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Abstract

This study provides a normative theory for how Bayesian causal inference can
be implemented in neural circuits. In both cognitive processes such as causal
reasoning and perceptual inference such as cue integration, the nervous systems
need to choose different models representing the underlying causal structures
when making inferences on external stimuli. In multisensory processing, for
example, the nervous system has to choose whether to integrate or segregate inputs
from different sensory modalities to infer the sensory stimuli, based on whether
the inputs are from the same or different sources. Making this choice is a model
selection problem requiring the computation of Bayes factor, the ratio of likelihoods
between the integration and the segregation models. In this paper, we consider
the causal inference in multisensory processing and propose a novel generative
model based on neural population code that takes into account both stimulus feature
and stimulus reliability in the inference. In the case of circular variables such as
heading direction, our normative theory yields an analytical solution for computing
the Bayes factor, with a clear geometric interpretation, which can be implemented
by simple additive mechanisms with neural population code. Numerical simulation
shows that the tunings of the neurons computing Bayes factor are consistent with
the "opposite neurons” discovered in dorsal medial superior temporal (MSTd) and
the ventral intraparietal (VIP) areas for visual-vestibular processing. This study
illuminates a potential neural mechanism for causal inference in the brain.

1 Introduction

Numerous psychological studies have demonstrated that perception can be formulated as Bayesian
inference of the underlying causes in the world that give rise to our sensations [1-6]. These causes
could be the sensory variables such as heading direction and orientation of edge, but often are causal
structures from which the observations are generated. In multisensory integration, as an example,
when we move around the world, the optical flows we see and the vestibular signals we experience are
concordant. In this case, an integration model will be selected so that multiple cues can be weighed
and combined together to form a unified estimate of head direction of self-motion [7, 8]. However,
when we wear a goggle to navigate in a virtual reality world while sitting on a spinning chair, the
visual and the vestibular signals would be quite discordant and it would be wrong to integrate them
during inference [9]. In this case, a segregation model should be selected so that each cue will remain
separated and their sources can be inferred independently. The selection of these models or latent
causal structures during inference is called causal inference [10, 11].
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Figure 1: The generative model of causal inference. (A) The generative model. The two sensory
cues are generated by the same stimulus in the integration model, while they are independently
generated by two different stimuli in the segregation model. Dashed circle: latent variables; solid
circle: cues (observations). (B) The likelihood function derived from neural population code. Each set
of stimulus parameters include the stimulus feature s (e.g., motion direction) and the stimulus strength
R (e.g., motion coherence). Each cue consists of observed direction x and observed spike count A
representing the input reliability. (C) A neural encoding model where the stimulus parameters w and
cues d are represented by the population firing rate A and observed spiking activities u respectively.

A number of psychological studies have suggested that our brains indeed perform causal inference as
an ideal observer (e.g., [10, 12-14]). However, it has been challenging to come up with a simple and
biologically plausible neural implementation for causal inference. This is because the computation
of Bayes factor, which is the ratio of likelihoods between models, requires nonlinear operations
including multiplication and division, while how these nonlinear operations could be implemented
by neural circuits remain a mystery [13—15]. Thus, while cue integration assuming the integration
model can be accomplished by an additive mechanism through linearly summing feedforward spiking
inputs in the framework of probabilistic population codes [16], a neural model with similar additive
mechanisms for model selection has not been attained [15].

Here, we show that by incorporating stimulus strength or reliability R (e.g. motion coherence of the
visual cue, Fig. 1B) as a latent stimulus parameter to be inferred simultaneously with the stimulus
feature (e.g. heading direction) in a generative model, the Bayes factor can be computed by using
additive mechanism in a biologically plausible implementation. In this implementation, the neural
population activities representing the Bayes factor can be computed by simply summing the inputs
of one direction from one sensory modality with the inputs of the opposite direction from another
modality. We found the tunings of these neurons representing Bayes factor in the form of neural
population code are similar to the “opposite” neurons observed in MSTd and VIP whose preferred
heading directions from the visual and vestibular modalities are indeed opposite, shifted by 180
degrees (Fig. 3B-C, [8, 17-19]). This work provides the first theoretical justification that the opposite
cells are computing and encoding Bayes factor, which is an essential step in causal inference. We
provide numerical simulation in support of this claim.

2 A Generative Model for Multisensory Processing

2.1 A probabilistic generative model

We study causal inference in the case of multisensory processing, an example of which is inferring
heading direction using visual and vestibular cues [8, 19, 20]. The two cues are denoted by D =
{d;}?_,, with [ = 1,2 representing the visual and vestibular modality respectively. Each cue can
be regarded as the responses of uni-sensory neurons in visual or vestibular areas, which provide the
feedforward inputs to multisensory neurons in MSTd and VIP, respectively [8, 19]. In practice, the
two cues can be generated by two different models M = {min, Mseq }, With each of them specifying
an underlying causal structure (Fig. 1A, [10, 13, 14]). Each model m;, (h € {int,seg}) has its
parameters Wy, = {wlh}%zl, with wy;, denoting the parameters of stimulus of sensory modality [.
Given a model (causal structure), the two sensory cues are generated independently (since they are
generated and conveyed via different sensory pathways in the brain, Fig. 1A), i.e.,

p(DWh,mp,) = Hz2:1 p(di|win). )]



In the integration model m;,, there is only one source in the world, so the features of stimuli in two

modalities are the same (Fig. 1A, [10, 13, 14, 21]), and we denote as Wi,y £ W1 int = W2,int. The
prior of parameter w;y; is assumed as a uniform distribution for simplicity,

p(wint|mint) = Z/{(Wint)- (2)

In the segregation model mgc,, there are two independent sources (Fig. 1A). Thus, the stimulus
parameters in two modalities are independent with each other, and also satisfy the uniform distribution,
p(wl,sega W2,seg|mseg) = p(wl,seg|mseg)p(w2,seg|mseg) = u(wl,seg) z/{(‘7‘/'2,seg)~ 3)

Notably, the two causal models are mutually exclusive to each other, in term of that only one of them
holds at a single moment. The prior of the two models are assumed to be the same,

P(Ming = 1) = p(Mgeg = 1) = 1/2. 4
Combing the likelihood and prior above, the whole generative process is summarized as,
P(D, Wh,mp) = p(DIWy, mp)p(Wh|mn)p(ms),
p(

~ p(di [Wine)p(d2|Wint), Mp = Mint,
p(dl|W1,scg)p(d2‘w2,scg), mp = Meseg-

(&)

2.2 Neural population code

In the framework of neural population code [16, 22], the above generative model (Eq. 5) can be
described more specifically, which is a key step in linking abstract causal inference with neural circuit.
Consider that w; = {s;, R;} are the stimulus parameters of modality [, which is the heading direction
(s1) and its reliability (R;). The stimulus information is conveyed by the responses of /N uni-sensory
neurons in modality /, denoted as u; = {ulj}N which satisfy the Poisson statistics (Fig. 1C, [16]),

j=1°
N . NN
p (i (s1, Be)) = [ ;2 Poisson(u|Aij) = T2, #’j!e Mg (6)
where \;; is the firing rate of neuron w;; and is a function of stimulus parameters s; and 7,
Aij(s1, Ry) = Ryexplacos(s; — 6;) —a], @)

where 0 is the preferred direction of neuron w5, and a is the width of the tuning function. Here, we
assume that the stimulus reliability is encoded by the peak firing rate of neurons [16, 22].

Although the neuronal responses u; are high-dimensional, the likelihood function of the stimulus
parameters w; given u; can be fully specified by two one-dimensional variables (sufficient statistics),
which correspond to the readout (via population vector) of the direction (z;) from u; [23] and the
total spike count (A;),

n _ Zu - sin 0
xl:arg<zjuljew]) — tan—1 (W) A=Yy (8)

The sufficient statistics d; = {x;, A;} correspond to the sensory cues in Eq. (1). The likelihood
function of stimulus parameter w; derived from neural population code is calculated to be (see details
in Supplementary Information (SI) 4),

p(d; = {z, Ai}|si, Ri) = M (x)]s1, apA;) Poisson(A;|SR;),
OCM(S[|£C1,G,[)A[)F(R[|AZ +17ﬁ)a 9
where M(x), Poisson(x) and I'(x) denote a von Mises, a Poisson, and a Gamma distributions,

respectively. p and [ represent the width of u; and the sum of normalized firing rates, respectively
(see SI. 4). The priors of s;;, and Ry, are assumed to be independent with each other (Eq. 2), i.e.,

Z/[(Wlh) = Z/[(Slh) U(th) = (LSLR)_l, (10)

where L, and Ly are the lengths of the spaces of s and R, respectively. For heading direction
s, Ly = 2m. Combining Egs. (5, 9 and 10) together, the generative model in the form of neural
population code is expressed as,

HZ:]_ M (.’131 |Sint7 aPAl) POiS.SOII(Al ‘/BRint)7 mp = Mint,
=1 M (xl|sl’seg, apAl) PO]SSOH(A”ﬁRl’seg), Mp = Mgeg-

p(D,W}“mh) o8 { (11)
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Figure 2: The geometric representation of Bayes factors. (A) The geometric representation of a von
Mises distribution where its mean and concentration can be represented by the angle and length of a
vector in a 2d plane respectively. (B) The geometric representation of the posterior of direction under
two models (Eq. 20) and the best-fit likelihood ratios (Eq. 25) in Bayes factor. Bottom: the likelihood
ratios depends on the disparity of direction as well as strength. Dashed line: the radius of half blue
vector. (C) Evidence of integration and segregation models and Bayes factor with cue directions. (D)
The decision boundary with input spike count, where the spike count of two cues are always the same,
i.e., Ay = Ay. Parameters: Ly = 27, Lr = 100 Hz, a = 3 and N = 180. (C) A; = A> = 30.

Notably, the generative model considered in the present study (Eq. 9) includes explicitly the stimulus
strength R, which was treated as a “nuisance” parameter in previous studies (e.g., [13—15]). We claim
that it is important for the neural system to exploit the disparity of the strength R of two stimuli to
perform causal inference. For example, when you are watching a shaky video (low motion coherence)
in virtual reality while you are walking straight ahead in real world (high reliability), even if the
moving direction and the speed of optic flow in virtual reality is the same as your actual walking, you
probably feel the optic flow is not generated by your walking and even feel motion-sickness because
of the difference of motion coherence between visual and vestibular stimuli.

3 Bayesian Causal Inference

In order to interpret the world, the neural circuit needs to infer the underlying causal structure my,
based on sensory cues D (Fig. 1), which can be achieved through estimating the posterior of each
model my,. Although the spike count A; is observed, the neural circuit is assumed to be only interested
in the heading direction x = {z1, 25}, and evaluates each model’s feasibility by its performance in
explaining x. According to the Bayes’ theorem, the posterior of the integration model m;y;, is,

—1
p(mim'X) B p(x|min‘c)p(mint) _ [1+p(xmseg)} (12)

X, p(x|ma)p(m) P(X[Mint)
where the condition that two models have the same prior is used (Eq. 4), i.e., p(Mgseg ) /P(Mint) = 1.
Since there are only two models, it always has ), p(m|x) = 1, and knowing the posterior of one

model fully determines the posterior of another. From Eq. (12), we see the key of causal inference is
to calculate the likelihood ratio between two models, which is called the Bayes factor [24, 25],

_ p(x|mseg)
B(x) = T (13)

If the Bayes factor is less than 1, p(mint|x) > p(mseg|x) and the integration model is favoured;
otherwise the segregation model is chosen. The core of computing the Bayes factor is to evaluate



the evidence of each model p(x|my,), which needs to marginalize the parameters WV, and the spike
counts A = {A1, Az},

p(xlmp) = / / P, A Wi )p(Ws [mi ) AWy dA,

~ ~ 1
~ p(x\Wh) X p(Wh|mp)det(Hp/2m)" 2, (14)
———
Best-fit likelihood Occam factor, OF(mp,)

where the Laplace’s method is used to approximate the double integral (see SI. 2, [25, 26]), which
works well when the spike counts A are sufficiently large (Fig. S1, see details in SI. 5). Computing

the evidence of each model needs to fit the model to explain the sensory cues. Denote W), =
{5in, th}%zl the best-fit parameters (the maximal posterior estimate) of model my,, i.e.,

W, = argn;\;axp(whﬂ),mh). (15)
h

The best-fit likelihood of the observed direction x is given by (see details in SI. 5.3),
p(xPWi) =TT, plaiWin) =~ TTr-) M(xil3in, apBRu). (16)

In Eq. (14), H;, = —VV lnp(Wh|D, my,) is the negative Hessian matrix of the logarithm of the
posterior p(Wy|D, my,), reflecting the uncertainty of the inferred parameter W,.

Note that causal inference (model selection) is not simply choosing a causal structure (model) which
best explains the observed direction x, since a complex model can always fit the data well. An
over-parameterized model or a model requiring too much fine-tuning will be rejected, and this is
captured by the Occam factor OF (my,) in Eq. (14). The Occam factor for a complex model is small,
since the probability of choosing a particular parameter value p(Wh\mh) is low due to the large
parameter space; and a fine-tuned model has a large H, which also reduces the Occam factor [26].

In summary, Bayesian causal inference undergoes two levels of inference: the first level is inferring
the best-fit parameters § and R given each model (Eq. 15); and the second level is inferring the
models M by using the best-fit parameters to evaluate each model’s performance, with the model
complexity penalized by the Occam factor (Eq. 14). In the section below, we presented how the two
levels of inference are performed.

3.1 Maximum posterior estimate of stimulus parameters

In the segregation model Mg, €ach cue d; is exclusively used to fit the parameters wy;, (Eq. 11),

p(Wscg|D> mscg) X Hl2=1 M(Sl,sog|xla Rl = apAl)F(Rl,scg|Al + ]-7 ﬂ)a (17)
and the maximum-posterior estimates of the parameters are (see details in SI. 5.1),
*§l,seg =y, Rl,seg = Al/ﬁ (18)

On the other hand, the integration model m;y only has one set of parameters Wint = {Sint, Rint }
(Eq. 2), whose estimate involves combining two cues together (Eq. 9),

p(wint|D>mint) X Hl2=1 M(Sint‘xla Hl)r(Rint|Al + 176)7

o¢ M(Sint |[Sint, Aint )T (Ring| A1 + Az +1,25). (19)
The parameters Si, and Riy, Of the posterior of direction satisfy [27] (see details in SI. 5.2),
Rinte? ¥t = k1771 + Koel®2, (20)
Combining the above results (Eqgs. 19-20), the parameter estimates in the integration model are,
e =t (s ) R = A en

It is worthy to note that there is a clear geometric interpretation of the parameters in the posterior of
direction s (Egs. 17 and 19). The parameters of a von Mises distribution M (s|z, k) can be represented
by the vector ke’® in a two-dimensional parameter plane with its mean 2 and concentration x
represented by the angle and length of the vector, respectively (Fig. 2A). Thus, the posterior of
direction in the segregation model (M (s; seg |z, k1) in Eq. 17) can be represented by two green
vectors ;% in Fig. 2B. In comparison, since the integration model combines the two cues together,
the posterior of direction in the integration model can be represented by the blue vector in Fig. 2B,
which is the sum of the two green vectors (Eq. 20). The geometry in the parameter space shows that
the integration model accumulates the common information of two cues to estimate stimulus, and the
estimate of the integration model is always the consensus (reliability based average) of cues.



3.2 Occam factors of two models

The Occam factors of two models are (substituting Eqgs. (18, 21) into Eq. (14), see SI. 5 for details),
OF (Msgeg) = 4 X OF(ming)?,  OF(ming) = m[LsLry/apB) ™" (22)

The OF(mseg) is smaller than OF(m;,) by a order, because the number of parameters in the
segregation model is double that in the integration model. Moreover, the Occam factors of the two
models are invariant constants with input spikes A; and direction x;, because the dependence of the
uncertainties of s;;, and R;, on A; cancel, which greatly simplify the neural implementation.

3.3 The Bayes factor

Once the best-fit stimulus parameters (Eqgs. 18 and 21) and the Occam factors (Eq. 22) are obtained,
the Bayes factor determining two models can be calculated as a function of heading direction (Eq. 13),

& 2

H M(21|3) 50g, K1) OF(Migeg)
s - 7 = LR OFR 23
(x) it M (21]8int, Rint/2) OF (miny) ll;[l (w1) x , 23)

where LR (x;) is the ratio of the best-fit likelihoods of two models, and OFR = OF(mgeg ) /OF (ming)
is the Occam factor ratio which is a constant invariant to input (Eq. 22). In Eq. (23), ki = apBR; seg
(Eq. 17) and &int /2 =~ (k1 + K2)/2 = apﬁ]%int due to |x1 — x2| < min(k1, k2) (Eq. 20). Note that
the concentration of the best-fit likelihood of the integration model, i.e., #int/2 in the denominator of
Eq. (23), is half of the concentration of the posterior, i.e., kit in Egs. (19-20). Intuitively, this is due
to that the integration model uses the two cues’ consensus (average) to explain each cue. When the
cues are from the same source, their consensus is similar with themselves statistically.

Since the Occam factor ratio OFR is a constant invariant with inputs, computing the dependency
of Bayes factor on inputs lies in the computation of likelihood ratio LR(z;). Notably, the ratio
between two circular distributions is still a circular distribution. Dividing by a circular distribution is
proportional to rotating the distribution to opposite direction and multiplying it (comparing the below
equation with Eq. 23), i.e.,

LR(z;) o< M(21]31,seg, K1) M (21]8int + T, Rint /2) = A X M(z1|21p, Kipp), (24)

where A is the product of normalizing constants!. Using Eq. (20), the parameters z;,, and £, of
LR(x;) are calculated as,

Kipe? ™ = (k1?0 — kel ™) )2 = [ 4 kped @I 20 =3 1. (25)

Geometrically, the likelihood ratio parameters (x;, and k;;, in Eqs. 24-25) correspond to the difference
between green vectors (the best-fit likelihood of the segregation model) and half of the blue vector (the
best-fit likelihood of the integration model), and they are represented by two red vectors in Fig. 2B.
This geometrical relationship suggests that the likelihood ratio takes into account the disparities of
both direction |z1 — z2| and strength |A; — A | (Fig. 2B bottom), and reflects how well the integration
model can explain the two cues, as the lengths of the red vectors increase with the cue disparity.
From the property of parallelogram, the two red vectors are always of the same length but point to
the opposite direction with each other, implying the parameters of the two likelihood ratios have the
same concentration, i.e., K1, = Kap, but opposite means, i.e., Top = T1p + 7.

Fig. 2 presents the results of model evidence and Bayes factor. The evidence of the segregation model,
P(X|Mseg ), is a constant irrelevant of |x1 — 2| (Fig. 2C, blue line), since each cue is independently fit
by a parameter and hence the cues can always be perfectly fit regardless of their disparity. However,
the segregation model is penalized by the Occam factor much more compared with the integration
model since it has more parameters (Eq. 22). In contrast, the integration model parsimoniously uses
the two cues’ consensus to explain cues, and hence its explanatory power, p(x|mipt), decreases
with the cue disparity (Fig. 2C, red line). In summary, the integration model will be favoured when
two cues are similar (Fig. 2C), consistent with the intuition that cues from the same object will be
statistically more similar than cues from different objects (Fig. 1A) [12, 13].

The spike counts A affects the integration probability indirectly through the estimate of R (Eqgs. 18
and 21). When the spike counts of both cues are low, i.e., noisy cues due to low motion coherence,

'A = 2711o(Rint /2) o (Kip) /o (k1). Io(z) is the modified Bessel function of the first kind and zero order.
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Figure 3: Congruent and opposite neurons implement the integration and the Bayes factor respectively.
(A) The schematic of the network structure. Congruent (opposite) neurons receive the feedforward
inputs from two cues in a congruent (opposite) manner. Each circle represents a neuron where the two
arrows inside denotes its preferred directions under two sensory modalities, with the color specifying
the modality. (B) The tunings of an example congruent and opposite neuron in the network given
two sensory cues. For illustration, the strength of two cues is set to be different. (C) Tuning curves
of a congruent and an opposite neuron in both MSTd and VIP (adapted from [8]). (D) The number
of congruent and opposite neurons in MSTd and VIP (adapted from [17]). (E) The comparison
between the mean §;,,¢ and concentration /i, decoded from congruent neurons with the theoretical
predictions (Eq. 19). (F) The Bayes factors decoded from opposite neurons are compared with
theoretical prediction (Eq. 23). Parameters: (E-F) s; = 0°, s2 € [0°,20°], R; € [5, 50]Hz.

the system tends to integrate two cues together to increase the confidence of the stimulus estimate, so
the range of integration is large (Fig. 2D). In contrast, in the case of large spike counts, the estimate
of each cue is reliable enough even without integration, and the system can discriminate the disparity
between two cues clearly and the range of integration shrinks.

4 Neural Implementation of Causal Inference

We further explore how causal inference can be implemented in neural circuits. As described above,
causal inference involves two operations, estimating the best-fit stimulus parameters of each model
(Eq. 15) and calculating the Bayes factor (Eq. 23). The neural system needs at least two populations
of neurons to implement each of them.

4.1 Congruent neurons responsible for cue integration

Since the estimate of the stimulus parameters in the segregation model is the same as the likeli-
hood (Eq. 18), the feedforward inputs u; represents the estimate of the segregation model already.

The integration model combines two cues together. Following the idea of [16], cue integration can
be achieved by a population of neurons which sum the feedforward inputs of two cues together (see
derivations in SI. 6.1). Denote the responses of these neurons by r¢, we have,

re(7) = w1 (8;) + ua(6;), (26)

where u;(6;) denotes the input from modality ! with preferred direction 6; given cue [ (Eq. 6). The
preferred direction of 7¢(j) under two cues are the same (Fig. 3B), consistent with the tuning of
congruent neurons found in MSTd and VIP (Fig. 3C, [8, 19]), which are known to be responsible for
cue integration [8, 16, 28].

4.2 Opposite neurons representing the Bayes factor

The core of computing Bayes factor is the likelihood ratio (Eq. 23), because the Occam factor of two
models are both constants invariant with inputs (Eq. 22). Thus we consider another population of
neurons computing the likelihood ratio LR(x;) in Bayes factor. Since two likelihood ratios LR(z;)



are always opposite to each other, they can be parsimoniously represented by the same population of
neurons. Eqs. (24-25) reveal that the likelihood ratio is proportional to the product of two best-fit
likelihoods but in the opposite manner. Analogous to the neural implementation of cue integration
(Eq. 19), the ratio LR(x1) can be represented by another population of neurons averaging the two
feedforward inputs in an opposite manner (see details in SI. 6.2), whose responses r° are given by,
r() = [wn(0;) + ua(0; + m)]/2. @7)

The preferred direction of 7°(j) under modality 1 is 6;, but becomes 6; + 7 under modality 2
(Fig. 3B). Experiments also found such kind of “opposite” neurons in MSTd and VIP whose preferred
directions are opposite in response to visual and vestibular cues (Fig. 3C, [8, 19]). Note that the two
populations of neurons explicitly represent the distributions of stimulus direction, while the estimate
of stimulus strength Rint implicitly affects the total responses of opposite neurons as the average of
the two inputs (Eq. 27), in contrast to congruent neurons which sum up two inputs (Eq. 26).

4.3 Simulation results

We simulate a population of congruent neurons and a population of opposite neurons with equal
number, as found in the experiments (Fig. 3D, [17, 18]). The congruent neurons’ responses r¢ sum
up the two feedforward inputs (two cues) together (Eq. 26), while the opposite neurons’ responses
r? average the two feedforward inputs in an opposite manner (Eq. 27, Fig. 3A, see details in SI. 7).
We decode the mean and concentration of the heading direction from the congruent neurons r¢ via
population vector (Eq. 8, [23]) and compare the results with the posterior of direction derived from
theory (Eq. 20, see details in SI. 7). Meanwhile, we decode the mean and concentration from the
opposite neurons r° as the neurons’ estimate for 1, and x1,, which are the parameters of LR(z1).
The parameters of LR(x2) can be obtained by using the relations xo, = —x1p and kap = Kip,
because the two likelihood ratios have the same length but opposite direction (Fig. 2B). The Bayes
factor will be obtained by multiplying the decoded likelihood ratios from opposite neurons with the
constant Occam factor ratios (Egs. 23-24). We then compare the decoded posteriors represented
by the congruent neurons, and the Bayes factor decoded from opposite neurons with theoretical
predictions (Fig. 3E-F). The results confirm that the congruent neurons achieve cue integration, and
the opposite neurons compute and represent the likelihood ratio in the Bayes factor.

5 Conclusions and Discussions

This study develops a normative theory to address how causal inference can be implemented by
simple additive mechanisms in neural circuits, and demonstrate that the opposite neurons found in
MSTd and VIP could compute and represent the likelihood ratios in Bayes factor in a generative
model framework based on probabilistic population code. Our theory also provides a geometric
interpretation of causal inference which illuminates clearly how the Bayes factor and cue integration
depend on the input direction and strength. Compared to existing proposed complex neural circuits
for causal inference, our model is rather simple, relying only on an additive operation, and is hence
biologically more plausible. Notably, opposite neurons have been known for more than a decade, yet
their precise computational and functional roles remain unclear [17, 19]. Here, our study suggests
that opposite neurons are responsible for implementing causal inference in neural systems.

Previous works exploring the implementation of causal inference in neural systems (e.g., [15]) have
not associated their models with the neuronal properties found in the cortex. An important insight
from our study is that in computing Bayes factor, opposite neurons need to take into account not only
the difference in the heading directions, but also the difference in the stimulus strength or reliability
of signals, from the two sensory modalities (Fig. 2B), which is an issue missed in the previous works
(e.g. [13, 15]). Previous theoretical works also suggested that opposite neurons compute the ratio
between distributions [27, 29], but they consider the difference of the inferred common stimulus
direction s;, from two cues, i.e., the posterior ratio of the stimulus direction [29]. Here, we consider
the opposite neurons compute the difference of the reconstructions of the input x from two models,
i.e., the ratio of best-fit likelihoods (Eq. 14).

Nevertheless, we would like to point out that our theory on neural computation and representation of
Bayes factor in the current form only holds for circular variables, such as direction or orientation. How
the Bayes factor of a non-periodic variable, e.g., depth or spatial location, are computed by neurons
remains unclear. Further experimental evidence for cue integration with non-periodic variables are



needed to address this issue. Furthermore, the present study mainly focuses on the computation of
Bayes factor, and how the neural system carries out the followed computations based on the inferred
causal structure has yet been explored, which forms our future research.
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