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Inward radial Rayleigh-Bénard-Poiseuille flow can exhibit a buoyancy-driven instabil-
ity when the Rayleigh number exceeds a critical value. Furthermore, similar to plane
Rayleigh-Bénard-Poiseuille flow, a viscous Tollmien-Schlichting instability can occur when
the Reynolds number is high enough. Direct numerical simulations were carried out with a
compressible Navier-Stokes code in cylindrical coordinates to investigate the spatial stabil-
ity of the inward radial flow inside the collector of a hypothetical solar chimney power plant.
The convective terms were discretized with fifth-order-accurate upwind-biased compact
finite-differences and the viscous terms were discretized with fourth-order-accurate com-
pact finite differences. For cases with buoyancy-driven instability, steady three-dimensional
waves are strongly amplified. The spatial growth rates vary significantly in the radial di-
rection and lower azimuthal mode numbers are amplified closer to the outflow. Traveling
oblique modes are amplified as well. The growth rates of the oblique modes decrease with
increasing frequency. In addition to the purely radial flow, a spiral flow with swept inflow
was examined. Overall lower growth rates are observed for the spiral flow compared to
the radial flow. Different from the radial flow, the relative wave angles and growth rates
of the left and right traveling oblique modes are not identical. A plane RBP case with
viscosity-driven instability by Chung et al. was considered as well. The reported growth
rate and phase speed were matched with good accuracy.

I. Introduction

The increasing demand for clean renewable energy has led to the development of many novel electrical
power generation concepts such as the solar chimney power plant (SCPP). The SCPP represents an entire
sustainable energy pathway from solar energy to electrical power. It has three major components which are
referred to as collector, turbine and chimney. The operating principle is relatively simple compared to the
conventional coal or gas power plants. The air under the collector is heated by the ground and accelerates
towards the collector center, where it passes through turbines and then escapes through the central chimney.
What makes the SCPP attractive is that the generated power scales with the product of collector area and
chimney height.1 A solar chimney power plant designed by Schlaich, Bergermann and Partner in Manzanares,
Spain successfully produced approximately 50kW of electrical power from 1982 to 1989.1–4 According to
Schlaich,1 the available electrical power can be estimated from

P = ηcηt
2
3
g
HtπR

2
cI

cpT∞
, (1)

where ηc and ηt are the collector and turbine efficiency, g is the gravitational acceleration, I is the solar
irradiation, and T∞ is the ambient temperature. The generated power scales with the collector area, πR2

c

and the chimney height, Ht.
The radial flow inside the collector is subjected to a vertical temperature gradient which results in a

buoyancy acceleration that is opposed by a gravitational acceleration. Such flows are referred to as Rayleigh-
Bénard-Poiseuille (RBP) flows. Both the buoyancy- and viscosity-driven instability of plane (i.e. not radial)
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RBP flows have been investigated in detail. The onset of flow instability is governed by two dimensionless
numbers which are the Reynolds number,

Re =
umaxh/2

ν
, (2)

with maximum velocity, umax, channel height, h, and kinematic viscosity, ν, and the Rayleigh number,

Ra =
gh3γ∆T
να

, (3)

with gravitational acceleration, g, volumetric thermal expansion coefficient, γ, temperature difference, ∆T ,
and thermal diffusivity, α. Miles5 studied the effect of stratification on the stability of inviscid, incompressible
and parallel flows. Pearlstein6 observed that either two-dimensional (2-D) or three-dimensional (3-D) waves
are the most unstable modes of instability in plane RBP flows. Gage and Reid7 first investigated the linear
temporal stability of plane RBP flows and established the stability boundaries for the onset of both buoyancy
and viscosity-driven instability. When the Reynolds number is below Rec=5,400 and the Rayleigh number
is above Rac=1,708, buoyancy-driven instability occurs and 3-D waves with a wave angle of 90deg are most
amplified. For Re > Rec and Ra < Rac viscosity-driven instability arises and 2-D Tollmien-Schlichting
(T-S) waves with a wave angle of 0deg are most amplified. The stability results for plane RBP flow by
Gage and Reid7 were confirmed by various numerical and experimental studies. The forced convective heat
transfer between horizontal flat plates was investigated by Mori and Uchida.8 Counter-rotating longitudinal
vortices were found to be the dominant disturbance mode when the temperature difference between the
plates was increased above a certain threshold. Below a critical Reynolds number (Re < Rec), the flow was
found to become unstable and longitudinal vortex rolls developed, provided that the Rayleigh number was
high enough and the spanwise extent of the channel was infinite. A linear stability analysis by Fujimura
and Kelly9 revealed that for a certain low Reynolds number range (0.01 ≤ Re ≤ 100), the critical Rayleigh
number for 2-D unstable waves was increasing with Reynolds number. This finding is essentially consistent
with the zero degree wave angle neutral curve by Gage and Reid.7

The flow inside the collector of SCPPs constitutes an inward radial RBP flow. Such flows have attracted
far less attention than plane RBP flows. For the inward radial channel flow, the flow accelerates strongly
in the streamwise direction because of continuity (ρv ∝ 1/r-relationship) and non-parallel effects become
important. Since acceleration generally has a stabilizing effect,10 the inward radial RBP flow is expected
to be more stable than the plane RBP flow especially near the collector outlet where the acceleration is
very large. Also, different from plane RBP flow, only certain azimuthal wavelengths are possible for radial
RBP flows. The detailed understanding of the primary and secondary instabilities of inward radial RBP
flows appears crucial for the successful design and operation of SCPP plants. Of particular interest are the
critical parameters (such as Reynolds number, Rayleigh number, Prandtl number) that determine if and
where coherent flow structures will develop. Coherent flow structures modify the overall heat transfer and
pressure drop in the collector and thus will have a profound effect on the SCPP performance.

Because it is considered a technically and economically feasible sustainable and renewable energy alter-
native, the SCPP technology has attracted considerable attention in the scientific literature. Bernardes et
al.11 performed computational analyses of natural radial laminar flows with solar energy addition for five
distinctive geometric configurations such as a straight, curved and slanted junction as well as a conic chimney
and curved junction/diffuser. The thermo-hydrodynamic properties, such as the temperature fields, recir-
culation, and mass flow rate were analyzed. Ming et al.12–14 carried out Reynolds-averaged Navier-Stokes
(RANS) calculations to investigate the effect of crosswind on the performance and efficiency of SCPPs. Us-
ing the Manzanares prototype as a reference model, Pastohr et al.15 performed numerical analyses based
on RANS calculations and observed that the efficiency of SCPPs is strongly influenced by the mass flow
rate and the pressure difference across the turbines. Xu et al.16 investigated numerically how the generated
power and energy losses of the SCPP system are affected by the solar radiation and turbine efficiency. Based
on their analysis, the large mass flow rate through the chimney is one of the primary reasons for the energy
losses. A numerical investigation of the dependence of the generated power on the collector and chimney
geometry was performed by Koonsrisuk and Chitsomboon.17 Their analysis revealed that a large increase in
power output can be obtained through the combination of a sloping collector roof and a divergent chimney.
The influence of the chimney geometry (such as area ratio between chimney inlet and outlet and divergence
angle) on the power output was investigated numerically by Hu et al.18 According to their study, diver-
gent chimneys produce more power compared to the conventional cylindrical chimneys which supports the
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findings by Koonsrisuk and Chitsomboon.17 Overall, most of the aforementioned publications are concerned
with estimates of the generated power, calculations of the system efficiency, the comparison of different
geometric configurations, the cost etc. None of these earlier studies accounted for the possibility of flow
structures resulting from underlying instabilities. Very little is known about the hydrodynamic instability
of the radial flow inside the collector of SCPPs. Instability can lead to coherent flow structures that will
affect the performance of the collector. Publications concerned with the stability of radial RBP flows are
very scarce. Van Santen et al.19,20 carried out numerical simulations of a radial outward flow between two
horizontal differentially heated circular plates with buoyancy-driven convection. Surprisingly, 3-D transverse
rolls developed for very low Reynolds numbers (the Rayleigh number was above the critical value). This
was a surprising finding since for the same conditions according to Gage and Reid7 streamwise longitudinal
vortex rolls are most unstable. Fasel et al.21,22 carried out RANS calculations for different scales of the
Manzanares SCPP and validated the cubic scaling law by Schlaich.1 Large-eddy simulations by the same
authors21,22 for the collector of a 1:33 scale model of the Manzanares SCPP showed transverse rolls near
the collector inlet and longitudinal rolls near the collector outlet which suggests the existence of RBP in-
stability. The stability of the converging flow between two approximately parallel fixed disks was studied
by Bernardes23 and streamwise vortex rolls were discovered near the collector outflow when the Richardson
number exceeded a critical value.

This paper reports on direct numerical simulations (DNS) of the inward radial flow inside a hypothetical
SCPP collector. The focus is on both spatial buoyancy-driven and viscosity-driven instability. First, the
Navier-Stokes code and the discretization are described. Three-dimensional DNS for a fixed subcritical
Reynolds number and supercritical Rayleigh numbers were carried out for plane RBP flow, as well as radial
and spiral buoyancy-driven flows. Fourier transforms of the simulation data provide the wavelengths, growth
rates, amplitudes and phase distributions of the disturbance modes. The results are put in context by
comparison with the neutral curves by Gage and Reid.7

II. Methodology

A. Governing Equations

The compressible Navier-Stokes equations in cylindrical coordinates can be written as a vector equation,24

∂U
∂t

+
∂A
∂z

+
∂B
∂r

+
1
r

∂C
∂θ

+
1
r
D = H , (4)

with state vector,

U =


ρ

ρu

ρv

ρw

ρe

 , (5)

and flux vectors,

A =


ρu

ρu2 + p− τzz
ρuv − τrz
ρuw − τθz

u(ρe+ p)− uτzz − vτrz − wτθz + qz

 , (6)

B =


ρv

ρvu− τrz
ρv2 + p− τrr
ρvw − τθr

v(ρe+ p)− uτrz − vτrr − wτθr + qr

 , (7)
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C =


ρw

ρwu− τθz
ρwv − τθr

ρw2 + p− τθθ
w(ρe+ p)− uτθz − vτθr − wτθθ + qθ

 . (8)

Here, u, v, and w are the velocities in the z (wall-normal), r (streamwise), and θ (azimuthal) direction, ρ
is the density, and p is the static pressure. The total energy, e = ε + 1/2(u2 + v2 + w2), is the sum of the
internal energy, ε = cvT and the kinetic energy. Here, cv is the specific heat at constant volume, and T is
the temperature. The source term vectors are

D =


ρv

ρuv − τrz
ρv2 − ρw2 − τrr + τθθ

2ρvw − 2τθr
v(ρe+ p)− uτrz − vτrr − wτθr + qr

 , (9)

and

H =


0

g(ρref − ρ)
0
0

ug(ρref − ρ)

 . (10)

The vector H includes a buoyancy term that makes recourse to the Boussinesq approximation, g(ρref − ρ),
with gravitational acceleration, g = 9.81m/s2. The shear stress tensor components are,

τzz =
2
3
µ

[
2
∂u

∂z
− ∂v

∂r
− 1
r

(
∂w

∂θ
+ v

)]
, (11)

τrr =
2
3
µ

[
− ∂u

∂z
+ 2

∂v

∂r
− 1
r

(
∂w

∂θ
+ v

)]
, (12)

τθθ =
2
3
µ

[
− ∂u

∂z
− ∂v

∂r
+ 2

1
r

(
∂w

∂θ
+ v

)]
, (13)

and

τrz = µ

[
∂u

∂r
+
∂v

∂z

]
, (14)

τθz = µ

[
∂w

∂z
+

1
r

∂u

∂θ

]
, (15)

τθr = µ

[
1
r

(
∂v

∂θ
− w

)
+
∂w

∂r

]
, (16)

with dynamic viscosity, µ. The heat flux vector components are,

qz = −k∂T
∂z

, (17)

qr = −k∂T
∂r

, (18)

qθ = −k 1
r

∂T

∂θ
, (19)

with heat conduction coefficient, k. The set of equations is closed by the ideal gas equation,

p = ρRT, (20)

with gas constant, R, and Sutherland’s law for the viscosity.
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B. Non-Dimensionalization

The governing equations were made dimensionless with a reference velocity, vref , a reference length scale,
Lref , a reference temperature, Tref , and a reference density, ρref . Pressure was made dimensionless with
ρrefv

2
ref . The Reynolds number based on maximum velocity and channel half-height is

Re =
umax

h
2

ν
, (21)

where h is the channel height. For the present simulations, the maximum velocity at the inflow was taken as
reference velocity, vref , and the channel half-height was taken as reference length, Lref = h/2. The Rayleigh
number is defined as

Ra =
γh3g∆T
να

, (22)

where γ = 1/Tav with Tav = (Thot + Tcold)/2 is the thermal expansion coefficient for a perfect gas, ∆T =
Thot−Tcold, is the temperature difference between the bottom and top wall, and α is the thermal diffusivity.
The Prandtl number is defined as

Pr =
ν

α
. (23)

For the chosen reference quantities, the Rayleigh number can be written as

Ra = Re2
∆T
Tav

(
h

Lref

)3
(
g
Lref
v2
ref

)
Pr , (24)

where gLref/v2
ref is the dimensionless gravitational acceleration. The reference Mach number was 0.1. In

accordance with Gage and Reid,7 the Prandtl number was set to one.

C. Computational Grid and Discretization

Pizza-slice shaped computational domains were employed for all simulations (Fig. 1). The inflow was at r2
and the outflow was at r1 < r2. A coordinate transformation was employed in the wall-normal direction that
clusters grid points near the walls. A total of J grid points were distributed in the wall-normal direction,

zj =
[

tan−1(jc− f1)
f2

+ 1
]
× h

2
, (25)

where h = 2 is the channel height, f1 = Jc/2 and f2 = tan−1(f1), c is a user specified constant, and j is the
grid line index. An equidistant grid point distribution was employed in the streamwise direction. The grid
opening angle is an integer fraction of 2π.

Figure 1. Computation grid for inward radial RBP flow simulation.

The convective terms in the wall-normal and radial direction were discretized with fifth-order-accurate
upwind-biased,

1
2
f ′j−1 + f ′j +

1
6
f ′j+1 = − 1

18
fj−2 − fj−1 +

1
2
fj +

5
9
fj+1 , (26)

and downwind-biased,

1
2
f ′j+1 + f ′j +

1
6
f ′j−1 =

1
18
fj+2 + fj+1 −

1
2
fj −

5
9
fj−1 , (27)
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compact finite differences.25 The first and second derivatives of the viscous terms (wall-normal and radial
direction) were discretized with fourth-order-accurate compact finite differences for non-equidistant meshes
by Shukla et al.,26

aj−1f
(d)
j−1 + f

(d)
j + aj+1f

(d)
j+1 = bj−1fj−1 + bjfj + bj+1fj+1 . (28)

Here d (either 1 or 2) represents the order of the derivative. The resulting tridiagonal systems of equations
in the wall-normal and radial directions were solved with the Thomas algorithm. Derivatives in the periodic
azimuthal (θ-coordinate) direction were calculated in Fourier space. The forward and backward Fourier
transforms were computed with fast Fourier transforms. A fourth-order-accurate explicit low-storage Runge-
Kutta method27 was employed for time integration.

D. Boundary Conditions

In the azimuthal direction, periodic boundary conditions were implicitly enforced by the Fourier-based
discretization. No-slip and no-penetration as well as isothermal boundary conditions were employed at both
walls. The bottom, Tb, and top wall, Tt, temperature were held constant. When the viscous terms are
neglected, the wall-normal pressure gradient at the walls depends only on the buoyancy term,

∂p

∂z
= g(1− ρ) . (29)

The ∂p/∂z derivative was computed with a fourth-order-accurate finite difference stencil. A non-reflecting
boundary condition based on Riemann invariants28 was employed at the inflow boundary. At the outflow
boundary, a characteristics-based boundary condition by Gross and Fasel29 was applied. Both boundary
conditions require reference profiles. The reference profiles were obtained by solving the equations describing
one-dimensional laminar RBP flow,

∂p

∂x
= µ

∂2u

∂y2
, (30)

∂p

∂y
= (1− ρ)g , (31)

k
∂2T

∂y2
+ µ

(
∂u

∂y

)2

= 0 , (32)

with a shooting method.

E. Numerical Linear Stability Analysis

According to what is customary in linear stability theory (LST), a wave ansatz of the form

u′(r, z, θ, t) =
∑

û(z)ei(αr+βθ−ωt) , (33)

is made for the disturbances where α=αr+iαi is the streamwise (radial) wavenumber, β is the spanwise
(azimutal) wavenumber, and ω=ωr+iωi is the angular frequency. Here, û(z) are the eigenfunctions. For the
present spatial simulations, ωi = 0. The real part of the streamwise, αr, and the spanwise wavenumber,
β, are related to the wavelengths via αr = 2π/λr and β = 2π/λθ. The real part of the angular frequency
is related to the period via ωr = 2π/T . In this paper the modes are referenced by their temporal, n, and
spanwise or azimuthal mode number, k. Spatial disturbance growth occurs for αi < 0.

The data obtained from the simulations were Fourier transformed in the azimuthal direction and in time.
For example, the disturbance velocity at a given location is described by,

u′(r, z, θ, t) = âcc(r, z) cosωt cosβrθ+ âcs(r, z) cosωt sinβrθ+ âsc(r, z) sinωt cosβrθ+ âss(r, z) sinωt sinβrθ .
(34)
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The corresponding spanwise wavenumber and frequency are β = 2πk/rΘ and ωr = 2πn/T . The first
subscript of the Fourier coefficients refers to time (cosine and sine mode). The second subscript refers to the
azimuthal direction. From this, the amplitude and phase of the right traveling waves (in positive θ-direction,
“+” superscript),

A =
√

(â+
c )2 + (â+

s )2 , (35)
and

ψ = − tan−1 â
+
s

â+
c
, (36)

can be obtained, where â+
c = (âcc + âss)/2 and â+

s = (âcs − âsc)/2. Analogously, for the left traveling waves
(in negative θ-direction, “-” superscript),

A =
√

(â−c )2 + (â−s )2 , (37)

and

ψ = − tan−1 â
−
s

â−c
, (38)

can be derived with â−c = (âcc− âss)/2 and â−s = −(âcs + âsc)/2. The spatial growth rates can be computed
from

αi = −∂lnA
∂s

, (39)

where s is the arclength in the radial direction measured from the inflow,

s = r2 − r . (40)

Because of ψ = αrr + βrθ − ωrt, the phase speed in the radial direction is

cr = −
∂ψ
∂t
∂ψ
∂x

=
ωr
αr

(41)

and the phase speed in the wave propagation direction is

c =
ωr
K
, (42)

where K =
√
α2
r + β2.

F. Parameters for Different Cases

Figure 2. Investigated cases (lines) plotted in stability diagram by Gage and Reid.7 Case 4 and case 6 are not
shown.

The present stability simulations were set up according to the neutral curves by Gage and Reid7 (Fig. 2).
A total of six cases (Tab. 1) were investigated. The cases were chosen such that the flow is unstable either
(1) with respect to 3-D (longitudinal) waves or (2) with respect to 2-D transverse waves. Since the flow is
accelerating in the radial direction, the Reynolds and Rayleigh number for cases 2 and 3 follow lines in Fig.
2.
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Re
√
Ra Inflow radius (r2) Outflow radius (r1) Instability

case 1 45 100 40 + 107 107 Buoyancy-driven (Plane RBP)
case 2 45 100 22.918 3 Buoyancy-driven (Radial RBP)
case 3 45 100 22.918 3 Buoyancy-driven (Spiral RBP)
case 4 10000 0 35 + 107 107 Viscosity-driven (Tb = Tt, Plane RBP)

Table 1. Parameters for spatial stability simulations. Re is reference inflow Reynolds number.

III. Results

Since the radial velocity exhibits a hyperbolic dependence on the radius, the flow is strongly accelerated.
Acceleration is known to be stabilizing10 and also leads to non-parallel effects (that were not considered by
Gage and Reid7). Therefore, the stability of inward radial RBP flow is expected to be different from the
stability of plane RBP flow. Earlier radial RBP flow simulations by Kamrul and Gross30 showed that the
stability was markedly different near the chimney entrance (collector exit).

A. Buoyancy-Driven Instability

1. Plane RBP Flow

For the first spatial simulation (case 1), the inflow radius was set to r2 = 40+107 and the outflow radius was
set to r1 = 107. The azimuthal grid extent was r2Θ = 6. Because of the very large inflow and outflow radius,

a) b)

Figure 3. a) Azimuthal Fourier modes of disturbance kinetic energy vs. streamwise arclength and b) growth
rates vs. azimuthal wavenumber and polynomial curve fit at s=10 for case 1.

this simulation effectively models a plane channel flow. The bottom and top wall temperatures were set to
Tb = 350K & Tt = 300K. Randomized steady velocity disturbances with a maximum amplitude of 10−6

were introduced at the inflow boundary. Since Re = 45 < Rec and
√
Ra = 100 >

√
Rac, 3-D disturbances

are expected to grow according to Gage and Reid.7 The azimuthal wavelength of the modes was computed
as,

λθ =
rΘ
k

=
(r2 − s)Θ

k
, (43)

The azimuthal mode amplitudes were computed from the integrated (across the height) disturbance kinetic
energy and are shown in Fig. 3a. Slight discontinuities near the inflow and outflow boundaries can be
attributed to the boundary conditions. Mode (0,2), which has an azimuthal wavelength of λθ = 3, exhibits
the strongest linear growth. Modes (0,1) and (0,3) also grow linearly. The other modes initially decay and
then exhibit secondary growth once the primary modes reach sufficiently large nonlinear amplitudes. In Fig.
3b the growth rate is plotted versus the azimuthal wavenumber for s = 10. For this downstream location all
modes exhibit primary linear growth or decay. Mode (0,2) with azimuthal wavenumber β = 2.094 experiences
the strongest growth with αi = −0.3238.
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a) b)

Figure 4. a) Growth rates and b) azimuthal phases vs. streamwise arclength for case 1.

a) b)

Figure 5. a) Mode shapes and b) phase distribution for mode (0,2) at s = 30 for case 1.

Interactions among waves are possible in the DNS and modes can exhibit secondary growth due to non-
linear effects or resonances. In Fig. 4a the growth rates are plotted over the streamwise distance. Mode
(0,7) is the first to experience secondary growth. Later on and further downstream, modes (0,6)-(0,4) also
experience secondary growth. Interestingly, mode (0,6) starts to show non-linear growth at s ≈ 17 where
the growth of mode (0,7) becomes constant. Similar observations can be made for modes (0,6) and (0,5) half
way through the channel and for modes (0,5) and (0,4) further downstream. The spatial development of the
azimuthal phase is plotted in Fig. 4b. Changes of the growth rates go hand-in-hand with phase adjustments.
For instance, the suddenly increased growth rate of mode (0,4) for s > 28 can be associated with a phase
alignment of mode (0,4) that likely results in a non-linear energy transfer from mode (0,2) to mode (0,4) due
to resonance.

The amplitude and phase distributions of the disturbance velocity for the primary mode (0,2) at s = 30
are provided in Fig. 5a and Fig. 5b respectively. The radial (v′) and azimuthal (w′) amplitude distributions
for the primary mode (0, 2) have two peaks near z ≈ 1.5 and a phase-jump of π at z = 1. The wall-normal u′

disturbance amplitude exhibits only one peak at the mid-channel height and a constant phase distribution
away from the walls.

The present spatial stability results (case 1) obtained with the new radial code are in agreement with
earlier temporal stability simulations by Kamrul and Gross.31 According to Kamrul and Gross,31 λθ = 3 has
the highest temporal growth rate. A comparison of the growth rates with the temporal simulations would be
desirable. However, since the modes are steady (ωr = 0), the phase speed c = ωr/

√
α2
r + β2 is zero and the

Gaster transform cannot be invoked to make a connection between the temporal and spatial growth rates.
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2. Radial Flow

The inflow Reynolds and Rayleigh number for case 2 were the same as for case 1. The inflow and outflow
radius were set to r2 = 22.918 and r1 = 3. The grid openig angle was 30 degree. The bottom and top
wall temperature were set to Tb = 350K & Tt = 300K. Figure 6a shows streamlines computed from the
velocities at the channel half height. In this and many of the following figures the computational domain
was repeated in the circumferential direction to show the entire collector. The local Reynolds number based
on the maximum radial velocity is plotted in Fig. 6b. An almost hyperbolic increase of the Reynolds number
(radial velocity) is observed. This is in agreement with the continuity equation which predicts ρv ∝ 1/r. The
Reynolds number at the outflow is approximately 240. A DNS with 8 azimuthal Fourier modes was carried
out. Randomized steady velocity disturbances with a maximum amplitude of 10−6 were introduced at the
inflow boundary. Steady azimuthal Fourier modes of the disturbance kinetic energy are plotted in Fig. 7.
Mode (0,6) has the largest amplitude for s < 8.5 after which mode (0,5) attains the maximum amplitude.
Towards the outflow mode (0,2) dominates. This suggests that as the flow approaches the collector outflow,
the higher modes are less amplified or even damped while the lower modes are more amplified. Because the
wavelength has to be an integer fraction of the circumference, only certain wavelengths are possible. For
an observer, the vanishing of mode (0,6) and emergence of modes (0,5) & (0,2) have the appearance of a
“vortex merging”.

a) b)

Figure 6. a) Streamlines and b) local Reynolds number vs. streamwise arclength for case 2.

Figure 7. Azimuthal Fourier modes of disturbance kinetic energy vs. streamwise arclength for case 2.

In Fig. 8a the growth rates are plotted over the streamwise arclength. The discontinuities of the growth
rates near the inflow and outflow boundaries can be attributed to the boundary conditions. Also, the
disturbances introduced at the inflow may not exactly satisfy the governing equations. Finally, receptivity
which is not adressed in this paper, likely affects the mode amplitudes near the inflow. Different from
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a) b)

Figure 8. a) Spatial growth rate and b) azimuthal phases vs. streamwise arclength for case 2.

case 1, because the basic flow is accelerating in the streamwise direction, the growth rates are constantly
changing. Near the inflow, mode (0,5) is the most amplified. Mode (0,3) experiences maximum growth
(most negative αi) between s ≈ 4.7 and s ≈ 9.5. For 9.5 < s < 13.5, mode (0,2) and for s > 13.5 mode (0,1)
are strongly amplified (lower mode numbers are more strongly amplified downstream). For s > 13.5 the
azimuthal wavelength of mode (0,1) is between λθ = 4.93 and λθ = 1.57. In agreement with the earlier plane
RBP flow stability simulation (case 1), the azimuthal wavelength of the wave that experiences the strongest
amplification is approximately three. Because the azimuthal, rΘ, extent changes with r, the mode number
is adjusting in r. The growth rates of the unstable modes for case 2 never reach the growth rate of the most
unstable mode (λθ = 3) for case 1. This may be attributed to the strong acceleration (hyperbolic increase
of Reynolds number in the radial direction) which is known to be stabilizing.

a) b)

Figure 9. a) Pressure gradient parameter vs. streamwise arclength and b) growth rate of steady modes vs.
pressure gradient parameter for case 2.

The phase distribution computed from the azimuthal velocity component are plotted in Fig. 8b. The
changes in growth rate can be correlated with phase adjustments. Different from case 1, the phase adjust-
ments are more gradual. For example, the increased growth of mode (0,2) for 6 < s < 17 and mode (0,3)
for 4 < s < 15 and the following reduction of the growth rates (Fig. 8a) can be associated with phase shifts
(Fig. 8b). Similar observations can also be made for mode (0,4). The azimuthal phase of modes (0,5) and
(0,6) are almost constant over the entire radial extent of the domain.

The dimensionless pressure gradient parameter, PGP = (θ2/ν)× (dvmax/dx) is frequently invoked when
the effect of pressure gradients on boundary layer stability is investigated. Assuming a parabolic velocity
profile, the momentum thickness is ϑ = 2h/15. Since this is a constant, it is omitted here. When furthermore
ν = νref is assumed, the PGP simplifies to PGP = Re × (dvmax/dx). In Fig. 9a the pressure gradient
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parameter is plotted over the streamwise arclength. Because of the hyperbolic nature of the radial velocity,
the PGP increases strongly in the radial direction. In Fig. 9b the growth rates are plotted versus the pressure
gradient parameter. The growth rates of the steady azimuthal modes decrease as the PGP increases. The
Plane RBP flow results are approached as the PGP approaches zero.

a) b)

Figure 10. a) Mode shapes and b) phase distributions for mode (0,2) at s = 13 and s = 18 for case 2.

a) b)

c) d)

Figure 11. Spatial growth rate as a function of temporal and azimuthal mode number for a) s = 4.7, b) s = 6.08,
b) s = 8.85 and d) s = 11.6 (case 2).

The amplitude and phase distributions of the wall-normal (u′), radial (v′) and azimuthal (w′) disturbance
velocities for mode (0,2) at two different radial locations (s = 13 and s = 18) are shown in Fig. 10. The u′

12 of 23

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

nd
re

as
 G

ro
ss

 o
n 

A
ug

us
t 4

, 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

22
40

 



amplitude distributions have only one peak near the channel mid-height and a constant phase over most of
the channel height. In contrast, the v′ and w′ amplitude distributions have two peaks and a phase-jump of
π at z ≈ 1.

According to Gage and Reid,7 below the critical Reynolds number for the T-S instability, oblique waves in
plane RBP flow can be amplified if the Rayleigh number is large enough. It is therefore very interesting to see
whether the oblique modes are also amplified in radial RBP flow. To this end, all three disturbance velocity
components were Fourier transformed in time and then Fourier transformed in the azimuthal direction. This
allows for an extraction of the amplitude and phase of the oblique Fourier modes for different frequencies
as explained in section II.E. The total non-dimensional simulation time was T = 60 which sets the lowest
frequency, ωr = 0.1047. In Fig. 11 contours of the spatial growth rate are plotted versus the temporal and
azimuthal mode number for four streamwise locations. The growth rates of the strongest growing left and
right traveling waves are identical. The highest growth rate is obtained for the smallest temporal mode
number which corresponds to the lowest resolved frequency, ωr = 0.1047. This may be an artefact of the
post-processing of the data and will be further investigated. Closer to the outflow, lower azimuthal mode
numbers (±k) become dominant and the growth rates decrease.

a) b) c)

Figure 12. Disturbance kinetic energy for ωr = 0 : a) k = 1, b) k = 2 and c) k = 3 for case 2.

The mode shapes were reconstructed from the amplitude and phase distributions. The mode shapes for
k = 1, k = 2 & k = 3 and ωr = 0 (steady modes) have wave fronts that are aligned in the radial direction
(Fig. 12). As a reference, streamlines at the channel half-height were included in the figures. Figures 13 and
14 illustrates the left and right traveling waves for k = 1, k = 2 & k = 3 for ωr = 0.1047 and ωr = 0.3141,
respectively. The left and right traveling oblique modes are symmetric with respect to the streamlines. The
wave angle decreases in the streamwise direction.
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a) b)

c) d)

e) f)

Figure 13. Disturbance kinetic energy for ωr = 0.1047 : a) left traveling wave (k = 1), b) right traveling wave
(k = 1), c) left traveling wave (k = 2), d) right traveling wave (k = 2), e) left traveling wave (k = 3) and f) right
traveling wave (k = 3) for case 2.
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a) b)

c) d)

e) f)

Figure 14. Disturbance kinetic energy for ωr = 0.3141 : a) left traveling wave (k = 1), b) right traveling wave
(k = 1), c) left traveling wave (k = 2), d) right traveling wave (k = 2), e) left traveling wave (k = 3) and f) right
traveling wave (k = 3) for case 2.
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3. Spiral Flow

Case 3 is identical to case 2 with the one difference that the inflow angle was set to 45 deg. Figure 15a
illustrates the spiral streamlines resulting from the inclined inflow. As for case 2, the local Reynolds number
for case 3 increases hyperbolically in the streamwise direction as seen in Fig. 15b. The maximum absolute
radial and azimuthal velocity are plotted in Fig. 16a. Neglecting the viscous terms in the θ-momentum
equation, one obtains

∂(ρvw)
∂r

+
1
r

(2ρvw) = 0. (44)

This suggests

w ∝ 1
ρv

1
r2

= r
1
r2

=
1
r
. (45)

Interestingly, in the simulation the w-velocity drops initially and then begins to grow hyperbolically (Fig.
16a). Because of the initial drop of the azimuthal velocity, the flow angle, φ = tan−1(w/|v|) decreases
considerably in the streamwise direction (Fig. 16b). The fact that the inflow angle is less than 45 deg, can
be attributed to the inflow boundary condition which does not precisely hold the desired inflow value.

a) b)

Figure 15. a) Streamlines for spiral flow simulation and b) local Reynolds number vs. streamwise arclength.

a) b)

Figure 16. a) Radial (absolute) & azimuthal velocity and b) flow angle vs. streamwise arclength for case 3.

Similar to case 2, a simulation with 8 azimuthal Fourier modes was carried out. The steady azimuthal
Fourier mode amplitudes computed from the disturbance kinetic energy are plotted in Fig. 17a. As for the
radial flow (case 2), the mode number of the most unstable mode decreases in the streamwise direction. The
growth rates are plotted in Fig. 17b. Included are the results for the radial flow. Figure 17b reveals that
the growth rates of the steady modes for the spiral flow (case 3) are lower than for the radial flow (case 2).
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Near the inflow, (0,3) is the most amplified. Between s ≈ 6 and s ≈ 11.5 mode (0,2) experiences maximum
amplification. For s > 11.5 mode (0,1) is the strongest (lower mode numbers are more strongly amplified
downstream).

a) b)

Figure 17. a) Spatial evoluton of azimuthal Fourier modes of disturbance kinetic energy (spiral flow) and b)
growth rates vs. streamwise arclength for case 3 (rad=radial, spr=spiral).

a) b)

Figure 18. a) pressure gradient parameter vs. streamwise arclength and b) growth rate of steady modes vs.
pressure gradient paramet for case 3.

In Fig. 18a the PGP is plotted over the streamwise arclength for both the radial and spiral flow. The
PGP is marginally higher for the radial flow than for the spiral flow. Interestingly, different from the radial
flow, for the spiral flow some modes remain amplified up to a larger PGP . For example, mode (0,3) is
amplified for 0.2 < PGP < 1.2 for the radial flow (Fig. 9b) and 0.2 < PGP < 1.4 for the spiral flow (Fig.
18b).
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a) b)

c) d)

Figure 19. Spatial growth rate as a function of temporal and azimuthal mode number for a) s = 4.7, b) s = 6.08,
b) s = 8.85 and d) s = 11.6 (case 3).

a) b) c)

Figure 20. Disturbance kinetic energy for ωr = 0 : a) k = 1, b) k = 2 and b) k = 3 for case 3.

Iso-contours of the spatial growth rates for four streamwise locations are plotted in Fig. 19. Surprisingly,
the growth rates of the strongest growing left and right traveling modes are different meaning that one family
of oblique modes is favored. Visualizations of the mode shapes for ωr = 0 (steady modes) are shown in Fig.
20. The wave fronts of the steady modes are spiral and tangential to the streamlines. The oblique modes for
ωr = 0.1047 and ωr = 0.3141 are shown in Figs. 21 and 22. Different from the radial flow, the angle of the
left and right traveling modes with respect to the streamlines is different. Because of the larger amplification,
the left traveling oblique modes reach higher amplitudes than the right traveling oblique waves.
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a) b)

c) d)

e) f)

Figure 21. Disturbance kinetic energy for ωr = 0.1047 : a) left traveling wave (k = 1), b) right traveling wave
(k = 1), c) left traveling wave (k = 2), d) right traveling wave (k = 2), e) left traveling wave (k = 3), f) right
traveling wave (k = 3) for case 3.
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a) b)

c) d)

e) f)

Figure 22. Disturbance kinetic energy for ωr = 0.3141 : a) left traveling wave (k = 1), b) right traveling wave
(k = 1), c) left traveling wave (k = 2), d) right traveling wave (k = 2), e) left traveling wave (k = 3), f) right
traveling wave (k = 3) for case 3.
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B. Viscosity-Driven Instability

The hydrodynamic instability of a plane Poiseuille flow (no heated walls, no gravitational field) was also
investigated for a validation case from the literature. A case by Chung et al.32 with a Reynolds number of
Re = 10, 000 based on maximum velocity and channel half-height was considered. According to Chung et

a) b)

Figure 23. a) Fourier modes of wall-normal disturbance velocity at mid-channel height and b) growth rates &
phase speed vs. streamwise arclength for case 4.

al.,32 an unstable mode exists with α = 1.0006− i0.0109 and ωr = 0.23753. For this simulation (case 4) the
inflow radius was r2 = 35 + 107 and the outflow radius was r1 = 107. The bottom and top wall temperature
were set to Tb = Tt = 300K and different from the other cases, the Prandtl number was Pr = 0.71. Since
Re = 10, 000 > Rec and

√
Ra <

√
Rac, 2-D disturbances are expected to grow according to Gage and

Reid.7 The linear disturbance mode was extracted from a precursor simulation with matching parameters.
The mode was rescaled to a maximum amplitude of 4× 10−5 and introduced at the inflow boundary of the
spatial simulation. The inflow disturbance frequency was set to 0.23753 according to Chung et al.32 The
mode amplitude and growth rate obtained from the simulation are shown in Fig. 23. In agreement with Gage
and Reid7 and Chung et al.,32 linear growth (Tollmien-Schlichting instability) is observed for case 4 (Fig.
23a) as the combination of Re −

√
Ra is above the λ = 0 degree neutral curve in Fig. 2. The disturbance

amplitude experiences some adjustment at the outflow boundary likely as a result of the boundary conditions.
The streamwise wavenumber obtained from the radial code is α = αr + iαi = 0.9984 − 0.0113i. The phase
speed is 0.23717 (Fig. 23b). The streamwise wavenumber, αr, and spatial growth rate, αi, are within 0.22
% and 3.67%, respectively, of the results reported by Chung et al.32

Conclusions

Similar to plane Rayleigh-Bénard-Poiseuille (RBP) flow, inward radial RBP flow can exhibit both buoy-
ancy and viscosity-driven instability. The stability boundaries for plane RBP flow were first established by
Gage and Reid.7 For Re < Rec = 5, 400 and Ra > Rac = 1, 708, buoyancy-driven instability occurs and 3-D
waves are most unstable. On the other hand, viscosity-driven instability leads to the growth of Tollmien-
Schlichting waves for Re > Rec and Ra < Rac. Although plane RBP flow attracted a lot of attention in
the scientific community, the hydrodynamic instability of inward radial RBP flow is less well explored. This
paper focuses on spatial stability simulations that were carried out with the intent to make a contribution
to the physical understanding of inward radial RBP flows.

A new direct numerical simulation (DNS) code was developed for numerical stability investigations of
radial RBP flows. First, a validation case with buoyancy-driven instability was considered. A very large
inflow and outflow radius and narrow azimuthal extent were chosen such that effectively a plane channel
flow was simulated. The spanwise wavelength of the most amplified wave was the same as in an earlier
temporal stability simulation by the authors.31 Next, the buoyancy-driven instability of a radial channel
flow with much smaller inflow and outflow radius was investigated. For this case, the radial velocity increases
almost hyperbolically in the streamwise direction. As the flow approaches the outflow, steady longitudinal
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waves with progressively lower azimuthal mode number experience maximum amplification. Buoyancy-
driven instability also leads to the amplification of traveling oblique waves. However, the growth rate of
the traveling waves decreases with increasing frequency. A simulation with spiral flow and buoyancy-driven
instability was carried out as well. The growth rates were overall lower than for the radial flow. Interestingly,
the simulation also indicated different relative wave angles and growth rates for the left and right traveling
oblique waves. Finally, as a validation case with viscosity-driven Tollmien-Schlichting instability, the DNS
results for plane Poiseuille flow by Chung et al.32 were recomputed and matched with good accuracy.
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