√

N

N − 1
Y , G̃(z) =

(

√

N

N − 1
M̂ − z IN−1

)−1
. (5.11)

Then, Ỹ and G̃ satisfy the setting of Corollary 5.1, and

Y ∗Ĝ( Ĵ )Y =
√

N − 1

N
Ỹ ∗G̃( J̃ )Ỹ , J̃ :=

√

N

N − 1
Ĵ . (5.12)

Now, by Corollary 3.1,

1

N − 1
Tr(G̃( J̃ )) = s( Ĵ ) + O(N−1+ε) = − 1

J
+ O(N−1+ε) (5.13)

with high probability. By Lemma 5.1, Corollary 3.1 and Lemma 3.2,

Y ∗Ĝ( Ĵ )2Y → 1

J 2 − 1
, (λ1 − Ĵ )Y ∗Ĝ(λ1)Ĝ( Ĵ )2Y → 0 (5.14)

in probability. Using (5.14), (5.13) and denoting the denominator in (5.10) by D1, we write

χN = D−1
1

(

A11 − ñN−1( J̃ ) + O(N− 1
2 +ε)

)

, (5.15)

where nN−1( J̃ ) =
√

N − 1(Ỹ ∗G̃( J̃ )Ỹ − 1
N−1

Tr(G̃( J̃ ))) (see (5.1)) and D1 → J 2

J 2−1
in

probability. Note that A11 and nN−1( J̃ ) are independent, the distribution of χN is governed

by their convolution.

We now turn to the linear statistic ξN (z). Using Schur complement of M with block

structure in (5.7), for any z ∈ C\R,

Tr(M − z I )−1 =
(

J + A11√
N

− z − Y ∗Ĝ(z)Y

)−1

(1 + Y ∗Ĝ(z)2Y ) + Tr(Ĝ(z)).

(5.16)

Using Lemma 5.1 and Lemma 3.1,

D2 = D2(N ) := 1 + Y ∗Ĝ(z)2Y

J + A11√
N

− z − Y ∗Ĝ(z)Y
→ 1 + s′(z)

J − z − s(z)

in probability. Then, by setting z̃ := z̃(N ) =
√

N
N−1

z, we write

ξN (z) =Tr(M − z I )−1 − Ns(z) = D2 + TrĜ(z) − Ns(z) + O(N− 1
2 +ε)

=D2 − s(z)

2
+ zs′(z)

2
+
√

N

N − 1

(

TrG̃(z̃) − (N − 1)s(z̃)
)

+ O(N− 1
2 +ε).

(5.17)
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That is, the fluctuation of ξN (z) is govern by TrG̃(z̃) − (N − 1)s(z̃). Now using Corollary

5.1 and Remark 5.1, one can conclude that (TrG̃(z̃) − (N − 1)s(z̃), nN−1( J̃ )) converge to

independent Gaussian random variables. Furthermore, A11 is independent of both Y and M̂ .

Thus by (5.15) and (5.17), (ξN (z), χN ) converge to independent random variables. Theorem

2.2 then follows. 
�

5.2 Proof of Theorem 2.2 for General Case

We prove Theorem 2.2 for general disorders, where the disorder matrix A is a Wigner matrix

and satisfies Definition 1.1. Unlike the GOE, Wigner matrices are not orthogonal invariant,

hence we cannot apply (5.6) where we replaced the rank-1 perturbation in M by a diagonal

matrix. To overcome the difficulty, we use an interpolation method. It has been successfully

applied in many works in random matrix theory, where a given matrix and a reference matrix

such as GOE are interpolated. We refer to [22] for its application in the analysis of linear

eigenvalue statistics.

Let V = 1√
N

A be a (normalized) Wigner matrix and V G be a (normalized) GOE matrix

independent from V . Define

H(t) = V cos t + V G sin t (5.18)

so that H(0) = V and H(π
2
) = V G . Note that E[H2

i j ] = 1
N

for i �= j . Let

e = 1√
N

1
T = 1√

N
(1, 1, . . . , 1)T ∈ R

N (5.19)

and

M(t) = H(t) + J ee
T , (5.20)

whose eigenvalues are denoted by λ1 ≥ λ2 ≥ · · · ≥ λN . Define the resolvents

G(z) = (M − z I )−1, Ĝ(z) = (H − z I )−1. (5.21)

Here, we omit the dependence on t for the ease of notation. We note that G and Ĝ are

symmetric (not Hermitian). For any (small) fixed δ > 0, Ĝ(z) is well-defined for z ∈
C \ [−2 − δ, 2 + δ] with high probability.

For χN =
√

N (λ1 − Ĵ ), we notice that

Ĝee(λ1) := 〈e, Ĝ(λ1)e〉 = − 1

J
(5.22)

with high probability. The claim holds since

0 = det(M − λ1 I ) = det(H − λ1 I ) det(I + J Ĝ(λ1)ee
T )

= det(H − λ1 I )
(

1 + J Ĝee(λ1)
) (5.23)

and λ1 is not an eigenvalue of H with high probability (See [20, Lemma 6.1]). Furthermore,

by Taylor expansion,

− 1

J
= Ĝee(λ1) = Ĝee( Ĵ ) + Ĝ ′

ee
( Ĵ )(λ1 − Ĵ ) + O(N−1+ε) (5.24)
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with high probability, since |λ1 − Ĵ | = O(N− 1
2 +ε) and ‖Ĝ ′′(z)‖ = O(1) with high proba-

bility. From the isotropic local law, Theorem 2.2 of [20], we find that

Ĝee( Ĵ ) = s( Ĵ ) + O(N− 1
2 +ε), Ĝ ′

ee
( Ĵ ) = s′( Ĵ ) + O(N− 1

2 +ε) (5.25)

with high probability. Thus, using Lemma 5.1,

χN =
√

N (λ1 − Ĵ ) = −
√

N (J−1 + Ĝee( Ĵ ))

s′( Ĵ )
+ O(N− 1

2 +2ε) (5.26)

with high probability. That is, the behavior of χN is governed by the fluctuation of Ĝee( Ĵ ).

To prove the Theorem 2.2, as in the Gaussian disorder case, it is enough to show the

convergence of the joint distribution of χN and the full linear statistics ξN (z) = Tr(G(z)) −
Ns(z) for fixed z ∈ C \ R. Under the light of (5.26), we set out to calculate the following

characteristic function involving ξN (z) and Ĝee( Ĵ ). Explicitly, for t1, t2, t3 ∈ iR and z =
E + iη with E ∈ R and η > 0, we define

E

[

eP(t)
]

:= E

[

et1�ξN +t2�ξN +t3nN

]

, P(t) := t1�ξN (z) + t2�ξN (z) + t3nN , (5.27)

where

nN =
√

N

(

Ĝee( Ĵ ) + 1

J

)

. (5.28)

Note that nN is real, the exponent P(t) is pure imaginary and thus |eP(t)| ≤ 1. For our

purpose, it is desired to estimate E[eP(0)]. At t = π
2

, the disorder H(π
2
) reduces to the GOE

case. From Sect. 5.1, χN and ξN are asymptotically independent in the GOE case, then

lim
N→∞

E

[

eP( π
2 )
]

= E

[

et1�ξ+t2�ξ
]

· E
[

et3n
]

(5.29)

for some Gaussian random variables ξ, n with known mean and variance. Thus, it only

remains to estimate the t-derivative of E[eP(t)]. Here, we recall the following identity for the

derivative of the resolvent G. For i, j, a, b = 1, 2, . . . , N ,

∂

∂ Mi j

Gab = −β jk(Gaj Gkb + Gak G jb) (5.30)

with

β jk =
{

1 j �= k,

1/2 j = k.
(5.31)

We note that the above identity also holds if one replace G by Ĝ. Thus for any fixed event

Ω , d
dt

E
[

eP(t)|Ω
]

equals

E

⎡

⎣

∑

i≤ j

dMi j

dt

∂

∂ Mi j

eP(t)

∣

∣

∣

∣

Ω

⎤

⎦

= sin t
∑

i, j

E

[

Vi j

(

t1�
(

G2
)

i j
+ t2�

(

G2
)

i j
+ t3√

N

∑

p,q

Ĝ pi Ĝ jq

)

eP(t)
∣

∣

∣
Ω

]

− cos t
∑

i, j

E

[

V G
i j

(

t1�
(

G2
)

i j
+ t2�

(

G2
)

i j
+ t3√

N

∑

p,q

Ĝ pi Ĝ jq

)

eP(t)
∣

∣

∣
Ω

]

.

(5.32)
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The reason for the introduction of Ω will be revealed in a minute. The right hand side of

(5.32) motivates us to apply the generalized Stein’s lemma. More precisely, we will use

Proposition 3.1 of [22] with a small modification as follows:

Proposition 5.2 Given an event Ω , let X be a random variable such that E[|X |p+2|Ω] < ∞
for a certain non-negative integer p. Denote the conditional cumulants of X by κl := κl(Ω),

l = 1, . . . , p + 1. Then for any function � : R → C of the class C p+1 with bounded

derivatives �(l), l = 1, . . . , p + 1, we have

E[X�(X)|Ω] =
p
∑

l=0

κl+1

l! E[�(l)(X)|Ω] + εp, (5.33)

where the remainder term εp admits the bound

|εp| ≤ C p E

⎡

⎣|X |p+2

⎛

⎝1 + max
1≤ j≤p+1

(∫ 1

0

|�(p+1)(vX)|dv

)

p+2
j

⎞

⎠

∣

∣

∣

∣

Ω

⎤

⎦ (5.34)

for some constant C p that depends only on p.

Proof We basically follow the proof of Proposition 3.1 of [22]. Let πp be the degree p Taylor

polynomial of � and let rp = � − πp . Then, as in the proof of Proposition 3.1 of [22],

E[Xπp(X)|Ω] =
p
∑

j=0

κ j+1

j ! E[π ( j)
p (X)|Ω]. (5.35)

Thus
∣

∣

∣

∣

∣

E[X�|Ω] −
p
∑

l=0

κl+1

l! E[�(l)|Ω]
∣

∣

∣

∣

∣

≤
∣

∣E[Xrp|Ω]
∣

∣+
p
∑

l=0

|κl+1|
l!

∣

∣

∣
E

[

r (l)
p |Ω

]∣

∣

∣
. (5.36)

Since

rp(X) = X p+1

p!

∫ 1

0

�(p+1)(vX)(1 − v)pdv, (5.37)

by the estimate |κ j | ≤ (2 j) j
E[|X | j |Ω] and Hölder’s inequality,

p
∑

l=0

|κl+1|
l!

∣

∣

∣
E

[

r (l)
p (X)|Ω

]∣

∣

∣

≤
p
∑

l=0

κl+1

l!(p − l)! E

[

|X |p+1−l

∫ 1

0

|�(p+1)(vX)|dv

∣

∣

∣
Ω

]

≤
p
∑

l=0

(2l + 2)l+1

l!(p − l)! E

⎡

⎣|X |p+2

⎛

⎝1 +
(∫ 1

0

|�(p+1)(vX)|dv

)

p+2
p+1−l

⎞

⎠

∣

∣

∣

∣

Ω

⎤

⎦ .

(5.38)

As
∣

∣E[Xrp|Ω]
∣

∣ can also be bounded by the right hand side of (5.38), the proof is complete.


�

In order to apply Proposition 5.2 to (5.32), we need prior bounds of P(t) and its derivatives to

bound εp in (5.33). As we will see later, it is enough to bound Gi j , (G
2)i j , Ĝi j and

∑

p Ĝi p .
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In the following, we are going to introduce a high probability event Ω , on which we have

the desired bounds.

With the trivial bound ‖G‖ ≤ 1
η

(recall that z = E + iη), we have that |Gi j | ≤ 1
η

and
∣

∣(G2)i j

∣

∣ ≤
∥

∥G2
∥

∥ ≤ 1
η2 . For Ĝi j , we introduce the high probability event Ω1 = {λ1 ≤

(2 + Ĵ )/2}. It is easy to check that ‖Ĝ‖1Ω1 ≤ 1

Ĵ−2
and thus

|Ĝi j 1Ω1 | ≤ 1

Ĵ − 2
, (5.39)

For
∑

p Ĝi p , we recall the following concentration theorem for the quadratic function of Ĝ:

Proposition 5.3 (Theorem 2.3 and Remark 2.4 of [20] ) Fix � ≥ 3. Set ϕ = (log N )log log N .

Then there exist constants C1 and C2 such that for any

E ∈
[

�,−2 − ϕC1 N− 2
3

]

∪ [2 + ϕC1 N− 2
3 , �],

and any η ∈ (0, �], and any deterministic v,w ∈ C
N ,

|〈v, Ĝ(z)w〉 − s(z)〈v,w〉| ≤ ϕC2

√

�s(z)

Nη
‖v‖ ‖w‖ (5.40)

with high probability, uniformly on z = E + iη.

Let ei := (0, . . . , 1, · · · , 0). Noting that
∑N

p=1 Ĝ pi =
√

N 〈e, Ĝei 〉, we can derive a prior

bound for
∑N

p=1 Ĝ pi , which is summarized in the following Corollary.

Corollary 5.2 For any fixed E ∈ R\[−2, 2], the tail bound
∣

∣

∣

∣

∣

∑

p

(Ĝ(E))pi

∣

∣

∣

∣

∣

≤ N ε (5.41)

holds simultaneously for i = 1, . . . , N with high probability. We also have that

|〈v, Ĝ(E)w〉 − s(E)〈v,w〉| ≤ ‖v‖ ‖w‖ N− 1
2 +ε (5.42)

with high probability.

Proof We first prove (5.42). Consider z = E + iN−1/2. Using Proposition 5.3, we find there

exists some C > 0 such that

〈v, Ĝ(E)w〉 − s(E)〈v,w〉|
≤ |〈v, (Ĝ(z) − Ĝ(E)w〉| + |〈v, Ĝ(z)w〉 − s(z)〈v,w〉| + |s(z) − s(E)||〈v,w〉|

≤ C N−1/2 ‖v‖ ‖w‖ + CϕC N− 1
2 ‖v‖ ‖w‖ + C N−1/2.

(5.43)

Here we also use the fact that Ω1 holds with high probability. Since ϕ � N ε , (5.42) then

follows. The tail bound (5.41) can be obtained from (5.42) by setting v =
√

N e and w = ei .


�

We are ready to introduce the high probability event as promised. Set s1 := s(z), s′
1 :=

s′(z) and s2 := s( Ĵ ) = −J−1, the desired high probability event Ω is the intersection of Ω1
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and the following events:

Ω2 =
{
∣

∣

∣

∑

p

(Ĝ( Ĵ ))pi

∣

∣

∣
≤ N ε, ∀i = 1, . . . , N

}

∩ {|Ĝee( Ĵ ) − s2| ≤ N− 1
2 +ε},(5.44)

Ω3 = {|Ĝi j − δi j s2| ≤ N− 1
2 +ε, ∀i, j = 1, . . . , N }, (5.45)

Ω4 = {|Gi j − δi j s1|, |(G2)i j − δi j s
′
1| ≤ N− 1

2 +ε, ∀i, j = 1, . . . , N }, (5.46)

Ω5 = {|Vi j |, |V G
i j |, |Mi j | ≤ N− 1

2 +ε, ∀i, j = 1, . . . , N }. (5.47)

Here, by Corollary 5.2, Ω2 is a high probability event. The fact that Ω3 and Ω4 are high

probability events can be checked from Theorem 2.8 and Theorem 2.9 of [17]. It is easy to

check that Ω5 is a high probability event from the existence of all moments. Furthermore,

by the Lipshitz continuity of the resolvents, we also find that Ω holds uniformly on t with

high probability.

Applying Proposition 5.2 to Equation (5.32) conditioning on Ω , we claim that for any

1 ≤ i, j ≤ N ,

E

[

Vi j

(

t1�(G2)i j + t2�(G2)i j + t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP
∣

∣

∣
Ω

]

=
3
∑

l=1

κ
Vi j

l+1 cosl t

l! E

[(

∂

∂ Mi j

)l ((

t1�(G2)i j + t2�(G2)i j

+ t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP

)

∣

∣

∣
Ω

]

+ O(N− 5
2 +ε)

(5.48)

where κ
Vi j

l denotes the lth cumulant of Vi j . Here, it is legal to replace the conditional cumu-

lants by κ
Vi j

l , since Ω is a high probability event.

To prove the claim, we begin by controlling the remainder term εp in (5.33). On Ω ,

Gi j , Ĝi j and (G2)i j are O(1), and

N− 1
2

∑

p,q

Ĝ pi Ĝ jq = N− 1
2

(

∑

p

Ĝ pi

)(

∑

q

Ĝq j

)

= O
(

N− 1
2 +ε
)

.

Thus, ∂
∂ Mi j

P = O(1) on Ω . From the resolvent identity and the definition of event Ω , we find
∥

∥G(z; vVi j ) − G(z; Vi j )
∥

∥ = O(N− 1
2 +ε) for 0 ≤ v ≤ 1. Thus onΩ , ∂

∂ Mi j
P(t; vVi j ) = O(1)

for 0 ≤ v ≤ 1. Furthermore, we notice that

∂

∂ Mi j

(G2)i j = ∂

∂ Mi j

∑

k

Gki G jk = −βi j

(

2Gi j (G
2)i j + Gi i (G

2) j j + G j j (G
2)i i

)

,

(5.49)

and

∂

∂ Mi j

∑

p

Ĝ pi = −βi j

(

Ĝ j i

∑

p

Ĝ pi + Ĝi i

∑

p

Ĝ pj

)

. (5.50)
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Thus we can obtain similar estimates for higher derivatives of P . Since V 5
i j = O(N− 5

2 +5ε)

on Ω5, we find that

|Vi j |5
⎛

⎝1 + max
1≤ j≤5

(

∫ 1

0

∣

∣

∣

∣

∣

(

∂

∂ Mi j

)5

P

∣

∣

∣

∣

∣

dv

)
5
j

⎞

⎠ ≤ C N− 5
2 +Cε (5.51)

on Ω . That is, ε3 ≤ C N− 5
2 +Cε , and after summing over i, j , the claim (5.48) is proved.

We next consider the term in (5.32) containing V G . Noting that the cumulants of order

higher than 2 vanish for Gaussian random variables, for any 1 ≤ i, j ≤ N ,

E

[

V G
i j

(

t1�(G2)i j + t2�(G2)i j + t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP
∣

∣

∣
Ω

]

= κ
V G

i j

2 sin t E

[

∂

∂ Mi j

((

t1�(G2)i j + t2�(G2)i j + t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP

)

∣

∣

∣
Ω

]

(5.52)

+O(N− 1
2 +ε),

where κ
V G

i j

2 denotes the second cumulant of V G
i j . We now put (5.48) and (5.52) into (5.32)

conditioning on Ω . This yields

d

dt
E

[

eP(t)
∣

∣

∣
Ω] = (sin t)

3
∑

l=1

(cosl t)Il − (cos t sin t)I G
1 + O(N− 1

2 +ε), (5.53)

where we define Il by

∑

i, j

κ
Vi j

l+1

l! E

[

(

∂

∂ Mi j

)l
((

t1�(G2)i j + t2�(G2)i j + t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP

)

∣

∣

∣
Ω

]

(5.54)

and I G
1 by

∑

i, j

κ
V G

i j

2 E

[

∂

∂ Mi j

((

t1�(G2)i j + t2�(G2)i j + t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP

)

∣

∣

∣
Ω

]

. (5.55)

In the following, we will evaluate Il for l = 1, 2, 3 separately. We may omit the conditioning

on Ω for the ease of notation.

5.2.1 Estimate for I1 − I
G

1

Since κ
V G

i j

2 = κ
Vi j

2 = 1
N

for i �= j , we only need to consider the contribution from the

diagonal entries to I1 − I G
1 . By (5.54) and (5.55), I1 − I G

1 equals

∑

i

(κ
Vi i

2 − κ
V G

ii

2 ) E

[

∂

∂ Mi i

((

t1�(G2)i i + t2�(G2)i i + t3√
N

∑

p,q

Ĝ pi Ĝiq

)

eP

)]

.

(5.56)
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From (5.50), we find that

t3√
N

∂

∂ Mi i

∑

p,q

Ĝ pi Ĝiq = O
(

N− 1
2 +ε
)

.

Similarly, it can be checked that all terms in the right-hand side of (5.56) involving Ĝ are

O(N− 1
2 +ε). Collecting the terms of order 1 only, (5.56) becomes

1

N

∑

i

(w2 − 2) E

[(

2t1�
(

(G2)i i Gi i

)

+ 2t2�
(

(G2)i i Gi i

)

+ (t1�(G2)i i + t2�(G2)i i )
2

)

eP

]

+ O
(

N− 1
2 +ε
)

.

(5.57)

Using the estimate |Gi j −δi j s1|, |(G2)i j −δi j s
′
1| ≤ N− 1

2 +ε on Ω4, we conclude that I1 − I G
1

equals

(w2 − 2)
(

2t1�(s′
1s1) + 2t2�(s′

1s1) + (t1�(s′
1) + t2�(s′

1))
2
)

E

[

eP
]

+ O(N− 1
2 +ε).

(5.58)

5.2.2 Estimate for I2

We decompose I2 into

I2 =
∑

i, j

W3

2N
3
2

E

[

(

∂

∂ Mi j

)2
((

t1�(G2)i j + t2�(G2)i j + t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP

)]

:= I2,0 + 2I1,1 + I0,2, (5.59)

where Ir ,2−r is defined by

∑

i, j

W3

2N
3
2

E

[(

∂

∂ Mi j

)r (

t1�(G2)i j + t2�(G2)i j

+ t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

·
(

∂

∂ Mi j

)2−r

eP

]

.

(5.60)

We first consider the case i �= j in the summand of Ir ,2−r for r = 0, 1, 2. Recall that all

terms of O(N− 1
2 +ε) are negligible in the sense that they can be absorbed into the error term

in the right-hand side of (5.53).

(i) For I2,0, we note that the terms arising from the derivatives of the G2 are negligible,

which can be checked by following the argument in the proof of Theorem 3.3 in [22],

especially the estimate of T3 in (3.53) of [22]. For example, one of such terms is bounded

by

∣

∣

∣

∣

∣

∣

N− 3
2

∑

i, j

W3

2
E

[

t1�(Gi i G j j (G
2)i j )e

P
]

∣

∣

∣

∣

∣

∣

≤ C

η4
√

N
. (5.61)
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To prove it, we consider a vector u = (G11, G22, . . . , G N N ) and proceed as

∣

∣

∣

∣

∣

∣

∑

i, j

Gi i G j j (G
2)i j

∣

∣

∣

∣

∣

∣

=
∣

∣〈u, G2
u〉
∣

∣ ≤ ‖G2‖‖u‖2 ≤ N‖G2‖‖G‖2 ≤ N

η4
.

On the other hand,

(

∂

∂ Mi j

)2

Ĝ pi Ĝ jq = 6(Ĝ pi Ĝ
2
j i Ĝ jq + Ĝ pj Ĝi i Ĝ j i Ĝ jq + Ĝ pi Ĝ j i Ĝ j j Ĝiq)

+ Ĝi i Ĝ j j (4Ĝ pi Ĝ jq + 2Ĝ pj Ĝiq).

(5.62)

From the estimate |Ĝi j − δi j s2| ≤ N− 1
2 +ε on Ω3 the concentration of Ĝee on Ω2, we

then claim that

I2,0 = W3t3

2N 2

∑

i, j

E

[

6Ĝi i Ĝ j j

(

∑

p

Ĝ pi

)(

∑

q

Ĝq j

)

eP

]

+ O
(

N− 1
2 +ε
)

=3W3t3s2
2 E

[

Ĝ2
ee

eP
]

+ O
(

N− 1
2 +ε
)

= 3W3t3s4
2 E[eP ] + O

(

N− 1
2 +ε
)

.

(5.63)

All the other terms in I2,0 arising from
(

∂
∂ Mi j

)2
∑

p,q Ĝ pi Ĝ jq are negligible. For

example, one of such terms is bounded by

∣

∣

∣

∣

∣

∣

W3t3

2N 2

∑

i, j

E

[(

∑

p

Ĝ pj

)

Ĝi i Ĝ j i

(

∑

q

Ĝ jq

)

eP

]

∣

∣

∣

∣

∣

∣

≤ 2|W3||t3|
( Ĵ − 2)N

5
2 −3ε

∑

i, j

E

[

|eP |
]

= O
(

N− 1
2 +3ε

)

(5.64)

where we use the definitions of Ω1, Ω2 and Ω3.

(ii) For I1,1, the estimates for the negligible terms can be done by using the argument similar

to (5.64) and (5.61). The remaining O(1)-terms are

W3t3

N 2

∑

i, j

E

[

∑

p,q

Ĝ pi Ĝ jq

(

t1�
(

Gi i (G
2) j j + G j j (G

2)i i

)

+ t2�
(

Gi i (G
2) j j + G j j (G

2)i i

)

)

eP

]

.

Using the definitions of Ω2 and Ω4, we write

I1,1 = 2W3t3
(

t1�(s1s′
1) + t2�(s1s′

1)
)

E

[

Ĝ2
ee

eP
]

+ O
(

N− 1
2 +ε
)

= 2W3t3
(

t1�(s1s′
1) + t2�(s1s′

1)
)

s2
2 E

[

eP
]

+ O
(

N− 1
2 +ε
)

.

(5.65)

(iii) For I0,2, from the same analysis as for I1,1,

I0,2 = 2W3t3
(

t1�(s1s′
1) + t2�(s1s′

1)
)

s2
2 E

[

eP
]

+ O
(

N− 1
2 +ε
)

. (5.66)

Again, the estimate can be done in a similar manner.
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For the case i = j , since there are only N terms in the summation in I2, all terms are

negligible due to the priori bounds on ‖G‖ and
∑

p Ĝ pi .

Collecting the terms in (5.63), (5.65), and (5.66), we obtain that I2 equals

∑

i, j

κ
Vi j

3

2! E

[

(

∂

∂ Mi j

)2
((

t1�(G2)i j + t2�(G2)i j + t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP

)]

= W3

[

3t3s4
2 + 6t1t3�(s1s′

1)(s2)
2 + 6t2t3�(s1s′

1)(s2)
2
]

E

[

eP
]

+ O
(

N− 1
2 +ε
)

.

(5.67)

5.2.3 Estimate for I3

Note that any term in I3 involving Ĝ is negligible due to the extra N− 1
2 factor. Estimating as

in the previous subsection, we obtain that I3 equals

∑ κ
Vi j

4

3! E

[

(

∂

∂ Mi j

)3
((

t1�(G2)i j + t2�(G2)i j + t3√
N

∑

p,q

Ĝ pi Ĝ jq

)

eP

)]

= −4(W4 − 3)

[

t1�(s3
1 s′

1) + t2�(s3
1 s′

1) +
(

t1�(s1s′
1) + t2�(s1s′

1)
)2
]

E

[

eP
]

+ O(N− 1
2 +ε).

(5.68)

We remark that O(1)-terms in I3 contribute only to the corrections of linear statistics.

5.2.4 Proof of Theorem 2.2 for general case

Define P̃(t) by

P(t) − (W2 − 2)(cos t)2

(

t1�(s′
1s1) + t2�(s′

1s1) + 1

2

(

t1�(s′
1) + t2�(s′

1)
)2
)

+ W3(cos t)3
(

t3s4
2 + 2t1t3�(s1s′

1)s
2
2 + 2t2t3�(s1s′

1)s
2
2

)

− (W4 − 3)(cos t)4
(

t1�(s3
1 s′

1) + t2�(s3
1 s′

1) + (t1�(s1s′
1) + t2�(s1s′

1))
2
)

.

(5.69)

Then, plugging (5.58), (5.67), and (5.68) into (5.48), we find that

d

dt
E[e P̃ |Ω] = O(N− 1

2 +ε), (5.70)

which implies that

E[e P̃(0)|Ω] = E[e P̃( π
2 )|Ω] + O(N− 1

2 +ε). (5.71)

Thus,

lim
N→∞

E

[

eP (0)
]

= lim
N→∞

(

E

[

eP(0)|Ω
]

P(Ω) + E

[

eP(0)|Ωc
]

P(Ωc)
)

=eP(0)−P̃(0) lim
N→∞

E[e P̃(0)|Ω] = eP(0)−P̃(0) lim
N→∞

E[eP( π
2 )].

(5.72)

Here we use the fact that Ω holds with high probability and P̃(π
2
) = P(π

2
). We can now con-

clude that (�ξN (z),�ξN (z), nN ) converges to a multivariate Gaussian vector in distribution
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as N → ∞. By direct calculation, we also find that

(

ξN (z)

nN

)

⇒ N

(

(

b(z)

−W3s4
2

)

,

(

V (z1) −2W3s1s′
1s2

2

−2W3s1s′
1s2

2
2

J 2(J 2−1)

))

(5.73)

with b(z) and V (z) are defined in Lemma 4.2. Now, using (5.26), we arrive at

(

ξN (z)

χN

)

⇒ N

⎛

⎝

(

b(z)
W3

J 2

(

1 − 1
J 2

)

)

,

⎛

⎝

V (z1) 2W3s1s′
1

(

1 − 1
J 2

)

2W3s1s′
1

(

1 − 1
J 2

)

2
(

1 − 1
J 2

)

⎞

⎠

⎞

⎠ . (5.74)

Hence, the asymptotic Gaussianity of (N
(2)
N (ϕ), χN ) follows. For (2.10) and (2.11), the mean

and the variance of N (2)[ϕ] is given in Theorem 2.1. The limiting covariance is given by

− 2W3

(

1 − 1

J 2

)∮

Γ

ϕ(z)s(z)s′(z)
dz

2π i
= 2W3

(

1 − 1

J 2

)

τ1(ϕ). (5.75)

where we use the change of variables z �→ s mapping C \ [−2, 2] to the disk |s| < 1 with

s + 1
s

= −z and (4.16) in [5]. This completes the proof of Theorem 2.2 for general case.

6 Matching

In the transitional regime, we took 2β = 1
J

+ B√
N

. The ferromagnetic regime and the

paramagnetic regime correspond to the limiting cases 2β > J and 2β < J , respectively. In

this section, we will consider formal limits B → ±∞ of the formula given in the main result,

Theorem 1.2, and check the consistency with the results for ferromagnetic and paramagnetic

regimes obtained in [5].

Theorem 1.2 states that the free energy FN is close to the random variable

F tran
N := 1

4J 2
+ B

2J
√

N
+ log N

4N
+ B2 J 2

4N
+ 1

N
G1 + 1

N
Q(G2) (6.1)

in an appropriate sense. Here, (G1, G2) is a Gaussian vector independent of B. The function

Q(x) is given by (1.19). In ferromagnetic and paramagnetic regimes, [5] shows that the free

energy is close to

F ferro
N := β

(

J + 1

J

)

− 1

2
log(2β J ) − 1

4J 2
− 1

2
+

β − 1
2J√

N
N ( f ′

2, α
′
2) (6.2)

and

F
para
N := β2 + 1

N
N ( f1, α1), (6.3)

respectively, where N ( f , α) denotes a Gaussian distribution of mean f and variance α. The

parameters for the Gaussians are (see (4) of [4] which corrected an error in [5])

f ′
2 = W3(J−2 − J−4),

α′
2 = 2(1 − J−2)

(6.4)
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and (see (1.11) and (1.12) of [5]; we set J ′ = J )

f1 = 1

4
log(1 − 4β2) + β2(w2 − 2) + 2β4(W4 − 3) − 1

2
log(1 − 2β J ),

α1 = −1

2
log(1 − 4β2) + β2(w2 − 2) + 2β4(W4 − 3).

(6.5)

The function Q(x) in (6.1) is given by

Q(x) = s(x)

2(s(x) − x)
− s(x)2

4(J 2 − 1)
+ log(s(x) − x)

2
+ log I

(

(s(x) − x)2

J 2 − 1

)

(6.6)

where (recall the formula (1.20))

s(x) = x − B(J 2 − 1) +
√

(x + B(J 2 − 1))2 + 4(J 2 − 1)

2
. (6.7)

From the formula, for x = O(1),

s(x) =
{

x + 1
B

+ O(B−2) as B → +∞,

−B(J 2 − 1) − 1
B

+ O(B−2) as B → −∞.
(6.8)

Note that since we set 2β = 1
J

+ B√
N

in the transitional regime, we regard B = O(
√

N )

when we take B → ±∞.

6.1 B → +∞

Using (6.8), we find that for x = O(1),

Q(x) = Bx

2
+ O(log B). (6.9)

Hence, since G1 does not depend on B, we see that as B = O(
√

N ) with B > 0,

F tran
N = 1

4J 2
+ B

2J
√

N
+ B2 J 2

4N
+ B

2N
G2 + O

(

log B

N

)

+ O

(

log N

N

)

. (6.10)

where O( f (B, N )) represents a random variable X such that the moments of X
f (B,N )

are all

bounded by constants independent of B and N .

We compare the above formula with the ferromagnetic case (6.2). If we set 2β = 1
J
+ B√

N
,

then

F ferro
N = 1

4J 2
+ B

2J
√

N
+ B2 J 2

4N
+ B

2N
N ( f ′

2, α
′
2) + O(N−3/2). (6.11)

We note that (see (6.4) and (1.25)) the mean and variance are f ′
2 = E[G2] and α′

2 = Var[G2].
The above formula of F tran

N is thus consistent with F ferro
N .
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6.2 B → −∞

Consider (6.6). Recall that I(α) =
√

4π
α

(1 + O(α−1)) as α → +∞ from (3.25). Hence, if

x = O(1) and s(x) → ∞, then

Q(x) = − s(x)2

4(J 2 − 1)
+ log

√

4π(J 2 − 1)

s(x)
+ 1

2
+ O

(

1

s(x)

)

. (6.12)

Using (6.8), we find that for x = O(1),

Q(x) = − B2(J 2 − 1)

4
+ log

√

4π

|B| + O(B−1). (6.13)

Hence, the two leading terms of Q(G2) do not depend on G2. Therefore, for B = O(
√

N )

with B < 0,

F tran
N = 1

4

(

1

J
+ B√

N

)2

+ 1

2N
log

(

4π
√

N

|B|

)

+ 1

N
G1 + O

(

1

N B

)

. (6.14)

On the other hand, in the paramagnetic regime, if we set 2β = 1
J

+ B√
N

with B < 0, then

the parameters in (6.5) satisfy (see (1.23))

f1 = 1

4
log(1 − J−2) + 1

4J 2
(w2 − 2) + 1

8J 4
(W4 − 3) − 1

2
log

( |B|J√
N

)

+ O(N−1/2)

= E[G1] + 1

2
log

(

4π
√

N

|B|

)

+ O(N−1/2)

(6.15)

and

α1 = −1

2
log(1 − J−2) + w2 − 2

4J 2
+ W4 − 3

8J 4
+ O(N−1/2) = Var[G1] + O(N−1/2).

(6.16)

Thus, if we set 2β = 1
J

+ B√
N

with B < 0, then

F
para
N = 1

4

(

1

J
+ B√

N

)2

+ 1

2N
log

(

4π
√

N

|B|

)

+ 1

N
N (E[G1], Var[G1]) + O(N−3/2).

(6.17)

This is consistent with the formula of F tran
N .

References

1. Bai, Z., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices. Springer Series in

Statistics, 2nd edn. Springer, New York (2010)

2. Bai, Z., Yao, J.: On the convergence of the spectral empirical process of Wigner matrices. Bernoulli 11(6),

1059–1092 (2005)

3. Baik, J., Lee, J.O.: Fluctuations of the free energy of the spherical Sherrington-Kirkpatrick model. J. Stat.

Phys. 165(2), 185–224 (2016)

4. Baik, J., Lee, J.O.: Correction to: fluctuations of the free energy of the spherical Sherrington-Kirkpatrick

model with ferromagnetic interaction. Ann. Henri Poincaré 18(11), 3757–3758 (2017)

123



1522 J. Baik et al.

5. Baik, J., Lee, J.O.: Fluctuations of the free energy of the spherical Sherrington-Kirkpatrick model with

ferromagnetic interaction. Ann. Henri Poincaré 18(6), 1867–1917 (2017)

6. Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample

covariance matrices. Ann. Probab. 33(5), 1643–1697 (2005)

7. Bao, Z., Pan, G., Zhou, W.: Central limit theorem for partial linear eigenvalue statistics of Wigner matrices.

J. Stat. Phys. 150(1), 88–129 (2013)

8. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

9. Bloemendal, A., Virág, B.: Limits of spiked random matrices I. Probab. Theory Relat. Fields 156(3–4),

795–825 (2013)

10. Capitaine, M., Donati-Martin, C., Féral, D.: The largest eigenvalues of finite rank deformation of large

Wigner matrices: convergence and nonuniversality of the fluctuations. Ann. Probab. 37(1), 1–47 (2009)

11. Capitaine, M., Donati-Martin, C., Féral, D.: Central limit theorems for eigenvalues of deformations of

Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48(1), 107–133 (2012)

12. Chen, W.-K.: On the mixed even-spin Sherrington-Kirkpatrick model with ferromagnetic interaction.

Ann. Inst. Henri Poincaré Probab. Stat. 50(1), 63–83 (2014)

13. Chen, W.-K., Sen, A.: Parisi formula, disorder chaos and fluctuation for the ground state energy in the

spherical mixed p-spin models. Commun. Math. Phys. 350(1), 129–173 (2017)

14. Chen, W.-K., Dey, P., Panchenko, D.: Fluctuations of the free energy in the mixed p-spin models with

external field. Probab. Theory Relat. Fields 168(1–2), 41–53 (2017)

15. Crisanti, A., Sommers, H.-J.: The sphericalp-spin interaction spin glass model: the statics. Z. Phys. B.

Condens. Matter 87(3), 341–354 (1992)

16. Dembo, A., Zeitouni, O.: Matrix optimization under random external fields. J. Stat. Phys. 159(6), 1306–

1326 (2015)

17. Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdös-Rényi graphs I: local semicircle

law. Ann. Probab. 41(3B), 2279–2375 (2013)

18. Fyodorov, Y.V., Le Doussal, P.: Topology trivialization and large deviations for the minimum in the

simplest random optimization. J. Stat. Phys. 154(1–2), 466–490 (2014)

19. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–

204 (1998)

20. Knowles, A., Yin, J.: The isotropic semicircle law and deformation of Wigner matrices. Commun. Pure

Appl. Math. 66(11), 1663–1750 (2013)

21. Kosterlitz, J., Thouless, D., Jones, R.: Spherical model of a spin-glass. Phys. Rev. Lett. 36(20), 1217–1220

(1976)

22. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with

independent entries. Ann. Probab. 37(5), 1778–1840 (2009)

23. O’Rourke, S., Soshnikov, A.: Partial linear eigenvalue statistics for Wigner and sample covariance random

matrices. J. Theoret. Probab. 28(2), 726–744 (2015)

24. Parisi, G.: A sequence of approximate solutions to the S-K model for spin glasses. J. Phys. A 13(4),

L115–L121 (1980)

25. Pizzo, A., Renfrew, D., Soshnikov, A.: On finite rank deformations of Wigner matrices. Ann. Inst. Henri

Poincaré Probab. Stat. 49(1), 64–94 (2013)

26. Talagrand, M.: Free energy of the spherical mean field model. Probab. Theory Relat. Fields 134(3),

339–382 (2006)

27. Talagrand, M.: The Parisi formula. Ann. Math. (2) 163(1), 221–263 (2006)

123


	Ferromagnetic to Paramagnetic Transition in Spherical Spin Glass
	Abstract
	1 Introduction
	1.1 Model
	1.2 Previous Results in Each Regime
	1.3 Results
	1.4 Organization

	2 Results on Wigner Matrices with Non-zero Mean
	2.1 Partial Linear Statistics
	2.2 Joint Convergence of the Largest Eigenvalue and Linear Statistics
	2.3 Proof of Theorem 1.2

	3 Proof of Theorem 1.1
	3.1 Preliminaries
	3.2 Steepest-Descent Analysis
	3.3 Proof of Theorem 1.1

	4 Partial Linear Statistics
	4.1 Proof of Theorem 2.1
	4.2 Proof of Proposition 4.1
	4.3 Proof of Lemma 4.1

	5 Joint Distribution of χN and mathcalNN(2)()
	5.1 Asymptotic Independence for the GOE Case
	5.2 Proof of Theorem 2.2 for General Case
	5.2.1 Estimate for  I1 - I1G 
	5.2.2 Estimate for  I2 
	5.2.3 Estimate for  I3 
	5.2.4 Proof of Theorem 2.2 for general case


	6 Matching
	6.1 Bto+infty
	6.2 Bto-infty

	References


