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a b s t r a c t 

The onset of primary and secondary instability has important implications for Rayleigh-Bénard-Poiseuille 

flows. This paper demonstrates that the primary and secondary instability can be investigated with tem- 

poral simulations based on the full and linearized Navier-Stokes equations. Three cases with subcritical 

Reynolds number and supercritical Rayleigh number are discussed. It is shown that the secondary in- 

stability results from a triad interaction of the fundamental steady three-dimensional mode with a two- 

dimensional and two oblique modes. As the disturbances grow to non-linear amplitudes, the longitudinal 

rolls exhibit a sinusoidal wavy deformation. The wavelength of the most amplified secondary instability 

wave is in good agreement with experimental observations. The phase speed of the waves is close to the 

basic flow bulk velocity as suggested in the literature. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Rayleigh-Bénard-Poiseuille (RBP) flows occur in nature and have

any technical applications. Examples are the flow through the

ollector of solar chimney power plants [1] and through chemical

apor deposition reactors [2,3] . The buoyancy-driven instability of

BP flow have been investigated in considerable detail. Gage and

eid [4] employed linear stability theory (LST) to investigate the

uoyancy- and viscosity-driven instability of plane RBP flow. The

wo relevant dimensionless numbers are the Reynolds number, 

e = 

u max h/ 2 

ν
, (1) 

here u max is the channel maximum velocity, h /2 is the chan-

el half-height, and ν is the kinematic viscosity, and the Rayleigh

umber, 

a = 

gh 

3 γ�T 

να∗ , (2) 

ith gravitational acceleration, g , volumetric thermal expansion

oefficient, γ , temperature difference, �T , and thermal diffusiv-

ty, α∗. According to Gage and Reid [4] , buoyancy-driven instability

ccurs for Ra > Ra c = 1708 and viscosity-driven instability occurs

or Re > Re c = 5400 . Orszag [5] later found a more accurate value

or the critical Reynolds number for the onset of the viscosity-

riven instability of 5772.22. A linear stability analysis by Fujimura
∗ Corresponding author. 
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nd Kelly [6] revealed that for Reynolds numbers in the range

.01 ≤ Re ≤ 100, the critical Rayleigh number for two-dimensional

2-D) unstable waves was increasing with Reynolds number. This

nding is essentially consistent with the zero degree wave an-

le neutral curve by Gage and Reid [4] . According to Luijkx et al.

7] , below a minimum finite aspect ratio, transverse rolls that are

ligned perpendicular to the flow direction can occur for Ra > Ra c 
nd Re < Re c . Nevertheless, in general for Re < Re c buoyancy-

riven instability leads to the emergence of counter-rotating lon-

itudinal vortices which are referred to as longitudinal rolls. The

ppearance of such longitudinal rolls in plane RBP flow has also

een confirmed by many experimental investigations [8,9] . 

When the disturbance amplitudes associated with the primary

nstability get sufficiently high and non-linear interactions be-

ome important, secondary instability can occur. Clever and Busse

10] were the first to carry out a secondary linear stability analy-

is for longitudinal rolls in a RBP flow with infinite spanwise ex-

ent and found two distinct modes of secondary instability. The

rst mode is known as wavy instability and occurs above a crit-

cal Rayleigh number. The streamwise wavenumber, α = 2 π/λx ,

ith streamwise wavelength, λx , of this mode increases with

ayleigh number. As the Rayleigh number is raised above the crit-

cal Rayleigh number, the wavy instability initially occurs for very

mall α. The second mode is referred to as the oscillatory instabil-

ty and occurs for low Reynolds numbers and high Rayleigh num-

ers. Kato and Fujimura [11] performed a LST analysis of a finite

pan square channel RBP flow and found a higher critical Rayleigh

umber for the onset of the wavy instability than for an infinite

https://doi.org/10.1016/j.ijheatmasstransfer.2020.120098
http://www.ScienceDirect.com
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Fig. 1. Three-dimensional computational domain. 
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span RBP flow. An experimental investigation of the wavy insta-

bility for a case with fully developed longitudinal rolls was car-

ried out by Pabiou et al. [12] . Because of the convective nature of

the secondary instability, they employed localized upstream har-

monic forcing to raise the initial amplitude of the secondary in-

stability waves. The phase speed of the most amplified secondary

instability waves was found to be very close to the bulk veloc-

ity and the wavelength was shown to increase with decreasing

Rayleigh number. Xin et al. [13] carried out a numerical investiga-

tion of the instability of RBP flow for a channel with an aspect ra-

tio (span to height) of 10. The primary instability led to either nine,

10 or 11 longitudinal rolls. All three configurations were subject to

the three-dimensional (3-D) wavy instability and a linear relation-

ship between the angular frequency and streamwise wave num-

ber was established which confirmed the earlier finding that the

wave speed approximately matches the bulk velocity. Nicolas et al.

[14] employed LST and direct numerical simulations (DNS) for in-

vestigating the finite-span effect on the instability of RBP flows.

They found that the critical Rayleigh number for the onset of the

wavy instability for a finite aspect ratio of 10 is approximately 1.5 -

1.8 times higher than for an infinite aspect ratio channel. 

This paper reports on temporal secondary instability investiga-

tions of plane RBP flows with infinite spanwise extent and fully

established longitudinal rolls. The stability investigations were car-

ried out with high-order-accurate codes that solve the full and lin-

earized Navier-Stokes equations. The codes employ a unique com-

bination of a spectral discretization in the homogeneous (stream-

wise and spanwise) directions, and a high-order discretization in

the wall-normal direction. Details about the numerical methods

and validation cases can be found in a companion paper [15] . The

infinite span assumption, which is implicitly invoked through the

use of Fourier modes, allows for a direct comparison with linear

stability theory. The primary interest of the present paper is on the

wavy secondary instability which leads to the breakdown of the

longitudinal vortices resulting from the primary instability. Results

are shown for three cases with subcritical Reynolds number and

supercritical Rayleigh number. The paper concludes with a brief

summary and discussion of the results. 

2. Methodology 

2.1. Computational method 

The present numerical Rayleigh-Bénard-Poiseuille (RBP) stabil-

ity investigations were carried out with high-order-accurate codes

that solve the full and linearized compressible Navier-Stokes equa-

tions. The two approaches are here referred to as direct numeri-

cal simulation (DNS) and linearized Navier-Stokes simulation (LNS).

For both, a forcing term was added to the right-hand-side of the

streamwise momentum equation to compensate for the stream-

wise pressure drop and the Boussinesq approximation was invoked

for the buoyancy acceleration in the vertical direction. The top and

bottom wall temperature were considered as isothermal. The gov-

erning equations were made dimensionless with a reference veloc-

ity, u ref , reference length, L ref , reference temperature, T re f = 300 K,

and reference density, ρref . Pressure was non-dimensionalized with

ρre f u 
2 
max . Unless stated otherwise, the maximum velocity, u max ,

and channel half-height, h /2, were taken as reference velocity and

reference length. The reference Mach number was M = 0 . 1 . Fourier

transforms were employed in the two homogeneous directions

(streamwise and spanwise). The convective and viscous terms in

the wall-normal direction were evaluated with fifth- and fourth-

order-accurate compact finite differences for non-equidistant grids,

respectively. A fourth-order-accurate-Runge-Kutta scheme was em-

ployed for time integration. Details regarding the governing equa-
ions, the discretization and the boundary conditions can be found

n Hasan and Gross [15] . 

.2. Computational grid 

Grid points were clustered near the top and bottom wall using

n analytical wall-normal grid point distribution, 

 j = 

[
tan 

−1 ( jc ∗ − f 1 ) 

f 2 
+ 1 

]
h 

2 

. (3)

ere j is the wall-normal grid line index and J is the total num-

er of grid points, h = 2 is the channel height, c ∗ = 0 . 05 is a user-

pecified constant, f 1 = Jc ∗/ 2 , and f 2 = tan 

−1 ( f 1 ) . The streamwise

nd spanwise domain extent of the computational grid are denoted

y L and Z , respectively. A sketch of the 3-D computational domain

ndicating the coordinate system, geometric dimensions, boundary

onditions, as well as the direction of the flow and the gravitional

cceleration is shown in Fig. 1 . 

.3. Basic flow 

The basic flow for the simulations was obtained by solving the

ne-dimensional (1-D) Navier-Stokes equations, 

∂ p 

∂x 
= μ

∂ 2 u 

∂y 2 
, (4)

∂ p 

∂y 
= (1 − ρ) g, (5)

 

∂ 2 T 

∂y 2 
+ μ

(
∂u 

∂y 

)2 

= 0 , (6)

ith a second-order-accurate shooting method. Very small (linear)

andom disturbances slightly above machine roundoff were added

o the basic flow to raise the initial disturbance amplitudes for the

tability analyses. 

.4. Numerical linear stability analysis 

According to temporal Linear Stability Theory (LST), a wave

nsatz of the form 

 

′ 
i (x, y, z, t) = 

∑ 

ˆ u i (y ) e i (αx + βz−ωt) , (7)

an be made for the disturbances where α, β and ω = ω r + iω i 

re the streamwise and spanwise wavenumber as well as the an-

ular frequency. Here, ˆ u i (y ) are the mode amplitude distributions.

he streamwise, λx , and spanwise, λz , wavelengths can be obtained

rom the streamwise and spanwise wavenumbers, λx = 2 π/α and

z = 2 π/β . The wavelengths λx and λz are related to the stream-

ise, L , and spanwise domain extent, Z , via λx = L/l and λz = Z/m,

here l and m are the streamwise and spanwise Fourier mode
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Table 1 

Parameters for stability simulations. 

Re Ra 

Validation case (Pabiou et al. [12] ) 87 6300 

Case 1 130.5 8000 

Case 2 130.5 5000 
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umber. The period, T p , is related to the real part of the angular

requency via T p = 2 π/ω r . Throughout the paper Fourier modes are

eferred to as ( l, m ). The wavelength and wavenumber in the wave

ropagation direction are λ = 2 π/k λ and k λ = 

√ 

α2 + β2 and the

ave angle is θ = tan 

−1 
(
β/α

)
= tan 

−1 
(
λx /λz 

)
. For oblique waves,

he amplitude, A , and phase, ψ , of the left and right-traveling

aves (in negative and positive z -direction) is denoted by a “-” and

+” superscript. The disturbance amplitude, A , was computed as the 

quare root of the disturbance kinetic energy, A = 

√ 

E 
′ 
, which was

veraged over the channel height, 

 

′ = 

1 

2 h 

∫ h 

0 

[
ˆ u 

2 (y ) + ̂

 v 2 (y ) + 

ˆ w 

2 (y ) 
]

d y. (8)

his criterion was demonstrated to accurately characterize the

rowth of disturbance waves [16,17] . The temporal growth rates

ere obtained from, 

 i = 

d[ ln ( A 
A 0 

)] 

dt 
, (9) 

here A 0 is the disturbance amplitude at t = 0 and the phase

peed in the x -direction was computed as 

 x = −
∂ψ 

∂t 

∂ψ 

∂x 

= 

ω r 

α
, (10) 

here ψ = αx + βz − ω r t . The phase speed in the wave propaga-

ion direction is c = ω r /k λ. The phase, frequency and phase speed

ere calculated from the streamwise, wall-normal and spanwise

elocity components in the center of the channel. 

. Results 

Three cases with buoyancy-driven instability were considered

 Table 1 ). According to Orszag [5] and Gage and Reid [4] , the cho-

en Reynolds numbers are subcritical ( Re < Re c = 5772 . 22 ) and the

ayleigh numbers are supercritical ( Ra > Ra c = 1708 ). Based on a

rid convergence study [15] , the number of grid points in the wall-

ormal direction was set to J = 72 . 
ig. 2. a) Wavelength study: temporal growth rate versus spanwise wavenumber and b

a = 6300 . The saturated flow at t 0 = 400 is used as baseflow for the secondary instabilit
.1. Validation case 

Pabiou et al. [12] carried out an experimental investigation

f the secondary instability of RBP flows for Re b 1 ≥ 100 and

a ≥ 6300, where Re b 1 is based on the bulk velocity and channel

eight. One of the cases ( Re b1 = 174 based on channel height or

e b2 = 87 based on channel half-height and Ra = 6300 ) from the

aper by Pabiou et al. [12] was computed for additional validation

f the DNS code. For this case and different from the other cases,

ll quantities were made dimensionless with the bulk velocity and

hannel half-height. In order to reproduce the experimental case,

n appropriate basic flow had to be generated. First, several DNS

ere performed to find the spanwise wavelength, λz , for which

he primary mode (longitudinal rolls) was most strongly ampli-

ed. According to Fig. 2 a, this occurs for λz = 3 . 22 ( β = 1 . 9512 ).

ext, a DNS with eight spanwise modes and Z = 3 . 22 was car-

ied out for Re b2 = 87 and Ra = 6300 . The primary mode (0, 1)

xhibits linear (i.e. exponential) growth ( Fig. 2 b). Non-linear in-

eractions for t 0 > 140 lead to the growth of higher harmon-

cs (0, 2), etc. It should be mentioned that non-linear interac-

ions such as (0 , 1) + (0 , 1) = (0 , 2) are always present in the DNS.

he amplitude of the resulting modes scales with the product of

he amplitudes of the generating modes, e.g. A (0 , 2) = A (0 , 1) ×
 (0 , 1) . Thus, for the present case, the amplitude of mode (0, 2)

rows above 10 −12 when the amplitude of mode (0, 1) surpasses

0 −6 . Around t 0 = 350 all mode amplitudes saturate. An instan-

aneous flow field at t 0 = 400 obtained from this precursor sim-

lation was taken as 3-D basic flow for a secondary instability

nvestigation. 

Next, a wavelength study was conducted to find the most am-

lified secondary instability mode. According to Fig. 3 a, the most

nstable 2-D mode has a streamwise wavelength of λx = 9 or λx =
 . 5 based on channel height which is in close agreement with the

xperimental measurements by Pabiou et al. [12] . The correspond-

ng streamwise wavenumber is α = 0 . 698 (1.40 based on channel

eight) and the temporal growth rate is ω i = 0 . 0407 . In Fig. 3 b

he phase speed in the x -direction is plotted versus the ratio of

he streamwise wavelength and channel height. The most ampli-

ed secondary instability mode has a phase speed of c x = 0 . 94 .

abiou et al. [12] measured a phase speed of 1.1 u b ± 7%. A lin-

ar stability analysis by Clever and Busse [10] suggests that the

hase speed is within a few percent of the bulk velocity. The

resent result is thus in reasonable agreement with the published

iterature. 
) Amplitude vs. time for primary wave and higher harmonics for Re b2 = 87 and 

y investigation. 
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Fig. 3. Dependence of a) growth rate and b) phase speed (data points are connected by straight lines) of secondary unstable 2-D mode on streamwise wavenumber and 

wavelength for Re b2 = 87 and Ra = 6300 . 

Fig. 4. a) Primary mode amplitude versus time and b) growth rate of unstable 2-D secondary mode versus streamwise wavenumber for case 1. 

Fig. 5. Amplitude of secondary unstable 2-D mode versus time for case 1: a) LNS and b) DNS. 
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3.2. Case 1: Increased Rayleigh number 

The Reynolds and Rayleigh number were set to Re = 130 . 5

and Ra = 80 0 0 . According to the stability boundary by Clever and

Busse [10] , this case should exhibit secondary instability. The bulk

Reynolds number based on channel half-height ( Re b 2 ) is approxi-

mately 87. As for the validation case, precursor simulations were
arried out to determine the spanwise wavelength ( λz = 3 . 1 ) for

hich the 3-D primary mode experienced the strongest amplifi-

ation. Next, a DNS with spanwise domain extent of Z = 3 . 1 and

ight modes in the spanwise direction was performed. The tem-

oral development of the spanwise mode amplitudes is shown in

ig. 4 a. Once the primary mode (0, 1) with λz = 3 . 1 reaches a suf-

ciently high amplitude, the higher harmonics (0, 2), (0, 3), etc.
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Fig. 6. Growth rates of 2-D modes versus streamwise wavenumber (linear regime) 

for case 1. 
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Fig. 8. Growth rates of 3-D right-traveling modes versus streamwise wavenumber 

(linear regime) for case 1. 
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egin to grow. At t 0 = 450 the mode amplitudes are saturated and

 steady 3-D flow with fully developed longitudinal vortices is ob-

ained which is then used as basic flow for the secondary instabil-

ty analysis. A streamwise wavelength study was carried out to de-

ermine the streamwise wavelength for which the secondary insta-

ility waves experience the strongest amplification. Fig. 4 b reveals

hat the largest secondary growth ( ω i = 0 . 0321 ) is obtained for a

treamwise wavelength of λx = 8 ( λx = 4 based on channel height)

nd a streamwise wavenumber of α = 0 . 785 (1.57 based on chan-

el height). Because time was made dimensionless with the ra-

io of reference length and reference velocity, the temporal growth

ate based on the bulk velocity can be computed from the tem-

oral growth rate based on the maximum velocity via (ω i ) bulk =
(u max /u b )(ω i ) max . For the present case (ω i ) bulk = 0 . 04815 is ob-

ained which is greater than the secondary growth rate for Re b2 =
7 and Ra = 6300 (validation case for secondary instability). Based

n the comparison with the validation case, it is also found that

s the Rayleigh number increases, the streamwise wavelength of

he most amplified secondary instability wave is reduced. The

igher temporal growth rate and lower streamwise wavelength

re in agreement with Clever and Busse [10] and Pabiou et al.

12] . 

After the most unstable streamwise wavelength was deter-

ined, additional LNS and DNS were carried out for Re = 130 . 5 and

a = 80 0 0 . For these simulations, the streamwise and spanwise do-

ain extent were set to L = 3 × λx = 24 and Z = λz = 3 . 1 and a to-

al of 16 and eight modes were employed in the streamwise and
Fig. 7. Amplitude of secondary unstable 3-D right-travelin
panwise direction. In Fig. 5 , the 2-D mode amplitude distribu-

ions are plotted over time. Mode (3, 0), which has a streamwise

avelength of λx = 8 , displays the strongest linear growth. Other

odes also exhibit linear growth but the growth rates are lower

han for mode (3, 0). The always present non-linear interaction of

ode (3, 0) and ± (2, 0) in the DNS leads to the growth of modes

5, 0) and (1, 0) for t > 600. This effect only becomes visible for

 > 600 when the nonlinearly generated amplitudes, which scale

pproximately with A (3, 0) × A (2, 0), exceed the linear growth

mplitudes of modes (5, 0) and (1, 0). The growth rates of the 2-

 modes obtained from the LNS and DNS are in excellent agree-

ent for t < 600 (see Fig. 6 ). Fig. 7 shows the time evolution of

he disturbance amplitudes of the right-traveling oblique waves.

n Fig. 8 , the temporal growth rate is plotted versus the stream-

ise wavenumber. For t < 600 the growth rates obtained from

he LNS and DNS are identical which provides proof that the sec-

ndary growth is in fact linear. Mode (3, 1) which has a streamwise

avelength of λx = 8 and a spanwise wavelength of λz = 3 . 1 grows

he fastest. The amplitudes and growth rates of the left-traveling

blique waves are virtually identical to those of the right-traveling

blique waves ( Figs. 9 & 10 ) since the basic flow is symmetric. It

an also be noted that the growth rates of modes (3, 0), (3, 1),

nd ( 3 , −1 ) are identical ( ω i = 0 . 0321 ). To help understand this

henomenon, in Fig. 11 the growth rates, frequencies, and phase

peeds of modes (3, 0), (3, 1) and ( 3 , −1 ) are plotted versus time.

s in resonance triads for fundamental boundary layer breakdown

18] , the primary spanwise mode (0, 1) and the secondary modes
g mode versus time for case 1: a) LNS and b) DNS. 
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Fig. 9. Amplitude of secondary unstable 3-D left-traveling mode versus time for case 1: a) LNS and b) DNS. 

Fig. 10. Growth rates of 3-D left-traveling modes versus streamwise wavenumber 

(linear regime) for case 1. 
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(3, 0) & (3, ± 1) are linked. The secondary modes share the same

growth rate, frequency and phase speed. The phases of the two-

dimensional mode and the two oblique modes are aligned in such

a fashion that the secondary modes extract energy from the pri-

mary mode [18] . Modes (1, 0) & (1, ± 1) and (2, 0) & (2, ± 1)

also exhibit triad interactions (not shown). 

Fig. 12 displays isocontours of the u ′ , v ′ , and w 

′ disturbance

amplitudes for the three streamwise wavelengths λx = 24 , 12 and
Fig. 11. a) Growth rate and b) frequency & phase speed distribut
 that correspond to modes (1, 0), (2, 0), and (3, 0). Also shown

re isocontours of the 3-D component of the basic flow (i.e. all

teady spanwise modes). The placement of the streamwise sec-

ndary mode disturbance maxima in Fig. 12 relative to the isocon-

ours for the basic flow illustrates which part of the basic flow con-

ributes to the secondary growth. The u ′ disturbance amplitude for

x = 24 exhibits four maxima at z ≈ 0.052, 1.03, 1.65, and 2.6 near

 ≈ 0.7 and 1.3 as seen in Fig. 12 a. For λx = 12 and 8 the max-

ma at z ≈ 1.03 and 1.65 are shifted upward while the other two

axima at z ≈ 0.052 and 2.6 are shifted downward ( Fig. 12 b and

ig. 12 c). The v ′ amplitude distribution has two maxima, however

he shift of the maxima towards the shorter wavelengths is min-

mal ( Figs. 12 d- 12 f). Figs. 12 g- 12 i display four maxima of the

 

′ disturbance amplitude distributions. For the shorter streamwise

avelength, the maxima are shifted farther away from the center

f the channel and sideways. 

Fig. 13 shows isosurfaces of the Q-criterion [19] flooded by the

treamwise vorticity for t = 800 . As a result of the secondary in-

tability, the straight longitudinal rolls (basic flow) become wavy

s also observed in the experiment by Pabiou et al. [12] . The u ′ ,
 

′ , w 

′ , and T ′ disturbance amplitude distributions for the primary

nd secondary modes at t = 500 are plotted in Fig. 14 . The mode

hapes obtained from the LNS and DNS are in close agreement

hich again is evidence that the secondary instability results from

 linear resonance. The shape of the 2-D secondary mode (3, 0) is

oticeably different from that of the primary mode (0, 1). For ex-

mple, the v ′ amplitude distribution for mode (3, 0) features two

eaks while the primary mode has only one peak at y ≈ 1. On the
ions versus time for modes (3, 0), (3, 1) & ( 3 , −1 ) (case 1). 
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Fig. 12. Isocontours of u ′ (a - c), v ′ (d - f), and w 

′ (g - i) distrubance amplitude (grey scales) plotted over isocontours of 3-D component of basic flow (solid lines) for 

streamwise wavelength of λx = 24 (a, d, g), 12 (b, e, h) and 8 (c, f, i), respectively. The range and spacing of the isocontours for the basic flow is 0 to 0.78 with � = 0 . 06 for 

u ′ , −0 . 14 to 0.14 with � = 0 . 0147 for v ′ , and −0 . 12 to 0.12 with � = 0 . 016 for w 

′ . 

o  

t  

t  

m

 

o  

T  

n  

t  

s  

u  

w  

2  

p  

c  

a  

t  

r  

w  

w  

d  

b  

s  

p  

p  

t

 

c  

m  

p  

e  

s  

c  

s  

o  

r  

t  

e  

t  

m  

(  

d  

(  

i

ther hand, the differences between the primary mode (0, 1) and

he oblique secondary modes (3, ± 1) are more subtle except for

he T ′ amplitude distribution which has two peaks for the primary

ode but only one peak for the oblique modes. 

In their experiment, Pabiou et al. [12] investigated the sec-

ndary instability of a flow with fully developed longitudinal rolls.

his rises the question how well developed the longitudinal rolls

eed to be for the secondary wavy instability to occur. To answer

his question, the basic flow was extracted at different time in-

tances ( t 0 = 300 , t 0 = 350 and t 0 = 450 ) from the precursor sim-

lation ( Fig. 4 a). For each basic flow, a secondary instability DNS

as performed using the same parameters as before ( L = 3 × λx =
4 , Z = λz = 3 . 1 , 16 modes in x and 8 modes in z ). The mode am-

litudes of the 2-D and oblique modes are shown in Figs. 15 a- 15

. It can be seen that the growth rates of modes (1, 0) and (1, ± 1)

re substantially increased for t 0 = 300 and t 0 = 350 compared to

 0 = 450 . Figs. 15 d and 15 e provide a clearer picture: The growth

ates of mode (1, 0), (1, ± 1), (2, 0) and (2, ± 1) are decreasing

hile the growth rates of modes (3, 0) and (3, ± 1) are increasing

hen the amplitude of the primary wave (0, 1) is increased ( Fig. 15

). The phase speeds are provided in Fig. 15 e. Interestingly, as the

asic flow 3-D mode amplitude is increased beyond 0.09, the phase
peed of the waves suddenly decreases sharply. This reduction in

hase speed is most pronounced for (3, 0) and (3, ± 1). Possible

hase-locking of (2, 0) & (2, ± 1) with (3, 0) & (3, ± 1) may lead

o resonance and energy transfer from the former to the latter. 

A similar investigation was also carried out for a basic flow

omprised solely of the one-dimensional channel flow and the pri-

ary mode (0, 1). The same primary mode amplitudes as for the

receding analysis were considered. Figs. 16 a- 16 c show the time

volution of the amplitudes of the 2-D and oblique modes for a ba-

ic flow mode (0, 1) amplitude of 0.0024, 0.085 and 0.1098, which

orrespond to t 0 = 300 , t 0 = 350 and t 0 = 450 in Fig. 4 a. Fig. 16 d

hows that the 2-D and oblique modes are growing as the result

f a triad interaction as for the earlier case ( Fig. 15 d). The growth

ates of all secondary modes such as (1, 0) and (1, ± 1) increase as

he amplitude of the primary wave is increased ( Fig. 16 d). Differ-

nt from the previous analysis for a basic flow that includes all of

he higher steady spanwise modes, modes (1, 0) and (1, ± 1) re-

ain the most amplified regardless of the basic flow primary mode

0, 1) amplitude. Also different from the previous case, no sudden

ramatic reduction of the phase speeds is visible for A = 0 . 1098

 Fig. 16 e). This analysis suggest that a fully developed basic flow

s required for the secondary instability to occur. 
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Fig. 13. Isosurfaces of Q = 0 . 025 at t = 800 flooded by streamwise vorticity ( ω x = ±0 . 4 ) for case 1: a) 3-D view, b) top view ( x − z plane), c) front view ( y − z plane) and 

d) side view ( x − y plane) where x to y ratio is 0.15. 

Fig. 14. Distributions of u ′ , v ′ , w 

′ , and T ′ for a) 2-D mode (3, 0), b) right traveling mode (3, 1) and c) left traveling mode ( 3 , −1 ) at t = 500 for case 1. The primary mode (0, 

1) is also provided as a reference. 
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Altough the primary instabiliy for 3-D crossflow and Görtler

instability of boundary layer flows is different from the primary

instability for plane RBP flow, it leads to steady streamwise vor-

tices. The common feature is that all of them require non-linear

saturation of the streamwise vortices for secondary instability to

occur [20–23] . However, different from RBP flow, the streamwise

vortices resulting from crossflow instability are co-rotating. The

crossflow secondary instability leads to the formation of finger

vortices [20,21] whereas for RBP flow, the primary longitudinal

rolls become wavy in the streamwise direction (sinuous mode).
he vortices resulting from Görtler instability are counter-rotating.

hen Görtler vortices begin to saturate, secondary instability can

ead to the growth of varicose and sinuous modes [22–24] . The

inuous mode is indeed analogous to the wavy mode for RBP

ow. 

Finally, a few words are in place regarding the computational

fficiency of the present approach. The present case with 72 wall-

ormal grid points, eight spanwise Fourier modes and 16 stream-

ise Fourier modes, was computed on a single core of an Intel

ore i7-9700 processor. The computational time required for the
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Fig. 15. Mode amplitudes versus time obtained from secondary instability simulations. The basic flow was obtained from the precursor simulation at: a) t 0 = 300 , b) t 0 = 350 

& c) t 0 = 450 . d) Growth rates and e) phase speed of 2-D and 3-D modes versus primary wave amplitude from Fig. 4 a. 
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rowth rates and mode shapes to become fully established is ap-

roximately 690 minutes. The corresponding computational time

or a single streamwise Fourier mode is thus 690/16 ≈ 43 min-

tes. The secondary stability analysis can also be formulated as a

iglobal problem. As a reference for the required computer time

or such an investigation, a biglobal analysis for a rectangular duct

ow at Re = 100 by Rodríguez and Theofilis [25] shall be consid-

red. Solving for a single mode for a case with 40 × 40 Chebyshev-

auss-Lobatto points took about 2.5 minutes on four Intel Xeon

ores or about 10 minutes on a single core. A more recent publica-

ion by Gennaro et al. [26] demonstrates the progress made with

egard to the computational efficiency of biglobal stability analysis

odes. The solution of a problem with 50 × 50 grid points on a

ersonal computer required only 12.4 seconds. 

.3. Case 2: Reduced Rayleigh number 

A similar secondary stability analysis was carried out for a

ower Rayleigh number of Ra = 50 0 0 . The Reynolds number ( Re =
30 . 5 ) and other parameters were kept the same as for case 1.

lso, an identical procedure was followed for the analysis. A wave-

ength study revealed that the primary mode was most unstable

or λz = 3 . 4 . A DNS with eight spanwise Fourier modes was per-

ormed to obtain a basic flow for the secondary instability in-

estigation. In Fig. 17 a the spanwise mode amplitudes are plot-

ed versus time. The flow field with saturated spanwise modes

t t 0 = 800 was chosen as basic flow for a secondary instabil-

ty analysis. Several DNS were carried out with varying stream-

ise domain extent using two streamwise and eight spanwise

ourier modes. The temporal growth rate of the dominant 2-D

ode is shown in Fig. 17 b. For a wavelength of λx = 11 ( λx = 5 . 5

ased on channel height) and a corresponding wavenumber of

= 0 . 571 ( α = 1 . 14 based on channel height) the 2-D mode is

ost amplified. The temporal growth rate is ω i = 0 . 0203 . Com-

ared to case 1 ( Re = 130 . 5 and Ra = 80 0 0 ), the streamwise wave-

ength is increased and the growth rate is reduced. This trend

s in agreement with Clever and Busse [10] and Pabiou et al.

12] . 
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Fig. 16. Mode amplitudes versus time obtained from secondary instability simulations for basic flow comprised of 1-D profile and (0, 1) mode with a) A = 0 . 0024 , b) 

A = 0 . 085 , and c) A = 0 . 1098 (corresponding to t 0 = 300 , t 0 = 350 and t 0 = 450 in Fig. 4 a). d) Growth rates and e) phase speed of 2-D and 3-D modes versus primary wave 

amplitude. 

Fig. 17. a) Amplitude vs. time for primary wave & higher harmonics and b) growth rate of 2-D mode versus streamwise wavenumber for case 2. 
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. Conclusions 

The primary buoyancy-driven instability of Rayleigh-Bénard-

oiseuille flow leads to the development of counter-rotating longi-

udinal vortices that are aligned in the streamwise direction. Upon

aturation of the primary mode, secondary instability can lead to a

inusoidal waviness of the longitudinal rolls as observed in the ex-

eriments by Pabiou et al. [12] . The majority of the literature con-

erned with the secondary instability investigation of plane RBP

ows is for channels with finite spanwise extent likely because

f their research prevalence in technical applications. This paper

emonstrates how temporal stability simulations based on the full

nd linearized Navier-Stokes equations (DNS and LNS) can be em-

loyed for investigating the secondary instability of RBP flows with

nfinite spanwise extent. The present LNS results serve to cross-

alidate the DNS results and demonstrate the utility of LNS for sec-

ndary instability analyses. The present stability simulations were

arried out with two highly accurate research codes by Hasan and

ross [15] . 

The secondary instability investigations were performed for

hree cases with buoyancy-driven primary instability. A validation

ase was computed first. The streamwise wavelength and phase

peed of the most strongly amplified secondary unstable wave

ere in good agreement with the reference data by Clever and

usse [10] and Pabiou et al. [12] . The growth rates of the unsta-

le two-dimensional (2-D) and three-dimensional (3-D) secondary

odes obtained from simulations based on the full and linearized

avier-Stokes equations were in excellent agreement which proves

hat the secondary growth is in fact linear. Similar to resonance

riads for fundamental boundary layer breakdown [18] , the sec-

ndary instability was found to result from a triad interaction of

he fundamental steady 3-D mode with a 2-D and two oblique

odes. The secondary instability was shown to lead to a sinu-

oidal waviness of the longitudinal rolls as observed in the ex-

eriments by Pabiou et al. [12] . The analysis also demonstrated

hat the longitudinal rolls resulting from the primary instability

eed to be fully developed in order for the sinusoidal secondary

nstability to occur. Moreover, the simulations showed that the

econdary instability becomes weaker and the streamwise wave-

ength of the wavy mode is increased when the Rayleigh number is

owered. 

The present results illustrate that carefully set up tempo-

al stability simulations constitute an alternative to linear sta-

ility investigations based on a normal mode ansatz. For the

resent geometrically simple problem, the DNS and LNS codes

re computationally less efficient than analyses based on linear

r weakly non-linear stability theory, such as biglobal stability

nalysis. However, one could conceive geometrically more com-

lex and/or non-linear problems where linear or weakly non-

inear theory is no longer possible and/or applicable. In such

nstances, temporal stability simulations can provide useful in-

ight into the primary or secondary instability or non-linear

nteractions. 
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