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Responsive materials, as well as active structural systems, are today widely used

to develop unprecedented smart devices, sensors, or actuators; their functionalities

come from the ability to respond to environmental stimuli with a detectable reaction.

Depending on the responsive material under study, the triggering stimuli can have a

different nature, ranging from physical (temperature, light, electric or magnetic field,

mechanical stress, etc.), chemical (pH, ligands, etc.), or biological (enzymes, etc.) type.

Such a responsiveness can be obtained by properly designing the meso- or macroscopic

arrangement of the constitutive elements, as occurs in metamaterials, or can be obtained

by using responsive materials per se, whose responsiveness comes from the chemistry

underlying their microstructure. In fact, when the responsiveness at the molecular level

is properly organized, the nanoscale response can be collectively detected at the

macroscale, leading to a responsive material. In the present article, we review the

enormous world of responsive polymers, by outlining the main features, characteristics,

and responsive mechanisms of smart polymers and by providing a mechanical modeling

perspective, both at the molecular as well as at the continuum scale level. We aim at

providing a comprehensive overview of the main features and modeling aspects of the

most diffused smart polymers. The quantitativemechanical description of activematerials

plays a key role in their development and use, enabling the design of advanced devices

as well as to engineer the materials’ microstructure according to the desired functionality.

Keywords: continuum mechanics, environmental stimuli, molecular simulation, responsive polymers, smart

materials

INTRODUCTION

A great interest in smart and responsive materials has emerged in recent years. The materials’
capability to develop autonomous functions or to provide a desired response to external actions
has been recognized to be of paramount importance for the development of active devices, sensors,
and actuators to be applied in advanced fields, especially those devoted to small-scale applications
(Roy et al., 2010; Stuart et al., 2010; Wei et al., 2017). A commonly adopted strategy to obtain
smart devices consists of harnessing a proper arrangement of several elements into a predefined
pattern (metamaterials), in order to provide the assembly with the desired mechanical functionality
(Grima et al., 2013; Jackson et al., 2018). The quest for smaller and smaller systems and devices
to be employed in advanced technological applications has pushed forward research efforts in
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this direction. However, the metamaterials approach suffers
from dimensional limitations. Indeed, although modern 3D
printing technologies enable the fabrication of microscale size
devices, they do not extend to the nano and molecular
scales. This drawback can be overcome by using responsive-
molecules–based materials, namely polymers (Flory, 1953),
where the desired response and functionality are achieved by the
collective actuation of the embedded smart molecules. Today,
in modern material science, the use of a multidisciplinary
approach—involving chemistry, physics, and engineering—is
an unavoidable requirement to successfully design the desired
components, making them suitable for specific applications
(Cabane et al., 2012; Shepherd et al., 2013; Manrique-Juarez
et al., 2016). Molecular switches, for instance, represent a very
promising mechanism to enable the responsive capability of
a bulk material via size and shape modification. In this case,
responsiveness results from the transition of a molecule from one
equilibrium state to another (we talk about bistable molecules or
isomers), each state being characterized by distinct but different
geometrical or chemical properties. In certain situations, the
molecular switch does not require a conformational change of the
molecule, but rather a modification in its chemical structure that
can be detected at the bulk level. The transition between the two
stable conformation states triggered by environmental stimuli
(such as temperature, light, electric and/or magnetic fields,
chemical agents, mechanical stress, biological agents, etc.) enables
the development of molecular-level actuators and materials,
regardless of the dimensional requirement of the application
(Randolph et al., 2012; Kocak et al., 2017; Milić and Diederich,
2019). Such state of materials are ubiquitous in biology, such
as in immunoglobulin (Prigogine and Nicolis, 1971), where the
unfolding of molecular segments is triggered by mechanical
actions (Marszalek et al., 1999).

Another effective way of obtaining smart materials is the use
of liquid crystalline elastomers (LCEs), exhibiting the capability
to produce a reversible mechanical actuation triggered by
suitable external stimuli, such as heat, light, and electric and
magnetic field, thanks to the spontaneous order embedded in
their microstructure arrangement (De Gennes and Prost, 1993;
Warner and Terentjev, 2007; Jiang et al., 2013; Guin et al.,
2018). This property has been used in multiple applications
such as artificial muscles and microelectromechanical systems
(MEMS) for use in industrial and inmedical applications (López-
Valdeolivas et al., 2018; Shang et al., 2019). Smart polymers may
also rely on a diversity of other mechanisms, which include, for
instance stimulus-dependent structural rearrangement (Mayumi
et al., 2012), reorganizable dynamic networks (Tanaka and
Edwards, 1992), and swelling driven mechanisms typical of gels
(Flory, 1950; Agarwal et al., 2019), to name a few. It is also
worth mentioning the responsiveness shown by nanocomposite
materials, obtained by using particular nanoparticles capable
of inducing the desired response to the material in which
they are embedded in; Janus nanoparticles (whose surfaces
have two distinct physical properties, namely a hydrophobic
part and a hydrophilic one) belong to this class of tunable
interfacial nanostructures, whose response is allowed by their
asymmetric character (Liu et al., 2014; Zhu et al., 2018;

Dai et al., 2019). Thanks to their twofold properties the
aforementioned nanocomposites have been successfully used
in biological sciences, bioimaging, electronics, etc. (Su et al.,
2019).

The present work aims to provide a comprehensive overview
on different types of active polymers by underlining their
application potential, describing the molecular mechanisms
enabling their functionalities, as well as discussing current
models used to describe their mechanical behavior. We hope
this initiative will be useful to anyone who wish to learn and
perform research in the design of smart systems and devices,
and using the mathematical model to guide the tuning of
their properties from a microstructural perspective. The review
is organized as follows. Section Responsive Polymers: From
Molecular Architecture to Emerging Response first provides
a physical description of polymers at different length scales,
from molecular to continuum level. Section Polymers With
Conformational Instabilities, then discusses the specific class of
polymers with embedded responsive molecules, i.e., those whose
responsiveness comes from embedded conformational changing
molecules. In section Polymers With Changing Topology, we
further provide an overview of various classes of polymers with
reorganizable microstructure. These include vitrimers, slide-
ring gels, and liquid crystal elastomers. Section Swelling-Driven
Response of Gels, finally focuses on hydrogels, in which the
polymer network is able to absorb large amounts of solvent,
hence triggering significant volume change (Masao, 2009). This
mechanism represents an important way to get a smart response,
such as in the case of temperature-dependent hydrogel swelling.
Section Conclusions, concludes the review by providing closing
remarks and future research perspectives in this advanced field of
material science.

RESPONSIVE POLYMERS: FROM
MOLECULAR ARCHITECTURE TO
EMERGING RESPONSE

Responsive polymers belong to the class of smart materials
capable of producing detectable responses under the effects of
external stimuli. When properly understood and quantified,
such a molecular-scale response can be conveniently exploited
in various ways to obtain responsiveness at the meso- and
macroscale. The response of active polymers usually consists of
nanoscale changes (molecular bond rearrangement/cleavage,
molecular motion, morphology change, etc.) that can induce
observable changes at greater scales, such as color and/or
shape changes or changes in physical properties, that
can be exploited to achieve desired functionalities. Since
responsiveness comes from their molecular architectures,
the arrangements of polymer chains, and the nature of
embedded active molecules, stimuli-responsive polymers can be
tailored to have stimulus-specific chemical, physical (electrical,
optical), and mechanical responses and can be engineered into
different forms (thin films, micro/nanoparticles, composites, to
name a few).
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Molecular Mechanism in Active Polymer
In general, responsive polymers can be classified into two
categories (Stuart et al., 2010; Gruhn and Emmerich, 2013): (1)
covalently cross-linked polymer network that swell or shrink
under a stimulus; and (2) dynamic polymer networks with a
variable topology, in which cross-links or chemical bonds can be
broken and formed by external stimuli. In the first category, the
volume of these polymer networks can be dramatically changed
by changing the pH or the chemical compositions of the solvent.
Such a behavior can be understood from a multiphase mixture
model, by decomposing the system into two or more phases. For
instance, a pH-responsive hydrogel can be decomposed into an
incompressible polymer network phase and an incompressible
fluid phase. Their molecular structures can be understood by
minimizing the free energy of the whole system (Nap et al.,
2006), including the interaction and entropy of polymer chains,
the entropy of solvent and ions in the hydrogel, the Coulomb
interactions and mixing energy of polymer chains, solvent,
and ions.

In the second category, the most important aspect is the
network’s ability to reform broken bonds and rearrange its
molecular structures in a completely different topology and
shape (Cho et al., 2009). During this process, the association
and dissociation of dynamic bonds, as well as the diffusion of
polymer chains, play the most important roles. By understanding
the reaction kinetics of dynamic bonds and movement of
polymer chains, it is possible to build molecular theories to
relate the molecular structure to the network’s mechanical
behaviors (Stukalin et al., 2013). However, because of the
limitations of current experimental techniques, it is still not
feasible to track the molecular structure of these dynamic
polymers as they deform. Molecular dynamics (MD) simulations
have thus provided a useful alternative approach to understand
the evolution of their internal structure and the associated
molecular mechanisms.

In MD simulations, the positions and velocities of atoms
and molecules can be directly obtained through the equations
of motion that depend on the external and interatomic
forces. This simulation tool therefore allows us to directly
investigate the dynamic properties and molecular structures
of stimuli-responsive polymers. Similar simulation techniques
include Brownian dynamic simulations, dissipative particle
dynamics (DPD) simulations, Monte Carlo simulations, and
coarse-grained MD simulations. Through MD simulations, very
detailed information about stimuli-responsive polymers can be
obtained (Chen et al., 2019), such as the swelling behaviors
of polymer networks, break and formation of dynamic bonds,
changes of polymer configurations and networks, and elastic
and inelastic response of polymer networks under applied
strains. All of these simulations results not only help to
interpret experimental observations, but also support molecular
and macroscopic models. In the following sections, we will
discuss current progress inMD simulations of stimuli-responsive
polymers. We should emphasize that because of the limitation
of the space and scope of this work, we do not separate
different MD simulation techniques, such as all-atom MD and
DPD simulations.

Bridging Mechanisms and Emerging
Response: Continuum Mechanics
The mechanical response of a polymer originates from the elastic
energy stored in the network chains due to deformation. This
energy originates from the entropy of the chain’s conformations
measured by the end-to-end vector r between the chain’s head
and tail (following Gaussian or Langevin statistics). The key idea
is thus to represent the physical state of a polymer network via the
statistical distribution φ (r, t) of the chain according to their end-
to-end vector (Figure 1). Indeed, if this distribution is known
at any time, the deformation energy stored in the network can
be evaluated by the integral Ψ =

∫

r φ (r, t) ψ (r)dr, with ψ

being the energy per single chain. This equation states that the
total mechanical energy stored in the network is the sum of the
energies stored in each chain.

The knowledge of the chain distribution provides the
connection between the network structure and macroscopic
quantities such as the stress, the stored elastic energy, and the
average chain conformation (Vernerey et al., 2017). It is indeed
possible, by enforcing the second principle of thermodynamics,
to determine the stress tensor, and the average configuration
of the chains via the determination of specific moments of the
distribution as

σ =
1

c

∫

r
φ

∂ψ

∂ r
⊗ rdr and µ =

1

c

∫

r
φ r ⊗ rdr, (1)

where c is the chain concentration, ∂ψ/∂r is interpreted as
the force in each chain, and ⊗ is the dyadic product. We
note here that the tensor µ provides a description of both
the average end-to-end vector (related to the trace of µ)
and the average stretch directions (principal directions of µ).
Furthermore, this distribution evolves in time due to chain
stretch, inelastic dynamics (e.g., bond dynamic association and
dissociation), or changes in molecular conformations. As a result,
these relations are able to connect the molecular mechanisms
and stimulus-sensitivity of a polymer to its macroscopic
response, including elasticity, stress-relaxation, or self-healing.
The evolution of the tensor µ under the aforementioned effects
enables the determination of the deformation and the stress
state in the polymer. The foregoing micromechanics model is
suitable to be upscaled to the continuum level, through the
homogenization of the pointwise mechanical state provided by
the actual configuration of the polymer network chains. In
the next sections, we will discuss the form of the distribution
φ (r, t) based on the stimulus-sensitive molecular mechanisms,
chain deformation, and dynamics. This will be done in the
context of the various polymer systems listed in Table 1, so
that the link between molecular mechanisms and macroscopic
response becomes apparent. Table 1 summarizes the main class
of responsive polymers that will be considered in the following.

POLYMERS WITH CONFORMATIONAL
INSTABILITIES

Mechanically induced conformational change in molecules falls
within so-called mechanochemistry, whose main principle is the
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FIGURE 1 | (A) Cross-linked polymer network and illustration of the end-to-end vector r of a single chain. The chain is assumed to consist of N Kuhn segments with

length b. (B) Statistically, the chain population can be described by the distribution φ (r, t), for which we show a schematic example in one dimension.

TABLE 1 | Scheme of the main existing responsive polymers and their actuation mechanisms.

Polymeric material Subcategory Activation

stimuli

Actuation

mechanism

References

Polymers with

conformational

changing molecules

Polymers with

mechanophore

molecules

Mechanical stress Chemical

reactions

Caruso et al., 2009; Brantley et al., 2013;

Diesendruck and Moore, 2013; Silberstein

et al., 2013, 2014; Klajn, 2014; Brown and

Craig, 2015; Wang et al., 2015; Takaffoli et al.,

2016; Früh et al., 2017; Li et al., 2017

Polymers with

conformationally

changing molecules

Mechanical stress,

pH, light, heat

Molecules

conformation

change (isomers)

Shepherd et al., 2013; Manrique-Juarez et al.,

2016; Brighenti et al., 2018, 2019; Milić and

Diederich, 2019

Polymers with

changing topology

Network reorganization

(vitrimers, ionic

polymers)

Heat, mechanical

stress

Bond-exchange

reactions

Leibler et al., 1991; Tanaka and Edwards,

1992; Wojtecki et al., 2011; Bowman and

Kloxin, 2012; Jin et al., 2013; Kloxin and

Bowman, 2013; Luo et al., 2014; Meng and

Terentjev, 2018

Slide-ring gels Mechanical stress Slidable

cross-links

Karino et al., 2006; Mayumi et al., 2012; Kato

et al., 2013, 2015; Noda et al., 2014; Liu et al.,

2017; Jiang et al., 2018

Liquid crystal

elastomers (LCEs)

Temperature, light Mesogen-driven

network

deformation

Oseen, 1933; Frank, 1958; Ericksen, 1961;

Stephen and Straley, 1974; De Gennes and

Prost, 1993; Warner and Terentjev, 1996,

2007; Finkelmann et al., 2001; Ikeda et al.,

2007; Ohm et al., 2012; Jiang et al., 2013;

White and Broer, 2015; Yakacki et al., 2015;

Guin et al., 2018; McBride et al., 2018; Ula

et al., 2018; Shang et al., 2019

Gels Hydrogels Humidity, other

fluids

Swelling-driven

response

Flory, 1950; Tanaka and Fillmore, 1979; Hong

et al., 2008; Zhu et al., 2018; Agarwal et al.,

2019

PNIPAm Humidity, other

fluids, temperature

change

Temperature-

dependent

swelling-driven

response

Afroze et al., 2000; Yan and Tsujii, 2005;

Deshmukh et al., 2013; Li et al., 2015;

Vernerey and Shen, 2017; Işikver and Saraydin,

2019; Shen et al., 2019; Wang et al., 2020

PNIPAm, poly(N-isopropylacrylamide).

application of a mechanical force to drive chemical reactions
(Brantley et al., 2013). This technology is today used to activate
molecules in materials; however, polymer mechanochemistry

has not yet been adopted in industry despite the fact that
laboratory-based tests have demonstrated its potentialities not
achievable by traditional activation methods. This approach
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enables attainment of smart materials to be used in drug
delivery, sensors, actuators, green applications, etc. Polymers
containing active units (responsive molecules), i.e., whose
collective activation provides a detectable response at the
meso- or at the macroscale level, are considered. The so-called
mechanophores, i.e., mechanically sensitive chemical groups
built into the chemical structure of the polymer, are considered
first; they usually have photochromic properties, since on
mechanical stress the chemical structure of the molecule changes
and so a different color light is emitted (Brown and Craig,
2015). However, other kinds of groups exist whose mechanical
sensibility manifests through a geometric conformational change
(Milić and Diederich, 2019).

Conformational Changing Molecules
The chemical to mechanical energy transformation is a well-
known phenomenon of everyday life; however, the reverse
transformation, termed mechanochemistry, allows attainment
of chemical transformations through mechanical forces. Within
this context, the so-called mechanophores, whose bonds
or chemical functionalities are susceptible to undergoing a
chemical change caused by mechanical stress, provide relevant
potentialities. Mechanical stress-sensible molecules, when
placed into a polymeric network, make it possible to obtain
an interesting responsiveness of the polymer itself; polymeric
materials whose actuation can be triggered by a mechanical
stress are usually obtained by linking to the polymer network
particular molecules (mechanophores) whose chemical structure
or conformation (isomers) can be changed on the application
of a mechanical force (Figure 2) (Caruso et al., 2009). Among
the various existing compounds, spiropyran-based polymers are
of particular interest since their photochromism capability—
i.e., the change in the emitted light wavelength (among the
mechanochromic mechanophores it is worth mentioning
also diarylbibenzofuranone [DABBF], tetraarylsuccinonitrile
[TASN], diarylbibenzothiophenonyl [DABBT])—enables
associating the color of the emitted light to the mechanical
energy transferred to the material (Klajn, 2014; Li et al., 2017).
Thanks to the quantitative measurement of the amount of

mechanophore activation, stress, or strain self-sensing polymers
can be obtained (Früh et al., 2017). Among the wide range of
applications allowed by the mechanochemistry, mechanophores
have been used also for inducing self-healing capabilities in
polymers (Diesendruck and Moore, 2013).

Modeling Aspects
Mechanophore-containing polymers have been recently studied
from the mechanics viewpoint in order to provide a quantitative
description of their response to external stimuli (Silberstein et al.,
2013, 2014; Wang et al., 2015; Takaffoli et al., 2016). In general,
when dealing with a system characterized by two different stable
configurational states, namely s1 and s2, the dynamic equilibrium
quantifying how much the equilibrium of the system is closer to
the state s1 or to the state s2 is provided by a differential equation
of the form (Brighenti et al., 2018, 2019)

d̺s2
dt

= kA ̺s1 − kD ̺s2 , (2)

where ̺s1 and ̺s2 are the volume fractions of the material
being in states s1 and s2, respectively (̺s1 + ̺s2 = 1),
while kA, kD are the activation and deactivation rates whose
values are related to the energy barrier separating the two
aforementioned states. Typically, these rates are related to the
forward (1GA0) and backward (1GD0) energy barriers through

the standard Arrhenius law, kA = CA · exp
(

−1GA0
kBT

)

, kD =

CD · exp
(

−1GD0
kBT

)

, with CA, CD the frequency factors (Hänggi

et al., 1990). This approach becomes useful for describing
polymers whose functionality comes from active molecules or
compounds, characterized by two or more states, embedded, and
linked to the polymer network. In other cases, the functionality
comes from a rearrangement of their backbone network or
from a predefined organization of the polymer’s chains, whose
orientation characteristics the material may have memory.

Figure 2A schematically illustrates the occurrence of the
molecule switching from one conformation to another triggered
by a mechanical force, while Figure 2B provides the mechanical
landscape emerging when a polymer chain contains a responsive

FIGURE 2 | (A,B) Scheme of a mechanophore unit activated on mechanical force reaching the activation threshold. (C) Chain force- and energy-elongation diagrams

in the presence of molecule activation.
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molecule whose conformation changes upon a sufficient value
of the force, leading to an expansion of the molecule; the chain
force changes abruptly (by the amount δfc) at the occurrence of
the molecule conformation change by the amount δsc (red dotted
line), while the continuous black line corresponds to the standard
polymer chain response [Freely Jointed Chain (FJC) model].
From the energetic viewpoint the molecule activation entails an
energy vs. system deformation that is not convex any longer,
indicating the occurrence of a local instability phenomenon. The
mechanical effect played by the molecules activation can be easily
accounted for in the expression of the deformation energy of the
unit volume of the polymer; the energy difference between the
initial stress-free state and the current one is expressed as

1Ψ =
∫

r

(

φ(r, t)− φ0

) [(

1− ̺s2
)

ψ (r) + ̺s2 ψc

]

dr, (3)

where ψc = δfc · δsc is the energy associated with the molecule’s
activation (usually negligible with respect to the deformation
energy of the network). The stress state is thus provided by
the expression

σ = J−1PFT=
∂1Ψ

∂F
FT∼=

1

c

∫

r

(

1− ̺s2
)

φ
∂ψ (r)

∂r
⊗ rdr, (4)

where it was assumed that the polymer fulfills the
incompressibility condition, mathematically expressed by
J = det F = 1, while F = ∂x/∂X is the deformation gradient
tensor, with X, x being the position vector in the reference and in
the current configuration, respectively. We note that Equation
(4) is macroscopically equivalent to the stress appearing in
Equation (1).

POLYMERS WITH CHANGING TOPOLOGY

Polymers with network rearrangement capabilities have the
unique properties to reorganize their chains structure in time,

so leading to a continuous relaxation of their microstructure
that spontaneously tends to return to the reference stress-free
state (Tanaka and Edwards, 1992). A class of gels with structural
rearrangement capability (slide-ring gels) coming from their
movable cross-links properties (Kato et al., 2013) also belong to
such a group of responsive polymers.

pH-Responsive Polymers
pH-responsive polymers can change their configurations and
properties with pH variation in the solution, as illustrated in
Figure 3A. Usually, these materials contain ionizable functional
groups that can donate or accept protons due to the
environmental pH change, presented in Figure 3B. The typical
ionizable groups are weak acids andweak bases such as carboxylic
acids, phosphoric acid, and amines, which can be characterized
by the acid dissociation constant (pKa) or base dissociation
constant (pKb).

For example, poly(acrylic acid) (PAA) has a dissociation
constant pKa = 4.25 and above the pH value 4.25, its
carboxylic group becomes ionized by denoting protons. It
leads to electrostatic repulsions between polymer chains, which
can then associate with water molecules for swelling. The
physical properties of pH-responsive polymers, such as chain
conformation, configuration, solubility, and volume, could be
tailored by manipulating the charges along the backbone
of polymer chains or electrolyte concentration, resulting in
electrostatic repulsion forces to increase the hydrodynamic
volumes of polymer chains. The transition between tightly
coiled and expanded conformations can be influenced by any
condition that changes the electrostatic repulsion, such as pH
value, ionic strength, salt concentration, and type of counterions.
The transition from collapsed state to expanded state of these
polyelectrolyte chains has been explained by the change of
osmotic pressure exerted by mobile counterions neutralizing the
network charges (Tagliazucchi et al., 2010). Through all-atom
MD simulations, Cranford et al. (2010) have studied the tunable

FIGURE 3 | (A) Schematic of a pH-responsive polymer with conformation change from expanded state to folded state under pH change, depending on the ionization

of the ionic chain groups. (B) Chemical structures of pH-responsive polymers with ionizable functional groups: poly(acrylic acid) (PAA) and poly(N,

N-dimethylaminoethyl methacrylate) (PDMAEMA).
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adhesion properties of a polyelectrolyte complex consisting of
PAA and poly(allylamine hydrochloride) (PAH) under different
strain rates and pH values. The percent ionization of each
constituent polymer has been systematically varied according
to the pH range of 2.5–10 and pKa values of carboxylate
and ammonium groups in PAA and PAH, respectively. The
adhesion strength is found to vary from 8 to 45 nN due
to different electrostatic interactions, displaying the potential
application of tunable, and mechanomutable polyelectrolyte
PAA/PAH complex. In addition to adhesive strength, these pH-
responsive polymers can change from a collapsed conformation
to a stretched one due to the solvent pH change (Katiyar and
Jha, 2017). Such a behavior can be utilized to control the
transport behaviors of nanoscale fluidic channels and solid-
state nanopores, as revealed by DPD simulations and theoretical
studies (Tagliazucchi and Igal, 2015; Wang et al., 2018).

These pH-responsive polymers have been widely used in
different fields, such as drug delivery systems, biosensors,
antifouling coatings, super-hydrophilic surfaces, biomimetic
membranes, andmany others. To understand their conformation
change under different pH environments, the mesoscale
simulation technique DPD has been widely adopted. For e.g.,
the self-assembly process of amphiphilic copolymers (PAE-g-
PEG) into vesicles, and their drug loading/release of doxorubicin
drug molecules at different pH environments, have been
extensively studied through MD and DPD simulations (Luo and
Jianwen, 2012; Luo et al., 2016). Note that in these MD and
DPD simulations, the polymers have fixed charges according
to the pH condition, which ignores the charge fluctuation
in reality. Nevertheless, these molecular simulation results
provide quantitative understanding of the controlled drug release
behaviors of pH-responsive polymers on the molecular scale.

Dynamic Network Reorganization
(Vitrimers, Ionic Polymers, and Others)
The term “dynamic polymer network” refers to the class
of network whose chains are not covalently bonded to the
cross-links. Instead, these bonds are able to dissociate and
reassociate in time under external stimuli or thermal fluctuation.
Some examples of these bonds are covalently adaptable bonds
(Bowman and Kloxin, 2012) or physical bonds such as hydrogen
bonds and ionic interactions (Luo et al., 2014). These materials
are of particular interest in several applications such as in
renewable materials, self-healing, or materials with high energy
dissipation. The dynamic nature of their microstructure comes
from the weak nature of the bonds, such as the ionic ones,
existing in some polymers (the Brownian motion induced by
thermal fluctuations enables the bond exchange to occur) or
can also take place in covalently bonded polymers (Leibler
et al., 1991; Wojtecki et al., 2011; Jin et al., 2013; Kloxin and
Bowman, 2013; Meng and Terentjev, 2018). In particular, the so-
called vitrimers—a class of polymers derived from thermosetting
polymers consisting ofmolecular covalent networks—are capable
of changing their topology by thermally activated bond-exchange
reactions (Capelot et al., 2012; Tellers et al., 2019). At sufficiently
high temperatures they flow like viscoelastic liquids, while at

low temperatures the bond-exchange reactions rate slow down,
leading to a classical thermoset. Vitrimers are strong glass
formers; their behavior opens new possibilities in the application
of thermosets such as self-healing or simple processability in a
wide temperature range.

MD Simulations of Covalent Adaptable Polymer

Network
Covalent adaptable polymer networks can change their network
connections through bond exchange reactions. The bond
exchange reaction is usually triggered by an active unit attached
to an existing bond, by kicking off its preexisting peer to form a
new bond. During mechanical deformation, the bond exchange
events can lead to stress relaxation and plastic deformation
of the polymer network. In addition, the fractured polymer
network can repair itself through the bond exchange reactions
across the fractured interface. To understand the molecular
structures of these covalent adaptable polymer networks and
their relationship to macroscopic mechanical behaviors, Yang
et al. (2015) have developed a coarse-grained MDmodel to study
the bond exchange reactions of epoxy polymers. A numerical
algorithm has been proposed for the bond exchange reactions
and used to study the cross-linked network formed by epoxy resin
bisphenol A diglycidyl ether (DGEBA) and tricarballylic acid
curing agent. After each iteration of bond exchange reactions, the
polymer network properties, such as the distance between two
neighboring cross-link sites, have been analyzed to understand
the evolution of molecular structures and mechanical behaviors.
The MD simulation results reveal that the bond exchange
reactions not only change the macroscopic shape of the polymer
network, but also relax the microscopic network characteristic
features back to the unstretched isotropic state. Such a simulation
scheme can also be used to study the interfacial self-healing
behaviors of dynamic polymer networks (Stukalin et al., 2013).
For e.g., coarse-grainedMDmodels have been recently developed
to study the change of polymer networks under the influence
of reversible bonds (Amin et al., 2016; Wu et al., 2019). The
reversible bonds can be formed due to the dynamic covalent
bonds, hydrogen bonds, metal–ligand coordination, and ionic
interactions. In these coarse-grained models, the association and
dissociation of reversible bonds are usually controlled by aMonte
Carlo step with different energy barriers. These coarse-grained
MD models can be used to further understanding of polymer
chain dynamics, network change, as well as the mechanical
response of the dynamic/transient polymer network on the
molecular scale.

Continuum Model of a Transient Polymer Network
The distribution function φ (r, t) of the chains of
transient polymers typically evolves over time due to
attachment/detachment events. It is usually considered that
a connected chain can dissociate at any configuration, but a
free chain can reassociate only at the stress-free configuration
(Vernerey et al., 2017). Therefore, the stored elastic energy is
dissipated through a dissociation–association cycle. To quantify
these dynamic events, let us define the rate of bond association
as ka and the rate of dissociation as kd.
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Due to the interplay between chain and dynamics, the
evolution of the chain distribution function is determined by the
following equation (Vernerey et al., 2017):

∂φ (r, t)

∂t
︸ ︷︷ ︸

(a)

= −
(

∂φ (r, t)

∂r
⊗ r

)

: L

︸ ︷︷ ︸

(b)

+ kdφ0 (r)
︸ ︷︷ ︸

(c)

− kd(r)φ (r, t)
︸ ︷︷ ︸

(d)

, (5)

As represented in Figure 4, this equation states that changes
in the chain population (term a) are driven by the distortion
of chains due to the application of a macroscopic deformation,
represented by the velocity gradient L= ∂v/∂x (term b, with v

the velocity vector), the attachment (at rate ka) of new chains
in a stress-free configuration, represented by the distribution
φ0 (r) (term c), and the detachment (at rate kd) of chains in
their current configuration, represented by the distribution φ (r)
(term d). A few important comments can be made regarding this
equation: (1) this equation takes into account that chains attach
in their relaxed (or stress-free) state while they detach in their
current, stretched configuration. This feature is responsible for
the stress-relaxation of the polymer over time (Vernerey, 2018).
In addition, when bond dynamics are eliminated (ka = kd = 0),
(Equation 5) degenerates to the evolution of an elastic network.
(2) The rates ka and kd are understood in terms of the inverse
of the average lifetime of a chain in its detached and attached
states, respectively. (3) This equation, which closely resembles the
Boltzmann equation in gas dynamics (Villani, 2002), has deep
implications regarding the network evolution resulting from
deformation and kinetics of attachment and detachment events
(ka and kd).

Slide-Ring Gels: A Topological Gel With
Slidable Cross-Links
Gels with high mechanical properties have found a large interest
in biomedical applications. In particular, high toughness is a
desirable property obtained in gels by harnessing the presence of
sacrificial species enabling dissipation of energy; however, weak
sacrificial chains reduce the resistance to cyclic loading (fatigue).
Polymer gels are characterized by a network structure made of

long entangled chains reciprocally joined at several sites termed
cross-links imbibed by a fluid; an outstanding change in the
mechanical properties of polymers has been obtained by making
the cross-link move freely along the chains. Such a gel having
movable cross-links has been obtained by adopting polyrotaxane
chains cross-linked by coupling the α-cyclodextrin (CD) rings,
which allows the cross-links to slide over a long distance along
the network chains (Figure 5) (Karino et al., 2006).

This capability, from a mechanical standpoint, makes it
possible to avoid the stress concentration taking place in the
shortest chains—as typically occurs in standard polymers—that
more easily reach their maximum extension (related to the
number of Kuhn’s segments per chain N and their length b
as λmax = b

√
N) and consequently fail. On the other hand,

when the network possesses movable ring connections, the
polymer chains can freely move through the cross-link sites,
allowing the tension induced by external stress to be evenly
distributed throughout the whole material (Kato et al., 2013;
Jiang et al., 2018). From the mechanical viewpoint, the cross-
link sites behave as a pulley, and thus the cooperative work is
referred to as a pulley effect. This feature allows design of gels
with unprecedented properties, such as high fracture resistance,
thanks to the capability of the network to remain intact under
large deformation (Liu et al., 2017).

Modeling of Slide-Ring Gels
The 2016 Nobel Prize in Chemistry (Stoddart, 2017) recognized
“the design and synthesis of molecular machines,” an emerging
class of synthetic molecules that can be actuated to perform
mechanical work on the nanoscale. This objective is rarely
achieved, however, because of challenges associated with
coupling and/or scaling the directed motions of artificial
molecular machines to produce a macroscopically observable
response (Coskun et al., 2012). One of the most widely employed
architectures for artificial molecular machines is that of a
rotaxane (Bruns and Stoddart, 2016), in which one or more
molecular “beads” is threaded and trapped on a molecular
“string.” Because they are not chemically bonded, the molecular
beads and strings can slide with respect to each other. A

FIGURE 4 | Graphical illustration of Equation (5) for the evolution of chain distribution function φ (r, t). Distribution of the chains configuration in the undeformed (A),

stretched (B), and relaxed state (C).
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FIGURE 5 | A chain of polyrotaxane with visual representations of the parameters used in Equation (6). The chains are cross-linked via threaded rings along the chain

to form a slide-ring network. By understanding the response of a single chain, the response of a network can be achieved by statistical averaging.

promising family of polyrotaxanes in which many α-cyclodextrin
beads are threaded onto a polyethylene glycol (PEG) string
was recently used to create a topological gel (Okumura and
Ito, 2001). After polyrotaxane is synthesized, the beads are
cross-linked between chains to form a slide-ring network. A
pulley effect (Ito, 2007) was discovered by observing the gel’s
scattering patterns: homogeneity after deformation implied that
the strings were able to redistribute stress evenly throughout the
material using their slidable cross-links. Further experiments on
slide-ring gels have elucidated their many desirable properties
including high extensibility, scratch resistance, and toughness
(Noda et al., 2014).

Even more interesting, the properties of slide-ring networks
are highly reliant on the chemical makeup of a single chain.
Typical cross-linked networks become stiffer with increasing
cross-linking concentration, but one group (Mayumi et al., 2012)
found that slide-ring gels start to become softer after the cross-
linking concentration reaches around 3% (per unit volume). The
group attributed this to the uncross-linked, mobile, rings that
are left on the chains after cross-linking (Kato et al., 2015).
Indeed, a novel entropy sources from these mobile rings—they
have one degree of freedom (along the chain), which results
in a finite permutation space defined by the contour length of
the segment on which they are threaded—can be recognized.
This can be thought of as a sort of built-up one-dimensional
pressure between segments. Thus, a polyrotaxane chain has both
an elastic and inelastic response, supported by rheological data.
The elastic response arises from the classical entropic elasticity of
polymer chains, which is captured in the first term of a free energy
potential (describing the energy landscape and equilibrium of
the chain):

F =
3kT

2

[
∑ r2i

nib2

]

︸ ︷︷ ︸

Elastic Entropy, ψ

+ kT

[
∑ 3− 2p

2
log ni − kTρ log ne

]

︸ ︷︷ ︸

Mobile Ring Entropy

(6)

All parameters used in this expression are depicted schematically
in Figure 5. In contrast with covalently cross-linked networks,
the viscoelastic properties of polyrotaxane are associated with

relaxation mechanisms arising from the sliding of monomers
through the ring-like cross-links. With the parameters included
in this free energy, the underlying physics governing a single
chain can be used to understand the response of the gel using
statistical averaging.

There is a promising hope for the development of smart
materials and molecular motors using rotaxanes (Goujon et al.,
2017). Indeed, mechanically interlocked molecules, such as
rotaxanes, have a high potential for use as molecular machines.
As they possess molecular components that restrict motion only
along certain directions, it is possible to use them as small
rotors or walkers, in analogy with the myosin heads found in
biological muscles. While there is no clear answer to accomplish
macroscopic work, experimental studies have shown promising
directions. Scaling up of mechanical work was indeed observed
in photodrivenmolecular rotors embedded in liquid crystal films,
in monolayers of photosensitive rotaxane molecules, moving
tiny droplets (Berná et al., 2005), and in LCEs for translating
mechanical objects (Ikeda et al., 2007). Theoretical work on these
materials is, however, still in its infancy, and the connection
between the aforementioned mechanisms and the mechanical
response is still to be discovered.

LCE-Based Responsive Polymers
Liquid crystals are composed of elongated rigid molecules
(nematic mesogens) whose preferential orientation in space is
retained (Oseen, 1933; Frank, 1958; Ericksen, 1961; Stephen and
Straley, 1974; Warner and Terentjev, 2007). When embedded
in a highly deformable network, they provide to the elastomer
their own orientational character and the resulting material
is typically identified as a liquid crystal elastomer (LCE).
Such a preferential chains orientation allows exceptionally large
responses to external stimuli, suitable to be exploited in a variety
of applications. Within the field of responsive polymers, LCEs
are of great interest because they show both the properties of a
fluid and of a solid. LCEs are made of an entropically dominated
rubbery network that furthermore possesses the typical order of
a liquid crystal. LCEs show a large spontaneous deformation (up
to 300–400% with respect to the reference configuration) when
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a phase transformation, from the isotropic to the nematic state,
is induced by a proper stimulus. The preferential orientation of
the LCEs can be easily manipulated by applying environmental
stimuli, such as heat, electric/magnetic fields, or UV or visible
light (Stephen and Straley, 1974), enabling a reversible response
exploitable for soft actuation or sensing (Ohm et al., 2012).
The change of the LCE order can induce a macroscopic change
in shape, volume, etc. suitable to be harnessed for actuation
purposes; LCEs can be used in several applications, ranging from
artificial muscles and soft robots to deployable structures, tunable
mirrors, morphing structures, stimuli-responsive surfaces, and
robotic matter, to name a few (White and Broer, 2015). Their
modeling requires describing the preferential orientation of
the chains network and how it evolves in the material as a
consequence of external actions of various natures (Warner and
Terentjev, 1996; Finkelmann et al., 2001; Yakacki et al., 2015;
McBride et al., 2018; Ula et al., 2018).

MD Simulations of LCE
Under light irradiation, photoresponsive LCE polymers can
demonstrate conformation transition, molecular polarity, and
color change. These photoresponsive polymers usually contain
azobenzene, spiropyran, stilbene, and other light-responsive
trigger molecules. To understand the molecular mechanisms
of these photoresponsive polymers, Choi et al. (2014) have
employed the MD simulations to study the structure and
optomechanical behaviors of azobenzene LCE polymers. A
switchable potential formalism for the N=N bond of azobenzene
molecules is applied to capture the photo-switching behaviors,
trans to cis and cis to trans isomerization. The influences
of the isomerization ratio of these azobenzene molecules
on the photostrain, elastic property, and thermal nematic–
isotropic phase transition have been systematically explored.
The simulation results show that the stiffness and melting
temperature of these photoresponsive nematic polymer networks
(PRPNs) decrease with the increment of isomerization ratio.
In addition, the orientation and conformation of these PRPN
can be significantly affected by the isomerization of azobenzene
molecules. Very recently, they have further developed a coarse-
grained MD model to study the light-induced sequential
smectic–nematic–isotropic phase transition of cross-linked LCE
polymers (Clarke et al., 2001; Moon et al., 2019). The overall
shape of polymer network is found to be affected by the
corruptions of the smectic layer and nematic orientational order.
In addition to these chemistry-specific MD models, Skačej and
Zannoni have developed a generic coarse-grained MD model for
LCEs under electric field actuation (Skačej and Zannoni, 2011,
2012). In this model, a soft-core Gay–Berner molecular model
has been adopted to represent the liquid crystal structure of
polymers, which also enables the smectic–nematic and nematic–
isotropic phase transitions. Through this coarse-grained model,
two modes of electromechanical actuation for LCEs have been
observed: (1) a transversal “semisoft” mode with director rotation
resulting in orientational stripe domains of liquid crystals; and (2)
a switch mode between the orientationally disordered isotropic
and the aligned nematic phases.

Mechanical Aspects of LCE
LCEs store energy when deformed because of restrictions in
the entropic configurations of the polymer chains (Warner
and Terentjev, 1996). However, due to the orientation of the
rods in these chains, they are anisotropic elastomers; i.e., the
mechanical properties are dependent on the orientation order
and direction (Finkelmann et al., 2001). Using concepts from
statistical mechanics, the neo-classical theory describes the end-
to-end vectors r of the polymer chains using an anisotropic
Gaussian distribution whose directionality is characterized by
the so-called step-length tensor l that represents the covariance
matrix (Warner and Terentjev, 2007). The free energy of the
cross-linked network can then be calculated from the entropy
of the chain configurations to arrive at the Trace formula for
energy density:

E =
µs

2
Tr

(

l−1F l0F
T
)

, (7)

where µs = ckBT is the shear modulus of the rubbery network,
and l0 is the initial step-length tensor before deformation. Due to
the coupling between the orientational order and elasticity of the
chains, changes in the nematic order Q can induce deformation
to several 100 percent (White and Broer, 2015) (Figure 6).

The tensorµ, introduced in section BridgingMechanisms and
Emerging Response: ContinuumMechanics, describes the chains
stretch in the 3D space and so it is related to the order parameter
Q of the LCE because it represents the conformation of the chains
within the network. By considering the tensor µ written in its
principal directions frame of reference (µp) in which it assumes
a diagonal form, it can be expressed as follows:

µp =





1− Q 0 0
0 1− Q 0
0 0 1+ 2Q



 , (8)

where it has been assumed that the nematic alignment is along
the z-direction. The nematic order Q of the LCE is defined as
Q =

〈
3
2 cos

2θ − 1
2

〉

, where θ is the angle formed by the molecular
axes and their average alignment direction; in other words, it
quantifies the degree of alignment of the molecular axes of the
mesogens constituting the liquid crystal phase of the elastomer.
The valueQ = 1 indicates a perfect nematic order in which all the
rods are perfectly aligned along the z-direction, while the value
Q = 0 refers for randomly oriented rods, i.e., a perfectly isotropic
chain arrangement. On the other hand, when 0 < Q < 1 the
rods are nearly aligned with the z-axis but with an increasing
dispersion whose intensity increases as Q → 0. The so-called
nematic order tensor Q [or de Gennes order tensor (Warner and
Terentjev, 2007)] represents the deviatoric part of the tensor µ,

defined as Q = 3
2

(
µ

Nb2
− I

3

)

(Finkelmann et al., 2001; Warner

and Terentjev, 2007).
LCEs today are designed to have the ability to produce

large deformations as a response to changes in orientational
order through stimuli such as heat or light (White and Broer,
2015). This has made them prime candidates for technological
applications including soft robotics, artificial muscles, biomedical
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FIGURE 6 | Thermal actuation of main chain liquid crystal elastomers to achieve work. A critical temperature produces a phase transition from nematic to isotropic

state and vice-versa resulting in contraction/extension. Scheme of the network configuration in the nematic (A) and isotropic state (B). Stretch and order parameter

vs. temperature (◦C) (figure adapted from Clarke et al., 2001).

devices, actuators, and sensors (Ula et al., 2018). One of the
key features that make reversible shape change possible in
these applications is the isotropic–nematic phase transition
phenomena. To achieve programmed changes in shape, the
rods are first aligned permanently in their gelled state by either
applying an external field (such as magnetic or electric), surface
anchoring, or stretching during the polymerization stage before
a second stage of cross-linking. In recent years, there has been
a considerable amount of research into dynamic cross-linking
reactions induced by heat or light that offer a new way to
design and program LCEs (Yakacki et al., 2015; McBride et al.,
2018).With a strong theoretical modeling framework, these novel
materials can transform the fields of soft robotics, 3D printing,
and photolithography, to name a few.

SWELLING-DRIVEN RESPONSE OF GELS

Some polymers, namely gels, have the ability to make a fluid
easily migrate inside their network; the fluid does not induce
any modification on the material microstructure or any chemical
reaction, but simply makes the polymer swell or shrink according
to the in- or outflow motion of the fluid. In these problems
the fluid mass transport and the network deformation are
coupled phenomena (Tanaka and Fillmore, 1979; Chirani et al.,
2015). Gels have been employed also for developing smart and
responsive materials to be used in flexible electronics, actuation,
and soft robotics (Shen et al., 2017, 2019; Rong et al., 2018).
For instance, hydrogels can mimic the pressure-driven trophic
motion in plants and fungi (Sridhar et al., 2018) and have been
used to create light, humidity, or biological sensors capable of
movement (Ionov, 2014). Although their motion is rate limited
due to the slow diffusion of a solvent in the polymer mesh, it is
possible to use mechanical instabilitites to trigger suddenmotion,
as displayed by materials inspired by the Venus flytrap (Athas
et al., 2016).

Molecular-Scale Simulation of Swelling
Hydrogels often show solvent-responsive behavior due to the
chemical affinity between the polymer and an external fluid. This
chemical affinity is generally measured by the Flory–Huggins
parameter χ . Compared with poor solvent (large χ), good
solvent molecules (small χ) can easily permeate into the polymer
network, stretch the chains, and swell the hydrogel. In MD
simulations, the solvent-responsive behavior of polymer chains
can be analyzed by radius of gyration, density profile, radial
distribution function, etc. [for e.g., (Lee et al., 2009) have studied
the influence of water content on the equilibrium structures
and mechanical properties of poly (N-vinyl-2-pyrrolidone-
co-2-hydroxyethyl methacrylate) (P(VP-co-HEMA)) hydrogel
through all-atomMD simulations]. The simulation results reveal
that the VP segment is more hydrophilic than the HEMA
segment, and a hydrogel with random monomer sequence
can be solvated more than the one with a blocky sequence.
During the mechanical deformation, the VP is found to relax
faster, especially in the blocky sequence, leading to the lower
stress level of the hydrogel with a blocky monomer sequence.
In addition to molecular structure and mechanical property,
the water and polymer dynamics in hydrogels can also be
studied through MD simulations (Chiessi et al., 2007). In
DPD simulations, the polymer–solvent interaction is directly
represented by the repulsive parameter aij, which is related to the
Flory–Huggins parameter as aij = aii + 3.27χ . Therefore, the
solvent condition in DPD simulations can be precisely controlled
through adjusting the aij between corresponding beads. For
instance, Chen and Yong (2018) have recently developed a
DPD model to study hydrogel swelling under the influence of
different solvent conditions and polymer network topology. The
simulation results reveal that the gel swelling is a result of a
mechanical balance between the elastic entropy change of the
polymer network deformation and osmotic pressure originating
from the mixing of polymer and solvent.
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Continuum Mechanics of Swelling
Hydrogels
When modeling the swelling phenomenon, the behavior of
both the fluid and the solid must be considered simultaneously
(Flory, 1950; Tanaka and Fillmore, 1979; Hong et al., 2008). The
mechanics of gels must consider the mass balance equation to
impose fluid conservation. In differential form it reads

∂Cs

∂t
+∇ · J = 0, (9)

where Cs is the solvent concentration (i.e., the concentration
of solvent molecules per unit polymer reference volume), and
J is the vector flux of solvent molecules crossing the boundary
of an arbitrary volume element in the unit time (positive when
entering). Both the polymer and the fluid are usually assumed
to be incompressible; however, upon swelling the volume of the
swollen solid increases according to J = det F = 1+ Csvs, where
vs is themolar volume of the fluid. The aforementioned condition
provides a kinematic constraint that has to be fulfilled at any
time of the fluid process. The fluid concentration is assumed to
depend on the chemical potential µ and the osmotic pressure π

(Hong et al., 2008, 2009), Cs(µ,π), while the constitutive relation
for the fluid flow is usually adopted in the form j = − csD

kB T
∇µ,

with D, kB, T being the diffusivity coefficient, the Boltzmann’s
constant, and the absolute temperature, respectively. On the
other hand, from the mechanical perspective the problem is
governed by the stationary condition of the following functional
(Hong et al., 2008):

Ψ =
∫

V
Ψm dV =

∫

V

[

Ψ (F) + Ψmix(Cs)
]

dV

+
∫

V
π

[

(1+ vsCs)− J
]

dV = 0 (10)

In Equation (10) the overall energy density Ψm, the elastic

energy density Ψ , the mixing energy density (Ψmix = − kBT
vs

·
[

(J − 1) ln
(

J
vsCs

)

+ χ
J

]

), and the volume change constraint can

be recognized. The stationary condition for the functional
(Equation 10) together with Equation (9) provide the basis for
the solution of the coupled problem. Finally, the stress state in
the gel is provided by P = ∂Ψ/∂F = (∂Ψe/∂F−πJF−T), with
P being the first Piola (nominal) stress tensor. In gels, the solid–
fluid mixture is no longer incompressible but a volume change
takes place, namely J = 1+Csvs ≥ 1; in this case the deformation
gradient associated with the swelling phenomenon assumes the
simple diagonal form Fs = diag(λs), being λs = J1/3.

Temperature-Sensitive Hydrogels
Among the family of gels, poly(N-isopropylacrylamide) (also
indicated as PNIPAA or PNIPAm) forms a three-dimensional
hydrogel when cross-linked with N, N′-methylene-bis-
acrylamide (MBAm) or N, N′-cystamine-bis-acrylamide
(CBAm) (Işikver and Saraydin, 2019). It is a gel whose fluid
absorption capability is heavily influenced by the temperature;
in fact, it is a temperature-responsive polymer showing a
reversible lower critical solution temperature (LCST) phase

transition from a swollen state to a shrunken dehydrated one
(Yan and Tsujii, 2005). Thanks to its temperature-dependent
swelling its application potentialities are in tissue engineering
and controlled drug delivery (Yan and Tsujii, 2005). Its behavior
changes from hydrophilic to hydrophobic at its LCST; i.e.,
below the LCST it absorbs water and dissolves in solution,
while at higher temperatures it releases water and phase
separation occurs.

MD Simulations of Temperature-Responsive

Polymers
The temperature-responsive polymer usually has an LCST, [for
e.g., poly(N-isopropylacrylamide) (PNIPAM) (LCST ∼305K)].
When the temperature is lower than LCST, the polymer chains
can be miscible with water to form a highly swollen and coiled
chain conformation with hydrophilicity; when the temperature
is higher than LCST, the polymer chain shrinks into a curl and
shows hydrophobicity with phase separation. MD simulations
have been used to understand this coil–globule transition of
PNIPAM at the atomic level (Deshmukh et al., 2013). The
simulation results reveal that the hydrogen bonds formed
between PNIPAM and water molecules play the most important
role during the conformation change of PNIPAM. When the
temperature is below LCST, these hydrogen bonds are strong
and stable; but when above LCST, the strength of these hydrogen
bonds is weakened, leading to the reduced solubility and a coil–
globule transition of PNIPAM. Recently, the mesoscale modeling
method DPD has been developed to further understand the
phase transition dynamics of thermoresponsive polymers (Li
et al., 2015). Two different mechanisms have been identified for
the self-aggregation of temperature-responsive polymers during
the coil-to-globule phase transition process, which is found
to be dependent on the size of these polymer chains. Such a
DPD model has been furthered applied to study the transport
mechanisms of nanoparticles (NPs) in a thermoresponsive
PNIPAM hydrogel network (Wang et al., 2020). By changing
the simulation temperature across the LCTS of PNIPAM, the
hydrogel network characteristics can be significantly altered,
leading to the controlled release behaviors of entrapped NPs.
These understandings can be adopted to guide the design of
controlled drug release from stimuli-responsive hydrogels.

PNIPAm Hydrogel-Based Actuators
Hydrogels are capable of experiencing a significant change
of volume by swelling/deswelling when subjected to external
stimuli. For instance, thermosensitive PNIPAm hydrogels are
well known for their capability to undergo a sharp volume-phase
transition around the lower critical swelling temperature (LCST)
of 305K (Afroze et al., 2000; Vernerey and Shen, 2017; Shen et al.,
2019). When the temperature quickly rises around the LCST, the
hydrogel undergoes a reversible transition from a swollen state to
a shrunken dehydrated state, losing more than 90% of its volume
(Figure 7A). Due to this temperature sensitivity, the NIPAm
hydrogel has found applications in a variety of applications
including soft actuators (Santulli et al., 2005; Vernerey and Shen,
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FIGURE 7 | (A) Swelling ratio of NIPAm hydrogel as a function of temperature. (B) Curves of hydrogel pressure Pg as a function of swelling ratio J. The inset shows

the linear dependency of the interaction parameter χ on temperature.

2017), drug delivery systems (Hoare and Kohane, 2008), and
hydrogel sensors (Richter et al., 2004).

The origin of this phase transition can be explained by the
interplay between two competing forces: the polymer–solvent
mixing force and the elasticity of the cross-linked polymer
network. At low temperatures, gel swelling arises from the affinity
between a solvent and polymer and is balanced by the stretching
resistance of the cross-linked chain network. The Flory–Rhener
theory (Flory, 1942) has been successful at predicting this
competition by decomposing the gel’s Gibb’s free energy 1G into
a mixing (1Gmix) and an elastic (1Gel) contribution, such that
the total free energy is1G(J,χ) = 1Gmix (J, χ)+1Gel(J), where
J denotes the swelling ratio and the Flory–Huggins parameter,
χ , measures the affinity between polymer and solvent [a smaller
value of χ indicates a greater affinity (MacConaghy et al., 2015)].
It can be shown that the equilibrium hydrostatic pressure defined
as Pg = 3 (∂1G/∂J ) is split into an elastic (Pe) and an osmotic
(π) contribution as follows:

Pg = Pe + π where Pe = E
(

J−1/3 − J−1
)

and

π =
kBT

ν

[

ln

(

1−
1

J

)

+
1

J
+ χ

1

J2

]

(11)

In the above equations, E is the polymer’s Young’s modulus, kBT
is the thermal energy, and ν is the specific volume of solvent.
The balance between osmotic and elastic pressures is achieved
when the pressures in the gel are balanced (i.e., Pg = 0) for a
given reduced volume V∗ as shown in Figure 7A. The extreme
temperature sensitivity of PNIPAmbetween 300 and 310K is due
to the temperature dependence of the interaction parameter χ as
characterized by Afroze et al. (2000) using a series of polynomials.
According to our previous work, this interaction parameter is
calibrated as χ = χ0 + χ1T, where χ0 = −12.917 and
χ1 = 0.044959 K−1 (Nicodemus and Bryant, 2008). We show
in Figure 7B that changes in χ drastically switch the swelling
equilibrium of the gel from J ≈ 40 at T = 300K (χ = 0.51)

to J = 4 at T = 310K (χ = 0.92). This yields a volume reduction
by more than 10 times across this temperature range.

Programmable Hydrogels as Scaffolds for
Tissue Engineering
Due to their high water content, hydrogels can be made
to mimic most tissues of the human body. Synthetically
produced hydrogels that are biomimetic and biodegradable
are therefore promising platforms for cell encapsulation and
tissue engineering. Hydrogels that are used to encapsulate cells
are typically fabricated from hydrophilic and cytocompatible
multifunctional macromolecular monomers or macromers
(Nicodemus and Bryant, 2008). Many different natural and
synthetic polymers have been functionalized with reactive
groups to create a wide range of macromers suitable for cell
encapsulation (Li et al., 2012). In particular, hydrogels that are
sensitive to biological cues to undergo relaxation or degradation
can be highly effective in enabling tissue growth. To create
biodegradable hydrogels, chemical bonds that are susceptible to
cleavage by water or enzymes can be readily introduced into the
cross-links of the polymer network. Once cells are encapsulated,
the hydrogel degrades to allow the transport of large extracellular
matrix proteins that eventually mature into newly regenerated
tissue (Bryant and Vernerey, 2018).

One of the toughest challenges is programming hydrogel
degradation for optimum growth conditions. For instance,
hydrogel degradation that is too fast can result in complete
loss of mechanical integrity, whereas if it is too slow, it can
deter growth. Understanding the physics that drive the processes
of degradation and growth is therefore crucial in developing
models that will help transition degradable hydrogels from
the laboratory to the clinics. Supported by experiments and
models, a key finding is that successful tissue growth occurs
when there is a smooth transfer of mechanical properties from
hydrogel to the new tissue (see Figure 8). This can be achieved
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FIGURE 8 | Degradation of enzyme-sensitive hydrogels and localized tissue deposition to ensure smooth transition of mechanical properties from gel to regenerated

tissue.

by (1) matrix deposition with localized degradation and (2)
ensuring overall structural connectivity of the composite gel
and neo-tissue. Localized degradation is possible, for instance,
with smart hydrogels whose bonds are designed to be sensitive
to enzymes released from cells. This restricts transport of the
extracellular matrix to the immediate vicinity of the cells where
the hydrogel has degraded. The spatiotemporal behavior of
hydrogel degradation and matrix deposition depend on the
hydrogel properties and, often complex, cell behavior. Therefore,
we have developed scaling laws that quantify these processes
and potentially help tuning degradation. Localized degradation
around a cell can be mathematically described by a coupled
reaction–diffusion equation of the enzyme and hydrogel and
characterized by the speed of advancement v and width of
partially degraded gel. The local degradation speed v is given
in terms of the enzyme reaction rate, κ ; diffusivity, D; enzyme
source concentration, c0; and hydrogel network connectivity, β ,
by (Sridhar and Vernerey, 2018):

v =

√

D κ c0

lnβ
(12)

This simple relationship is valuable in understanding the precise
influence of each physical parameter.

With a complete 3D model (Akalp et al., 2016; Sridhar et al.,
2017) that also includes cell distribution and growth deposition,
one can program degradation w.r.t. to measurable cell activity
of each patient to ensure mechanical integrity of the construct.
As hydrogels are often amenable to in situ polymerization
under direct contact with living tissue, they can be used as an
injectable platform to deliver cells in vivo. Thus, programming
these smart hydrogels will be a crucial step toward personalized
regenerative medicine.

CONCLUSIONS

Responsive materials, as well as active structural systems, are
today widely used to develop unprecedented smart devices,
sensors, or actuators; their functionalities come from the
ability to respond with a detectable reaction to environmental

stimuli. Depending on the responsive material under study,
the triggering stimuli can have a different nature, ranging
from physical (temperature, light, electric or magnetic field,
mechanical stress, etc.), chemical (pH, ligands, etc.), or biological
(enzymes, etc.) type. Such a responsiveness can be obtained
by properly designing the meso- or macroscopic arrangement
of the constitutive elements, as occurs in metamaterials, or
can be obtained by using responsive materials per se, whose
responsiveness comes from the chemistry underneath their
microstructure. In fact, when the responsiveness at the molecular
level is properly organized, the nanoscale response can be
collectively detected at the macroscale, leading to a so-called
responsive material. In the present article we reviewed the
enormous world of responsive polymers, by outlining the main
features, characteristics, and responsive mechanisms of smart
polymers and by providing a mechanical modeling perspective
description, both at the nano as well as at the continuum
scale level.

Despite extensive research conducted in computer modeling,
in particular MD simulations of responsive polymers, most of
these studies focus only on single stimuli-responsive polymers,
such as pH, temperature, light, solvent, electric field, etc.
However, dual- or multiresponsive polymers have attracted
more and more attentions, as many applications of these
smart materials require a combined response to several external
stimuli (Zhuang et al., 2013). Thus, there is a pressing need
to develop molecular models and simulations to design these
dual- or multiresponsive polymers. In addition, all-atomic MD
simulations can be applied to study a single polymer chain or
small polymer systems at the atomistic level. However, they are
not suitable to study the mesoscopic structures and properties
of large and complex stimuli-responsive polymers because of the
limited spatial and temporal scales of all-atomic MD simulations.
To this end, the coarse-grained MD and DPD simulation
techniques are more proper to study the large-scale behaviors
of stimuli-responsive polymers. However, it remains a challenge
to derive the effective parameters for coarse-grained MD models
from the atomistic model (Li et al., 2013).

The present article aims to provide a comprehensive overview
of the main features and modeling aspects of the most diffused
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smart polymers. In fact, the quantitative mechanical description
of active materials plays a key role in their development
and use, enabling the design of advanced devices as well as
engineering of the materials’ microstructure according to the
desired functionality or responsiveness. The aim of this article,
although it is not exhaustive, is to stimulate interest in this
frontier field of materials science, with a preferential look at the
mechanical aspects necessary for the use of intelligent polymers
in unprecedented advanced applications, ranging from themacro
to the nanoscale.
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