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The onset of primary and secondary instability has important implications for Rayleigh-Bénard-Poiseuille
flows. This paper demonstrates that the primary and secondary instability can be investigated with tem-
poral simulations based on the full and linearized Navier-Stokes equations. Three cases with subcritical
Reynolds number and supercritical Rayleigh number are discussed. It is shown that the secondary in-
stability results from a triad interaction of the fundamental steady three-dimensional mode with a two-
dimensional and two oblique modes. As the disturbances grow to non-linear amplitudes, the longitudinal
rolls exhibit a sinusoidal wavy deformation. The wavelength of the most amplified secondary instability
wave is in good agreement with experimental observations. The phase speed of the waves is close to the
basic flow bulk velocity as suggested in the literature.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Rayleigh-Bénard-Poiseuille (RBP) flows occur in nature and have
many technical applications. Examples are the flow through the
collector of solar chimney power plants [1] and through chemical
vapor deposition reactors [2,3]. The buoyancy-driven instability of
RBP flow have been investigated in considerable detail. Gage and
Reid [4] employed linear stability theory (LST) to investigate the
buoyancy- and viscosity-driven instability of plane RBP flow. The
two relevant dimensionless numbers are the Reynolds number,
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where umax is the channel maximum velocity, h/2 is the chan-
nel half-height, and v is the kinematic viscosity, and the Rayleigh
number,
3
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with gravitational acceleration, g, volumetric thermal expansion
coefficient, y, temperature difference, AT, and thermal diffusiv-
ity, a*. According to Gage and Reid [4], buoyancy-driven instability
occurs for Ra > Ra. = 1708 and viscosity-driven instability occurs
for Re > Re. = 5400. Orszag [5] later found a more accurate value
for the critical Reynolds number for the onset of the viscosity-
driven instability of 5772.22. A linear stability analysis by Fujimura
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and Kelly [6] revealed that for Reynolds numbers in the range
0.01 < Re < 100, the critical Rayleigh number for two-dimensional
(2-D) unstable waves was increasing with Reynolds number. This
finding is essentially consistent with the zero degree wave an-
gle neutral curve by Gage and Reid [4]. According to Luijkx et al.
[7], below a minimum finite aspect ratio, transverse rolls that are
aligned perpendicular to the flow direction can occur for Ra > Ra,
and Re < Re.. Nevertheless, in general for Re < Re. buoyancy-
driven instability leads to the emergence of counter-rotating lon-
gitudinal vortices which are referred to as longitudinal rolls. The
appearance of such longitudinal rolls in plane RBP flow has also
been confirmed by many experimental investigations [8,9].

When the disturbance amplitudes associated with the primary
instability get sufficiently high and non-linear interactions be-
come important, secondary instability can occur. Clever and Busse
[10] were the first to carry out a secondary linear stability analy-
sis for longitudinal rolls in a RBP flow with infinite spanwise ex-
tent and found two distinct modes of secondary instability. The
first mode is known as wavy instability and occurs above a crit-
ical Rayleigh number. The streamwise wavenumber, o = 27 /Ay,
with streamwise wavelength, Ay, of this mode increases with
Rayleigh number. As the Rayleigh number is raised above the crit-
ical Rayleigh number, the wavy instability initially occurs for very
small «. The second mode is referred to as the oscillatory instabil-
ity and occurs for low Reynolds numbers and high Rayleigh num-
bers. Kato and Fujimura [11] performed a LST analysis of a finite
span square channel RBP flow and found a higher critical Rayleigh
number for the onset of the wavy instability than for an infinite
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span RBP flow. An experimental investigation of the wavy insta-
bility for a case with fully developed longitudinal rolls was car-
ried out by Pabiou et al. [12]. Because of the convective nature of
the secondary instability, they employed localized upstream har-
monic forcing to raise the initial amplitude of the secondary in-
stability waves. The phase speed of the most amplified secondary
instability waves was found to be very close to the bulk veloc-
ity and the wavelength was shown to increase with decreasing
Rayleigh number. Xin et al. [13] carried out a numerical investiga-
tion of the instability of RBP flow for a channel with an aspect ra-
tio (span to height) of 10. The primary instability led to either nine,
10 or 11 longitudinal rolls. All three configurations were subject to
the three-dimensional (3-D) wavy instability and a linear relation-
ship between the angular frequency and streamwise wave num-
ber was established which confirmed the earlier finding that the
wave speed approximately matches the bulk velocity. Nicolas et al.
[14] employed LST and direct numerical simulations (DNS) for in-
vestigating the finite-span effect on the instability of RBP flows.
They found that the critical Rayleigh number for the onset of the
wavy instability for a finite aspect ratio of 10 is approximately 1.5 -
1.8 times higher than for an infinite aspect ratio channel.

This paper reports on temporal secondary instability investiga-
tions of plane RBP flows with infinite spanwise extent and fully
established longitudinal rolls. The stability investigations were car-
ried out with high-order-accurate codes that solve the full and lin-
earized Navier-Stokes equations. The codes employ a unique com-
bination of a spectral discretization in the homogeneous (stream-
wise and spanwise) directions, and a high-order discretization in
the wall-normal direction. Details about the numerical methods
and validation cases can be found in a companion paper [15]. The
infinite span assumption, which is implicitly invoked through the
use of Fourier modes, allows for a direct comparison with linear
stability theory. The primary interest of the present paper is on the
wavy secondary instability which leads to the breakdown of the
longitudinal vortices resulting from the primary instability. Results
are shown for three cases with subcritical Reynolds number and
supercritical Rayleigh number. The paper concludes with a brief
summary and discussion of the results.

2. Methodology
2.1. Computational method

The present numerical Rayleigh-Bénard-Poiseuille (RBP) stabil-
ity investigations were carried out with high-order-accurate codes
that solve the full and linearized compressible Navier-Stokes equa-
tions. The two approaches are here referred to as direct numeri-
cal simulation (DNS) and linearized Navier-Stokes simulation (LNS).
For both, a forcing term was added to the right-hand-side of the
streamwise momentum equation to compensate for the stream-
wise pressure drop and the Boussinesq approximation was invoked
for the buoyancy acceleration in the vertical direction. The top and
bottom wall temperature were considered as isothermal. The gov-
erning equations were made dimensionless with a reference veloc-
ity, uy, reference length, Ly, reference temperature, T,.r = 300K,
and reference density, p,s. Pressure was non-dimensionalized with
,orefuﬁm. Unless stated otherwise, the maximum velocity, umax,
and channel half-height, h/2, were taken as reference velocity and
reference length. The reference Mach number was M = 0.1. Fourier
transforms were employed in the two homogeneous directions
(streamwise and spanwise). The convective and viscous terms in
the wall-normal direction were evaluated with fifth- and fourth-
order-accurate compact finite differences for non-equidistant grids,
respectively. A fourth-order-accurate-Runge-Kutta scheme was em-
ployed for time integration. Details regarding the governing equa-
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Fig. 1. Three-dimensional computational domain.

tions, the discretization and the boundary conditions can be found
in Hasan and Gross [15].

2.2. Computational grid

Grid points were clustered near the top and bottom wall using
an analytical wall-normal grid point distribution,
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Here j is the wall-normal grid line index and ] is the total num-
ber of grid points, h = 2 is the channel height, c* = 0.05 is a user-
specified constant, f; =Jc*/2, and f, = tan~!(f;). The streamwise
and spanwise domain extent of the computational grid are denoted
by L and Z, respectively. A sketch of the 3-D computational domain
indicating the coordinate system, geometric dimensions, boundary
conditions, as well as the direction of the flow and the gravitional
acceleration is shown in Fig. 1.

2.3. Basic flow

The basic flow for the simulations was obtained by solving the
one-dimensional (1-D) Navier-Stokes equations,
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with a second-order-accurate shooting method. Very small (linear)
random disturbances slightly above machine roundoff were added
to the basic flow to raise the initial disturbance amplitudes for the
stability analyses.

2.4. Numerical linear stability analysis

According to temporal Linear Stability Theory (LST), a wave
ansatz of the form

U(x,y.2.0) = 3 dy(y)eiexhon, (7)

can be made for the disturbances where o, 8 and w = w; +iw;
are the streamwise and spanwise wavenumber as well as the an-
gular frequency. Here, #i;(y) are the mode amplitude distributions.
The streamwise, Ax, and spanwise, A, wavelengths can be obtained
from the streamwise and spanwise wavenumbers, Ay = 27 /@ and
Az =2m/B. The wavelengths Ay and A, are related to the stream-
wise, L, and spanwise domain extent, Z, via Ax = L/l and A; = Z/m,
where | and m are the streamwise and spanwise Fourier mode
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Table 1
Parameters for stability simulations.
Re Ra
Validation case (Pabiou et al. [12]) 87 6300
Case 1 130.5 8000
Case 2 130.5 5000

number. The period, Ty, is related to the real part of the angular
frequency via T, = 27 /w,. Throughout the paper Fourier modes are
referred to as (I, m). The wavelength and wavenumber in the wave
propagation direction are A = 2w /k; and k; = /a2 + B2 and the
wave angle is 6 = tan~! (B /) = tan~! (Ax/A;). For oblique waves,
the amplitude, A, and phase, V, of the left and right-traveling
waves (in negative and positive z-direction) is denoted by a “-” and
“+" superscript. The disturbance amplitude, A, was computed as the

square root of the disturbance kinetic energy, A =
averaged over the channel height,

E’, which was

h
E = 2171/0 [22() + P2() + W2 ()] d. )

This criterion was demonstrated to accurately characterize the
growth of disturbance waves [16,17]. The temporal growth rates
were obtained from,

dlin(4)]
w; = —dr (9)

where Ap is the disturbance amplitude at t =0 and the phase
speed in the x-direction was computed as

cX:_iZZ, (10)
09X

where ¥ = ax + 8z — w;t. The phase speed in the wave propaga-
tion direction is ¢ = w;/k;. The phase, frequency and phase speed
were calculated from the streamwise, wall-normal and spanwise
velocity components in the center of the channel.

3. Results

Three cases with buoyancy-driven instability were considered
(Table 1). According to Orszag [5] and Gage and Reid [4], the cho-
sen Reynolds numbers are subcritical (Re < Re; = 5772.22) and the
Rayleigh numbers are supercritical (Ra > Ra. = 1708). Based on a
grid convergence study [15], the number of grid points in the wall-
normal direction was set to | = 72.

0.08F
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g of
| — Polynomial fit
F o Simulation
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-0.08f
0o 1 2 3 4
a) p

3.1. Validation case

Pabiou et al. [12] carried out an experimental investigation
of the secondary instability of RBP flows for Re,; > 100 and
Ra > 6300, where Rey,; is based on the bulk velocity and channel
height. One of the cases (Re,; = 174 based on channel height or
Rey, = 87 based on channel half-height and Ra = 6300) from the
paper by Pabiou et al. [12] was computed for additional validation
of the DNS code. For this case and different from the other cases,
all quantities were made dimensionless with the bulk velocity and
channel half-height. In order to reproduce the experimental case,
an appropriate basic flow had to be generated. First, several DNS
were performed to find the spanwise wavelength, A,, for which
the primary mode (longitudinal rolls) was most strongly ampli-
fied. According to Fig. 2 a, this occurs for A, =3.22 (8 = 1.9512).
Next, a DNS with eight spanwise modes and Z = 3.22 was car-
ried out for Rey, = 87 and Ra = 6300. The primary mode (0, 1)
exhibits linear (i.e. exponential) growth (Fig. 2 b). Non-linear in-
teractions for ty; > 140 lead to the growth of higher harmon-
ics (0, 2), etc. It should be mentioned that non-linear interac-
tions such as (0,1) + (0, 1) = (0, 2) are always present in the DNS.
The amplitude of the resulting modes scales with the product of
the amplitudes of the generating modes, e.g. A(0,2) =A(0,1) x
A(0,1). Thus, for the present case, the amplitude of mode (0, 2)
grows above 10-12 when the amplitude of mode (0, 1) surpasses
10-6. Around t, =350 all mode amplitudes saturate. An instan-
taneous flow field at ty = 400 obtained from this precursor sim-
ulation was taken as 3-D basic flow for a secondary instability
investigation.

Next, a wavelength study was conducted to find the most am-
plified secondary instability mode. According to Fig. 3 a, the most
unstable 2-D mode has a streamwise wavelength of Ay =9 or Ay =
4.5 based on channel height which is in close agreement with the
experimental measurements by Pabiou et al. [12]. The correspond-
ing streamwise wavenumber is o = 0.698 (1.40 based on channel
height) and the temporal growth rate is w; = 0.0407. In Fig. 3 b
the phase speed in the x-direction is plotted versus the ratio of
the streamwise wavelength and channel height. The most ampli-
fied secondary instability mode has a phase speed of cx = 0.94.
Pabiou et al. [12] measured a phase speed of 1.1u, + 7%. A lin-
ear stability analysis by Clever and Busse [10] suggests that the
phase speed is within a few percent of the bulk velocity. The
present result is thus in reasonable agreement with the published
literature.

Fig. 2. a) Wavelength study: temporal growth rate versus spanwise wavenumber and b) Amplitude vs. time for primary wave and higher harmonics for Re,, = 87 and
Ra = 6300. The saturated flow at ty = 400 is used as baseflow for the secondary instability investigation.
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Fig. 3. Dependence of a) growth rate and b) phase speed (data points are connected by straight lines) of secondary unstable 2-D mode on streamwise wavenumber and

wavelength for Re,, = 87 and Ra = 6300.
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Fig. 4. a) Primary mode amplitude versus time and b) growth rate of unstable 2-D secondary mode versus streamwise wavenumber for case 1.
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Fig. 5. Amplitude of secondary unstable 2-D mode versus time for case 1: a) LNS and b) DNS.

3.2. Case 1: Increased Rayleigh number

The Reynolds and Rayleigh number were set to Re = 130.5
and Ra = 8000. According to the stability boundary by Clever and
Busse [10], this case should exhibit secondary instability. The bulk
Reynolds number based on channel half-height (Re,,) is approxi-
mately 87. As for the validation case, precursor simulations were

carried out to determine the spanwise wavelength (A, =3.1) for
which the 3-D primary mode experienced the strongest amplifi-
cation. Next, a DNS with spanwise domain extent of Z = 3.1 and
eight modes in the spanwise direction was performed. The tem-
poral development of the spanwise mode amplitudes is shown in
Fig. 4 a. Once the primary mode (0, 1) with A, = 3.1 reaches a suf-
ficiently high amplitude, the higher harmonics (0, 2), (0, 3), etc.
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Fig. 6. Growth rates of 2-D modes versus streamwise wavenumber (linear regime)
for case 1.

begin to grow. At ty = 450 the mode amplitudes are saturated and
a steady 3-D flow with fully developed longitudinal vortices is ob-
tained which is then used as basic flow for the secondary instabil-
ity analysis. A streamwise wavelength study was carried out to de-
termine the streamwise wavelength for which the secondary insta-
bility waves experience the strongest amplification. Fig. 4b reveals
that the largest secondary growth (w; = 0.0321) is obtained for a
streamwise wavelength of Ay = 8 (Ax = 4 based on channel height)
and a streamwise wavenumber of o = 0.785 (1.57 based on chan-
nel height). Because time was made dimensionless with the ra-
tio of reference length and reference velocity, the temporal growth
rate based on the bulk velocity can be computed from the tem-
poral growth rate based on the maximum velocity via (w;)puk =
(Umax/Up) (®;)max- For the present case (w;)py = 0.04815 is ob-
tained which is greater than the secondary growth rate for Rey, =
87 and Ra = 6300 (validation case for secondary instability). Based
on the comparison with the validation case, it is also found that
as the Rayleigh number increases, the streamwise wavelength of
the most amplified secondary instability wave is reduced. The
higher temporal growth rate and lower streamwise wavelength
are in agreement with Clever and Busse [10] and Pabiou et al.
[12].

After the most unstable streamwise wavelength was deter-
mined, additional LNS and DNS were carried out for Re = 130.5 and
Ra = 8000. For these simulations, the streamwise and spanwise do-
main extent were set to L =3 x Ax =24 and Z =X, = 3.1 and a to-
tal of 16 and eight modes were employed in the streamwise and

00357 T T 1 1
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0.03} .
0.025F .
65_ L
0.02 1,1 — Polynomial fit

0.015F x LNS 3.1 ]
0.01F .

| |
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o

Fig. 8. Growth rates of 3-D right-traveling modes versus streamwise wavenumber
(linear regime) for case 1.

spanwise direction. In Fig. 5, the 2-D mode amplitude distribu-
tions are plotted over time. Mode (3, 0), which has a streamwise
wavelength of Ay =8, displays the strongest linear growth. Other
modes also exhibit linear growth but the growth rates are lower
than for mode (3, 0). The always present non-linear interaction of
mode (3, 0) and =+ (2, 0) in the DNS leads to the growth of modes
(5, 0) and (1, 0) for t > 600. This effect only becomes visible for
t > 600 when the nonlinearly generated amplitudes, which scale
approximately with A(3, 0) x A(2, 0), exceed the linear growth
amplitudes of modes (5, 0) and (1, 0). The growth rates of the 2-
D modes obtained from the LNS and DNS are in excellent agree-
ment for t < 600 (see Fig. 6). Fig. 7 shows the time evolution of
the disturbance amplitudes of the right-traveling oblique waves.
In Fig. 8, the temporal growth rate is plotted versus the stream-
wise wavenumber. For t < 600 the growth rates obtained from
the LNS and DNS are identical which provides proof that the sec-
ondary growth is in fact linear. Mode (3, 1) which has a streamwise
wavelength of Ay = 8 and a spanwise wavelength of A, = 3.1 grows
the fastest. The amplitudes and growth rates of the left-traveling
oblique waves are virtually identical to those of the right-traveling
oblique waves (Figs. 9 & 10) since the basic flow is symmetric. It
can also be noted that the growth rates of modes (3, 0), (3, 1),
and (3, —1) are identical (w; =0.0321). To help understand this
phenomenon, in Fig. 11 the growth rates, frequencies, and phase
speeds of modes (3, 0), (3, 1) and (3, —1) are plotted versus time.
As in resonance triads for fundamental boundary layer breakdown
[18], the primary spanwise mode (0, 1) and the secondary modes

P R n
400 600

Fig. 7. Amplitude of secondary unstable 3-D right-traveling mode versus time for case 1: a) LNS and b) DNS.
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Fig. 10. Growth rates of 3-D left-traveling modes versus streamwise wavenumber
(linear regime) for case 1.

(3,0) & (3, £ 1) are linked. The secondary modes share the same
growth rate, frequency and phase speed. The phases of the two-
dimensional mode and the two oblique modes are aligned in such
a fashion that the secondary modes extract energy from the pri-
mary mode [18]. Modes (1, 0) & (1, + 1) and (2, 0) & (2, = 1)
also exhibit triad interactions (not shown).

Fig. 12 displays isocontours of the v/, v/, and w’ disturbance
amplitudes for the three streamwise wavelengths Ay = 24, 12 and

00322! :: T T
| 3,0 ]
bl o031 ]
0.03215} : iamnnet x 1
3 ]
g 0.0321F 3
0.03205} i} .
gl
oombd . :
=090 200 400 600 800
a) t

2| |vV—=1,-1

P L
600 800

400
b) t

Fig. 9. Amplitude of secondary unstable 3-D left-traveling mode versus time for case 1: a) LNS and b) DNS.

8 that correspond to modes (1, 0), (2, 0), and (3, 0). Also shown
are isocontours of the 3-D component of the basic flow (i.e. all
steady spanwise modes). The placement of the streamwise sec-
ondary mode disturbance maxima in Fig. 12 relative to the isocon-
tours for the basic flow illustrates which part of the basic flow con-
tributes to the secondary growth. The v’ disturbance amplitude for
Ax = 24 exhibits four maxima at z ~ 0.052, 1.03, 1.65, and 2.6 near
y ~ 0.7 and 1.3 as seen in Fig. 12 a. For Ax = 12 and 8 the max-
ima at z ~ 1.03 and 1.65 are shifted upward while the other two
maxima at z ~ 0.052 and 2.6 are shifted downward (Fig. 12 b and
Fig. 12 c). The v/ amplitude distribution has two maxima, however
the shift of the maxima towards the shorter wavelengths is min-
imal (Figs. 12 d-12 f). Figs. 12 g-12 i display four maxima of the
w’ disturbance amplitude distributions. For the shorter streamwise
wavelength, the maxima are shifted farther away from the center
of the channel and sideways.

Fig. 13 shows isosurfaces of the Q-criterion [19] flooded by the
streamwise vorticity for t = 800. As a result of the secondary in-
stability, the straight longitudinal rolls (basic flow) become wavy
as also observed in the experiment by Pabiou et al. [12]. The u/,
v/, w, and T disturbance amplitude distributions for the primary
and secondary modes at t = 500 are plotted in Fig. 14. The mode
shapes obtained from the LNS and DNS are in close agreement
which again is evidence that the secondary instability results from
a linear resonance. The shape of the 2-D secondary mode (3, 0) is
noticeably different from that of the primary mode (0, 1). For ex-
ample, the v/ amplitude distribution for mode (3, 0) features two
peaks while the primary mode has only one peak at y ~ 1. On the

tip | | | 3
0.6y 200 40 600 800

Fig. 11. a) Growth rate and b) frequency & phase speed distributions versus time for modes (3, 0), (3, 1) & (3, —1) (case 1).
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Fig. 12. Isocontours of u’ (a - ¢), v/ (d - f), and w (g - i) distrubance amplitude (grey scales) plotted over isocontours of 3-D component of basic flow (solid lines) for

streamwise wavelength of A,
u’, —0.14 to 0.14 with A = 0.0147 for v/, and —0.12 to 0.12 with A = 0.016 for w'.

other hand, the differences between the primary mode (0, 1) and
the oblique secondary modes (3, & 1) are more subtle except for
the T amplitude distribution which has two peaks for the primary
mode but only one peak for the oblique modes.

In their experiment, Pabiou et al. [12] investigated the sec-
ondary instability of a flow with fully developed longitudinal rolls.
This rises the question how well developed the longitudinal rolls
need to be for the secondary wavy instability to occur. To answer
this question, the basic flow was extracted at different time in-
stances (to = 300, ty = 350 and ty = 450) from the precursor sim-
ulation (Fig. 4 a). For each basic flow, a secondary instability DNS
was performed using the same parameters as before (L =3 x Ax =
24, Z = A; = 3.1, 16 modes in x and 8 modes in z). The mode am-
plitudes of the 2-D and oblique modes are shown in Figs. 15 a-15
c. It can be seen that the growth rates of modes (1, 0) and (1, £ 1)
are substantially increased for ty = 300 and tg = 350 compared to
to = 450. Figs. 15 d and 15 e provide a clearer picture: The growth
rates of mode (1, 0), (1, £ 1), (2, 0) and (2, + 1) are decreasing
while the growth rates of modes (3, 0) and (3, + 1) are increasing
when the amplitude of the primary wave (0, 1) is increased (Fig. 15
d). The phase speeds are provided in Fig. 15 e. Interestingly, as the
basic flow 3-D mode amplitude is increased beyond 0.09, the phase

=24(a, d, g), 12 (b, e, h) and 8 (c, f, i), respectively. The range and spacing of the isocontours for the basic flow is 0 to 0.78 with A = 0.06 for

speed of the waves suddenly decreases sharply. This reduction in
phase speed is most pronounced for (3, 0) and (3, =+ 1). Possible
phase-locking of (2, 0) & (2, #+ 1) with (3, 0) & (3, £ 1) may lead
to resonance and energy transfer from the former to the latter.

A similar investigation was also carried out for a basic flow
comprised solely of the one-dimensional channel flow and the pri-
mary mode (0, 1). The same primary mode amplitudes as for the
preceding analysis were considered. Figs. 16 a-16 ¢ show the time
evolution of the amplitudes of the 2-D and oblique modes for a ba-
sic flow mode (0, 1) amplitude of 0.0024, 0.085 and 0.1098, which
correspond to ty = 300, ty = 350 and ty = 450 in Fig. 4 a. Fig. 16 d
shows that the 2-D and oblique modes are growing as the result
of a triad interaction as for the earlier case (Fig. 15 d). The growth
rates of all secondary modes such as (1, 0) and (1, #+ 1) increase as
the amplitude of the primary wave is increased (Fig. 16 d). Differ-
ent from the previous analysis for a basic flow that includes all of
the higher steady spanwise modes, modes (1, 0) and (1, £ 1) re-
main the most amplified regardless of the basic flow primary mode
(0, 1) amplitude. Also different from the previous case, no sudden
dramatic reduction of the phase speeds is visible for A = 0.1098
(Fig. 16 e). This analysis suggest that a fully developed basic flow
is required for the secondary instability to occur.
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Fig. 13. Isosurfaces of Q = 0.025 at t = 800 flooded by streamwise vorticity (wy = +0.4) for case 1: a) 3-D view, b) top view (x — z plane), c) front view (y — z plane) and

d) side view (x — y plane) where x to y ratio is 0.15.
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Fig. 14. Distributions of v/, v/, w/, and T’ for a) 2-D mode (3, 0), b) right traveling mode (3, 1) and c) left traveling mode (3, —1) at t = 500 for case 1. The primary mode (0,

1) is also provided as a reference.

Altough the primary instabiliy for 3-D crossflow and Gortler
instability of boundary layer flows is different from the primary
instability for plane RBP flow, it leads to steady streamwise vor-
tices. The common feature is that all of them require non-linear
saturation of the streamwise vortices for secondary instability to
occur [20-23]. However, different from RBP flow, the streamwise
vortices resulting from crossflow instability are co-rotating. The
crossflow secondary instability leads to the formation of finger
vortices [20,21] whereas for RBP flow, the primary longitudinal
rolls become wavy in the streamwise direction (sinuous mode).

The vortices resulting from Gortler instability are counter-rotating.
When Gortler vortices begin to saturate, secondary instability can
lead to the growth of varicose and sinuous modes [22-24]. The
sinuous mode is indeed analogous to the wavy mode for RBP
flow.

Finally, a few words are in place regarding the computational
efficiency of the present approach. The present case with 72 wall-
normal grid points, eight spanwise Fourier modes and 16 stream-
wise Fourier modes, was computed on a single core of an Intel
Core i7-9700 processor. The computational time required for the
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Fig. 15. Mode amplitudes versus time obtained from secondary instability simulations. The basic flow was obtained from the precursor simulation at: a) t, = 300, b) t, = 350
& C) to = 450. d) Growth rates and e) phase speed of 2-D and 3-D modes versus primary wave amplitude from Fig. 4 a.

growth rates and mode shapes to become fully established is ap-
proximately 690 minutes. The corresponding computational time
for a single streamwise Fourier mode is thus 690/16 ~ 43 min-
utes. The secondary stability analysis can also be formulated as a
biglobal problem. As a reference for the required computer time
for such an investigation, a biglobal analysis for a rectangular duct
flow at Re = 100 by Rodriguez and Theofilis [25] shall be consid-
ered. Solving for a single mode for a case with 40 x 40 Chebyshev-
Gauss-Lobatto points took about 2.5 minutes on four Intel Xeon
cores or about 10 minutes on a single core. A more recent publica-
tion by Gennaro et al. [26] demonstrates the progress made with
regard to the computational efficiency of biglobal stability analysis
codes. The solution of a problem with 50 x 50 grid points on a
personal computer required only 12.4 seconds.

3.3. Case 2: Reduced Rayleigh number

A similar secondary stability analysis was carried out for a
lower Rayleigh number of Ra = 5000. The Reynolds number (Re =

130.5) and other parameters were kept the same as for case 1.
Also, an identical procedure was followed for the analysis. A wave-
length study revealed that the primary mode was most unstable
for A, =3.4. A DNS with eight spanwise Fourier modes was per-
formed to obtain a basic flow for the secondary instability in-
vestigation. In Fig. 17 a the spanwise mode amplitudes are plot-
ted versus time. The flow field with saturated spanwise modes
at top =800 was chosen as basic flow for a secondary instabil-
ity analysis. Several DNS were carried out with varying stream-
wise domain extent using two streamwise and eight spanwise
Fourier modes. The temporal growth rate of the dominant 2-D
mode is shown in Fig. 17 b. For a wavelength of Ax =11 (Ax =5.5
based on channel height) and a corresponding wavenumber of
o =0.571 (¢ = 1.14 based on channel height) the 2-D mode is
most amplified. The temporal growth rate is w; = 0.0203. Com-
pared to case 1 (Re = 130.5 and Ra = 8000), the streamwise wave-
length is increased and the growth rate is reduced. This trend
is in agreement with Clever and Busse [10] and Pabiou et al
[12].
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4. Conclusions

The primary buoyancy-driven instability of Rayleigh-Bénard-
Poiseuille flow leads to the development of counter-rotating longi-
tudinal vortices that are aligned in the streamwise direction. Upon
saturation of the primary mode, secondary instability can lead to a
sinusoidal waviness of the longitudinal rolls as observed in the ex-
periments by Pabiou et al. [12]. The majority of the literature con-
cerned with the secondary instability investigation of plane RBP
flows is for channels with finite spanwise extent likely because
of their research prevalence in technical applications. This paper
demonstrates how temporal stability simulations based on the full
and linearized Navier-Stokes equations (DNS and LNS) can be em-
ployed for investigating the secondary instability of RBP flows with
infinite spanwise extent. The present LNS results serve to cross-
validate the DNS results and demonstrate the utility of LNS for sec-
ondary instability analyses. The present stability simulations were
carried out with two highly accurate research codes by Hasan and
Gross [15].

The secondary instability investigations were performed for
three cases with buoyancy-driven primary instability. A validation
case was computed first. The streamwise wavelength and phase
speed of the most strongly amplified secondary unstable wave
were in good agreement with the reference data by Clever and
Busse [10] and Pabiou et al. [12]. The growth rates of the unsta-
ble two-dimensional (2-D) and three-dimensional (3-D) secondary
modes obtained from simulations based on the full and linearized
Navier-Stokes equations were in excellent agreement which proves
that the secondary growth is in fact linear. Similar to resonance
triads for fundamental boundary layer breakdown [18], the sec-
ondary instability was found to result from a triad interaction of
the fundamental steady 3-D mode with a 2-D and two oblique
modes. The secondary instability was shown to lead to a sinu-
soidal waviness of the longitudinal rolls as observed in the ex-
periments by Pabiou et al. [12]. The analysis also demonstrated
that the longitudinal rolls resulting from the primary instability
need to be fully developed in order for the sinusoidal secondary
instability to occur. Moreover, the simulations showed that the
secondary instability becomes weaker and the streamwise wave-
length of the wavy mode is increased when the Rayleigh number is
lowered.

The present results illustrate that carefully set up tempo-
ral stability simulations constitute an alternative to linear sta-
bility investigations based on a normal mode ansatz. For the
present geometrically simple problem, the DNS and LNS codes
are computationally less efficient than analyses based on linear
or weakly non-linear stability theory, such as biglobal stability
analysis. However, one could conceive geometrically more com-
plex and/or non-linear problems where linear or weakly non-
linear theory is no longer possible and/or applicable. In such
instances, temporal stability simulations can provide useful in-
sight into the primary or secondary instability or non-linear
interactions.
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