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Abstract

We consider the spherical spin glass model defined by a combination of the pure 2-spin
spherical Sherrington—Kirkpatrick Hamiltonian and the ferromagnetic Curie-Weiss Hamil-
tonian. In the large system limit, there is a two-dimensional phase diagram with respect to
the temperature and the coupling strength. The phase diagram is divided into three regimes;
ferromagnetic, paramagnetic, and spin glass regimes. The fluctuations of the free energy
are known in each regime. In this paper, we study the transition between the ferromagnetic
regime and the paramagnetic regime in a critical scale.

Keywords Free energy - Spherical SK model - Phase transition - Spiked random matrices

1 Introduction

We consider a disordered system defined by random Gibbs measures whose Hamiltonian is
the sum of a spin glass Hamiltonian and a ferromagnetic Hamiltonian. Depending on the
strength of the coupling constant and the temperature, the system may exhibit several phases
in the large system limit. The paper is concerned with the fluctuations of the free energy near
the boundary between two phases known as ferromagnetic and paramagnetic regimes.
Consider the sum of the pure 2-spin spherical Sherrington—Kirkpatrick (SSK) Hamiltonian
and the Curie—Weiss (CW) Hamiltonian. We call this sum the SSK + CW Hamiltonian. We
denote the coupling constant by J and the inverse temperature by 8. We consider the random
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Gibbs measure with the SSK + CW Hamiltonian. The focus of this paper is on the free
energy.

The limiting free energy was obtained non-rigorously by Kosterlitz et al. [21] in 1976.
When J = 0, this formula is the explicit evaluation of the Crisanti-Sommers formula [15]
(which was proved rigorously by Talagrand [26]) in the case of the pure 2-spin SSK. The
Crisanti—-Sommers formula is the spherical version of the Parisi formula [24,27]. The formula
of Kosterlitz, Thouless, and Jones shows a two-dimensional phase transition: see Fig. 1. The
three regimes are determined by the condition that max{l, ﬁ J} is equal to 1 (spin glass
regime), ﬁ (paramagnetic regime) or J (ferromagnetic regime). The limiting free energy is
analytic with respect to both 8 and J in each regime, but not on the boundary.

Recently, the authors of [5] showed that the result of Kosterlitz, Thouless, and Jones is
rigorous. Furthermore, the authors also evaluated the distribution of the fluctuations of the
free energy in each regime. (The case when J = 0 was obtained earlier in [3].) The order
of the fluctuations are N =2/3, N=!, N=1/2 and the limiting distributions are Tracy—Widom,
Gaussian, and Gaussian in the spin glass, paramagnetic regime, ferromagnetic regime, respec-
tively. In the same paper, the transition between the spin glass regime and the ferromagnetic
regime was also studied. However, the other two transitions and the triple point were left
open. The goal of this paper is to describe the transition between the paramagnetic regime
and and the ferromagnetic regime.

Another system which combines a spin glass and a ferromagnetic model is the SSK with
an external field. The difference between the CW Hamiltonian and an external field is that
one is a quadratic function and the other is a linear function of the spin variables. These two
models are related; see [12] for a one-sided inequality. For the spin glass with external field,
the fluctuations of the free energy were computed recently in [13,14] when the coupling
constant is positive (for both SSK and SK (Sherrington—Kirkpatrick) cases with general spin
interactions). However, the transitions are not obtained except for certain large deviation
results [16,18]. One of the interests of the SSK 4+ CW model is that it is an easier model
which can be analyzed in detail in the transitional regimes.

1.1 Model
Let

Svo1={o=(o1,...,on) eRY 10} + ...+ 0% = N} (1.1)
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be a sphere in RV of radius +/N. Define the SSK + CW Hamiltonian by

Hy(0) = Hy* () + H{V (0), o €Sy (1.2)
where
1Y 7 INESAY
HY X (0) = Wit Z Aijoioj,  Hy" (o) = N Z 0i0j =W (ZG’) Y
ij=1 ij=1 i=1

Here J is the coupling constant. The random coefficients A;; satisfy A;; = Aj; and A;j,
i < j,areindependent centered random variables. We call A;; disorder variables. The precise
conditions are given in Definition 1.1 below. Note that as a function of o, H}:;W (0) is large
when the coordinates of ¢ have same sign. On the other hand, the maximizers o of HIESK(G)
depend highly on {A;;}.

With 8 > Orepresenting the inverse temperature, the free energy and the partition function
are defined by

1

Fy = —logZy, Zy :/ PN 4y (o) (1.4)
N Sn—-1

where wy is the normalized uniform measure on Sy_;. Note that Fy and Zy are random

variables since they depend on the disorder variables A;;. The free energy and the partition

function depend on the parameters 8 and J,

Fy =FnB,J), Zny=Zy(B,J). (1.5)

Since the Curie-Weiss Hamiltonian is a quadratic function of the spin variable, we can
write the SSK + CW Hamiltonian as Hy (o) = Zf\’/jzl M;jo;o; where M;; = ﬁAU + %
are non-centered random variables. In terms of matrix notations,

1 J
Hy()=0"Me, M=—A+-—11" (1.6)
VN N
with A = (Aij)1<i j<n.1=(1,..., DT, M = (M;j)1<i,j<n,and o = (o1, ..., on)". The
non-centered random symmetric matrix M is an example of a real Wigner matrix perturbed
by a deterministic finite rank matrix. Such matrices are often called spiked random matrices.
We will use the eigenvalues of spiked random matrices in our analysis of the free energy.
We assume the following conditions on the disorder variables.

Definition 1.1 (Assumptions on disorder variables) Let A; j» i < J, be independent real
random variables satisfying the following conditions:

o All moments of A;; are finite and E[A;;] = O foralli < j.

o Foralli < j,E[A};]=1, E[Afj] = W3, and E[A;*j] = W, for some constants W3 € R

and W4 > 0.

o Foralli, IE[Aizi] = w; for a constant wy > 0.
Set Ajj = Ajjfori > j.Let A = (Ai/)f\,[/:l and we call it a Wigner matrix (of zero mean).
Definition 1.2 (Eigenvalues of non-zero mean Wigner matrices) Let M be the N x N sym-

metric matrix defined in (1.6). We call it a Wigner matrix of non-zero mean !. Its eigenvalues
are denoted by

’
1 In [5], we consider the case when the diagonal entries of M have mean JW and the off-diagonal entries have

mean % where J and J' are allowed to be different. However, in this case, M = L + %IIT + %I

VN

where [ is the identity matrix. This only shifts all eigenvalues by a deterministic small number. As we will
see in Remark 2.1, it is not more general than the case with J =J.
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AM =A== AN (.7

We introduce the following terminology.

Definition 1.3 (High probability event) We say that an N-dependent event 2y holds with
high probability if, for any given D > 0, there exists Ny > 0 such that

P(25) < NP
for any N > Njp.

1.2 Previous Results in Each Regime

We review the results on the fluctuations in each regime obtained in [5]. We state two types of
results: one in terms of the eigenvalues of M and the other in terms of limiting distributions.
Set

J = max{J, 1}. (1.8)

It was shown in [5] that the following holds with high probability. In both ferromagnetic and
the spin glass regimes (given by J > ﬁ), with any € > 0,

— F L _~_l —1+e
FN_FN+<ﬂ—2J~><M J i)—i—o(N ) (1.9)

In the paramagnetic regime (given by J < ﬁ),

N
Fy = Fy — ﬁ > log (2,3 + i - x,-) +o(N7h. (1.10)
i=1

Here, F v 1s a deterministic function of NV, 8, J. The above results show that the fluctuations
of Fy are determined, to the leading order, by the top eigenvalue A in the ferromagnetic and
spin glass regimes, while they are determined by all eigenvalues in the paramagnetic regime.

A limit theorem for F follows if we use limit theorems for the eigenvalues of random
matrices. The relevant random matrices are Wigner matrices of non-zero mean in (1.6). For
such random matrices, the following is known [11,25] (see [6] for complex matrices):

N%3 (0 —2) = TW, ifJ <1,

111
NVZ2(u—T=H = NWs02—0,20-772) ifJ > 1, (-1

where the convergences are in distribution. Here TW denotes the GOE Tracy—Widom dis-
tribution and N (a, b) denotes the Gaussian distribution of mean a and variance b. The
dichotomy is due to the effect of the non-zero mean; if J is not large enough (i.e. J < 1),
then the influence of the non-zero mean is negligible to contribute to the fluctuations of the
top eigenvalue. For J < 1, the top eigenvalue is close to the second eigenvalue with order
O(N~2/3%€), But for J > 1, the difference of the top eigenvalue and the second eigenvalue
is of order O(1).

On the other hand, the following is also known (see [5, Theorem 1.6]): if a function ¢ is
smooth in an open interval containing the interval [—2, J+17J —11, then

N 2 /4 _ 2
Y et =N / L Pdaa(0) S N(f.a). dos(x) = Vo 112

4 2
i=1

@ Springer



1488 J.Baik et al.

for some explicit constants f, a. This result is applicable to the paramagnetic regime.
Together, we have the following asymptotic results obtained in Theorem 1.4 of [5] (with
a small correction in [4]):

(i) (Spin glass regime) If § > % and J < 1, then

1
—— NP (Fy - F) = TW,. (1.13)
-2
(ii) (Paramagnetic regime) If 8 < % and 8 < %, then
N (Fy — F) = N (f1,a1). (1.14)

(iii) (Ferromagnetic regime) If / > 1 and 8 > %, then

VN (Fy = F)= N (f3,d). (1.15)

for some deterministic function F = F (B, J) and some explicit constants fi, o1, fz’ and aé
depending on 8 and J.

1.3 Results

We state the results on the transition between the paramagnetic regime and the ferromagnetic
regime. The boundary between these two regimes is given by the equation zi = J with
J > 1. In the transitional regime, the correct scaling turns out to be the following: let J > 1
be fixed and let § = By be given by

28 =

+ (1.16)

=

~| =

with fixed B € R. The following is the first main result of this paper. This relates the free
energy with the eigenvalues of M.

Theorem 1.1 Let 8 be given by (1.16). Then, for every 0 < € < é,

N
- 1 1 —3/2+4e
FN=FN—ﬁ;g(Ai>+NQ<xN)+o(N ) (117)
with high probability as N — 0o, where

1
—log N + log P

P L1 1 A
Fy=BU +77) =35 —log2h) + <4 ﬁ) , (1.18)
AN = ~N@y —J + 7Y and g(z) :=1log(J + J~' —2). Also,
s s(0)?  log(s(x) = x) (s(x) — x)?
00 = i =0 a2 1) 2 o I< 721 ) (1.19)
with 5
_ _ 2 2 2 _
R BUJ2—1)+/(x +ZB(J D)2 +4(J2—1) (1.20)
and .
00 ef%ter%
I(a) :/ - dr, (1.21)
—00 1 + 1t

where the square root denotes the principal branch.
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The Formula (1.17) shows a combined contribution from Ay, ..., Ax and a distinguished
contribution from A;. Compare the formula with (1.9) and (1.10).

Now we state a result analogous to (1.14) and (1.15). This follows if we have limit theorems
for Q(xn) and Z,N=2 g(X;). From the second part of (1.11), Q(xn) converges to an explicit
function of a Gaussian random variable. On the other hand, ZIN=2 g(%;) is different from
Zf\]:l g(X;) by one term. It is not difficult to show that removing one term does not affect the
fluctuations much and the fluctuations are still given by a Gaussian random variable similar
to (1.12); see Theorem 2.1 in the next section. In random matrix theory, these sums are
known as partial linear statistic and linear statistic, respectively. The main technical part of
this paper is to evaluate the joint distribution of Q () and Z;N=2 g(X;). We show that jointly
they converge in distribution to a bivariate Gaussian variable with an explicit covariance. See
the next section for the precise statement. These results are interesting on their own in random
matrix theory. Putting together, we obtain the following result.

Theorem 1.2 We have
1 B logN  B?J?
N(Fy——5 - — -
4J2 25N 4N 4N

in distribution as N — oo where G| and G, are bivariate Gaussian random variables with

) =G+ 0(%) (1.22)

1 wy — 2 Wy —3 1
E[G ] = -1 L 1 1.23
[G1] = 7 log(/ )+ YN ERRYE +0g2ﬁj, (1.23)
Varl@y] = — 2 log(1 — s 2222 W3 (1.24)
azl= ;8 472 gJ4+ '
E[G] = W3(J 2 —J™,  Var[G] =2(1 — J72), (1.25)
and
Wa(J=2—J*
Cov(G1. Go) = % (1.26)

Note that G| and G do not depend on B. The function Q is defined in (1.19).

Note that if the third moment W3 of A;; withi # j is zero, then G and G, are independent
Gaussians.

The above result is consistent with the results on ferromagnetic and paramagnetic regimes
if we letformally B — +ooand B — —o0, respectively. One can show that when B — o0,
Q(G») dominates G;. Furthermore, while Q(G») is not Gaussian, upon proper normalization,
it converges to a Gaussian as B — +o00. See Fig. 2. On the other hand, when B — —o0, the
leading two terms of Q(G,) are constants and the random part is smaller than G;. See Sect. 6
for details.

Let us comment on the other transitions in the phase digram in Fig. 1. As mentioned
before, the transition between the spin glass and ferromagnetic regimes was discussed in [5].
Note that (1.9) is valid in both regimes. It was shown that if we let 8 > 1/2 be fixed and
consider N-dependent J = 1 4+ wN —1/3 then for each w € R, (1.9) still holds. Now, for
such J, it was shown in [9] that N23(n; — 2) = TW1 ,, where TW ,, is a one-parameter
family of random variables interpolating TW and Gaussian distributions. Hence, we obtain
the fluctuations for the transitional regime.

On the other hand, the transition between the spin glass and paramagnetic regimes is an
open question. By matching the fluctuation scales in both regimes, we expect that the critical

scale is B = % + O( ‘1:;),%31\[).
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Fig.2 a Probability density function of Q(Gy) for B = —1, 0, 1, b probability density function of normalized
Q(Gy) resembles a Gaussian density as B — 400

1.4 Organization

The rest of the paper is organized as follows. In Sect. 2, we first state new results on random
matrices. They are given in Theorem 2.1 (partial linear statistics) and Theorem 2.2 (joint
convergence). Using them, we derive Theorem 1.2 from Theorem 1.1. In Sect. 3, we prove
Theorem 1.1. In the next two sections, we prove the random matrix results stated in Sect. 2;
Theorem 2.1 in Sect.4 and Theorem 2.2 in Sect. 5. In Sect. 6, we show that Theorem 1.2 is
consistent with the previous results on ferromagnetic and paramagnetic regimes.

2 Results on Wigner Matrices with Non-zero Mean

In order to prove Theorem 1.2 from Theorem 1.1, we need some new results on random
matrices. We need (i) a limit theorem for partial linear statistics Zlsz g(X;) and (ii) a joint
convergence of the large eigenvalue and partial linear statistics. These results are interesting
on their own in random matrix theory. We state them here and prove them in Sects.4 and 5
below. Using these results, we prove Theorem 1.2 in Sect. 2.3.

Recall that the N x N symmetric matrix M is given by M = ﬁA + %117 where
A = (A;j) is asymmetric matrix with independent entries for i < j satisfying the conditions
given in Definition 1.1and 1 = (1, ..., )T The matrix M is called a Wigner matrix with a
non-zero mean % Recall that we assume

J>1. (2.1)

The eigenvalues of M are denoted by A1 > --- > Ap.

It is known that A; is close to J + J~! with high probability and Xy, ..., Ay are in
a neighborhood of [—2, 2] with high probability. See Lemma 3.2 below for the precise
statement.
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2.1 Partial Linear Statistics

A linear statistic is the sum of a function of the eigenvalues. The fluctuations of linear statistics
for Wigner matrices and other random matrix ensembles are of central interest in the random
matrix theory; see, for example, [2,19,22]. For Wigner matrices with non-zero mean, the
following result was obtained in Theorem 1.6 and Remark 1.7 of [5]. Set

J=J+JN (2.2)

Let ¢ : R — R be a function which is analytic in an open neighborhood of [—2, J] and has
compact support. Then, as N — oo, the random variable

N 2
Nn(p) = Z‘P()\i) - Nfzw(X)ddscz(X) = N(M(p), V(p)) (2.3)

i=1
where { 3
M(p) = 7 (02 +¢(=2)) = T70(¢) = T (0) + (w2 — 2)72(g)

+ (Wa = 3)1a(@) + () = Y T (e), 2.4)
(=2

V(p) = (w2 = )11(9)> + (Wa = 3)1a()* +2 ) _ Lre(p)*.

=1
Here, Wy = E[A],], wo = E[A?], and
(®) : /2 (x) TeG/2) d L[ (2 cos(9)) cos(£6)do (2.5
T _ — X)—dx = — COS COS N .
ey T _2('0 Va4 — x2 2 —n(p

where Ty (t) are the Chebyshev polynomials of the first kind.
We are interested in a partial linear statistic, ZlN: 2 @(A;). See [7,23] for other types of

partial linear statistics. The partial linear static Z,N: > @(A;) is the linear statistic minus one
term @(A1). Since | — J in probability (see the second part of (1.11)), by (2.3), Slutsky’s
theorem implies that

N 2
Z<P(?»i) - N/2 p(x)doser(x) = N(M(p) — p(J), V().

i=2 -
Since this follows from (2.3), this is true assuming that ¢ is analytic in an open neighborhood
of [-2, f]. However, we are interested in the test function ¢(x) = g(x) = log(f — Xx) (see
(1.17)). Since this function is not analytic at x = J, the above simple argument does not
apply. Nonetheless, if we adapt the proof of (2.3), one can show that it is enough to assume
that the test function is analytic in a neighborhood of the interval [—2, 2], not of [—2, J 1.

Theorem 2.1 Let J > 1. Then for every test function ¢ which is analytic in a neighborhood
of [-2,2],

N 2
N @) =" o) =N / L PWdoa () = NMP @), vP@) 6
i=2 -
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1492 J.Baik et al.

as N — oo with

1 3
M (p) =70 +9(=2)) = J70(0) - I (@) + (w2 — 2)1a(9)

o0 (2.7)
+ (Wa = 3)nalp) — Y T "),
=2
and V@ (9) = V(p) where V (@) is defined in (2.4).
Note that
M@ (p) = M(p) — () 2.8)

for ¢ analytic in a neighborhood of [—2, J ].

Remark 2.1 We comment on a case when the test function depends on N. Consider the
function ¢y defined by

oN () = o) + % Lo

uniformly for x in a neighborhood of [—2, 2] for analytic functions ¢ and ¢. Define the
corresponding linear statistic

N 2

N on) =Y onGi) = N / N (1)doger (x)
i=2 -2

v 2.9

1 1
=NV @) + (Z $0) — N / ¢<x>dosd(x)> +0 (ﬁ) .
i=2
By Theorem 2.1, the second order term converges to zero in probability. Thus, N, 15,2 ) (¢n) and

N ,E,z ) (¢) converge to the same Gaussian distribution. The same argument also applies to full
linear statistics; this is used in Remark 5.1 below. Now, the claim in footnote! is verified by

noting that ¢ (x + %) = o)+ W +O(N7?).

2.2 Joint Convergence of the Largest Eigenvalue and Linear Statistics

By Theorem 2.1 and the second part of (1.11), the partial linear statistic and the largest eigen-
value each converge to Gaussian distributions individually. The following theorem shows that
they converge jointly to a bivariate Gaussian with an explicit covariance.
Theorem 2.2 Let J > 1. Then for ¢(x) which is analytic in a neighborhood of [—2, 2],
NI(VZ) (p) == ZZIVZZ o) — Nf_22 @ (x)doge(x) and xn = VNGOG =) converges jointly
in distribution to a bivariate Gaussian variable with mean

(M2 (), W3(J 72 = T7%) (2.10)

and covariance

( V() 2W3ta()(1 — J*Q)) _ @2.11)

2Wsn(p)(1 —J72)  2(1—-J7%)

The proof of this theorem, given in Sect.5, is the main technical part of this paper. We
prove the theorem first for the Gaussian case, and then use an interpolation argument.
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2.3 Proof of Theorem 1.2

We now derive Theorem 1.2 from Theorem 1.1 using the results on the eigenvalues stated
in the previous two subsections. The term Q () converges to Q(G») in distribution from
Theorem 2.2. Consider the rest. It was shown in (A.5) of [3] that for g(z) = log(J + J~1—2),

1
/ g(2)dogei(x) = -5 +log J. (2.12)
Inserting 28 = J~! 4+ BN ~!/2 and using the Taylor expansion 10g(1—|— ) = 2= 322162 +
ON/%),
P 1/’ (D)o (r) = —— 1 B logN
3 8(2)d0cl (X _4j2 2‘,\/_
1 TB2J2 (2.13)
— lo ON73/?).
+N[ ot ng]+ (N

We can evaluate M ® (g) using (2.7) of [5] which evaluated the M (h) with h(x) = log(28 +
5 — X): (note that J' = J here)

M@ (g) = lim (M(h) ~ log (z,s+i - rl))
B2 28
(2.14)

wy —2 W4-—3

2J2 44

1
— —log(J? = 1) —
2og( )

The variance V@ (g) = V(g), which is independent of J, is given by 4 times (3.13) of [3]
if we replace 28 by J !

@ (o) — N
VO (g) = ~2log(l = 77 + 5wy = 2) + 37 (Wa = 3). 2.15)

2]4

For the covariance term, we have 72(g) = from (A.17) of [3]. Hence, from Theorem

2.1 and 2.2, we obtain the result.

2./2

3 Proof of Theorem 1.1

The proof follows the steps for the proof of the Theorem 1.5 of [5] for paramagnetic and
ferromagnetic regimes with necessary adjustments. The analysis is based on applying a
method of steepest-descent to arandom integral. The location of the critical point is important.
In the transitional regime, the critical point is close to the largest eigenvalue but not as close
as the ferromagnetic case. On the other hand, the critical point is away from the largest
eigenvalue in the paramagnetic case. See Sect. 3.2 below for details.

3.1 Preliminaries
The following formula is a simple result in [21].

Lemma 3.1 ([21]; also Lemma 1.3 of [3]) Let M be a real N x N symmetric matrix with
eigenvalue Ay > Ay > --- > Ay. Then for fixed § > 0,
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1494 J.Baik et al.

T y+ioco N
/ P M dwn () :CNf e70@qz, (3.1
Sn—1 y—ioo
where
1 N
G@)zzmw»NEZMgz—x» (3.2)

i=1
and y is any constant satisfying y > A1, the integration contour is the vertical line from
y — 100 to y + ioo, the log function is defined in the principal branch, and
I'(N/2)

" 2ni VRV G

N
Here I' () denotes the Gamma function.

Let M be a Wigner matrix with non-zero mean as in (1.6). Then its eigenvalues X; are
random variables, and hence the above result gives a random integral representation of the
partition function. In [3,5], the above random integral was evaluated using the method of
steepest-descent for different choices of random matrices. The key ingredient in controlling
the error term is a precise estimate for the eigenvalues which are obtained in the random
matrix theory.

Lemma 3.2 (Rigidity of eigenvaluesA: Theorem 2.13 of [17] and Theorem 6.3 of [20]) For
each positive integer k € [1, N], setk := min{k, N + 1 — k}. Let yi be the classical location

defined by o | |
doge(x) = — (k — 7> . 34
J o=y (=

Ik — vl < k3N (3.5)

1
Then, for every 0 < € < 5,

forall k = 2,3,..., N with high probability. Furthermore, for fixed J > 1, recall J =
J+J7 R
M —Jl < N7V (3.6)

holds with high probability.
From the rigidity, it is easy to obtain the following law of large numbers for eigenvalues.

Corollary 3.1 (c.f. Lemma 5.1 of [3] ) Fix § > O, let { fy}aer C Cl[=2—=6,2+4 8] bea
family of monotonic increasing functions satisfying
SUp,c; Maxy | foy (x)| < Co and sup,c; maxy | f,(x)| < Cy. Then, for every 0 < € < 1,

sup
ael

1Y 2
- Ot)‘i_ o dsc
N§f<)ﬁﬁunwm

- O(N’”e) 3.7)

with high probability.

Proof Let f = f, forsome « € I. The absolute value on the left hand-side is bounded above
by

+ . (3.8)

1Y 1 Y
'N;ﬂm—Ngﬂm

| & 2
N;ﬂm—ﬁﬁmwmm
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Ferromagnetic to Paramagnetic Transition in Spherical Spin Glass 1495

By Lemma 3.2,
N N
1 max | £/ (x)] 0
NZ(f(ki)—f(m))’ < T Y =l = (3.9)
i=2 i=2
with high probability. On the other hand, set y; by
? j
/ doge(x) = =, j=12,...,N, (3.10)
Pi N
J
and by convention yp = 2. As f(x) is a monotonic increasing function, fori = 2,3, ..., N —
17
Vi 1 Vi2
F () doser(x) < — f(ri) < / J(x)doger (x). (3.11)
i+l N Yi-1
Thus,
1Y 2 3max | f(x)|  3C
N;f(%') - /f2 F () doger(x)| < — N =N (3.12)
Since the upper bounds are independent of f, we obtain the result. m}

3.2 Steepest-Descent Analysis

We now apply steepest descent analysis to the integral in Lemma 3.1. We deform the contour
to pass a critical point and show that the main contribution to the integral comes from a small
neighborhood of the critical point. For G (z) givenin (3.2), itis easy to check that all solutions
of G’(z) = 0 are real-valued, and there is a unique critical point  which lies in the interval
(A1, 00) (see [5, Lemma 4.1]).

Note that since G is random, the critical point is also random. For the paramagnetic regime,
it was shown in [5] that y — A1 = O (1) with high probability. In the same paper, it was also
shown that in the ferromagnetic regime, y — A = O(N~!7€) with high probability. The
following lemma establishes a corresponding result for the transitional regime; it shows that

¥ — A1 = O(N~2+) with high probability.

Lemma 3.3 (Critical point) Recall that (see (1.16)) J > 1 s fixed and 2 = 2fy = & + LN
with fixed B € R. Then, for every 0 < € < 41?’

y=A1+

_ _ 2 _ 2 _ 2 2 _
v — B2 =1+ Vv + (2= 1DB)? +4( 1>+0(N71+e)

2V N
(3.13)

with high probability, where we set xn = ~/N(A| — f).

Note that y given above is larger than A; with high probability since the term in the big
parenthesis is positive.

Proof Set

=N —BUP =D+ + (2= DB? +4(2 1)
- : .

6 :

(3.14)
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Note that & > 0. By the rigidity of A, we have |xy| < N7 and hence, & < N5 with high

- . _ 5 5 _ b2
probability. On the other hand, using —a + va* + b* = T’

b 2002 -1
VU DB+ x> + 42— 1)+ ((J2 = DB+ xy)

and hence § > CN ™~ for some constant C > 0 with high probability. Hence,

N~5 <6 <N5 (3.15)
with high probability. Set
0
vio= A+ Tn + NIFe, (3.16)

By the above properties of 6, we have y+ > A; with high probability. We will show that
G'(y-) < 0 and G'(ys+) > 0 with high probability. Since G’(z) is a monotone increasing
function for real z in the interval (1, 00), this shows that y_ < y < y with high probability,
proving the lemma.

Recall that Ay — Jin probability. Let us write

S SR Ty Vs T R (3.17)
J VN
where xy = +/N(i; — J). Note that p = O(N §) with high probability. Now, notice that
N
1 1 1
G(z)=28—— — . 3.18
@ p N;z—li N(z—Xp) ( )
We apply Corollary 3.1 to the family of the function {Z%x}pz_,_c for some constant ¢ > 0
and obtain
Glys) = 26— e +ONT5) 1
J’:t = _— _ -
2 N(y+ — M)

with high probability. By (3.17),

Vi—\/yi_“_l | <¢>

2 Ty J2—1

= + N_1+E> +OoWN"tH).

By (3.16),
1 1 N—%-ﬁ-e N2
= 1F + 0 < ) .
N(y+ —x1)  64/N 0 62

Using the formula of 28 and the estimate (3.15) for é, we find that

1 ¢ 1 1 1 _ g2
Gl(yﬂ:):ﬁ<3+ﬁ_§>i(ﬁ+ﬁ)l\, lJre—i—O(N lJr3) 3.19)

with high probability since 0 < € < }1. By the definition of 6, the leading term is zero. The

coefficient of the second term is positive. Hence we find that G'(y—) < 0 and G'(y4) > 0,
and we obtain the lemma. ]
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Then we have the following lemma.

Lemma 3.4 Set
s=sy =Ny —J—J Dand A=Ay =Ny —r) =syv — xn.  (3.20)

Then, for every € > 0,

L= BUZ- D+ V0w + (2 DB 442 - 1)

. FONTIT)  (321)

with high probability. We also have

|s| < Nand N~¢ < A < N€ (3.22)
with high probability.
Proof The previous lemma implies (3.21). The first part of (3.22) follows from the fact that

xN = O(N€) with high probability. The second part is the estimate (3.15) in the proof of
the previous lemma. o

We also need the following lemma.

Lemma3.5 Forevery( < e < 1,

1 N

1 1
Ngw—mz_ﬂ—l

+ O(N~It9) (3.23)

with high probability.

Proof This follows from Corollary 3.1 applied to f(x) = O

1
(y—x)?"
The following auxiliary lemma is used to estimate an error in the steepest descent analysis.

Lemma 3.6 Define

00 m _ap2gi
I, (@) = _ 75 qy (3.24)
—00 1 + 1t

for non-negative integers m and a > 0, where the square root is the defined on the principal
branch. We set I(a) := Ip(a); see (1.21). Then,

L) = \/?(1 +0@@™") asa — +oo, (3.25)

I(a) = \/?(1 + O(a)) asa — 04, (3.26)
and for every m > 0,

L, (@) is uniformly bounded for o € (0, 00). (3.27)
A particular consequence is that the derivative I' (a) = —% I> (@) is uniformly bounded for

o > 0. Furthermore, I(a) > 0 for all « > 0.
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Proof Consider (3 25). Applying the method of steepest-descent to I(«) = ffooo g()e®Ody

with h(z) = 4 and g = e? , we find that

N

oy = 2 eyt 0 _\/E(HFO( ) (3.28)
“= Vo Ih”(Zc)|gZC ¢ Vo ) |

as o — +o0. For I, (), using [0 Y=’ dy = 0(a~"+1/2) we find that

L(@) = O (a—%) as & — +00. (3.29)

Consider the limit « — 0. After the change of the variables r = 7/,

_@=? 1)2

I dz. 3.30
(@) = f/m RS (3:30)

The integrand is analytic in the complex plane minus the vertical line from i« to ico. Note
that the saddle point is i and it is on the branch cut. We show that the main contribution to
the integral comes from the branch point z = ie. We deform the contour so that it consists
of the following four line segments: L from i — oo to i on the left half-plane, L, from i to
i lying on the left of the branch cut, L3 from i« to i lying on the right of the branch cut, and
L4 from i to i + oo lying on the right-half plane. On Ly, setting z =i + /ax,

/ I/ \/+dx:0(ﬁ) (3.31)
v —

as o — 0. Similarly, the integral over L is also of the same order. On the other hand, setting
z =ia + 1y,

-4 I> l—a e(a+y(;l)2 @12 17 g7t 4a2y
——dz = 2/ ———dy =2¢ / ——dy. (3.32)
LUL3 \/a +iz 0 VY 0 Yy

The function y?> — 2y decreases as y increases from y = 0 to y = 1. Hence the main
contribution to the integral comes near the point y = 0. Using Watson’s lemma,

I—a ez+ —
/ ———dy =I'(1/2)v/2a(1 + O(a)). (3.33)
0 Y

Combining together and using I"(1/2) = /7, we obtain (3.26). For I, («), the analysis is
same except that we use

- JRamLe
/ (i 4 iy)" ———dy = 0 ("), (3.34)
0 VY

Hence, we find that form > 0,1, («) = O(1) as ¢ — 0. Together with (3.29), this implies
the uniform boundness of I, ().
For the positiveness of I(«), we first write it as

© , t“+ 5 (t—arctan t) © e t2 1
I(a) = [m Wdr =/0 mcos (5(1 —arctant)) dr. (3.35)
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The function 6(¢) = t — arctant is monotone increasing. We use the inverse function,
t = t(0), to change the variables and find that

00 o 1 t2 3/4 0
I(a) = 2/ e*ﬂz%cos <5> do, 1 =1(0). (3.36)
0

. _a 2. .- . . .
Since e~ 4" is positive and monotone decreasing in #, we obtain I (o) > O forevery o > 0
if we show that (i)

T (1 l2 3/4 0 3 1 t2 3/4 0
/ % cos (E) de > —/ % cos <§> de, (3.37)
0 b4

k+1)m (1 +[2)3/4 0
TCOS (E) do, k=1,2,3,..., (3.38)

and (ii)
(—DF
k—1)m
is decreasing in k. (i) can be verified numerically. On the other hand, (ii) follows immediately
from the fact (1 4+ £2)3/4/¢? is a decreasing function of 7. This completes the proof. O

We now evaluate the integral in (3.1) using the steepest descent analysis.

Lemma3.7 Fix J > 1 and let 28 = J~' + BN~Y2. Consider G(z) defined in (3.2). Then,
forevery < e < %,

y-Hico iAW)
/ 300, = % IF'()a%) (1+0v—3H9) - (339)
y—ioco

with high probability, where

-V

Z
- 3.40
N(y = A1) 340

e 1
F(2)=2pz — - ) log(z = &) — - log(y — A1)
i=2

and I(w) is defined in (1.21). Recall that A = «/N(y — A1) (see Lemma 3.4.)

Proof We choose the y, which defines the contour, as the critical point of G(z). The path of
steepest-descent is locally a vertical line near the critical point. It turns out that, instead of
using the path of steepest-descent, it is enough to proceed the analysis using the straight line
y + iR globally. This choice was also made for the analysis in the paramagnetic regime in
[5].

We first write, using the function F(z),

+ioco +ioco
/V T A6, = Y6 /V P MG FOH Y FO-Go g, (Al
y —ioco y—ioco

From the definitions of G(z) and F (z),

iy

WNG@-F@) _ [V T M s (3.42)
Z— A1

Changing the variables z = y + it N ~'/2 and using the notation A = v/N(y — A1),
y+ico LYGy) poo AL

/ A6y, 17 8 N FGHINT -G g

Y

—ico VN J-x 1

(3.43)
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It is easy to check that the part of the integral with |¢| > N€ is small. To show this, we
first note that

ir Yy — A +UtNT2
1(w(r (v ) -00)) - ““Z“’g (=)
<—N_llog(l+i>
- 2 N

with high probability for some constant ¢ > 0, since there is a constant ¢ > 0 such that
c<y—XA < é foralli =2,..., N, with high probability. Hence,

o0 AL o0 N—1 22
/ e N FEG+HINTD -G g, 5/ o s (145 ) 4,

€

Y1+ (3.44)

A eEa [T g o)+ 0NV
- Nge L+ N (CPN-12)N/4 r= (e >+ ( )

with high probability.

Consider the part |f| < N€. Note that F(z) satisfies F(y) = G(y), F'(y) = G'(y) =0,
and for each m > 2, F™(z) = O(1) uniformly for z in a small neighborhood of y (by
Corollary 3.1). For m = 2, by Lemma 3.5,

as<F'y)<a (3.45)
for some constants 0 < ¢; < ¢, uniformly in N. By Taylor expansion, for |f| < N€,

F”(y)t2 iFW(]/)t3

F(y +itN~'%) - G(y) = - -
(y +i )= G(y) 2N N3

+0 (N_2+4€) (3.46)

and hence,

1 Dl 3
N(Fy+HIN-1) =Gy _ —Fp (o iF" ()t 146e
ez =e 4 1 TN + O(N . (3.47)

Therefore,

o0 ﬁ—%ﬂ iFM" % 3 2%—#12
B / : dr — (11;2) : dr + O(N*Hﬁf)
—o0 1+% 12N oo m
iF" A4
= arr o) - T () a%) 4 o (1), .

By (3.45) and Lemma 3.4, c; N~€ < F”(y) A% < ¢ N€. Hence, Lemma 3.6 implies that
I(F"(y)A?) > ¢cN~€ (3.49)

for some constant ¢ > 0. Hence, using Lemma 3.4, Lemma 3.6, and the uniform boundedness
of F”’(y), we find that (3.48) is equal to

A I(F”(y)A2)<1 n O(N—%+4€)) (3.50)
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if0 <e < %. Thus, using (3.49) and Lemma 3.4 again, we conclude that

yHico iAeFGW)
76y, — 2 " 2 —1/2+4¢
e? dz = I(F(y)A"){1+ O(N . (3.51)
Kffiw VN Y ( ( ))

3.3 Proof of Theorem 1.1

Proof of Theorem 1.1 From Lemma 3.1 and Lemma 3.7, for every 0 < € < %,

i4e300) 1) 2% (1+ 0 (v4+)) (3.52)

VN

with high probability. Using Stirling’s formula,

Zy =Cpn

'/ JNB -
N amiw N T iﬁ(2ﬁe)/\’/2<l +o(n7)) G539
thus we find that Fy = % log Z satisfies
_ l l IBA " 2 —3 14
Fi = 5(G(y) = 1= log28) + (log <ﬁ> +1ogI(F"(y)A )) +0(NT3e)
(3.54)

with high probability. .
Let us consider G(y). Since y and J = J + JVare away from Ay, ..., Ay with high
probability,

. iy
log(y — A;) =log(J — ;) — log (1 _Y A})
. o . (3.55)
4 y_‘] ()’_J)z 23
= log(/ — A1) + + +0(y —J1)
S T T Tag a2 O

fori = 2,..., N, where we also use that y — J= O(N_%"'E) with high probability (see

Lemma 3.4). Then, using Lemma 3.5 and the fact that G'(y) = 28 — % lNzl V_l)\l_ =0,

1

N N

1 A .

N > “log(y — ) =N > log(J — a) +2B(y — J)
i—2 i=2

Y — f ()’ - j)2 _§+3€
_ o(N—2
o1 T2 + Ol )

with high probability. Hence, from the formula of G(z) in (3.2),

R .
G(y)=2pJ— 3 log(J =)
=2

1 (g (A 4o - s e
N(log(ﬂ)+A 2(12—1)>+0<N2 >
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using the notations sy = «/ﬁ(y — f) and A = \/N(y — A1) in Lemma 3.4. Thus,

Fy =BJ L1 2B) L §N1 J =)+ L log v
=pJ—--—=1lo - — 0 — A —lo
N 2 2% 2N = & DTN 8

1 SN SIZV AB " 2 —3 44
(v log log I(F" () A 0 (N—3+4).
TN (2A 22 —1) Tloe = FloelFT (AT | + ( )

(3.56)
To conclude Theorem 1.1, we use (i) the fact that A = sy — xn, (ii) the asymptotic (3.21)
of sy in terms of xy, (iii) the fact that F”(y) = 12 .+ ON~ I+€) which follows from

Lemma 3.5, and (iv) the fact that I'(«) is uniformly bounded for & > 0 (see Lemma 3.6). O

4 Partial Linear Statistics

This section is devoted to a proof of Theorem 2.1 on partial linear statistics. The proof is a
simple modification of [5] for the linear statistics of all eigenvalues, which, in turn, follows
the proof of [1,2] for the case when the random matrix has zero mean.

4.1 Proof of Theorem 2.1

Recall J := J + J~! denotes the classical location of the largest eigenvalue of a Wigner
matrix of non-zero mean. Fix (N-independent) constants a— < —2 and 2 < a4 < J.Letl
be the rectangular contour whose vertices are (a— £ivg) and (a4 £ivg) for some vg € (0, 1].
The contour is oriented counter-clockwise. For a test function ¢ (x) which is analytic in a
neighborhood of [—2, 2], we consider

N @) : —Zw(k )= N / ()0l (x)

=2 . 4.1
do l(x) 1
f w(z)[ e - f 0@t Pds
Z—X 2
2
where
Moo 1
@ =y -N f doger (x). 4.2)
= Ai—2 RX—2
Decompose I into I, U I'; U I7 U I U Iy, where
Iy={z=x+ivy:a- <x <ay}, 4.3)
I'y={z=x—1ivg:a- <x <ay}, “4.4)
=z =a_+iy: N7° < |y| < v}, 4.5)
I ={z=a4 +iy: N7 <|y| < v}, (4.6)
To={z=a_+iy:|y| < N YU{z=as +iy:|y| < N7%} (4.7)
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for some § > 0. In the proof of Theorem 1.6 in [5], the authors showed that

N
. 1 _ 1 ) 1
En(2) = ; P NAg o) =6 @ + 4.8)

converges weakly to a Gaussian process with mean b(z) = @) + i and covariance
I'(zi,zj) = r®;, zj) where b (z) and ' (z;, z;j) are given in the proposition below.
Since for each fixed z € C, Mlj — jlz in probability (by Lemma 3.2), it is natural to
expect the following result for a partial sum.

Proposition 4.1 Let
2

s(2) = / L dog(ry = e =4 4.9)
X —z 2

be the Stieltjes transform of the semicircle measure. Fix a constant ¢ > 0 and apath K C Cy

such that 3z > c for z € K. Then the process {SI(VZ) (z) : z € K} converges weakly to a
Gaussian process with the mean

1

O = @ ( T wa = 1)s(@) + 5 @s(2) + (Wa — 3)s(z)3) -
1—s2)2 \1+ Js(2) J—7z
(4.10)

and the covariance matrix

/ / 2
F(Z)(Zi, zj) =5 (zi)s'(z)) ((wz —2) +2(Wy —3)s(zi)s(zj) + U—T(Q)?(Zj))z(z .11

Remark 4.1 Note that as 7 — J s
5(2)? J 5'(2) 1 s"(J)

- = =+ 0G— ). 4.12
1—5@21+Js©@ %‘FS(Z) T J + S0 + 0(z ) ( )

Hence, b@ (z) is analytic near J and thus analytic for z € C\ [-2, 2].
In order to complete the proof of Theorem 2.1, we will prove the following lemma.
Lemma 4.1 Define the events
Qvi=M>J =N pm<2+N13) (4.13)
which satisfies P(£2};) < N~P for any fixed (large) D > 0. Then for some § > 0,

vo—0" Noo

lim lim sup/ E £ ()10, 1%dz =0, (4.14)
Iy
where 'y can be Iy, I7 or Iy.
From the explicit formulas (4.10) and (4.11), it is easy to check that
lim E @ (z)dz = 0. (4.15)
vo—01 Ty

Proposition 4.1, Lemma 4.1 and (4.15) imply that N 15,2 ) (¢) converges in distribution to a
Gaussian random variable with the following mean and variance:
1

1
~ 3 y{ e@bP @)z,  ——— f f 9D (@1, 22)dzidzy. (4.16)
i Jr Qri)= JrJr
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It is direct to check that these are equal to M @ () and V@ (p) (see [3, Sect.4.2]). We thus
obtain Theorem 2.1.

4.2 Proof of Proposition 4.1

From Theorem 7.1 of [8], we need to show (i) the finite-dimensional convergence of 5(2) (2)

to a Gaussian vector with desired mean and variance, and (ii) the tightness of & @ (z). We will
base our proof on the corresponding properties of £y (z) obtained in [5]. Let us first recall
the limit theorem for &y (z).

Lemma 4.2 ([5, Proposition 4.1] ) Let s(z) and K defined in the same way as in Proposition
4.1. Then, the process {En(2) : z € K} converges weakly to a Gaussian process {£(z) : z € K}
with the mean

s(2)? (_
1 —s5(2)? 14+ Js(2)

and the covariance matrix

b(z) = + (w2 — Ds(2) +5"(2)s(2) + (Wa — 3)8(1)3) (4.17)

I (zi,zj) =s"(zi)s'(z)) ((wz 2) +2(Ws — 3)s(zi)s(z;) + i s(zi)s(z,'))z)(é; .

Let z1, 22, ..., zp are p distinct points in XC. The above lemma implies that the random
vector (& (z; )) _ converges weakly to a p-dimensional Gaussian distribution with the mean
(b(z,))lp | and the covanance matrix I"(z;, z;). Since the distance between K and A1 is

bounded below, 1 j - in probability fori = 1, ..., p. Hence, by Slutsky’s theorem,

En @ (zi)) f _ converges weakly to a p-dimensional Gaussian distribution vector with the mean
(b(z) (z,-))l.p:1 and the covariance matrix I"® (z;, z j), Where

B2 (2) = b(2) — ——. (4.19)
J —
and 'Y (z;,z;) = I'(zi, 2)).

From Theorem 12.3 of [8], in order to show the tightness of a random process ({n (2))zexk,
it is sufficient to show that (i) (¢ (z))n is tight for a fixed z, and (ii) the following Holder
condition holds: for some N-independent constant K > 0,

El¢tn(z1) — en@)> < Klzi — 2212, 21,22 € K. (4.20)

In [5], the authors considered the random process ¢y (z) := &én(z) — E[én(2)], and proved
that it satisfies conditions (i) and (ii). Now, we consider & 1(\,2 ) (z) == {12,2 ) + E[én(2)], where

(2) (z) :=¢n(2) — A — . Since E[£x(2)] converges, it is enough to check that (§(2) ()N
satlsﬁes condmons (i) and (11) Now for a fixed z, the tightness of ({y(z))n and the bound-

edness of — 1mply that ({N )(z)) ~ is tight. On the other hand, since ¢y (z) satisfies the
Holder condltlon and Jz > cforz € K,

1
Elc{P(z1) — ¢ P ) <2IE|;N<ZI)—;N<zz)|2+2E‘ -
M—21 A —22

) ) , 421
71 — 2
<2K|z1 —2* + % = <K + C—4> lz1 — 2%
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Thus {SZ(VZ) (z), z € K} is tight. This completes the proof of Proposition 4.1.

4.3 Proof of Lemma 4.1
For z € Iy, we notice that |.§1(VZ)IIQN| < CN and then
/ Elt 10,1? < CN?2. (4.22)
Iy

Thus (4.14) holds for Iy with 8 > 2. For I and I}, it is sufficient to show E £ 2 < K
for some N-independent constant K > 0. The authors in [5] showed? that E |y (2)]? < K.
Hence, forz € I,

2
2
1EP @)1g,

2 <2len(2)1gy 1> + 2‘ Loy (4.23)

Al —2z

The lemma then follows from the fact that | 1gy | is bounded.

_1
A=z

5 Joint Distribution of yy and ./\/A(,z)((p)

As before, let A be a random symmetric matrix of size N whose entries are (up to the
symmetry condition) independent centered random variables satisfying Definition 1.1. Let

M = ﬁA + %117 where J > 1. Let A1 > --- > Ay be the eigenvalues of M.

Let xy = vVN(Aj — J ) denoting the rescaled largest eigenvalue. Given an analytic func-
tion ¢(x), recall the partial linear statistics NI(\,z) (p) = Zzsz o(Aij) — N f_22 @(x)doge (x).
We saw in the previous sections that xy and N ,(\,2 ) (¢) converge individually to Gaussian
random variables. In this section, we consider the joint distribution and prove Theorem 2.2.
In Sect.5.1, we first prove Theorem 2.2 assuming that the disorder variables are Gaussian
random variables. In Sect.5.2, the general disorder variables are considered using an inter-
polation trick.

5.1 Asymptotic Independence for the GOE Case

Let the off-diagonal entries of A be Gaussian random variables of variance 1 and the diagonal
entries be Gaussian random variables of variance 2. In random matrix theory, the random
symmetric matrix H = LNA is said to belong to the Gaussian orthogonal ensemble (GOE).
A special property of GOE, compared with general random symmetric matrices, is that the
probability measure of GOE is invariant under orthogonal conjugations.

The following result is basically in [10].

Lemma5.1 Let (%Aii, Aij, Yi)i<i<j<n be ii.d. standard Gaussian random variables. Let

H = ﬁA with A = (Aij)1<i j<n and let Y = ﬁ(yl, sy L. Define G(z) = (H —

27 forz € C\[—2 — 68, 2 + 8], which is well defined with high probability for fixed § > 0.

2 Even though it is stated in Lemma 4.2 of [5] that the lemma holds for sufficiently small § > 0, the proof of
it is valid for any § > 0, and we use § > 2 for our purpose.
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Then, for z € R\[-2 — 4,2 + 8],
nn () = VNI*G@)Y — %Tr(G(z))) = n(z) (5.1)

wheren =n(z) =N (0, 2 f %) is a Gaussian random variable.
Proof of Lemma 5.1 We follow the idea presented in [ 10]. By Theorem 5.2 of [10], it is enough
to check the following three conditions for G: (i) There exists an N-independent constant a
such that | G|| < a with high probability, (ii) % Tr G? converges to a constant in probability,
and (iii) % ZINZ 1 Gl.zl. converges to a constant in probability. They follow from rigidity of
eigenvalue (Lemma 3.2), law of large numbers (Corollary 3.1), and local law ([17, Theorem
2.9]), respectively. O

We are now ready to prove the following property of GOE matrices.

Proposition 5.1 For H definedin Lemma 5.1, denote its eigenvalues by p1 > py > --- > py.
For fixed k, consider a random vector (X 1 XIZV, R X’I‘v) whose entries are real measurable
functions of those eigenvalues, i.e., Xév = X;v(pl, 02, ..., pN) fori =1,2,..., k. Suppose
there is a random vector (X")ff:1 such that (Xév)le = (X")f.‘:1 as N — oo. Then for
ny and n defined as in (5.1), (xL, ijv, e, X];v’ ny) = (X4, x2..., Xk, n), where n is
independent from (Xl, X2, ..., Xl\i).

Proof For the convergence, it is enough to show (i) (X 1 XIZ\, e, X];v ny) is tight, and (ii)
convergence of characteristic function. The tightness follows from the tightness of individual
random vector (variable), which is a consequence of individual convergence.

For (ii), consider the eigenvalue decomposition H = O P OT,where P = diag(p1, p2, - - -,
pn) and O is an orthogonal matrix. Since the H is orthogonal invariant, P and O are inde-
pendent. Set X = OTY. Then X = ﬁ(xl, ...,xy) where xq, ..., xy are i.i.d standard

Gaussian (X is also independent with P).
2_
57! Since E[e”‘lz] = 1+2x’ we find that

- 1 _ 1N
Now,nN-_ Y*G(z)g.— ~TrG(z) =¥ Doici = : i
for any ¢ € iR, the conditional expectation over X given P satisfies

2
1

Ex [¢"V|P] = Ex [eﬁ YL A=

X

N —Liog(l——=2—)—- —L—
p] =1 TN~ N0

i=1

Note that (X1, X ]2\,, o X ]j\,) only depends on the eigenvalues, and hence it is independent
of X. Thus, for any uy, us, ..., ug, t € iR,
k j k P lige 2yt
E |:ezj:l "‘.fXN+mN:| = | eXi=1 Xy [T TN " o= | (5.2)
i=1

Since —3 log(1 — 2z2) — z = 22 + O(z%) as z — 0, using Corollary 3.1,

il —Llog(l——=2—)— —L—
He 2 VN(pj—2" VN(pj—2)

i=1 (5.3)

2 _1 _1
NI G O 2 g daa+oWTh) [ern(z>] L0V D)

(x—2)2
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with high probability. Denote this high probability event by £2x. Then,
lim E ez,;':l u,'X{\,+tnN
N—oo

k j i
= lim <E [er:WX’N””N!QN]P(QN)+E[e2ﬁ:1“fXjN*’"Nl%] P(%))

N—o0
(5.4)
—F [ezl;:l ”.ixj] E [efn(z)] .
since t, uy, ua, ..., ux € iR and hence all exponents are pure imaginary. Note that the char-
acteristic function of (X Lo xk, n) is equal to the product of the characteristic functions
of individual random vector (variable). Thus n(z) is independent from (X L., X%. This
completes the proof. O

Corollary 5.1 Fix$ > 0, considerz; € C\Randz, € R\[—-2-§, 248]. Recall s(z) definedin
(4.9). Then (Tr(G(z1)) — Ns(z1), nn(22)) converges in distribution to independent Gaussian
random variables.

Proof NotethatTr(G(z1))—Ns(z1)iscomplex, we consider the random vector (R (Tr(G (z1))
— Ns(z1)), 3(Tr(G(z1)) — Ns(z1))). By Proposition 5.1, it is enough to show that
M(Tr(G(z1)) — N(s1)), I(Tr(G(z1)) — Ns(z1)) converges to a Gaussian random vector.
Consider the expression z; = E +in for €, 7 € R and n # 0. Recalling the definition of
linear statistics Ny (¢) defined in (2.3), we have

x—F
N(Tr(G(z1) = Ns(z1) = Nn(@r),  @r(x) = GoERt
and
S(Tr(G(z1) — Ns(z1)) =Ny (@), @i(x) = G_ERir
That is, they are both linear statistics. Then Corollary then follows from Theorem 1.1 of [2].

[}

Remark 5.1 When we prove Theorem 2.2 for GOE, we use Proposition 5.1 and Corollary

5.1 with N-dependent z;. First, for a fixed zo € R\[-2 — 4,2 + §] for some § > O, let
N

one can show ny(Z2) = n(z2). Since the (5.3) still holds for z; and n(z2), the asymptotic

independence in Proposition 5.1 is still valid, i.e.

72 = 22(N) =/ N+l z2. Using the exactly same argument in the proof of Lemma 5.1,

XN, X%, X5 nn @) = (X X2 XK n(za),

where n(z2) is independent from (x', x2%, ..., X"). Second, for z; € C\R, consider 7| =
Z1(N) =,/ NT-HZ]. Notice that
1 1 71

+ O(N7).

— = +
X —21 x—2z1 2N(x —z9)?

Then, by the discussion in Remark 2.1, Tr(G(Z1)) — Ns(z1) = /\/';\/(XlZ ) converges to a
Gaussian random variable. Now, putting together, for z; and Z, defined as above, (Tr(G(Z1))—

Ns(Z1), ny(Z2)) converge jointly to independent Gaussian random variables.
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1508 J.Baik et al.

‘We now prove Theorem 2.2 for the case where the disorder belongs to GOE.
Proof (Proof of Theorem 2.2 when A belongs to GOE) Recall that A; are the eigenvalues of

M = ﬁA + %IIT with A from the GOE. Since the means and variances follow from [10]

and Theorem 2.1, it is enough to prove the asymptotic independence of yxy and N, 1&,2) (p).
(Notice that that W3 = 0 for Gaussian A;;.) Now, for any analytic test function ¢, the partial
linear statistics can be expressed as (see (4.2)) an integral of

60 () =

Moo / 1
> -N
1:2)”'_Z RX

Then according to Lemma 4.1 and what follows, it is enough to prove that y» and E}(Vz) (2)
are asymptotically independent for fixed z € C \ R. Let

Zdasd(x), z € C\R. (5.5)

_:® _ -1
SN(Z)—%_N (Z)+)\7_Z—TI(M—ZI) — Ns(2).

Since % — j in probability, it is enough to prove that xy and &y (z) are asymptotically

independent.

Since the GOE is orthogonal invariant, for every deterministic matrix U, the eigenvalues
of A + U have the same distribution as A + OU O for any orthogonal matrix O. Thus, we
may consider the following equivalent model:

1
M = ——A +diag(J,0,...,0). (5.6)
JNO T
Following the proof of Theorem 2.2 in [10], we write
Al *
L +JY
M=|VN .~ (5.7)
Y M

Since det(M — z1) = det(M — zI) (A“ +J—z— Y*é(z)y) with

. . ~ 1 . -
G@) =M —zly-)~" = (ﬁA —le_l) : (5.8)
the largest eigenvalue of M satisfies
=7+ ALy any (5.9)
v N

if 11 is not an eigenvalue of M, which holds with high probability. Using the resolvent formula
twice, we write

Gn) =G+ (GO — G =G+ — HGONG)
=G+ — DG+ — D*GG)

Hence,
M—J= An 1 Y*G(A1)Y
JN J
_An 1. GY + O — DHY*GD2Y + (0 — DY GG ()Y
JN
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with high probability. Moving all terms with factor A; — J to the left and taking it out as a
common factor, we arrive at

An = VN (4 +7*GAyy)

v =vVNO —J) = — A
1+ Y*G(J)2Y + (g — HY*G(A)G(J)2Y

(5.10)

with high probability.
Note that M and ¥ satisfy the setting of Corollary 5.1 up to the scaling factor % Set

Y—,/LY G(z)—(LM—zl ) (5.11)
VYN T WN D N=) '

Then, Y and G satisfy the setting of Corollary 5.1, and

Y*é‘(f)Y—‘/L_lf/*é(f)f’ j= ] N j (5.12)
- N ’ TYVYN-—1T '

Now, by Corollary 3.1,

Te(G ) = s() + 0N = —L L ov14e) (5.13)
N —1 J ’

with high probability. By Lemma 5.1, Corollary 3.1 and Lemma 3.2,

Y*G(J)*Y — . M =DY*GOGUN2Y -0 (5.14)

Jr—1

in probability. Using (5.14), (5.13) and denoting the denominator in (5.10) by D, we write
~ = 1
v =D (A = iin-a () + 0149, (5.15)

where ny_1(J) = VN = L(Y*G())Y — 55 Tr(G(J))) (see (5.1)) and Dy — J{—fl in
probability. Note that A1 and ny_1 (f ) are independent, the distribution of y is governed
by their convolution.

We now turn to the linear statistic £y (z). Using Schur complement of M with block

structure in (5.7), for any z € C\R,

-1
Tr(M —z)~' = (J I Y*é(z)Y> (1+Y*G@)*Y) + Tr(G(2)).
ﬁ (5.16)

Using Lemma 5.1 and Lemma 3.1,

1+ Y*G(2)%Y L 1+5@
AL, _ oyl J—z—
T+ =z Y*G(2)Y z—5(2)

Dy = Dy(N) :=

in probability. Then, by setting Z := Z(N) =,/ %z, we write

En(z) =Tr(M — zI)~' — Ns(z) = D> + TrG(z) — Ns(z) + O(N’%“)

=D, - % + ZSZ(Z) + ,/7N]i - (TrG@ - V= 1Ds@) + O TE),
5.17)
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1510 J.Baik et al.

That is, the fluctuation of &£y (z) is govern by TrG(Z) — (N — 1)s(2). Now using Corollary
5.1 and Remark 5.1, one can conclude that (TrG(Z) — (N —=1)s@),nn—_1 (f)) converge to
independent Gaussian random variables. Furthermore, A1 is independent of both Y and M.
Thus by (5.15) and (5.17), ({n(2), xn) converge to independent random variables. Theorem
2.2 then follows. m}

5.2 Proof of Theorem 2.2 for General Case

We prove Theorem 2.2 for general disorders, where the disorder matrix A is a Wigner matrix
and satisfies Definition 1.1. Unlike the GOE, Wigner matrices are not orthogonal invariant,
hence we cannot apply (5.6) where we replaced the rank-1 perturbation in M by a diagonal
matrix. To overcome the difficulty, we use an interpolation method. It has been successfully
applied in many works in random matrix theory, where a given matrix and a reference matrix
such as GOE are interpolated. We refer to [22] for its application in the analysis of linear
eigenvalue statistics.

LetV = LNA be a (normalized) Wigner matrix and VG be a (normalized) GOE matrix

independent from V. Define
H(t) = Vcost + Vsint (5.18)

so that H(0) = V and H (%) = V. Note that E[H}] = 4 fori # j. Let

1 1
e=—1"T=—@,1,....,DT eRrRY 5.19
JN \/N( ) .19)

and
M(t) = H@) + Jee”, (5.20)

whose eigenvalues are denoted by A; > A» > --- > Ay. Define the resolvents
G =M—-zD)7", G =H-zD)"" (5.21)

Here, we omit the dependence on ¢ for the ease of notation. We note that G and G are
symmetric (not Hermitian). For any (small) fixed § > O, G(z) is well-defined for z €
C\ [-2 — 8, 2 + §] with high probability.

For xy = \/N(M — f), we notice that

A A 1
Gee(h1) = (e, G(A1)e) = —— (5.22)
with high probability. The claim holds since

0 =det(M — A1) = det(H — A, 1) det( + JG(1))eel)

) 523
— det(H — 1, 1) (1 +JGee(k1)) (>23)

and X1 is not an eigenvalue of H with high probability (See [20, Lemma 6.1]). Furthermore,
by Taylor expansion,

- % = Gee(h1) = Goe(J) + Glp (N (M1 — J) + O(NT'F) (5.24)
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with high probability, since |A; — f| = O(N_%"'é) and ||G”(z)|| = O(1) with high proba-
bility. From the isotropic local law, Theorem 2.2 of [20], we find that

Geel)) =s() + ONTTH), G () =5'(H+ 0N (525
with high probability. Thus, using Lemma 5.1,

VNI + Gee(D))
s'(J)

with high probability. That is, the behavior of xy is governed by the fluctuation of G e (J).
To prove the Theorem 2.2, as in the Gaussian disorder case, it is enough to show the

convergence of the joint distribution of y and the full linear statistics £y (z) = Tr(G(z)) —

Ns(z) for fixed z € C \ R. Under the light of (5.26), we set out to calculate the following

characteristic function involving &y (z) and G.(J). Explicitly, for t1, 1,73 € iR and z =

E +in with E € R and n > 0, we define

v =VNOG = J) = — + O(N~27%) (5.26)

E[eP®] = B [enirtndtvrom | pa) = 10y (2) + 036w () + i, (527)

where
ny =N (Gee(i) + %) . (5.28)

Note that ny is real, the exponent P(¢) is pure imaginary and thus |e”®| < 1. For our
purpose, it is desired to estimate E[ef @1 At = %, the disorder H (%) reduces to the GOE
case. From Sect.5.1, xn and &y are asymptotically independent in the GOE case, then

lim B[P @] = E[enMen3] g o] (5.29)
N—o0

for some Gaussian random variables &, n with known mean and variance. Thus, it only
remains to estimate the 7-derivative of E[e”")]. Here, we recall the following identity for the

derivative of the resolvent G. For i, j,a,b=1,2,..., N,
—Gap = —Bjk(GajGrp + Gak G jip) (5.30)
oM;;
with
L j#k,
it = 5.31
Pi {1/2 j=k. ©-31)

We note that the above identity also holds if one replace G by G. Thus for any fixed event
2, L E[e"V]82] equals

dM;; o
Z L eP(I)Q
c— dr 8Mij
i<j

~ & A A P(®)
—sthE|: (;1% )4+t2;5(G2)1_, ZG,,,»G,-q>e Q
i — .
NPJI

13 A ~
—cost ) E |:V'G (rlm (G?),, +103(G?),, + —=> Gpiqu) e
7 L N vOUN
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The reason for the introduction of 2 will be revealed in a minute. The right hand side of
(5.32) motivates us to apply the generalized Stein’s lemma. More precisely, we will use
Proposition 3.1 of [22] with a small modification as follows:

Proposition 5.2 Given an event §2, let X be a random variable such that E[| X |PT2|22] < oo
for a certain non-negative integer p. Denote the conditional cumulants of X by k; 1= k1(£2),
I =1,...,p+ L Then for any function ® : R — C of the class CP*! with bounded
derivatives @D [ =1, ..., p + 1, we have

P
E[X®(X)|2] = Z S go® (X)|2] + €. (5.33)
=0
where the remainder term €, admits the bound
pt2

1 i
lepl < CLE[IXIP2 {14+ max (/ |q><1’+1>(vX)|dv>
1<j<p+l 0

'.Q (5.34)
for some constant C), that depends only on p.

Proof We basically follow the proof of Proposition 3.1 of [22]. Let 7, be the degree p Taylor
polynomial of ® and let 7, = ® — 7. Then, as in the proof of Proposition 3.1 of [22],

E[X7,(X)|2] = 2(:) ’j“ ElxS (X)|2]. (5.35)
Thus _
E[X®|2] — Z Sl go®)Q| < |E[Xr,,|9]|+z| ksl E[012]]. 536
il
Since
rp(X) = ;!ﬂ /Olq><P+1>(vX)(1—v)Pdu, (5.37)

by the estimate |«;| < (2j)/ E[|X|/|$2] and Holder’s inequality,

P
Z [cr41] ‘IE [r(l)(X)I.Q]‘
o P

Z K|
< o +1 [|X|”“ 1/ |<D(p+1)(vX)|dv‘.Q:| (5.38)
P I+1 1 e
Ql+2 P+
2 + ) T = = _E||x|P*? 1+</ |c1>(P+1>(vX)|du> ’9
0
=0

As |E[X p |.Q]| can also be bounded by the right hand side of (5.38), the proof is complete.
]

In order to apply Proposition 5.2 to (5.32), we need prior bounds of P (7) and its derivatives to
bound €, in (5.33). As we will see later, it is enough to bound G;, (Gz)ij, G;j and ZP G
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In the following, we are going to introduce a high probability event £2, on which we have
the desired bounds.

With the trivial bound |G| < % (recall that z = E + in), we have that |G;;| < % and
(G| = [G*| = - For Gij, we introduce the high probability event 21 = {3 =<

(24 J)/2}. It is easy to check that |G| 1g, < fl_z and thus

—

IGijle|

IA

= ) (5.39)
J =2

For Y » G,- p» we recall the following concentration theorem for the quadratic function of G:

Proposition 5.3 (Theorem 2.3 and Remark 2.4 of [20]) Fix £ > 3. Set ¢ = (log N)'oglog N,
Then there exist constants C1 and Cy such that for any

9 _ ,Cin—3 Ciny—3
Ec|Z,2—-¢"'"N3|UR+¢*'N73, %],

and any n € (0, £, and any deterministic v, w € CV,

(v, Gw) — s(2){v, w)| < (ﬂcz‘/ % ol flwl (5.40)

with high probability, uniformly on z = E + in.

Lete; :=(0,...,1,---,0).Noting that Zgzl Gpi = \/ﬁ(e, Ge,-),we can derive a prior

bound for Z,IY=1 G pi» which is summarized in the following Corollary.

Corollary 5.2 For any fixed E € R\[—2, 2], the tail bound

< N¢ (5.41)

D (G(E)i
p

holds simultaneously fori = 1, ..., N with high probability. We also have that
A 1
(v, G(E)yw) — s(E){(v, w)| < [lv]l |wl| N727¢ (5.42)
with high probability.

Proof We first prove (5.42). Consider z = E +iN ~!/2. Using Proposition 5.3, we find there
exists some C > 0 such that
(v, G(BYw) = s(E) (v, w)]
< (v, (G) = GEYW)| + (v, G@w) = s(){v, w)| + Is(2) = s(E)[(v, w)[5.43)
< CN"2 o]l lwll + CeENT2 vl llw]| + CN 2,

Here we also use the fact that £21 holds with high probability. Since ¢ <K N€, (5.42) then
follows. The tail bound (5.41) can be obtained from (5.42) by setting v = V/Neand w = e;.
0

We are ready to introduce the high probability event as promised. Set 51 := s(2), 5] :=
s'(z) and 57 1= s(f )y=-J —1 the desired high probability event §2 is the intersection of §2;
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and the following events:

2 = H S (G| < N¢, Vi= 1,...,N] N {IGee(f) — 52| < N™37€),(5.44)
P

2 = (1Gij — 8ysal < NI, Vi, j=1,...,N), (5.45)
_1 .
24 ={IGij — 8ijs11, 1(G?)ij — 8ijs] < N72T€, Wi, j=1,...,N}, (5.46)
1 .
Q5 = {1Vl IVG 1 IMijl < N73F€, Vi j=1,...,N). (5.47)

Here, by Corollary 5.2, §2; is a high probability event. The fact that £23 and £24 are high
probability events can be checked from Theorem 2.8 and Theorem 2.9 of [17]. It is easy to
check that £25 is a high probability event from the existence of all moments. Furthermore,
by the Lipshitz continuity of the resolvents, we also find that §2 holds uniformly on ¢ with
high probability.

Applying Proposition 5.2 to Equation (5.32) conditioning on §2, we claim that for any
l<i,j=N,

' ~ 3 AA
E [v,»,- <t19i(G2),-j +03(GY);j + N > Gp,-qu> eP’.Q:|
p.q

3

Vij ! 1
_ Ky cos't | o o2
= Z 1 E [ (aM,,» HR(G?)ij + I(G?);j (5.48)

=1

3 ACA P —3+e
+ 2 G-G»)e )‘Q]+0(Nz )
\/NPZ(]: pt~Jjq

Vi . -
where «; ¥ denotes the /th cumulant of V;;. Here, it is legal to replace the conditional cumu-

lants by KlVij , since £2 is a high probability event.
To prove the claim, we begin by controlling the remainder term €, in (5.33). On £2,
Gij, Gij and (G?);; are O(1), and

N_% Zépiéjq = N_% <Z ép,) (Zéq]> = 0<N_%+€).
p q

p.q

Thus, 5 181 -P = O(1) on £2. From the resolvent identity and the definition of event £2, we find
IM;j

|Gz vVij) — Gz Vip)| = O(N~3+) for0 < v < 1.Thuson9,ﬁ,jp(z; vVij) = 0(1)
for 0 < v < 1. Furthermore, we notice that
B]

IM;j

9
3M,‘j

(Gz)ij = ZGkiij = —pBij (ZGij(Gz)ij + Gii(Gz)jj + ij(Gz)ii) ,
X
(5.49)

and

a A A A N A
52 2 Cri = —Fi (Gﬁ 2 G+ Gii ) pr) : (>-50)
Yop P P
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Thus we can obtain similar estimates for higher derivatives of P. Since VS = O(N ’%+55)
on £25, we find that
1 9 5 J 5
[VijI° | 1+ max / Pldv < CN™2%C¢ (5.51)
1<j<5\Jo 8Mij

on £2. That is, €3 < CN_%+C€, and after summing over i, j, the claim (5.48) is proved.
We next consider the term in (5.32) containing V. Noting that the cumulants of order
higher than 2 vanish for Gaussian random variables, forany 1 <i, j < N,

" 13 A A p
E[Viq (’lf)f(Gz)i‘+tzfv(G2)--+ Y GG )e ‘9}
J J ij piGjg
VN =

V<Gv 0 l‘3 A A
= k)Y sintE|: ((rlm(Gz)~+r23(G2)~+ Y GpiG; >e”> ’9}
2 - ij ij rivjq
oM, VN oY

1

(5.52)
FO(NT3+9),

%A%
where «, " denotes the second cumulant of Vl(,; We now put (5.48) and (5.52) into (5.32)
conditioning on £2. This yields .

e [e7®
dr

3
2] = (sint) Z(cosl t)I; — (cost sin t)Ilc + O(N‘%J“f), (5.53)
=1
where we define /; by

Vij I
K141 9 2 (2 3 A A P
E T E |:<3M,'j> <<t19?(G ),'J' + 6H3I(G ),’j + \/N péq Gmqu e ‘.Q

iJj
(5.54)

and 11G by

vy d L2 2 13 A A P
;K21E|:3Mij <(t1§h(G )ij + 103G ),»j+ﬁ;;G,,,-G,q e’ |2 |- 659

In the following, we will evaluate ; for/ = 1, 2, 3 separately. We may omit the conditioning
on £2 for the ease of notation.

5.2.1 Estimate for I; — IS

: vig Vi o, . -
Since «,” =k, = ﬁ for i # j, we only need to consider the contribution from the

diagonal entries to 1] — IlG. By (5.54) and (5.55), I — IIG equals

. ve 0 5 5 13 A oA p
E T, " YE | —— HN(G?)ii + 3G + — E G,iGi .
: (KZ L) ) |:8Mii ((1 (G%ii +023(GY)ii + \/ﬁ - pi lq> €

(5.56)
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From (5.50), we find that
[3 a A A _l+
_ G,iGig =0 (N"27¢).
VN oM;; ;I: pr=id ( )

Similarly, it can be checked that all terms in the right-hand side of (5.56) involving G are
O(N _%"'G). Collecting the terms of order 1 only, (5.56) becomes

% Y w-2)E [<2t1 R ((GHiiGii) + 263 ((GHiiGiy)
[ (5.57)
+ (NG + tz;“s(Gz)ii)2>eP} +0 (N—%+e) .

. . _1
Using the estimate |G;; — §;;s1], |(G2),-j —(Sijs{ | < N~2%€ on £24, we conclude that I; — I]G
equals

(s — 2) (2610 (s}51) + 263(s}s1) + (NR(s]) + HI(6])2) E [e”] +O(N"2T),
(5.58)
5.2.2 Estimate for /;
We decompose I, into

W3 3 \* 2 (G2 3 5.6 P
I =ZZN§E{<3MU) ((zléh(G )ij + 103G )ij+ﬁ;GPiqu ¢

i,J
=Dho+211+ Ipp, (5.59)

where I, 5, is defined by

W3 3 N\ g2 ~( 2
> —E [ (a Mi,-> (zlsn(G )ij + 123G

3
ij 2N?2

2—r
13 A oA 0 p
36,6 ) (i .
+ N o~ pi ]q) (aMl]) e }

We first consider the case i # j in the summand of I, , forr = 0, 1, 2. Recall that all

(5.60)

terms of O (N ’%“) are negligible in the sense that they can be absorbed into the error term
in the right-hand side of (5.53).

(i) For I, we note that the terms arising from the derivatives of the G? are negligible,
which can be checked by following the argument in the proof of Theorem 3.3 in [22],
especially the estimate of 73 in (3.53) of [22]. For example, one of such terms is bounded
by

C
n*VN'

3 (%
N™2 Z{E[ﬁm(Giiij(Gz)ij)eP] < (5.61)

ij
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To prove it, we consider a vector u = (G11, G2, ..., Gyn) and proceed as

_ N
> GiiGjj(GY)ij| = [, G*u)| < |G*|l|ul* < NIG*|IG|* < peg
i,j

On the other hand,

3 2 A A A A2 A A A A A A A A A
(aM,»,) GpiGjg = 6(GpiGj;Gjg + GpjGiiGjiGjq + GpiGiGjjGig) (5.62)

+ Giiéjj(4épiéjq +26;pjéiq).

. A _1 . A
From the estimate |G;; — §;js2| < N 21€ on £23 the concentration of G, on £2-, we
then claim that

Wm ZE [6(;,,(;,, (Z G,,,) (Z éq,) er| +0 (N*%ﬁ)
7 (5.63)
=3Wst355 E [Gﬁee‘”] +0 (NT*E) = 3Wsnsst E[e"]+ O (N’%JFE) .

~

2 N
All the other terms in Ip o arising from (az&,,-) Zp’q G,iG j, are negligible. For

example, one of such terms is bounded by
Wit3 N A oA ~ P
i q
2|W3||t3| Z _143
Bl =0 (voir)

T (J—2)N33 4

(5.64)

where we use the definitions of £2;, £2; and £23.
(i1) For I}, 1, the estimates for the negligible terms can be done by using the argument similar
to (5.64) and (5.61). The remaining O (1)-terms are

W
Wiz ZE[ZGP’GJ‘IGIW (G”(G )jj +Gji(G )”)

i,j p.q
+ 063 (Gii(GY)j; + G (GHir) )d’].
Using the definitions of £2; and £24, we write

I =2Wsts (1R (s1s)) +23(157) B [ie ]+ o (v

I (5.65)
= 2Wit3 (119 (515]) + 23 (s15))) s [ ] +o (N_f*) .
(iii) For Iy 2, from the same analysis as for I 1,
Ioa = 2Wits (190(s15]) + 63(s15])) $3E [e‘”] +0(NTT). (566)

Again, the estimate can be done in a similar manner.

@ Springer



1518 J.Baik et al.

For the case i = j, since there are only N terms in the summation in /5, all terms are
negligible due to the priori bounds on |G|l and > » Gpi.
Collecting the terms in (5.63), (5.65), and (5.66), we obtain that I, equals

Vij 2
ks 0 2 ) 13 AA P
E E HR(G);i + 3I(GY);; —E G,iGi
2! |:<8Mij> ((1 MO @y VN P.q " J‘I>e ):| (5.67)

i,j

= W3 [3ras? + 6160 (s15]) (52)2 + 612133(s15]) (52)2] E [e”] +o (N—%+€) .

5.2.3 Estimate for /3

A~ 1
Note that any term in /3 involving G is negligible due to the extra N~ 2 factor. Estimating as
in the previous subsection, we obtain that I3 equals

Vij 3

Ky d 2 (2 3 A A P
E E HN(G)ij + 3(G);j —EG'G'

3! |:<3MU> ((1 (6 #0360 + VN P4 " ./q)e

(5.68)
— (W, — 3)[n R(s3s)) + 03] + (nN(sis)) + zzs(sls;))z] E [e‘”]

+ ON~2F,

We remark that O (1)-terms in /3 contribute only to the corrections of linear statistics.

5.2.4 Proof of Theorem 2.2 for general case
Define i’(t) by

1
P(t) — (W — 2)(cost)? <r1m(s1s1) + 03(s151) + 3 (n%Gsp + zﬁs(s;))z

+ Wa(cos 1) (1354 + 201130 (s15))53 + 20633(s15])s2) (5.69)
— (Wa = 3)(cos)* (nM(sis)) + 23(s7s]) + (M (s1s)) + 3(s18)))%) -
Then, plugging (5.58), (5.67), and (5.68) into (5.48), we find that
%Ilz[e’S 121 = O(N~3+9), (5.70)
which implies that
E[e”@|2] = E[e" 3|21+ oV~ 27). (5.71)
Thus,
Jim E [eP(O)] = lim_ (]E [e”<°>|9] P(2) +E [e”“)) |.QC] P(©2)) .

—ePO=PO iy BePO|Q] = PO-PO jim E[PG)].
N—o00 N—o00

Here we use the fact that £2 holds with high probability and P (3) = P(5). We can now con-
clude that (01N (2), IEN(2), ny) converges to a multivariate Gaussian vector in distribution
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as N — oo. By direct calculation, we also find that

sN(z)) ( b(z) ) V(z1)  —2Wasis|s3
=N , 5.73
< ny —W3s§1 —2W3s1sis% % (5.73)
with b(z) and V (z) are defined in Lemma 4.2. Now, using (5.26), we arrive at
b(z2) V(z1) 2Wasis! (1 — 2
) { (5620 (i)™ )
XN 72 72 2Ws3s1s) (1 — ﬁ) 2 (1 — ﬁ>

Hence, the asymptotic Gaussianity of (N 15,2 ) (¢), xn) follows. For (2.10) and (2.11), the mean
and the variance of N"®[¢] is given in Theorem 2.1. The limiting covariance is given by

1 d 1
—2Ws <1 — ﬁ) ﬁgo(z)s(z)s’(z)zf; =2W3 (1 — ﬁ) 71 (). (5.75)

where we use the change of variables z + s mapping C \ [—2, 2] to the disk |s| < 1 with
s+ 31 = —z and (4.16) in [5]. This completes the proof of Theorem 2.2 for general case.

6 Matching

In the transitional regime, we took 28 = % + L The ferromagnetic regime and the
paramagnetic regime correspond to the limiting cases 2 > J and 2 < J, respectively. In
this section, we will consider formal limits B — 00 of the formula given in the main result,
Theorem 1.2, and check the consistency with the results for ferromagnetic and paramagnetic
regimes obtained in [5].

Theorem 1.2 states that the free energy Fy is close to the random variable

1 B logN  B?2J? 1 1
+591+ 52 (6.1)

]_-tran —_

N 412+2Jﬁ+ AN T an
in an appropriate sense. Here, (G1, G») is a Gaussian vector independent of B. The function
Q(x) is given by (1.19). In ferromagnetic and paramagnetic regimes, [5] shows that the free
energy is close to

erro 1 1 1 1 B— P ;o

and
ara 1
F =g+ SN Ui en), (6.3)

respectively, where AV f, &) denotes a Gaussian distribution of mean f and variance «. The
parameters for the Gaussians are (see (4) of [4] which corrected an error in [5])

A=W(J 2 =0,

) . (6.4)
ah=2(1—J72)
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and (see (1.11) and (1.12) of [5]; we set J' = J)

fi = %log(l —4B%) + B (w2 —2) + 284 (W —3) — %wg(l —28J).

1 (6.5)
o = = log(l = 4p%) + (w2 —2) + 28 (Wa = 3).
The function Q(x) in (6.1) is given by
s s(0)?  log(s(x) —x) (s(x) — x)?

W) = s = a2 =) 2 o I( 721 ) 66)
where (recall the formula (1.20))
2

S) — x—BUJ2—1)+/(x +219(12— 1))244(J2 — 0} ©6.7)
From the formula, for x = O(1),

1 -2
s(x) = x+g5+0(B7) as B — +o0, 6.8)

—B(J?—1)— % +O0(B™%) asB — —oo.

Note that since we set 2 = } + in the transitional regime, we regard B = O (+/N)

when we take B — +o00.

=

6.1 B— +o0

Using (6.8), we find that for x = O(1),

Y 1 0(og B). (6.9)

_ B
Q) = —

Hence, since G; does not depend on B, we see that as B = O(W ) with B > 0,

]_-tran_i_l_ B _l_ﬂ_l_ig +0 log B + 0 log N (6.10)
NOT 4 T ayN T 4N 2N N N '

where O (f (B, N)) represents a random variable X such that the moments of % are all
bounded by constants independent of B and N.

We compare the above formula with the ferromagnetic case (6.2). If we set 28 = } + LN,
then
ferro 1 B Bz]z B ’o 7 -3/2
= + —N(fy,®5) + O(N ). (6.11)

Y Y N/ AT

We note that (see (6.4) and (1.25)) the mean and variance are f2’ = [E[G>] and ozé = Var[G,].
The above formula of ]-'It{,a“ is thus consistent with ]-'If\?”o.
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6.2B— —o0

Consider (6.6). Recall that I(«) = %”(1 + O(a™")) as @ — +o0 from (3.25). Hence, if
x = 0O(1) and s(x) — oo, then

()_ &_}_] Lz_l)_}_l_}_o L (612)
CW ="t Tw 2 <S(x))' '

Using (6.8), we find that for x = O(1),

B2(J? —1) 47 .
Qx) = - +log B +O0(B™). (6.13)

Hence, the two leading terms of Q(G>) do not depend on G,. Therefore, for B = O(/N)
with B < 0,

1/1  B\> 1 47/N 1
wan _ 1 (1 o 6.14
N 4<J+4/_N> TN g( |B| >+ gl+0<NB> ©.14)

On the other hand, in the paramagnetic regime, if we set 2 = ; + % with B < 0, then

the parameters in (6.5) satisfy (see (1.23))

fim togl— I+ =2+ Wi =3 - L1og (B 4oy
4 42 8J4 2 VN
(6.15)
A /N
=E[Gi]+ = log( 7{) +O(N~'?%)
and
1 _ h—2  Wy—3 _
——log(1 —J72 =+ OWNYH=vV O(N~1/2
a1 = —7 log( )+ = 412 + g T O« ) = Var[G1] + O( )-
(6.16)
Thus,ifwesetZﬂ:}—i—%withB<0,then
1/1 B\ 1 4/N
para _ * [ * o 1o E V: 3/2
Ty 4<J+ﬁ> +2N g( B] >+ —N(E[G1], Var[G1]) + O(N /).
6.17)

This is consistent with the formula of Fy*".
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