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ferences. A fourth-order-accurate explicit Runge-Kutta method is employed for
time integration. To validate the methods, the primary instability was inves-
tigated for different combinations of the Reynolds and Rayleigh number. The
results from these primary stability investigations are consistent with linear
stability theory results from the literature with respect to both the onset of
the instability and the dependence of the temporal growth rate on the wave
angle. For the cases with buoyancy-driven instability, strong linear growth is
observed for a broad range of spanwise wavenumbers. The largest growth rates
are obtained for a wave angle of 90°. For the cases with viscosity-driven instabil-
ity, the linear growth rates are lower and the first mode to experience nonlinear
growth is a higher harmonic with half the wavelength of the fundamental.
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1 | INTRODUCTION

Plane channel flow between two horizontal parallel plates with temperature gradient in the wall-normal direction and
opposing gravitational field is known as Rayleigh-Bénard-Poiseuille (RBP) flow. Plane RBP flows can be found in both
nature and engineering designs and have long been investigated by the scientific community. The focus has been partic-
ularly on the practical consequences of RBP instability for applications such as solar chimney power plants,! the cooling
of electronic components,>* chemical vapor deposition reactors,*> and many others. Plane RBP flows can exhibit both
buoyancy and viscosity-driven instability.® The onset of flow instability is governed by two dimensionless numbers, the
Reynolds number,
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Re = “’"Lh/z, 1)

\%
which is here taken with respect to the maximum velocity, u,,q,, channel half-height, h/2, and kinematic viscosity, v, and
the Rayleigh number,

3
Ra = g—h y*AT, ©)
va
with gravitational acceleration, g, volumetric thermal expansion coefficient, y, temperature difference, AT, and thermal
diffusivity, a*.

The hydrodynamic stability of RBP flows has attracted considerable attention in the scientific literature over many
years. The influence of thermal stratification on the hydrodynamic stability of incompressible, inviscid, parallel shear
flows has been investigated by Miles.” Later on, Koppel® derived the linearized disturbance equations for thermally strat-
ified plane parallel flow. Busse and co-authors®!! carried out a broad analysis of the stability of horizontally layered flows
with vertical temperature gradient. When the convection velocity is zero, hexagonal flow structures can arise above a
critical Rayleigh number.'>13 However, when a streamwise velocity component is added, longitudinal rolls, which are
parallel to the flow direction, can appear. The linear temporal stability of RBP flows has first been investigated by Gage
and Reid.® The neutral curves for the onset of both buoyancy (critical Rayleigh number, Ra, = 1708) and viscosity-driven
(Tollmien-Schlichting [T-S]) instability (critical Reynolds number, Re. = 5400) were established. Orszag'* found a more
accurate value for the critical Reynolds number of Re, = 5772.22. When the Reynolds number is below Re, = 5772 and the
Rayleigh number is above Ra, = 1708, buoyancy-driven instability occurs and three-dimensional (3-D) waves with a wave
angle of 90° are most amplified. For Re > Re, and Ra < Ra., viscosity-driven instability arises and two-dimensional (2-D)
T-S waves with a wave angle of zero degree are most amplified. The results of the linear stability theory (LST) analyses for
plane RBP flow by Gage and Reid® were confirmed by numerous computational and experimental investigations. Mori
and Uchida®® found longitudinal 3-D flow structures in the experiment that were aligned parallel with the streamwise
direction when the temperature difference between the bottom and top wall was increased beyond a threshold value.
Nakayama et al'® established neutral curves based on the wall-normal temperature gradient, AT, and a characteristic
parameter, u* (u* = Ret*h/AT, where 7* is the temperature gradient in the streamwise direction and h is the channel
height). For AT > 0 and y* = 0, the critical Rayleigh number was found to be 1708 which agrees well with Gage and
Reid® and the resulting structures were found to be longitudinal rolls.

For stability analyses, the spanwise direction is typically considered to be homogeneous such that a wave ansatz with
spanwise wavenumber, f#, can be employed. This assumption is valid for radial flows (which are periodic in the circum-
ferential direction) but not for square channel flows which necessarily have a finite aspect ratio. This motivated research
concerned with the stability of square channel flows with finite lateral extent. An important finding for RBP flows with
finite spanwise extent is that the lateral boundaries (channel side walls) can initiate the longitudinal rolls as seen in var-
ious experimental studies.!”'® Luijkx et al'® investigated the stability of RBP flow in a finite aspect ratio channel for an
unstable Rayleigh number. They found that for Reynolds numbers below the critical Reynolds number, transverse rolls
that are aligned perpendicular to the flow direction can appear because of the finite span effect. Nevertheless, longitu-
dinal vortex rolls appeared when the Reynolds number was raised above a critical value. A linear stability analysis by
Nicolas et al?’ revealed that decreasing the lateral extent of the channel has a stabilizing effect on RBP flows. As long as the
Rayleigh number is above a critical value, transverse rolls are prevalent for Reynolds numbers below a critical Reynolds
number and longitudinal flow structures appear otherwise. Nicolas et al?° also investigated RBP flows with infinite aspect
ratio and found that the critical Rayleigh number for 2-D transverse waves increases with Reynolds number which is also
in agreement with Gage and Reid.® Hence, as long as the flow is unbounded in the lateral direction, longitudinal rolls
will always develop for Ra > Ra. = 1708 provided Re < Re, = 5772.

According to Gage and Reid,® for Re < Re, = 5400 (or 5772 according to Orszag'#) and Ra < Ra, = 1708, 2-D transverse
waves (T-S waves) that are aligned perpendicular to the flow direction are unstable and amplified. Gage and Reid® suggest
that the viscous instability of RBP flow may be similar to that of Poiseuille flow except for the nonconstant viscosity for the
former. The instability of plane Poiseuille flow has been investigated in considerable detail. Meksyn and Stuart?! first pre-
dicted that the critical Reynolds number based on maximum velocity and channel half-height is 5000. They also showed
that for larger disturbance amplitudes that could likely lead to nonlinear interactions, instability can occur at Reynolds
numbers as low as 2900. Thomas?? determined that the critical Reynolds number for plane Poiseuille flow is 5780 and
that the critical wavelength is 3.062 times the height of the channel. Orszag!'* solved the Orr-Sommerfeld equation for the
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stability analysis of plane Poiseuille flow and found a critical Reynolds number of 5772 in agreement with Thomas.?? A
review paper by Stuart?® mentions that the Reynolds number for which transition to turbulence occurs in experiments is
usually lower than predicted by linear theory. For instance, Kao and Park?* reported a critical Reynolds number (based on
hydraulic diameter and bulk velocity) of 2600 (approximately 1097 based on channel half-height and maximum velocity).
The experiment was carried out in a channel with an aspect ratio of eight. The low aspect ratio or other factors such as
elevated high initial disturbance amplitudes may be responsible for the mismatch between the measured and predicted
critical Reynolds number. Nishioka et al>> measured the streamwise development of sinusoidal waves for Reynolds num-
bers ranging from 3000 to 7500 in a channel with an aspect ratio of 27.4. The spatial disturbance growth was in accordance
with LST as long as the initial disturbances were small enough. A nonlinear subcritical (Reynolds number below critical
Reynolds number for linear stability) instability was discovered when the disturbance level exceeded a certain thresh-
old value. Chung et al?® carried out direct numerical simulations (DNS) for a subcritical (Re = 5000) and supercritical
Reynolds number (Re =7500) and employed wall-normal blowing and suction for introducing traveling waves. Signifi-
cant disturbance growth and onset of nonlinearities were observed. A similar investigation of the spatial stability of plane
Poiseuille flow for two different Reynolds numbers (2000 and 7500) was carried out by Lee at al.?” They reported a T-S
wave phase speed of approximately 0.4 times the centerline velocity.

LST is an effective method for analyzing the primary stability of RBP flows as demonstrated by, for example, Gage and
Reid.® In this article, temporal stability simulations based on the full and linearized Navier-Stokes equations are proposed
as an efficient method for investigating the primary and secondary instability as well as laminar to turbulent transition
of RBP flows. Details of two highly accurate temporal codes based on the compressible Navier-Stokes equations that
were developed specifically for this purpose are provided. The codes were validated for different 2-D and 3-D cases with
buoyancy- and viscosity-driven instability. Although the validation is limited to cases with primary instability, stability
analyses of more complicated problems that are difficult or impossible to solve with LST are of course possible. The article
concludes with a brief discussion of the results.

2 | METHODOLOGY
2.1 | Governing equations

Temporal stability simulations are proposed as an efficient way to investigate the instability of Rayleigh-Bénard-Poiseuille
(RBP) flows. Two numerical approaches were considered: For the first approach, the full nonlinear Navier-Stokes
equations are solved. For the second approach, the linearized Navier-Stokes equations are solved. These two approaches
are here referred to as DNS and linearized Navier-Stokes simulation (LNS). The governing equations were made dimen-
sionless with a reference velocity, u,.s, reference length, L., reference temperature, T,.,; = 300K, and reference density,
Pref- Pressure was non-dimensionalized with p,efufnax and the dynamic viscosity was made dimensionless with y,.r. Unless
stated otherwise the maximum velocity, um.x, and channel half-height, h/2, were taken as reference velocity and reference
length. The reference Mach number was M =0.1.
For the DNS, the compressible Navier-Stokes equations in conservative form are solved,

P 0)
9Q , JEV _

— =H, 3
ot dxi ( )
with state vector,
T
Q = |p, pu, pv, pw, pe| , 4)
and flux vectors,
pU;
puu; + poy; — 71
EV=|  pvui+psy—tu |- (5)

PWU; + Pb3i — T3
ui(pe +p) — u;z + qi
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The coordinates and velocities corresponding to i=1, 2, 3 are x, y, gz and u, v, w in the streamwise, wall-normal,
and spanwise direction. The total energy is e = e+ 1/2u;u;, with internal energy, ¢ =c,T. The source term
vector,

0

%
ox

H= g(pref -p)
0

(6)

5
_uﬁ + Vg(pref - .0)_

contains a constant dp/dx term that compensates for the mean streamwise pressure drop resulting from the viscous losses,
and a buoyancy term, g(p,s — p) (Boussinesq approximation), with gravitational acceleration, g =9.81m/s*. The assump-
tions behind the Boussinesq approximation as stated by Spiegel and Veronis?® are satisfied for the present investigations.
The shear stress tensor is,

ou; oW 2 duy
A _— — — __5.. s 7
=k <axj ox; 3 0xx Y @)

and the heat flux vector is, g; = —k0oT/0x;, with thermal conductivity, k = pc,/Pr. The Prandtl number is defined as Pr =
v/a*,where v = u/p. The set of equations is closed by the ideal gas equation, p = pRT, with Sutherland’s equation for the
dynamic viscosity.

A disturbance ansatz is made for obtaining the linearized Navier-Stokes equations. All flow quantities are split up into
a basic flow and disturbance component, for example,

U= +u; . (8)
The linearized compressible Navier-Stokes equations in conservative form can also be written in vector form,

0Q" oE'® ,
=~ 4+ =H, 9
ot 0x; ©)

with disturbance state vector,

QA=|p+pv| (10)

and flux vectors,

pu; + p'li;
ﬁu,ai + Zuu; + p’m'tl- +p,51i - T{i
E = V'l + pvul + p'Vit; +p'Sy — 7, . (11)

ﬁw/ljli + pd_wu: + p’Wﬂi +p'63i - T;i

(peyu; + wi(pe' + p'e) + (pu; + p'w;) — (njri’j + ujf?l-j) +q;

The disturbance total energy is ¢’ = ¢’ + i;u;, where ¢’ = ¢,T’. The source term vector is



HASAN AND GROSS W ILEY 5

0
0
H, = _gp' . (12)
0
19p ’ N Ton
_u;+vg(1 p) vgr' |
The shear stress tensor is ,
I =u a_u{+a_uj,_za_u;5 + 4 %4_%_2%5 (13)
=M ox;  ox; 30x K ox;  0x; 30x °
and the heat flux vector is,
—oT’ oT
= k=—+Kk'=—). 14
ql < axi dxl- ( )

The disturbance component of the dynamic viscosity and heat conductivity are

,_

p==T (15)
oT
and
P X o (16)
oT Pror
The disturbance pressure is
p' =R('T +7pT". 17)
2.2 | Wall-normal grid point distribution and discretization

A coordinate transformation is employed in the wall-normal direction (grid line index, j; coordinate in computational
space, # = j; An = 1) that clusters grid points near the walls. A total of J grid points are distributed in the wall-normal
direction,

“1p5%

f2

. (18)

where h is the channel height, ¢ =0.05 is a user-specified constant, f; =Jc'/2, and f, = tan~!(f;). The derivative of the
computational coordinate with respect to the physical coordinate is,

o _ b 2y
5_2C*h{1+tan2[<z—l>f2]}, (19)

and derivatives in physical space can be obtained from

o _ i

: 20
oy (20)

A schematic of the computational domain that illustrates the coordinate system, geometric dimensions, temperature
boundary conditions, and direction of the flow and gravitational acceleration is provided in Figure 1.
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FIGURE 1 Schematic of computational domain
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> 41 j 6j +2 j+1 j—1>

compact finite differences.?® For the spatial discretization of the first and second derivatives that appear in the viscous
terms, fourth-order-accurate compact finite differences for nonequidistant meshes by Shukla et al,°

Y+ + fff = bafir+ B+ B @3

are utilized. Here d (either 1 or 2) represents the order of the derivative. The coefficients a;_1, aj+1, bj—1, bj and bj 1
can be found in Shukla et al.’*® The resulting tridiagonal systems of equations are solved with the Thomas algorithm.
Streamwise and spanwise derivatives are calculated in Fourier space. It has to be noted that simulations can only be
referred to as DNS as long as all scales of fluid motion are captured with minimal amplitude and phase error. The use of
Fourier modes for the present simulations guarantees spectral resolution in the streamwise and spanwise directions and
thus satisfies this criterion. The forward and backward Fourier transforms are computed with fast Fourier transforms. A
fourth-order-accurate Runge-Kutta method3! is employed for advancing the governing equations in time. Both the DNS
and LNS code have been implemented in Fortran.

2.3 | Boundary conditions
For the DNS, no-slip and no-penetration boundary conditions are enforced at the walls. The bottom (T}) and top wall (T;)

temperature are held constant. Assuming dpv/dt = 0 and 0/0x =0 at the wall, the momentum equation in the y-direction
at the wall simplifies to

ap _ 3
3 ~8a-») (24)

The pressure differential is discretized with a one-sided fourth-order-accurate standard finite difference stencil, leading
to the following expression for the wall pressure at the bottom and top wall,

—12gj—2 +48p; — 36p, + 16p3 — 3p4

Do = (25)

12g 0, ’
25— 2%
RT, on
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and

IZgS—i; +48p;_1 — 36p;—2 +16p;_3 — 3pj4

pr= (26)

25+ 22

RT, oy

For the LNS, the streamwise, wall-normal and spanwise disturbance velocity, u’, v and w’, as well as the disturbance
temperature, T’, are set to zero at both the top and bottom wall. The linearized wall-normal momentum equation at the
wall simplifies to dp’ /dy = —gp’. By making use of T’ = 0 in Eq. 17, an expression for the disturbance density at the wall
is obtained, p’ = p’/RT. Using one-sided fourth-order-accurate standard finite difference stencils, the disturbance wall
pressure at the bottom and top wall can be found,

. 48p] — 36p), + 16p’, — 3p),

pO _ Eﬂ > (27)
RTU on
and
L 48p)_, —36p)_,+16p) . —3p;4 28)
b= 254 D ‘
RT, on
2.4 | Basic flow

The basic flow for the DNS and LNS simulations was obtained by solving the one-dimensional (1-D) Navier-Stokes
equations with a second-order-accurate shooting method. The equations governing 1-D laminar plane RBP flow are,

ap 0%u
22t (29)
% =(1-pg (30)

2 2
k%w(g—;‘) o, (1)

The equations were derived from the incompressible Navier-Stokes equations assuming steady parallel flow. Figure 2
shows the streamwise velocity, temperature and pressure profiles for T; = 300K and two different wall-normal temperature
gradients (Tp — T; = 50K and 200K).

1.5-

— T, T=50K
—- T,-T=200K

>~ 1

0.5

FIGURE 2 Basic flow profiles for two different wall-normal 0 0.5
temperature gradients: T}, — T; = 50K and 200K u
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2.5 | Numerical linear stability analysis

Very small (linear) random disturbances were added to all five state vector elements before the start of the simulations
to raise the initial disturbance amplitudes slightly above machine roundoff and the temporal growth and decay of the
resulting waves was investigated. For both DNS and LNS, the random disturbances were added globally (for every grid
point) to excite all spanwise (for the buoyancy-driven instability), streamwise (for the viscosity-driven instability) and
streamwise and spanwise modes (for the oblique wave investigations). According to what is customary in temporal LST,
a wave ansatz of the form

ul((x,y, zZ, [) — 2 ai(y)ei(ax-f-ﬂz—wl), (32)

is made for the disturbances where «, # and @ = w, + iw; are the streamwise and spanwise wavenumbers as well as the
angular frequency. Here, i1;(y) are the mode amplitude distributions (corresponding to eigenfunctions for LST). The sum
is taken over all streamwise and spanwise Fourier modes. The streamwise, 4, and spanwise, 4,, wavelengths can be
obtained from the streamwise and spanwise wavenumbers, A, = 2z /a and A, = 2z /f. The wavelengths A, and A, are
related to the streamwise, L, and spanwise domain extent, Z, via A, = L/l and 4, = Z/m. In this article, Fourier modes are
referred to by their streamwise, [, and spanwise, m, mode number as (I,m). The period, T}, is related to the real part of the
angular frequency via T, = 27 /w,. The wavelength and wavenumber in the wave propagation direction are 1 = 27 /k;
and k; = v/a2 + #2, and the wave angle is # = tan~!(8/a) = tan~1(A./A;). For pure 2-D waves, # = 0 and # = 0 ° and for
pure 3-D waves, « = 0 and 6 = 90 °. Because double Fourier transforms are employed in the DNS and LNS code, the
disturbance velocities at a given location are described by four Fourier coefficients,

ug(x, V,2,t) = Gcc COS ax oS fZ + dcs COS ax sin fz + dge Sin ax cos fz + dgs Sin ax sin fz. (33)

The first subscript of the Fourier coefficients refers to the streamwise direction (cosine and sine mode). The second
subscript refers to the spanwise direction. From this, the amplitude and phase of the right (in positive z-direction, “+”

superscript) and left-traveling waves (in negative z-direction, “-” superscript),
A® =@ 7 + @ (34)
and
di
pt = tan™' —, (35)
as-

can be obtained, where 4} = (4¢ — dg)/2, 47 = (Gse + Ges) /2, Gz = (Aee + dgs)/2 and @5 = (As — des)/2. The temporal
growth rates of the modes are related to the amplitudes via
_0lnA

L= . 36
i ot (36)

Because of y = ax + fz — w,t, the phase speed in the x-direction is

W
®
o = —;I‘U = ; (37)
0x
and the phase speed in the wave propagation direction is
Wy
c=—. 38
v (38)

The disturbance amplitudes and growth rates were computed from the disturbance kinetic energy integrated over the
channel height. The phase, frequency and phase speed were calculated from the streamwise, wall-normal and spanwise
velocity components in the center of the channel.
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TABLE 1 Parameters for 2-D and Type
3-D simulations. Cases Dimensions Re @ Ra Pr T, T, of instability
Pabiou 3-D 130.5 6300 0.72 313.15K 293.15K Buoyancy-driven
et al3? (primary)
Case 1 3-D 45 10000 1 350K 300K Buoyancy-driven
(primary)
Case 2 3-D 45 6400 1 350K 300K Buoyancy-driven
(primary)
Case 3 3-D 45 10000 1 350K 300K Buoyancy-driven
(Oblique-primary)
Orszag!* 2-D 10000 0 0.72 300K 300K  Viscosity-driven
(primary)
Case 4 2-D 30000 100 1 350K 300K Viscosity-driven
(primary)
Case 5 2-D 20000 100 1 350K 300K Viscosity-driven
(primary)

3 | RESULTS

The newly developed DNS and LNS codes were validated for several unstable cases in the vicinity of the stability
boundaries provided by Gage and Reid® (Table 1). According to Gage and Reid,’ for Re > Re, = 5400 (or 5772 accord-
ing to Orszag'*) and Ra > Ra. = 1708, 3-D waves with a wave angle of 90° are most amplified. For Re > Re, and Ra < Ra,
viscosity-driven instability leads to the formation of 2-D T-S waves with a wave angle of zero degree.

The parameters for the various simulations are listed in Table 1. The computational timestep was At = 0.001 for the
case with buoyancy-driven instability and At = 0.00035 for the case with viscosity-driven instability. For case 1, the com-
putational timestep was halved and exactly the same result was obtained. This can be explained by the fact that the
timestep which is limited by the stability boundary of the explicit time integration scheme, is small enough to provide
good temporal resolution.

3.1 | Buoyancy-driven instability
3.1.1 | Grid resolution study and comparison with experiment

Stability simulations were first carried out for the experimental conditions by Pabiou et al.3* The Prandtl number was
Pr=0.71, and the top and bottom wall temperature were T, =313.15K and T,=293.15K. For a channel with aspect
ratio of 10.38, Pabiou et al*? observed 12 longitudinal rolls for Rey; =174 (based on bulk velocity and channel height)
and Ra = 6300. The equivalent Reynolds number based on channel maximum velocity and half-height is Re=130.5. The
corresponding spanwise wavenumber is f = 3.63 (4, = 1.73).

A grid resolution study was carried out using only two spanwise Fourier modes, (0,0) and (0,1). The spanwise
grid extent was held constant at Z = 2 X 4, = 3.46. The temporal growth rate was found to converge as the num-
ber of grid points, in the wall-normal direction J, was increased (Table 2). Based on this grid convergence study, it
was decided to use 72 grid points in the wall-normal direction for the following simulations with buoyancy-driven
instability.

A wavelength study was then conducted for Re =130.5 and Ra = 6300. The DNS results in Figure 3 illustrate that the
maximum growth rate is obtained for a spanwise wavelength of 1, = 3.22 which corresponds to a spanwise wavenumber
of f = 1.9512 based on channel half-height. This spanwise wavenumber agrees within 7.5% with the spanwise wavenum-
ber observed by Pabiou et al®? in their finite aspect ratio channel flow experiment. In the experiment, the longitudinal
rolls were found to be wider near the side walls than in the middle of the channel which may explain the present slight
wavenumber mismatch between simulation and experiment.
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TABLE 2 Dependence of temporal growth rate on wall-normal number of grid points for Re=130.5 and

J ®j
Ra =6300.
48 0.086984
72 0.086982
96 0.086981
120 0.086980
[ 1 ‘ T FIGURE 3 Wavelength study: temporal growth rate versus spanwise
0.08 wavenumber for Re =130.5 and Ra = 6300
0.04- .
8 O0f 1
L — Polynomial fit
F o Simulation
-0.04F ]
-0.08r ]
| PRI B |
0 1 2 3 4 5
B

FIGURE 4 A, Stability
—i diagram by Gage and Reid:®
[ symbol (circle) represents
0.1- conditions for case 1. B,

[ Wavelength study: temporal
growth rate versus spanwise

wavenumber for case 1

— Polynomial fit

I L o Simulation
10" E -0.1p ]
0z :
100 | 1 al 1 | | | 1 |
10°  10° _ 10*  10° ¢ 1 2 & 4 5
(A) Re (B) p
3.1.2 | Case1l: Amplified three-dimensional waves

The Reynolds number and Rayleigh number for case 1 are Re =45 and Ra =10 000 (circle in Figure 4A). The bottom and
top wall temperature were set to T, = 350K and T, = 300K. In accordance with Gage and Reid,® the Prandtl number was
set to unity. Because the data point for case 1 is above all the neutral curves in Figure 4A, case 1 is expected to be unstable
for all wave angles. To determine how the growth rate of the unstable mode depends on the spanwise wavenumber, the
spanwise domain extent, Z, was varied (Figure 4B). The highest growth rate (w; = 0.21349) is obtained for a spanwise
wavenumber of f = 2.0943 which corresponds to a spanwise wavelength of 4, = 2z /f = 3. The growth rate becomes
zero for f ~ 0.42 and f = 4.14. The very low and very high wavenumbers would of course be difficult to observe in an
experiment if all disturbance waves were growing from a uniform background noise level since the g = 2.094 disturbances
grow much faster and develop first into observable flow structures.

After having determined the most unstable spanwise wavelength, a LNS simulation for case 1 with eight spanwise
Fourier modes was carried out for a spanwise domain extent of Z =6 (twice the most unstable wavelength). The mode
amplitudes are plotted in Figure 5A. Mode (0,2) corresponding to A, = Z/2 =3 and f = 2x /4, = 2.0943 exhibits the
strongest linear growth. Modes (0,1) and (0,3) are within the unstable § range according to Figure 4B and grow as a result
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FIGURE 5 Mode
amplitudes versus time for case 1:
A, LNS and, B, DNS

FIGURE 6 Growth rates versus spanwise wavenumber for case 1 1 A —
r 0,2
L 0,3
O_ .
_-0.4r A
]
— Polynomial fit
-0 8l o DNS J
0.8 x NS
-1.2r -
| PR | |
0 2 4 6 8

of primary instability. Mode (0,4) is close to the stability boundary and weakly damped. The other modes are strongly
damped. This is a good example for the utility of the linearized code. The stability of several modes can be investigated
with one simulation since the modes are not interacting with each other. The same case (case 1) was also simulated with
the DNS code in order to validate the results obtained from the LNS and determine the onset of nonlinearities. The results
obtained from the DNS for modes (0,1)-(0,3) are in excellent agreement with the LNS as seen in Figure 5B. In accordance
with the LNS, mode (0,2) displays the strongest linear growth. The growth rates obtained from the DNS for t<65 (linear
growth or decay) are in excellent quantitative agreement with the LNS as seen in Figure 6. For both approaches, mode
(0,2) has the highest growth rate, w; = 0.21349. For a domain of span, Z = 6, mode (0,2) has the appearance of two pairs
of counter-rotating vortices that are aligned in the streamwise direction. Each vortex pair has a spanwise wavelength of
Ay =3.

In the DNS, the waves can interact and departures from linear growth occur for certain modes. All modes initially grow
according to the linearized results as seen in Figure 7A. Sudden changes of the growth rates can result from resonance
or in general, nonlinear effects. Mode (0,5) is the first to exhibit nonlinear growth. The mode (0,5) nonlinear growth
levels off as mode (0,4) begins to grow. The nonlinear growth of mode (0,4) is the strongest for 70<t<83 after which it
is overshadowed by very strong growth of mode (0,6). Of course, no nonlinear growth is observed in the LNS. The time
histories of the phases for the u’, v and w’ velocity at the mid-channel height are shown in Figure 7B-D. The phase
and growth rate of mode (0,2) obtained from the DNS and LNS are identical which suggests that this mode exhibits
primary linear growth. However, for modes that experience nonlinear growth, the phases obtained from the DNS differ
considerably from the phases obtained from the LNS. Sudden changes of the growth rates go hand-in-hand with phase
adjustments. For example, the suddenly increased growth of mode (0,6) for £>80 can be associated with a phase alignment
of mode (0,6) with mode (0,2) that allows for a nonlinear energy transfer due to resonance. For >80 the phase of the
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wall-normal disturbance velocity is -0.438 for mode (0,2) and 1.825 for mode (0,6). For this phase shift, three wavelengths
of mode (0,6) line up with one wavelength of mode (0,2).

Disturbance streamfunction contours obtained from the LNS for ¢ = 50 reveal four counter-rotating cells as seen in
Figure 8. The amplitude and phase distributions of the disturbance velocity in the streamwise (1'), wall-normal (v') and
spanwise (w') direction for the primary mode (0,2) at t =100 are provided in Figure 9A,B, respectively. The distributions
obtained from the DNS and LNS are identical. The u’ and w’ amplitude distributions for the primary mode (0,2) have two
peaks near y~ 1.5 & y~0.5 and a phase-jump of x at y~ 1. The v disturbance amplitude exhibits only one peak at the
mid-channel height and a constant phase distribution.

3.1.3 | Case 2: Less strongly amplified three-dimensional waves

For case 2 (Re=45 and Ra = 6400) the Rayleigh number was lowered compared to case 1 while the Reynolds num-
ber and other simulation parameters were kept the same. A comparison of Figures 4B and 10 reveals that lower-
ing the Rayleigh number leads to an increase of the spanwise wavelength of the primary mode to 4, =3.25 and a
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reduction of the spanwise wavenumber to f = 1.9332. In addition, the growth rate of the primary mode is reduced to
w; = 0.12794.

3.1.4 | Case 3: Oblique waves

According to Gage and Reid,® below the critical Reynolds number for the T-S instability, oblique waves can be amplified
if the Rayleigh number is large enough. However, transverse waves with a wave angle of § = 90 ° experience the highest
amplification (Figure 4A). A series of temporal stability simulations with fixed wavenumber of k; = 2.0943 were carried
out with the DNS code for Re=45 and Ra =10000. Only one Fourier mode was used in the streamwise and spanwise
directions. The wave angle § was varied and the streamwise, L, and spanwise, Z, domain extent were chosen as 4 = 4, cos 6
and A = A sin 6. In Figure 11, the mode amplitudes for the left and right-traveling waves are plotted versus time. Apart
from some minimal differences for ¢ < 3, the amplitudes of the left and right-traveling waves are very similar. This confirms
that the random forcing at ¢ = 0 does not favor one family of waves over the other. The growth rates are provided in Table 3.
In accordance with Gage and Reid,® the largest growth rate is obtained for = 90 °. As the wave angle is increased to 90°,
the temporal growth rate approaches w; = 0.21349 as seen in Table 3 and Figure 12A. The frequency as well as the phase
speed are also tabulated in Table 3 and plotted in Figure 12B. Interestingly, with increasing wave angle, both quantities
decrease almost linearly and approach zero for & — 90 °. The v/, v’ and w’ disturbance velocity amplitudes for the left and
right-traveling waves are in close agreement as seen in Figure 13A. Figure 13B shows the phase distributions for the left
and right-traveling waves which are identical albeit for a small phase shift.
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FIGURE 11 Mode
amplitudes vs. time for case 3 for,
A, left-traveling waves and, B,
right-traveling waves

A(E)

(A)
020 ———— 15— —— FIGURE 12 A, Growthrate
[ ] I 1 versus wave angle and, B,
L ] i a0l ] frequency and phase speed versus
0.2 1.2 ocC
[ 1 H wave angle for case 3 (data points
0.1 8:— h ok ] are connected by straight lines)
- a3
8 L 4 " L
0.16 r 7 O o6k i
0.14F . 0L ]
0.12 ] ok i
L 1 L | L L L | L L L 1 L L 1 L | L L L | n L L 1 L
30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100
(A) 0 (B) 0
TABLE h fi h
0 (in deg) o B o o, c 3 Growth rate, requenq’/ and phase .
speed versus wave angle and streamwise and spanwise
40 1.6043 1.3462 0.1268 1.2642 0.6036 wavenumber for case 3.
50 1.3462 1.6043 0.1534 1.0593 0.5057
60 1.0471 1.8137 0.1775 0.8229 0.3929
70 0.7163 1.9680 0.1968 0.5623 0.2684
75 0.5420 2.023 0.2039 0.4253 0.2030
80 0.3636 2.0625 0.2092 0.2852 0.1362
86 0.1460 2.0892 0.2128 0.1145 0.0547
90 0 2.0943 0.2134 0 0

3.2 | Viscosity-driven instability
3.2.1 | Grid resolution study and comparison with literature

Several researchers investigated the onset of hydrodynamic instability in plane Poiseuille flow (no heated walls, no
gravitational field) numerically.!#?23% The first numerical solutions of the Orr-Sommerfeld stability equation were
obtained by Thomas?? using a five-point Numerov finite difference method. Using 50 and 100 grid points, Thomas??
found phase speeds of ¢ =0.2375006 + 0.0035925i and ¢ =0.2375243 + 0.0037312i, respectively, for « = 1 and Re=10000
(based on channel maximum velocity and half-height). Gary and Helgason3? employed a sixth-order-accurate finite
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TAB L].E 4 Phas.e speed vs. number of grid points in wall-normal direction 7 N [Error(%)| for ¢;
and relative error with respect to Orszag.'*
72 0.23452+40.005341i 42.82
120 0.23709+0.003728i 0.31
144 0.23739+40.0037061 0.9
168 0.23752+0.0037081 0.84
192 0.23757+0.003711i 0.76
216 0.23760+0.0037131 0.71
240 0.23762+0.0037161 0.63
264 0.2376340.003716i 0.63

difference scheme for nonequidistant coordinates and obtained c¢=0.23752964 + 0.00374248i (43 grid points) and
¢=0.23752650+ 0.00373969i (100 grid points) for the same case. An accurate solution of the Orr-Sommerfeld stability
equation was achieved by Orszag!* using Chebyshev polynomials. According to Orszag,'* the phase speed for « = 1 and
Re=10000 is ¢ =0.23752679 + 0.00373967i. The Orszag'* case was recomputed to validate the present numerical approach
for a case with viscosity-driven instability. The top and bottom wall temperature for this case are T, = T; = 300K, and the
streamwise domain extent is 2z. Several DNS with different wall-normal grid resolutions were carried out and a phase
speed error was calculated with respect to the reference value obtained by Orszag!* (see Table 4). As the grid resolution
is increased, the phase speed obtained from the present simulations converges to a value that is close to the published
value in the literature.!* The small remaining residue error is likely due to the fact that Orszag!'* solved the incompressible
Navier-Stokes equations.

3.2.2 | Case 4: Amplified two-dimensional waves

A similar approach as for case 1 was taken to investigate the viscosity-driven instability. The Reynolds number was
Re=30000. According to Gage and Reid,® 2-D disturbances in the form of T-S waves are amplified for Re > Re, = 5400 (or
5772 according to Orszag!'#). The Prandtl number was set to one. As for the bouyancy-driven instability, a grid convergence
study was carried out first for L = 7 using two streamwise Fourier modes, (0,0) and (1,0). For this grid convergence study,
the bottom and top wall temperatures were set to T, = 350K and T, = 300K and the Rayleigh number was 100. As the num-
ber of wall-normal grid points, J, was increased, the temporal growth rate converged to a value of w; = 0.006059 (Table 5).
Based on this grid convergence study, the decision was made to use J = 240 grid points for the following simulations with
viscosity-driven instability.
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TABLE 5 Temporal growth rate versus number of grid points in the wall-normal direction for case 4.

J ®j
48 0.017947
96 0.0081849
144 0.0059285
192 0.0059427
240 0.006059
288 0.006059
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Although the Rayleigh number is subcritical, the disparate wall temperatures result in a viscosity gradient and thus
may have an effect on the viscosity-driven instability. Therefore, two additional cases were considered: For the first addi-
tional case, the bottom and top wall temperatures were T, = T; = 300K and the Rayleigh number was zero. For the second
additional case, the bottom and top wall temperatures were set to T, = 300K and T, =350K and the Rayleigh number
was -100. The streamwise domain extent was varied to find the streamwise wavenumber, «, with the highest temporal
growth rate. Figure 14 reveals that the growth rates, phase speeds, and frequencies for Ra =100 (T, < T}) and Ra =—-100
(T > Tp) are identical. This was expected since the two cases are identical as long as the buoyancy-driven instability is
suppressed. Slightly higher growth rates and lower phase speeds and frequencies are obtained when the wall tempera-
tures are identical (Ra = 0). For all cases, disturbances with a streamwise wavelength of A, = 7.5, which corresponds to
a wavenumber of @ = 27/, = 0.837, experience the strongest temporal growth. The maximum temporal growth rate is
w; = 0.0068036 for the cases with differential wall heating and w; = 0.0074172 for the case with identical wall heating.
The phase speed at the maximum amplification is 0.1828 for |IRal =100 (both T; < T and T; > T}) and 0.1796 for Ra=0
(T =Ty). The corresponding frequencies are 0.1531 and 0.15047, respectively. The v’ and v amplitude distributions for
T: < Ty and T; > T}, are asymmetric with respect to the channel centerline but symmetric with respect to each other (see
Figure 15). The amplitude distributions for Ra =0 are symmetric with respect to the channel centerline.

The streamwise domain extent was then set to two times the wavelength of the most amplified mode (L =2 x 7.5 =15).
Using eight streamwise Fourier modes, the first case (Ra =100 with T}, > T;) was analyzed in more detail with both the
LNS and DNS code. For both LNS and DNS, in agreement with the earlier wavelength study, the primary mode (2,0) grows
linearly as observed in Figure 16. While in the LNS all other modes are decaying, in the DNS modes can grow as a result of
nonlinear interactions. The temporal growth rates obtained from the LNS and DNS for the primary wave or fundamental
(2,0) are in good agreement. The growth rate is roughly 30 times smaller than the maximum growth rate for the previous
case with buoyancy-driven instability (Re=45 and Ra =10000). Of course, higher growth rates are expected for larger
Reynolds numbers. For £>1800 strong nonlinear growth of the higher harmonic (4,0) occurs as seen in Figure 16B. Later,
mode (6,0) is growing for £>2500 at an even faster pace. In general, the nonlinear growth rates are larger than the linear
growth rates (Figure 17A). Similar observations were made by Nishioka et al?®> based on an experimental investigation of
plane Poiseuille flow. The onset of nonlinear growth goes hand-in-hand with a matching of the phase speed of the higher
harmonic modes with the primary mode as seen in Figure 17B. For example, as the phase speed of mode (4,0) approaches
the phase speed of mode (2,0) for £>1800, energy transfer from mode (2,0) to mode (4,0) becomes possible and mode (4,0)
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FIGURE 15 Amplitude of ' and v’ disturbance velocity for
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begins to grow strongly. Mode (6,0) exhibits a similar behavior. Analogous observations were made in the literature for
boundary layer flows.>* For a domain of length of L =15, mode (2,0) corresponds to two T-S waves with a streamwise

wavelength of A, = 7.5.

The u’ and V' amplitude and phase distributions for the primary mode (2,0) at t = 3185 are compared in Figure 18. As
is typical for T-S waves, the u’ mode amplitude has maxima near the top and bottom wall where the viscous effects are
stronger. The u’ phase distribution has a phase shift of 7 at y~ 1. On the other hand, the v’ amplitude distribution has
only one peak at approximately the mid-channel height and the phase remains constant across the channel. Iso-contours
of the disturbance streamfunction obtained from the LNS for ¢ = 1400 reveal two T-S waves with a streamwise wavelength

of 4, = 7.5 (Figure 19).
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3.2.3 | Case 5: Less strongly amplified two-dimensional waves

Another DNS simulation was carried out for a lower Reynolds number of 20 000. The Rayleigh number, Ra = 100, Prandtl
number, Pr=1, and bottom and top wall temperatures, T = 350K and T; = 300K, were kept the same as for the previous
case. When comparing Figures 14A and 20 it can be seen that both the wavelength and growth rate of the most ampli-
fied mode decrease when the Reynolds number is lowered. The streamwise wavelength and temporal growth rate of the
most unstable wave are 4, = 7.1 (a = 0.8849) and w; = 0.00589, respectively. The maximum growth rate for Re = 20000 is
approximately 13% lower than for Re = 30000.

4 | CONCLUSIONS

A DNS and a LNS code were developed for investigating the stability of Rayleigh-Bénard-Poiseuille (RBP) flows. Stability
simulations for a case with buoyancy-driven instability by Pabiou et al*? were in good agreement with the experiment with
respect to the spanwise wavelength of the most unstable mode. The buoyancy-driven instability was then investigated for
a subcritical Reynolds number and an unstable (Ra > Ra.) Rayleigh number. Using both DNS and LNS, the dependence
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of the temporal growth rate of 3-D waves on the spanwise wavenumber, f, was mapped out. For the DNS, the onset of
nonlinear effects leads to the strong nonlinear growth of higher harmonics with shorter spanwise wavelength. The span-
wise wavelength of the strongest growing higher harmonic has a wavelength of one third the spanwise wavelength of the
fundamental. The nonlinear growth is preceeded by an adjustment of the spanwise phase of the higher harmonic. Addi-
tional simulations revealed that oblique traveling waves were also amplified. As the wave angle increases, the frequency
and phase speed of the waves decrease. For a wave angle of 90°, the frequency becomes zero and, in agreement with Gage
and Reid,® the growth rate attains its maximum value.

Subcritical Rayleigh numbers were chosen for the investigation of the viscosity-driven instability. As a validation case,
the LST results for plane Poiseuille flow by Orszag!'* were recomputed and matched with good accuracy. Two-dimensional
DNS and LNS were then carried out for an unstable Reynolds number (Re > Re,). First, the dependence of the temporal
growth rate on the streamwise wavelength was determined. For a Reynolds number that is roughly six times higher than
the critical Reynolds number, the unstable wavenumber range is quite narrow and the maximum amplification rates
are about 30 times lower than for the case with buoyancy-driven instability. As a result, nonlinear effects set in much
later. Higher harmonics with a streamwise wavelength that is two and three times shorter compared to the streamwise
wavelength of the fundamental are the first to experience nonlinear growth. The onset of the nonlinear effects is initiated
by a matching of the phase speeds of the higher harmonics and the fundamental. Assymetric heating of the top and
bottom wall lowers the growth rate compared to when the wall temperatures are identical. When the Reynolds number is
reduced, the viscosity-driven instability becomes weaker and the streamwise wavelength of the most strongly amplified
T-S waves is reduced.

This article serves to introduce two new temporal stability simulation codes that were developed specifically for inves-
tigating the stability of RBP flows and to provide validation cases. While much of the published literature on RBP flows
considers the spatial case and is often concerned with the finite span effect, the present temporal simulations assume per-
fect flow periodicity in the spanwise direction and a direct comparison with LST becomes possible. Spanwise periodicity
occurs for example for radial RBP flows. For such flows, far enough from the origin, the radial effects can be assumed to
be small, and the present temporal analyses provide useful insight into the local stability behavior. For the future, more
complex stability investigations are planned that are more difficult or impossible to analyze with LST. Advantageous in
the stability analyses context is that DNS and LNS allow for the simultaneous investigation of a large number of modes
which saves computer time. For the DNS, as shown in this article, nonlinear interactions are possible that can eventually
lead to transition and turbulence.
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