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� A new neural network-based
approach for classification of prote-
omics, lipidomics, and other omics
MS data is introduced.

� The iSF approach utilizes a neural
decision tree (NDR) to sequentially
classify biomolecules.

� The iSF classifications are based on
the experimentally acquired MS-data
and isotopic patterns.

� NDR with supervised binary & multi-
target classifiers allows for classifi-
cation of polypeptides & lipid
subcategories.
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Untargeted mass spectrometry (MS) workflows are more suitable than targeted workflows for high
throughput characterization of complex biological samples. However, analysis workflows for untargeted
methods are inadequate for characterization of complex samples that contain multiple classes of com-
pounds as each chemical class might require a different type of data processing approach. To increase the
feasibility of analyzing MS data for multi-class/component complex mixtures (i.e., mixtures containing
more than one major class of biomolecules), we developed a neural network-based approach for clas-
sification of MS data. In our in silico fractionation (iSF) approach, we utilize a neural decision tree to
sequentially classify biomolecules based on their MS-detected isotopic patterns. In the presented
demonstration, the neural decision tree consisted of two supervised binary classifiers to positively
classify polypeptides and lipids, respectively, and a third supervised network was trained to classify
lipids into the eight main sub-categories of lipids. The two binary classifiers assigned polypeptide and
lipid experimental components with 100% sensitivity and 100% specificity; however, the 8-target clas-
sifier assigned lipids into their respective subclasses with 95% sensitivity and 99% specificity. Here, we
discuss important relationships between class-specific chemical properties and MS isotopic envelopes
that enable analyte classification. Moreover, we evaluate the performance characteristics of the utilized
networks.
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1. Introduction

Mass spectrometry (MS)-based profiling strategies have been
developed to handle increased throughput [1e3] and sample
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complexity [4e6]. Combined analysis of multiple classes of
biomolecule (i.e., integrated/multiomics) can be advantageous and
enable evaluation of correlations between different, but related,
biological systems (e.g., the proteome and lipidome) [7e9].
Conventionally, each class of compounds in biological samples is
interrogated separately and then the results from multiple MS
analyses are integrated. However, these approaches are not ideal
for high throughput workflows as they often require time-
intensive, off-line (as opposed to “in-line” with MS injection)
sample fractionation methods. Off-line fractionation methods
reduce sample complexity, prior to MS analysis, by isolating classes
or groups of compounds based on their polarity, size, charge, or
other physicochemical properties. In conventional analysis of bio-
logical samples, off-line sample fractionation allows researchers to
make reasonable assumptions about classes of analytes to be
detected and, hence, determine the most appropriate MS opera-
tional modes and sample-specific post-acquisition data analysis
workflows.

In contrast to conventional class-specific characterization of
multi-component samples, simultaneous characterization of these
complex samples can increase throughput and reduce biases
associated with targeted sample fractionation techniques.
Currently, combined sampling is complicated by biases (a) inherent
to ionization methods (e.g., basicity and proton transfer kinetics
[10], solvent types and ionization efficiency/proton affinity differ-
ences based on analyte polarity in electrospray ionization (ESI) [11],
and matrix dependent ionization efficiencies of different classes of
molecules in matrix assisted laser desorption ionization (MALDI)
[12e15]) and (b) lack of in-line physical separation and sample
preparation methods compatible with multi-class analyses in the
literature. Recently introduced “integrated” liquid-, gas-, and solid-
phase ion source technologies seek to eliminate ionization biases
and accommodate samples of greater biological diversity
[5,6,16e24]. Numerous MS-based techniques, focused on the
increasingly popular field of multi-omics analyses [25e29], could
directly benefit from the presented in silico fractionation (iSF)
approach herein which employs a post-data acquisition tactic for
analyte classifications of multi-class component samples. Despite
matrix dependent ionization biases for different classes of
biomolecule exhibited byMALDI matrixes, MALDI surface sampling
coupled with ion mobility (IM)-MS has been used for simultaneous
analysis of multi-class mixtures of small biomolecules directly from
tissue [30e32]; iSF could be applied to such MALDI generated
complex data sets. Moreover, a preliminary demonstration of
Omni-MS showed a sample preparation and separation strategy for
concurrent LC-MS analysis of electrolytes, small molecules, lipids,
polypeptides, nucleic acids, and polysaccharides [33]. We expect
that technologies for simultaneous multi-omics analyses will
continue to develop in pursuit of higher throughput and informa-
tion density per data acquisition. However, downstream analysis of
such multi-class acquisitions will remain a challenge given that: (a)
assumptions regarding the class of detected ions may not be reli-
able and (b) different classes may have different requisite MS
operational modes and/or analytical workflows. Thus, multi-omics
MS analyses require somemethod for discriminating between (and
identifying) classes of analytes. We have previously shown that MS
isotopic envelope of molecular ion signals contain sufficient infor-
mation to discriminate between compounds containing different
functional groups or specific elements [34]; here, we aim to
demonstrate the strength of combining neural networks and iso-
topic pattern-based biomolecule class designation for multi-omics
characterization of multi-class sample mixtures.

The isotopic envelope (i.e., m/z range containing all iso-
topologues of a specific compound) is a readily observed feature in
high resolution mass spectra [35]. In theory, each elemental
composition has a unique MS isotopic fine structure [36] that is
dependent on the mass contributions of each element and relative
abundances of heavy isotopes. Given that chemical homology is
conserved (often to different degrees) within classes of bio-
molecules, the elemental compositions, and thus the MS isotopic
envelopes, of biomolecules reflect this similarity. This idea of intra-
class chemical homology is at least tacitly understood in untargeted
MS experiments that utilize a combination of sub-ppm error (exact
mass measurement assignments for presumably resolved peaks)
and isotopic envelope information to generate compound
elemental compositions and cluster analytes roughly by class in van
Krevelen visualization d though without means for definitive
classification) [37,38]. However, high (H) and ultrahigh (UH) reso-
lution MS instruments often lack the necessary mass resolving
power (MRP) andmass measurement accuracy to consistently yield
accurate elemental compositions for large molecules (molecular
weight (MW) > 500 Da) containing elements beyond carbon,
hydrogen, nitrogen, and oxygen [37,39]. Moreover, UH resolution
FT-MS instruments (MRP > 250,000) are unfavorable for high
throughput applications and high scan rate rate instruments (e.g.,
time-of-flight (TOF) instruments with ~10,000e100,000 MRP) are
preferred. A priori knowledge of analyte class is often necessary to
determine the elements allowed for use in the generation of
elemental compositions in order to shorten the often-lengthy list of
possible elemental compositions produced within a margin of
experimental error [40]. Without a priori knowledge, determina-
tion of the elemental composition becomes exponentially more
difficult due to the possibility of having myriad different elemental
compositions that can yield the measured mass and isotopic en-
velope [41]. As expected, the length of the produced “list” of
elemental compositions generally decreases with increased MRP,
resulting in higher confidence compound identifications and/or
classifications; however, it is often impossible to reduce the num-
ber of possibilities to a single, high confidence determination [41].
Elemental composition, and therefore compound class, could
theoretically be determined via computationally intensive solu-
tions to the polynomial model that describes the summation of
elemental contributions [42] to isotopologue peaks given error-free
conditions. In general, the effect of non-ideal experimental condi-
tions on exact mass determinations of elemental composition and
inapplicability of UHMRP MS instrumentation in high throughput
applications necessitate an automated approach for definitive an-
alyte classification in multi-omics analyses that is less dependent
on MRP through utilization of other features in the isotopic
envelope.

Feedforward neural networks (FFNNs, described by Bishop [43])
offer a potential solution to this problem. Trained FFNNs excel in
estimating non-linear, high dimensional relationships to discern
hidden patterns and classify network inputs. FFNNs are based on
the early perceptronmodel inwhich network inputs are recursively
weighted, summed, and submitted to an activation function; in this
simple scenario, training stops once the output of an activation
function exceeds a specified value, producing a linear function that
serves as a binary classifier [44]. FFNNs utilize an expanded hidden
perceptron layer architecture to more effectively map complex
systems and solve problems with high dimensionality (i.e., those
with large sets of inputs and multiple output functions) [45]. We
hypothesized that FFNNs could effectively estimate the non-linear
relationships that describe the features of the MS isotopic enve-
lope to discriminate between classes of biomolecules in MS data
(without the painstaking task of mathematically accounting for the
discrete contributions of each element). To test our hypothesis, we
examined both theoretical and experimentally acquired MS data.
Additionally, given a sufficiently large and varied training set and
an appropriate network architecture, we hypothesized that FFNNs
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could be sufficiently generalized such that experimental error and
noise sources present in mass spectral data would not pose a
serious concern [46]. In this paper, we confirm the effectiveness of
FFNNs for biomolecule class identification in multi-omics analyses
and its tolerance for handling experimental measurement errors,
common in HMRP MS data, that can impede compound identifi-
cation, elemental composition determination, and/or classification
by exact mass measurement.

Specifically, we present an FFNN-based chemometric analysis
tool for classification of small biomolecules (e.g., lipids, poly-
peptides, nucleic acids, and glycans) by utilizing their commonly
acquired soft ionization MS data produced from TOF instrumen-
tation. We show that a series of FFNNs can be trained using features
extracted from the centroided isotopic envelopes (i.e., the mass-to-
charge (m/z) and relative isotopologue peak intensities/ratios) to
classify individual sample components into a selection of biomol-
ecular class targets. Using these trained FFNNs, we show that a
neural decision tree (NDT) [47] can be constructed to utilize MS
data sets and sequentially classify analytes in a representative
multi-class component sample containing polypeptides, metabo-
lites, and lipids. Moreover, we show that classified lipids can be
assigned to their respective subclasses and demonstrate how this
technique can provide simple, qualitative results that can be
interpreted by non-MS experts. In addition to classification of
theoretically generated MS data, we confirm the validity of in silico
fractionation (iSF) by using experimental data and successfully
identifying its components. We also show that network classifica-
tion operations can be rapid and comparable to time-of-flight (TOF)
MS detection event time scales [48]. We provide an analysis and a
discussion of the chemical basis for the in silico fractionation (iSF)
technique and its adaptability to various types of MS
methodologies.

2. Materials and methods

2.1. Neural network input preprocessing

To generate theoretical m/z values and isotopic patterns for
selected classes of biomolecules (viz., lipids, glycans, non-lipid
metabolites, polypeptides, DNA, and RNA), elemental composi-
tions of a total of 36,973 molecules were acquired from four
different sources as indicated in the following text. Elemental
compositions for these 36,973 molecules were sourced from (1) the
LIPID MAPS Structural Database (lipids, n ¼ 7473) [49], (2) the
Consortium of Functional Glycomics (glycans, n¼ 1750), and (3) the
Human Metabolome Database (organic, non-lipid metabolites,
n ¼ 7454) [50]. Lastly, polypeptide (n ¼ 7465), deoxyribonucleic
acid (DNA, n ¼ 7140), and ribonucleic acid (RNA, n ¼ 5691)
elemental compositions were generated by (4) an in-house written
python (CPython 3.6.2; Python Software Foundation, DE) script that
pseudo-randomly generated heteropolymer sequences corre-
sponding to expected ESI charge states based on biopolymer chain
lengths [51] and converted them to elemental compositions (see
Appendix Script A.1). For example, polypeptides in the þ1 charge
state result from a gaussian-like distribution of polymer chain
lengths between about 5 and 17 residues as demonstrated by Xie
et al. [51]. Therefore, the chain lengths for singly-charged, proton-
ated polypeptides were generated by a gaussian probability func-
tion with bounds to match the experimentally observed
distribution. The centroided isotopic distribution profiles for some
protonated, deprotonated, and sodiated ESI adducts and charge
states (respective to the class of biomolecule) were calculated in the
enviPat 2.2 package [52] in R (ver. 3.4.3; R Foundation for Statistical
Computing). The molecular adduct forms and charge states
included in the training set were not inclusive of all commonly
observed types; the training set was limited in this regard due to
deteriorating network training performance as the inclusion of
multiple forms presumably added extraneous dimensionality to the
FFNN training set. Isotopic profiles were generated considering
respective physical realities of ion production in ESI for each class as
follows: polypeptides as protonated ions ranging from [MþH]þ to
[Mþ6H]6þ, glycans as positively charged, sodiated ions [MþNa]þ

and [Mþ2Na]2þ and as negatively charged, deprotonated ions
ranging from [M � H]- to [M � 3H]3-, lipids as positively charged,
protonated ions [MþH]þ, and oligonucleotides as negatively
charged, deprotonated ions ranging from [M � H]- to [M � 6H]6-.

2.2. Neural network training

FFNNs were constructed with a custom script (see Appendix
Script A.2) written in M (MATLAB R2018a; The MathWorks Inc.,
Natick, MA). Three FFNNs, denoted as PEPNET, LIPNET, and LIP-
SUBNET, were used in this study. PEPNET was a binary classifier to
assign network inputs into the peptide (TP) or non-peptide (TNP)
target class. Whereas LIPNET was a binary classifier to assign
network inputs into the lipid (TL) or non-lipid (TNL) target class; for
lipid subclass categorization, LIPSUBNET (an 8-target classifier) was
used to assign previously classified TL inputs into class targets
corresponding to lipid subclasses. Designated lipid subclasses in
LIPSUBNET included: fatty acyls (TFA), glycerolipids (TGL), glycer-
ophospholipids (TGP), polyketides (TPK), prenol lipids (TPR), sac-
charolipids (TSL), sphingolipids (TSP), and sterol lipids (TST).

The hidden layer architecture (i.e., number of hidden layers and
number of nodes per hidden layer) for each type of FFNN was
chosen such that classification accuracy for the input data set used
for training would be maximized. For FFNNs with more than one
hidden layer, the number of nodes per layer were kept the same
across layers as networks already exhibited high performance and
further optimization was unnecessary. Training times were short
enough that they were not considered in determining network
architecture. 10 FFNNs were trained for each tested network ar-
chitecture, and performance was evaluated by the mean percent
error (percent of false positive and false negative classifications
over all classifications). Network architectures were chosen for the
minimization of mean percent error (for more information
regarding network architecture optimization, see Appendix
Figures B1 and B2). When training the PEPNET and LIPNET binary
classifiers, it became apparent that small changes in hidden layer
sizes had notable effects on performance; therefore, hidden layer
neurons were increased by 10 during optimization tests. The opti-
mized hidden layer architecture of LIPNET and PEPNET was
constituted by 2 layers with 30 perceptrons each. For the 8-target
classifier (LIPSUBNET), network performance was relatively insen-
sitive to small changes in hidden layer neurons; thus, hidden layer
neurons were increased by the power function 2n to evaluate a
large range of hidden layer neurons. The optimized hidden layer
architecture was constituted by 2 layers with 64 perceptrons each.
Training bias due to uneven class representation was accounted for
by using the “growth method” (Brantley et al. [53]) such that each
class had equal numbers of representations in the dataset. The
input data set was then randomly divided (i.e., MATLAB function
“dividerand”) for network training as follows: 70% in the training
set, 15% in the validation set, and 15% in the test set. Networks were
trained using scaled conjugate gradient backpropagation (i.e.,
MATLAB function “trainscg”) with an early stopping method [54] to
avoid overfitting. Performance during training was monitored us-
ing cross-entropy as an error metric (MATLAB function “cross-
entropy”). Network inputs were 7 numbers (henceforth referred to
as “input vectors”) in the following order: (1) the exact mass
monoisotopic m/z value to four decimal places (to be consistent
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with TOF data utilized in this demonstration) corresponding to the
first isotopic peak or “A” (where “A” notation is based on the
designation introduced byMcLafferty et al. [35]), (2) the intensity of
“A” normalized to themost abundant isotopologue (i.e., normalized
to the highest peak within the isotopic envelope for the molecular
ion designated as 100% relative abundance), (3) the relative in-
tensity for the second isotopologue or Aþ1, (4) the relative intensity
for the third isotopologue or Aþ2, (5) the ratio of A/Aþ1, (6) the
ratio of Aþ1/Aþ2, and (7) the Kendrick mass defect [55] (KMD,
relative to CH2 integer mass scale) of the monoisotopic m/z. The
output layers were limited to two (for PEPNET and LIPNET) or eight
(for LIPSUBNET) nodes corresponding to the classification targets of
each neural network. The PEPNET output layer nodes correspond
to: 1) polypeptide and 2) non-polypeptide. The LIPNET output layer
nodes correspond to: 1) lipid and 2) non-lipid. The LIPSUBNET
output layer nodes correspond to: 1) fatty acyl, 2) glycerolipid, 3)
glycerophospholipid, 4) polyketide, 5) prenol lipid, 6) saccharolipid,
7) sphingolipid, and 8) sterol lipid.

Supervised training target outputs were provided such that the
presence of a class of biological molecules was indicated by a value
of 1.0 and absence by a value of 0.0. The same network inputs were
used for each FFNN, but the supervised training target outputs were
changed depending on FFNN being trained (e.g., in PEPNET, poly-
peptide components had target outputs of 1.0 and lipid/metabolite/
glycan/DNA components had target outputs of 0.0; the same
components were used in LIPNET, but polypeptide component
target outputs were changed to 0.0, and lipid component target
outputs were changed to 1.0). Additionally, LIPSUBNET was trained
with only lipid components. For each scored component (in either
the training set or an experimental test set), the maximum pre-
dicted value from the set of values corresponding with each class
predicted by the network is taken as the predicted class. Ten FFNNs
were trained for each type of network (i.e., PEPNET, LIPNET, and
LIPSUBNET) with the optimal hidden layer architectures, and the
network with theminimummean percent error across the training,
validation, and test datasets was selected as the best performing
network for further analyses. All networks were trained using a
desktop computer (OptiPlex 7050 Tower; Dell Computer, Round
Rock, TX) equipped with a 4-core processor (Intel® Core™ i5-7500)
and 16 GB of RAM.

2.3. Mass spectrometry methods and multi-class component test set
generation

To test the iSF approach on experimental data, a multi-class
component test set was generated. Firstly, an LC-MS output ma-
trix (rows and columns corresponding to LC scan numbers and m/z
axis data points, respectively) from a rat brain tryptic protein digest
analysis (collected in-house for m/z range 50e2000; see below for
MS methodology) was added to LC-MS output matrix (also,
50e2000 m/z range) from a lipidomics LC-MS output. The lip-
idomics data was downloaded from the Chorus Project (Stratus
Biosciences, Seattle, WA) mass spectrometry file sharing database
[56]. Available lipidomics data from Chorus [56] included a limited
range of LC elution time and hence, only scans corresponding to
~15 min (scan numbers up to ~900, at an acquisition rate of 1 Hz for
both lipidomics and proteomics) was included for further analysis
(e.g., Fig. 5 shows analysis results for scan range of ~400e900).
Matrix addition was performed by the MassLynx (V4.1, Waters,
Milford, MA) “Combine all functions” tool. Secondly, LC eluting
components were found in the combined data set andmanually (on
a random order) were selected for inclusion in the test set. The data
features necessary for the neural network were exported from the
MassLynx mass spectrum data viewer. Thirdly, only the eluting
components that could be identified were included so that their
true chemical classes would be known for the evaluation of FFNN.
Components that were identified as peptides were sequenced and
identified in ProteinLynx Global Server (PLGS, Waters Corp., Mil-
ford, MA); the LC retention time recorded by PLGS was confirmed
for each peptide. Components that were identified as lipids and
metabolites were identified in Progenesis QI (Nonlinear Dynamics,
Durham, NC) by exact mass matching (<5 ppm mass measurement
error) in the LIPID MAPS and Metlin databases, respectively.
Because it was necessary to confirm to which group (lipidomics or
proteomics data set) each component belonged, identified lipid
components were confirmed to be absent in the original prote-
omics data set. Likewise, identified peptide components were
confirmed to be absent in the original lipidomics data set.

The downloaded LC-MS lipidomics data set was acquired using a
Waters Xevo-G2 QToF (Waters Corp., Milford, MA) in positive-ion
mode [56]. To collect the rat brain protein tryptic digest data,
ultra-performance liquid chromatography (UPLC)-ion mobility-
enhanced MSE (HDMSE) on a Synapt G2-S HDMS (Waters Corp.,
Milford, MA) operating in positive-ion mode was used. Pettit et al.
previously described the procedure for rat brain tissue sample
preparation [57]. A 10 mg rat brain cortex tissue section was ho-
mogenized via ultrasonication probe in lysis solution (100 mM
ammonium bicarbonate, 1% (w/v%) sodium dodecyl sulfate, 10 mM
tris(2-carboxyethyl) phosphine hydrochloride, and 40 mM 2-
chloroacetamide; all chemicals from Fisher Scientific, NH).
Bottom-up proteomics samples were prepared according to the
filter-aided sample preparation protocol [58], which involves
sequential wash and high mass (>3 kDa) filtration (MilliporeSigma,
MA) that washes lipids and detergents from the sample. Samples
were digested with sequencing-grade trypsin (Promega, Madison,
WI) overnight at 37 �C. PLGS was employed for peptide identifi-
cation of the tryptic protein digests. The lipidomics and proteomics
MS data were both acquired at a mass resolution of ~22,000 (see
Appendix Figure B3 for exemplary peptide and lipid isotopic en-
velopes from the combined dataset with mass resolution
calculations).

HeLa digest peptides and a rat brain lipid extract were mixed
and analyzed via UPLC-IM-MS on a Synapt G2-S HMDS operating in
positive-ion mode. The HeLa digest peptides were purchased as a
standard from Thermo Fisher Scientific (Waltham, MA). A 10 mg rat
brain tissue section was homogenized via ultrasonication in ice-
cold 0.1% ammonium acetate and prepared as described by
Matyash et al. [59] The HeLa digest peptide mixture was recon-
stituted to a concentration of 60 ng/mL in 0.1% formic acid in water,
and the lipid extract was reconstituted to a final volume of 100 mL in
an isopropanol/acetonitrile/water (4:3:1, v/v/v) solution. Equiva-
lent volumes of eachmixtureweremixed, and a volume of 5 mL was
injected on column (150 ng of peptides and lipids extracted from
250 mg of rat brain tissue). The mixture was separated by reversed-
phase chromatography on the NanoAquity UPLC using a Symmetry
C18 trap column (5 mm, 180 mm � 20 mm, Waters Corp., Milford,
MA) and a BEH130C18 analytical column (1.8 mm,
100 mm � 100 mm, Waters Corp., Milford, MA). Analytes were
separated with a binary solvent gradient with 10 mM ammonium
formate and 0.1% formic acid in water (mobile phase A) and iso-
propanol/acetonitrile (90:10, v/v) with 10 mM ammonium formate
and 0.1% formic acid. The gradient ramped linearly from 5% to 99% B
over 70 min with an isocratic hold at 99% B for 4 min at 0.4 mL/min.
Capillary voltage was set at 2.7 kV, and the source temperature was
set at 100 �C. Travelling wave ion mobility conditions were set at
default settings. Analytes for classificationwere selected from three
time periods of the chromatogram: peptides from 10 to 30 min,
lipids from 55 to 80 min, and unknowns from 30 to 55 min. The
time periods were selected based on an understanding peptide and
lipid elution behavior in reversed-phase separations. The



Fig. 1. Histograms of nucleic acid (purple), glycan (green), polypeptide (blue), and lipid
(red) compositions as a function of mass percent composition of (a) hydrogen, (b)
carbon, (c) nitrogen, and (d) oxygen overlaid with a kernel density estimation line plot.
The nucleic acid, polypeptide, and glycan class distributions are generally gaussian-like
and overlap minimally, except for those for nitrogen mass percent composition in
which there is significant overlap. Lipid species are generally distributed over a wide
range of elemental mass compositions. Elemental composition of a significant number
of the selected lipids lacked nitrogen (~37%), and hence the nitrogen histogram for
lipids (which includes contributions from 63% of all lipids) does not display contri-
butions from those species that contained no nitrogen (i.e., 37% of the lipids used to
generate (c) contained 0% nitrogen). (For interpretation of the references to color in
this figure legend, the reader is referred to the Web version of this article.)
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10e30min period roughly corresponded to 13e40% organic solvent
composition, which is used for reversed-phase peptide separations
[57]. The 55e80 min period roughly corresponded to 70e99%
organic solvent composition, which is common for reversed-phase
lipid separations [60]. Selected analytes were limited to those with
monoisotopicm/z values between 500 and 1200m/z. Before 10min,
only unretained components and background signal were
observed, and, between 80 and 90 min, only background polymer
signals were detected, and therefore these periods were excluded.

3. Results and Discussion

The following sections describe the generation and imple-
mentation of the iSF workflow; a neural decision tree-based
method is introduced that utilizes MS data for the classification
of small molecules. The physical and MS principles that constitute
the basis for iSF as well as feature selections for neural network
training are discussed in detail. Additionally, examples of iSF ana-
lyses of an experimental LC-MS datasets containing multiple bio-
logical classes of molecule are provided.

3.1. MS isotopic envelope feature selection

Classes of biomolecules, such as polypeptides and nucleic acids,
consist of biopolymers that are composed of monomeric subunits
and are limited in elemental diversity for a given polymer length by
the number of possible monomers. Contrarily, biomolecules such as
lipids are predominantly non-polymeric structures and include
more diverse groups. Fig. 1 displays the histogram distributions for
elemental compositions of nucleic acids (purple), glycans (green),
polypeptides (blue), and lipids (red) as a function of their respective
mass percent composition (w/w%) values for hydrogen (Fig. 1a),
carbon (Fig. 1b), nitrogen (Fig. 1c), and oxygen (Fig. 1d). For
example, lipids are hydrocarbon-rich and thus the mass percent
compositions for carbon and hydrogen are in the ranges of
~35e90% (Fig. 1b) and ~3e14% (Fig. 1a), respectively. Additionally,
lipids are substituted with a wide variety of polar functional groups
and hence they are composed of ~0e14% nitrogen (w/w%, Fig. 1c)
and ~4e52% oxygen (w/w%, Fig. 1d), respectively. Conversely, due
to the constrained modes of elongation and incorporation of a
limited number of possible monomers into their structures, poly-
peptides, nucleic acids, and glycans have narrower distributions of
carbon (w/w%) and nitrogen (w/w%) contents; additionally, the
distribution of oxygen composition in glycans is also very confined
(green histogram in Fig. 1d). In fact, both nucleic acids and glycans
have two nearly non-overlapping elemental percent distributions
that are away from other distributions (e.g. for nucleic acids,
hydrogen (purple histogram in Fig. 1a) and carbon (purple histo-
gram in Fig. 1b) and, for glycans, carbon (green histogram in Fig. 1b)
and oxygen (green histogram in Fig. 1d)). The carbon w/w% of
polypeptides range from ~41 to 62% (blue histogram in Fig. 1a) and,
though slightly overlap with that of glycans; this range is
completely distinguished from the range of carbon w/w% for
nucleic acids (~37e39%). Interestingly, an analytical tool for clas-
sification tasks in UHMRP MS data, called the van Krevelen dia-
gram, visualizes and groups detected compounds using
elemental molar ratios (e.g., the ratio of H/C and O/C atoms) derived
from their calculated elemental compositions [38]. Given that
elemental molar compositions and mass compositions are related
with elemental molar mass, classifications made by van Krevelen
diagrams inherently utilize a similar approach to describe class
distributions (Fig. 1). Given that van Krevelen diagram visualization
requires ultrahigh mass resolving power FT-MS instruments
(generally MRP > 200,000) to generate high confidence chemical
compositions from exactmassmeasurements of monoisotopologue
peaks, the technique is generally unviable for conventional HMRP
instruments. However, the mass percent compositions of com-
pounds also affect the MS isotopic pattern, which can be readily
resolved by conventional HMRP instruments to provide a wealth of
class-specific information.

Another important intrinsic property of molecules that has
often been utilized in mass spectrometry, for both small [35] and
large molecule [61] assignments, is the molecular isotopic pattern.
Heavy isotopes of a given element uniquely contribute to heavy
isotopologue peak intensities as molecular masses of analytes in-
crease. For example, the second most abundant isotopes of carbon
and nitrogen are 13C (1.1% natural abundance (NA)) and 15N (0.36%
NA), respectively, which are ~1 Da heavier than their corresponding
most abundant counterparts (12C and 14N). Hence, presence of
either 13C or 15N increases the molecular mass of an ion by one
atomic mass unit (i.e., designated as Aþ1 elements that contribute
to Aþ1 peak in a mass spectrum). Because of the larger NA
contribution from 13C (i.e., 1.1%) than 15N (i.e., 0.36%) as well as
greater mass proficiency (0.003355 for 13C and 0.000109 for 15N),
contributions to average molecular weights are larger from 13C
isotopes than 15N isotopes; moreover, biomolecules generally
contain larger numbers of carbon atoms than nitrogen atoms and



Fig. 2. Log-log plots for theoretical MS isotopologue peak ratio, Aþ1/Aþ2, as a function
of compound neutral mass (Da), show high degrees of separation between classes of
biomolecules. Predominantly linear trends for each class show general correlations
between the isotope ratios and neutral masses. Polypeptide sulfur content is also
distinguished between the 310e1260 Da mass range as Aþ1/Aþ2 decreases with each
sulfur atom inclusion (shown by blue trendlines labeled S0eS4). For the sake of figure
clarity, the lowest and highest mass compounds are omitted. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of
this article.)
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hence Aþ1 peaks (mostly contributions from 13C) are often infor-
mally referred to as 13C isotope peaks. It should be noted that, when
present, several other isotopes can also contribute to Aþ1 peak (e.g.,
2H, 17O, etc.); UHMRP required to resolve these “fine structures”
within the observed isotopic envelopes is beyond the reach of
conventional mass spectrometers [36,62,63]. Therefore, observed
Aþ1 peaks in mass spectra, that might be from a combination of
various isotopes, are often unresolved. Similar to Aþ1 elements
(e.g., 13C, 14N, and 2H), the second most abundant isotopes
contribute to the observed relative abundance of Aþ2 peaks. For
instance, oxygen and sulfur (i.e., 18O (0.21% NA) and 34S (4.3% NA))
are ~2 Da heavier (i.e., Aþ2 elements) than their corresponding
most abundant counterparts (16O and 32S) and thus contribute to
Aþ2 peak. It should be noted that there are several other isotopes
and numerous other combinations (e.g., 2H2, 13C2, 15N2, 2H1 þ 13C1,
2H1 þ 15N1, 13C1 þ 15N1, etc.) that can also contribute to Aþ2 and
other higher mass isotopologues (e.g., Aþ 3, Aþ 4,…., Aþ n, where
n is the number of observed peaks within an isotopic envelope for
an analyte). Therefore, the relative contributions of each element to
the mass of a compound affects isotopologue peak relative in-
tensities in the mass spectrum. Fig. 2 displays logarithmic plots of
(Aþ1/Aþ2) peaks for nucleic acid, glycan, polypeptide, and lipid
biomolecules as a function of their neutral monoisotopic molecular
(or A) masses. Given the relative contributions of different heavy
isotopes to Aþ1 and Aþ2, the ratio Aþ1/Aþ2 indirectly relates the
quantities of carbon, nitrogen, hydrogen, and other Aþ1 elements
to oxygen, sulfur, and other Aþ2 elements.

The isotopic ratio plot (i.e., Aþ1/Aþ2 as a function of neutral
mass) presented in Fig. 2 provides one example (of many possible
ways) of how such visual displays can be used for biomolecule class
differentiation; multidimensional raw data used to train FFNNs
allow access to numerous other Aþ1/Aþ2 type plots (ratios of other
isotopic peaks) and “hidden” relationships that are not easily
discernable by using two-dimensional plots. For this discussion, the
logarithmic plot of Aþ1/Aþ2 as a function of compounds’ neutral
mass (Fig. 2) is helpful in so far as Aþ1/Aþ2 is influenced by both
Aþ1 and Aþ2 elements. As expected, amplitude of the Aþ1/Aþ2
ratio decreases with increasing neutral mass up to certain values for
different compounds d or a chemical class-dependent value. The
initial decrease is due to the generally increased presence of Aþ2
elements (i.e., oxygen and sulfur) and the probability of larger
molecules containing multiple Aþ1 element heavy isotopes (e.g.,
2H2, 13C2, 15N2, 2H1 þ 13C1, 2H1 þ 15N1, 13C1 þ 15N1, etc.). Observed
biomolecule class-dependent trends vary as a function of elemental
mass composition. The top right inset in Fig. 2 shows the expanded
region from ~2000 to 2500 Da; although the parallel trends for
different compound classes are close to each other, they are fully
separated and correlate to the differences in mass percent com-
positions observed in Fig. 1 that can be used for class differentia-
tion. For instance, the ribonucleic acid (RNA, yellow) trendline is
slightly higher than deoxyribonucleic acid (DNA, purple) because of
the loss of CH2 from ~25% of RNA residues (thymine exchanged
with uracil). However, the magnitude of the RNA shift is reduced by
the gain of oxygen at the ribose 2’ position. From ~310 to 1260 Da
(indicated number labels on the x-axis of Fig. 2), the sulfur content
of the polypeptides (Fig. 2, blue) can be visually distinguished by
the divergent trendlines (labeled S0eS4) due to the major contri-
bution of 34S (4.21% relative abundance) to Aþ2 [34]. The poly-
peptides along the S0 trend contain no sulfur, and each descending
trend (S1eS4) incorporates collections of polypeptides that contain
an additional sulfur atom. Also, it should be noted that because of
the polypeptide diversity (polymer growth possibilities to yield
similar MW as compared to limited polymer growth possibilities
for glycan, DNA, or RNA classes) and possibility of having various
elemental compositions yielding similar polypeptide masses, the
blue trendline in the expanded region of Fig. 2 is wider (in the y-
axis, corresponding to (Aþ1/Aþ2) values) than the counterpart
trendlines for glycans, DNAs, and RNAs. Such inter- and intra-class
variations of isotopic patterns might be difficult to discern without
the use of neural networks that often capitalize on “hidden” re-
lationships for class discriminations.

The applicability of isotopic envelope features in their use by
FFNNs can be limited by both instrumental and analyte-specific
constraints. In the study presented here, the isotopic envelope
was centroided and each peak was integrated to reduce the
complexity of the FFNN input layer and eliminate the effects of
variance of resolution across MS instruments. The centroided
monoisotopic m/z value (input 1) was chosen for the high corre-
lation of m/z with isotopic ratios in organic compounds (Fig. 1).
However, with respect to macromolecules such as proteins that
contain a large number of carbons, the monoisotopologue peak
(12Call) relative intensity (input 2) is often very low (i.e., the prob-
ability of having a large protein molecule with all of its carbons as
12C) and often below the instrument detection limits. In our
approach, the proper classification of biomolecules with FFNNs is
dependent on successful identification and measurements of the
monoisotopologue MS peak. Thus, application of the current
approach to experimental data is limited to species with observable
monoisotopologue peaks. Likewise, the measurement of the iso-
topologue peak relative intensity inputs, A (input 2), Aþ1 (input 3),
and Aþ2 (input 4), and thus the calculated isotopic ratios, A/Aþ1
(input 5) and Aþ1/Aþ2 (input 6), are subject to the same limita-
tions of instrumental sensitivity and MRP. It could be argued that
the calculated isotopic ratios (inputs 5 and 6) are unnecessary since
the FFNN training could “discover” those relationships; however,
the inclusion of these inputs improved FFNN training performance
in all cases. As the fourth (and onwards) isotopologue peak(s) are
often below instrument detection limits for low mass (and low
abundance) analytes in ESI-MS experiments, these peak intensities
were not included as inputs in our specific FFNN training sets.
However, depending on the molecular weight (or m/z) ranges of
interest, it is possible to utilize signals from other isotopologues
(e.g., other relatively high abundance species) as inputs. In other
words, two important criteria in considering a particular set of
isotopologues to select for FFNN training sets are (a) relative



Fig. 3. True positive rates for 8 trained networks (each aimed at a specific chemical
class identification) for the computationally generated data at confidence thresholds
(0e1.0) are shown. The true positive rate (TPR (%)) is defined as the percentage of
actual positives that were classified as such. Increasing the confidence threshold value
causes TPR to approach 100% for most classes. Sterol lipids (7, orange) exhibit a
decrease in TPR in a rare case where more correct than incorrect classifications are
removed by an increase in confidence threshold (additional explanations are provided
in the Results and Discussion section and Supplemental). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version of
this article.)
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abundance consideration (signal-to-noise consideration for MS
detectability) and (b) computational cost (e.g., additional input may
not necessarily improve the success rate sufficiently large but
require unreasonably large computational times). The selection of
three isotopologues in the presented study provided a good balance
between the desired success rate and computational cost. The
calculation of KMD (input 7) is also contingent on the detection and
mass measurement accuracy of the monoisotopic m/z. The KMD
input (7) was included for its ability to assist in MS ion classification
challenges and for its contribution to network training perfor-
mance improvements [55]. Within the context of small molecule
analysis (e.g., metabolomics, lipidomics, and peptidomics), the
above features are readily distinguished in most modern TOF-MS
workflows.

3.2. FFNN training and performance

For PEPNET, the “non-polypeptide” portion of the supervised
training set consisted of lipid, glycan, polar metabolite, and nucleic
acid input vectors (i.e., one-dimensional data arrays containing
network input values; NTotal ¼ 23,816 post-growth method;
NTrain ¼ 16,673 (70%); NTest ¼ 3543 (15%); NValidation ¼ 3600 (15%)).
The “polypeptide” portion of the supervised training set consisted
of polypeptide input vectors (NTotal ¼ 23,816 post-growth method;
NTrain ¼ 16,669 (70%); NTest ¼ 3602 (15%); NValidation ¼ 3545 (15%)).
PEPNET had a consistent mean percent error of 7.2% for each
training, validation, and test datasets; in other words, PEPNET
incorrectly classified 7.2% of inputs submitted in the training set.
For the supervised training test set, TP and TNP had true positive
rates (TPR, percentage of actual positives classified as such) of 94.2%
and 91.4%, respectively, and positive predictive values (PPV, per-
centage of actual positives in all predicted positives) of 91.7% and
93.9%, respectively. For LIPNET, the “non-lipid” portion of the su-
pervised training set consisted of polypeptide, glycan, polar
metabolite, and nucleic acid input vectors (NTotal ¼ 23,809 post-
growth method; NTrain ¼ 16,712 (70%); NTest ¼ 3552 (15%);
NValidation ¼ 3545 (15%)). The “lipid” portion of the supervised
training set consisted of lipid input vectors (NTotal ¼ 23,809 post-
growth method; NTrain ¼ 16,620 (70%); NTest ¼ 3591 (15%);
NValidation ¼ 3598 (15%)). The LIPNET training, validation, and test
datasets had 12.1%, 12.6%, and 12.1% overall percent errors,
respectively. TL and TNL had TPRs of 92.1% and 83.7%, respectively,
and PPVs of 85.1% and 91.3%, respectively, for the supervised
training test set. The training and validation confusion matrices
[64] for PEPNET and LIPNET varied by � 1%, suggesting that the
networks were not overfit (for more information regarding PEPNET
and LIPNET training performance metrics, see Appendix B.4 and
B.5). PEPNET performed slightly better than LIPNET presumably
due to the narrower variety of possible peptide chemical compo-
sitions as a function of mass relative to lipids, which exhibit great
structural and compositional variety. LIPSUBNET was an 8-target
classification network trained to classify previously-assigned TL
input vectors intoTFA, TGL, TGP, TPK, TPR, TSP, TSL, and TST target classes
(i.e., a comprehensive set of targets corresponding to all lipid sub-
classes). The LIPSUBNET training, validation, and test datasets had
7.9%, 8.1%, and 8.2% overall percent error, respectively. Respective
TPR and PPV values for each target and predicted class is provided
in a confusion matrix diagram in Appendix B.6.

Networks trained with multiple output nodes (e.g., LIPSUBNET)
do not exhibit equal TPR and PPV values across each output node.
Therefore, we utilized a parameter designated as “confidence
threshold” to reduce variance in network performance character-
istics (i.e., TPR and PPV) across network output nodes and improve
the accuracy of the trained networks. Confidence threshold, a user-
defined scalar value from 0.0 to 1.0, constrained “confident”
(unassociated with confidence interval) identifications to those
that result from network scores higher than the confidence
threshold value. Classifications with network scores less than the
user-defined confidence threshold are removed from consideration
in calculation of network performance characteristics. For example,
with a defined confidence threshold of 0.7, a classification that
resulted from a score of less than 0.7 would be excluded;
conversely, a classification of that resulted from a score of 0.7 or
higher would be included in calculation of network performance
characteristics. Fig. 3 displays the TPR of LIPSUBNET for all unique
training set inputs as a function of confidence threshold. The TPR at
a 0.0 confidence threshold is not uniform across class targets,
ranging from 77.9% (prenol lipids, Fig. 3, trace number 8 in blue-
green) to 98.6% (saccharolipids, Fig. 3, trace number 1 in light
green). The low performance of prenol lipid classification can be
attributed to relatively high chemical structural similarity to the
likes of sterol lipids (Fig. 3, trace number 7 in orange), both of which
share a common biosynthetic pathway [65], and, to a lesser extent,
fatty acyls (Fig. 3, trace number 6 in red) that are likewise mostly
comprised of minimally branched hydrocarbon chains [65]. As
confidence threshold is increased, the TPR generally increased for
each class as more incorrect classifications with lower network
output scores were removed than correct classifications (which
resulted from generally higher network output scores). As shown in
Fig. 3, the lowest performing classes, prenol lipids (trace number 8
in turquoise), sterol lipids (trace number 7 in orange), and fatty
acyls (trace number 6 in red), exhibit the largest improvements in
TPR as a function of confidence threshold. By removing low scoring,
incorrect predictions in these classes, the variance in performance
between all classes is reduced. For example, at confidence
threshold 0.80, all classes exhibit TPRs of greater than or equal to
95%.



Fig. 4. Visualization of the true positive rate (TPR) of LIPSUBNET network outputs
binned at confidence threshold intervals of 0.1 (e.g., (0.1, 0.2], (0.2,0.3],…(0.9, 1.0],
where each plotted point represents the TPR of the outputs which scored in the binned
interval range; only bin intervals that contained at least 10 outputs were plotted.
Subclasses are represented in the legend as follows: saccharolipids (SL, 1), glycerolipids
(GL,2), glycerophospholipids (GP, 3), polyketides (PK, 4), sphingolipids (SP, 5), fatty
acyls (FA, 6), sterol lipids (ST, 7), and prenol lipids (PR, 8). The “All” category (inset,
with the identical x and y axis ranges of 0.4e1.0 binned intervals and 0e100% TPR)
represents the combined lipid classification accuracy by LIPSUBNET.

Scheme 1. Representative in silico fractionation neural decision tree workflow dia-
gram of a biological sample dataset containing polypeptide, lipid, and polar metabolite
components.
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At high confidence thresholds (i.e., >0.95), it is possible for TPR
to decrease; this is shown by the sterol lipid class that dropped by
2.56% TPR when the confidence threshold was increased from 0.95
to 0.99 (Fig. 3, trace number 7 in orange). Decreases in TPR as a
function of confidence threshold occur as more correct classifica-
tions than unconfident assignments are removed from the output.
This behavior results from the networks’ occasional proclivity to
make confident, incorrect assignments primarily in the case of
highly similar classes; for example, the sterol lipid class (orange,
trace number 7 in Fig. 3) exhibited decreases in accuracy between
confidence threshold 0.95 and 0.99 in 8/10 trained networks due to
high scoring (>0.90), false positive classifications of prenol lipid
inputs into the sterol lipid class.

Additionally, it is important to note that each class loses
coverage (i.e., the percentage of retained confident classifications of
all classifications) as a function of confidence threshold as uncon-
fident classifications are removed. As a rule, increased TPR as a
consequence of higher confidence threshold selection results in
some loss of coverage. The degree of coverage loss depends on the
number of classifications removed; therefore, large increases in TPR
result in large losses in coverage. The variance in class coverage is
reported as estimated standard error of the mean (SEM % ¼ s

ffiffiffi

n
p �

100%). Based on the LIPSUBNET results, fatty acyls, sterol lipids, and
prenol lipids lost coverage (and gained TPR; Fig. 3 traces 6, 7, and 8,
respectively) at greater rates, causing high variance in coverage
(76.6± 6.9%) between classes’ TPR at a confidence threshold of 0.90.
The relationships between class coverage and confidence threshold
for each class in LIPSUBNET is displayed in Appendix B.7. The in-
verse relationship between TPR and coverage constitutes a “trade-
off” that the user must manage depending on the user’s specific
needs for increased classification accuracy or higher coverage of all
detected analytes. For general use of LIPSUBNET in this demon-
stration, the authors suggest use of a confidence threshold of 0.70
that balances TPR (96.3± 1.3%), total percent coverage (88.7± 3.9%),
and uniformity of class representation.

The general positive trends for observed TPR values as a function
of confidence threshold (after a confidence threshold of ~0.30;
Fig. 3) suggests a relationship between the magnitude of network
output score and the probability that an actual positive is classified
as such. To visualize the relationship between network output score
and TPR without the influence of high scoring outputs at every
threshold (as in Fig. 3), the TPR of network output scores binned at
confidence threshold intervals of 0.1 (e.g., [0.0, 0.1], (0.1, 0.2], …,
(0.9, 1.0] bins for the 0.4 to 1.0 confidence threshold range) are
displayed in Fig. 4 (where only sufficiently populated bins with
n � 10 inputs have been included). The raw network outputs of all
lipid subclasses (x values in Fig. 4) exhibit an appreciable linear
correlation (positive m values from 0.38 to 1.39, Fig. 4) with TPR;
the mean R2 value for all classes (excluding saccharolipids, SL with
R2 ¼ 0.01, trace number 1 of Fig. 4 in light green) is 0.85 ± 0.06
(±SEM). The exceptionally low R2 of 0.01 and high TPR (of 98% as
seen in Fig. 3, trace 1 in light green) for SL indicate that LIPSUBNET
may have been overfit for characterization of the SL target class.
However, when all (binned) lipid outputs were considered
together, a high linear correlation between accuracy and network
output score was observed (R2 ¼ 0.99, Fig. 4 inset). The slope (m) of
the combined linear regression trend line (inset, with the identical
x and y axis ranges, in Fig. 4) was 1.20, suggesting a near 1:1 rela-
tionship between the magnitude of output score and the proba-
bility that a classification is correct; as such, the magnitude of raw
network outputs may be useful for determining classification
confidence levels.

3.3. In silico fractionation of multi-class component mixtures

The supervised training sets of PEPNET, LIPNET, and LIPSUBNET
were constructed to demonstrate the in silico fractionation (iSF)
approach. In this case, we present an application of the iSF
approach that utilizes a NDT structure to parse a sample dataset
containing lipid, polypeptide, and polar metabolite components
(Scheme 1). A visual representation of the iSF approach to an arti-
ficially combined, representative multi-class component experi-
mental LC-MS data is presented in Fig. 5. The analyzed LC-MS
dataset (represented in Fig. 5) is not intended to reflect realistic
sample preparation or chromatographic conditions as all analytes
were initially prepared, separated, and detected in ideal conditions.
However, it was prepared to demonstrate a use case for iSF inwhich
analyte signal could not be assumed to originate from a single class.
It should also be noted that, with exception to enhancements to
detection sensitivity, sample preparation and chromatographic
conditions do not uniquely affect the spectral features of the MS
isotopic envelope utilized by iSF. Additionally, as Scheme 1 and



L.T. Richardson et al. / Analytica Chimica Acta 1112 (2020) 34e4542
Fig. 5 suggest, the end goal of this work is to guide fractionation of
the full MS dataset in state amenable for separate downstream
analyses for classes of molecules in a multi-class mixture that have
unique data processing requirements. However, the challenges
associated with full integration of iSF into a multi-omics workflow
will be addressed in a future study.

Raw network output scores for PEPNET, LIPNET, and LIPSUBNET
related to Fig. 5 are provided in Appendix Table C1. Fig. 5 demon-
strates the application of iSF to the classification of multiple types
of eluting compounds in a standard LC-ESI-MS analysis using
experimentally gathered data. Each eluting compound is pictorially
represented by its detected LC peak profile. Peaks that have yet to
be positively classified (i.e., classified into a discrete category of
biomolecule) were shown in gray and were assigned a color once
positively classified. The iSF approach begins with generating an
input vector for each of the unclassified compounds in a LC-MS
dataset (Fig. 5, top, gray). As the first step in Fig. 5, PEPNET pro-
ceeds to classify network inputs (second row, Fig. 5) as poly-
peptides (TP, green) or non-polypeptides (TNP, gray). In the dataset
presented in Fig. 5 (i.e., the combined dataset discussed at the end
of the Experimental section comprised of an eluting mixture of
brain peptides, lipids, and polar metabolites detected by ESI-MS),
polypeptides were classified by PEPNET with 100% TPR. For the
second step (row 3, Fig. 5) LIPNET classified the input vectors that
PEPNET classified as TNP (gray peaks in row 2 of Fig. 5) as either
lipids (TL, red) or non-lipids (TNL, gray) as shown in row 3 of Fig. 5
with 100% TPR. The vector inputs classified as TL by LIPNET were
then submitted to LIPSUBNET for classification into lipid subclasses
(i.e., subclasses listed by LipidMaps). LIPSUBNET classified 37 out of
Fig. 5. A visual representation of the in silico fractionation approach to a randomly selected
input data (106 Gy LC peaks) in top row was created by adding a portion of an experimenta
data downloaded from Chorus) [43]. Unclassified components (gray LC peaks) were submit
from the top) or 46 non-polypeptides (TNP, gray LC peaks). TP inputs were removed, and the
identification, which classified inputs as 39 lipids (TL, red LC peaks in third row from the to
removed, and TL inputs were submitted to LIPSUBNET, which classified TL inputs into narro
100%, and 95%, respectively. The * and ** symbols represent a prenol lipid component an
respectively (additional details on mis-classified components are provided in the Results and
the reader is referred to the Web version of this article.)
39 inputs correctly (95% TPR for all class targets). See Table 1 for
statistical metrics for each class; FA, GL, GPL, PK, PR, SL, SP, and ST
acronyms in Table 1 (column headers) are used for fatty acyl,
glycerolipid, glycerophospholipid, polyketide, prenol lipid, sac-
charolipid, sphingolipid, and sterol lipid, respectively, where row
headers TPR, TNR, FPR, and FNR stand for true positive rate, true
negative rate, false positive rate, and false negative rate, respec-
tively. One sterol lipid input vector was incorrectly classified as a
glycerolipid with a network score of 0.597 and one prenol lipid
input vector was incorrectly classified as a fatty acyl with a network
score of 0.622. However, for both the sterol and prenol mis-
classifications, the true class targets received the second highest
network scores of 0.323 and 0.217, respectively. If the previously
suggested confidence threshold (of 0.70) is applied to the results of
the iSF workflow reported herein, 5 classifications, including both
incorrect classifications, are removed, resulting in 100% TPR with
87% (i.e., 34 out of 39 input) coverage. Additionally, input vectors
previously classified by PEPNET or LIPNET may be resubmitted to
the other (e.g., input vector classified as TP by PEPNET can be
reclassified by LIPNET) for secondary confirmation. All positively
classified input vectors resubmitted to either PEPNET or LIPNET
(respective to their previous classification) were classified with
100% TPR.

To demonstrate an example of iSF’s application to a real-world
multi-class separation, PEPNET and LIPNET were used to analyze
a separated mixture of trypsin digest peptides and lipids. The total
ion LC chromatogram of the combined lipid and peptide separation
is shown in Fig. 6. The dotted lines mark the LC retention time
boundaries between which, from left to right, peptides, unknowns,
portion of an LC-MS dataset that included a total of 106 unknown analytes. The original
lly acquired LC-MS output from a rat brain tryptic digest analysis to lipidomics LC-MS
ted to PEPNET which classified inputs as 60 polypeptides (TP, LC peaks in second row
remaining TNP inputs (46 species) were submitted to LIPNET for a second chemical class
p) and 7 non-lipids (TNL, gray LC peaks in the third row from the top). TNL inputs were
wer lipid subclasses. PEPNET, LIPNET, and LIPSUBNET had true positive rates of 100%,
d a sterol component that were erroneously predicted as fatty acyl and glycerolipid,
Discussion section). (For interpretation of the references to color in this figure legend,



Table 1
LIPSUBNET statistical metrics for classification of experimental data.

Metric FA GL GPL PK PR SL SP ST

TPR e 94.7% 100.0% e 0.0% e 100.0% 80.0%
TNR 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
FPR 2.6% 4.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
FNR 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 20.0%
Overall Accuracy 98.7% TPR 94.9% TNR 99.3%

Fig. 6. A visual representation of the in silico fractionation approach to a portion of a
reversed-phase LC-MS dataset in which a mixture of HeLa digest peptides (total of
150 ng) and rat brain-extract lipids (from 250 mg rat brain) were separated and
analyzed in the same acquisition. Known peptide data were extracted from between 10
and 30 min, lipid data from between 55 and 80 min, and unknowns from the middle
regionwhere both hydrophobic peptides and hydrophilic lipids were expected to elute.
Regarding the classification of known components, PEPNET had a 98% TPR and 100%
TNR, and LIPNET had a 100% TPR and 99% TNR. In the middle region, 4 unknowns were
classified as peptides, 10 were classified as lipids, and 1 was classified as a non-lipid
and non-peptide. No conflicting classifications were made for any unknown compo-
nent. The period before 10 min was excluded as it contained only unretained com-
ponents and background signal. The period after 80 min was excluded as it contained
only a strong contaminate/polymer signal.
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and lipids eluted. In this demonstration, the true classes of each of
analyte signals were determined by their respective reverse-phase
chromatographic elution times.

As indicated in Fig. 6, LC eluting analytes between 10 and 30min
were determined to be peptides, and those that eluted between 55
and 80 min were determined to be lipids. The classification of each
analyte was confirmed by independent LC-MS analyses of the
peptide and lipid mixtures. Polypeptide analytes were classified by
PEPNET as TP with 98% TPR (181 out of 185 inputs). Of the 185
polypeptide components, 4 polypeptides were incorrectly classified
by PEPNET as TNP. Each of the 4 polypeptides were small
(MW < 1000 Da), singly-charged ions; however, it should be noted
that most other small, singly-charged polypeptide components
were classified correctly (12 out of 16 inputs). Lipid inputs were
classified by LIPNET as TL with 100% TPR (85 out of 85 inputs). Also,
these lipid inputs submitted to PEPNET were classified as TNP with
100% TNR. Peptide inputs submitted to LIPNET were classified as
TNL with 99% TNR (183 out of 185 inputs). The two polypeptide
inputs that were misclassified by LIPNET as TL were 2 of the 4 small,
singly-charged polypeptide inputs misclassified by PEPNET. In the
mixed elution region from 30 to 55 min, 15 unknown components
were classified by both PEPNET and LIPNET. In this group of inputs,
iSF classifications were self-consistent as 4 inputs were classified as
TP and TNL (designated as “TP/TNL”), 10 inputs as TL/TNP, and 1 input
that was classified as neither a peptide nor lipid (both TNP and TNL
or TNP/TNL). No conflicting or self-inconsistent classifications (i.e.,
belonging to both TP and TL classifications) were made for any
unknown input. Raw network output scores for PEPNET and LIPNET
related to Fig. 6 are provided in Appendix Table C.2.
3.4. Considerations for future applications

The generalization capabilities of FFNNs enabled PEPNET, LIP-
NET, and LIPSUBNET to accommodate non-trivial variance in them/
z domain. The supervised training sets for each class were con-
structed with elemental compositions corresponding to the
commonly observed adduct ions in ESI (e.g., [MþH]þ for most
polypeptides, [MþNa]þ for glycans, [M � H]- for oligonucleotides,
etc.). However, there were a variety of detected lipid adduct forms
(e.g., [M þ NH4]þ, [M þ ACN þ H]þ [Mþ Na]þ, etc.), that were
successfully classified by LIPSUBNET and LIPNET, even though the
training sets of lipids for LIPSUBNET and LIPNET were restricted to
protonated adduct lipid forms. Given the easy-to-obtain nature of
the selected mass spectral vector inputs (i.e., isotopologue peak
relative intensity, exact mass, and KMD information) and the
insensitivity of iSF to potential interferences from adduct ions, iSF
could be applied to most broadband MS workflows in which ana-
lytes’ molecular ion isotopic envelopes are preserved. Given its
robustness, iSF can be applied as a pre-processing step in
conceivably any concurrent multi-omics analysis (in which MS1
spectra are acquired) to provide crucial information about analyte
classes and guide future data processing. Such capabilities should
be useful for characterization of complex biological systems such as
bacterial differentiation in microbiome studies [66], class identifi-
cation in biological MS imaging, and pictorial representation of
biomarker panels (healthy controls vs disease states) in clinical
studies. Although the presented work here has focused on positive-
ion mode experiments and classification of intact molecular spe-
cies, iSF can be applied to other complementary types of data. For
example, in future contributions, we plan to evaluate the perfor-
mance of iSF for utilizing data acquired under negative-ion mode
and classification of fragments and other modified structures (such
as metal adducts).

The neural network training period took several seconds to
several minutes (for details, see Appendix Figures B1 and B.2);
however, once trained, each network classification was rapid (~85
ms of processor time). Thus, these operations can be performed at
frequencies comparable to TOF data acquisition rates, which
(depending on the measured m/z range) can range from ~10 to
100 kHz [48,67,68].

The presented approach is robust in dealing with instrumental
noise and small variations in analytes’ measured masses (data
acquisition restrictions that are due to formation of various types of
adducts, resolving power limits, and mass measurement errors).
Additionally, our findings suggest that iSF can be applied success-
fully to MS data produced from low (L) MRP instruments. Versions
of LIPNET, PEPNET, and LIPSUBNET were trained and tested with
monoisotopic m/z and KMD values restricted to only two decimal
places. Likewise, the monoisotopic m/z and KMD values of the
experimental test inputs from the artificially combinedmulti-omics
separation were restricted to two decimal places. These two types
of networks (viz., networks trained using data sets with either (a)
only two or (b) four decimal places for m/z values) had nearly
identical performance characteristics both in application to
computationally generated data and experimental MS data to LIP-
NET, PEPNET, and LIPSUBNET. The exciting implication of this



L.T. Richardson et al. / Analytica Chimica Acta 1112 (2020) 34e4544
finding is iSF’s applicability to data from relatively LMRP in-
struments (with precision to only 2 decimal places) that exhibit
mass measurement errors unsuitable for elemental composition
determination (e.g., data with mass measurement errors larger
than 10 ppm). Tabulated performance metrics for the networks
trained with precision to 2 decimal places are shown in Appendix
Table C.3.

Because relative peak intensities and isotopic ratios are the
primary dimensions of separation used by the neural network, the
proposed approach is sensitive to convolution of analyte signals in
the m/z domain (hence, peak capacity limits in the m/z dimension
govern the level of sample complexity that can be tolerated). We
recommend the use of pre-MS physical separations such as LC and/
or IM to prevent potential peak convolutions in them/z domain and
increase isotopic envelope purity. IM profiles or trendlines for
biomolecules have also shown class-dependent trends that may
assist in classifications [32]; however, overlaps of m/z-mobility
trends complicate classification of some groups of biomolecules
[32]. It should be noted that, even with physical separation prior to
MS injection, convolution of closely related chemicals across
measurement domains is possible. In such instances of partial
isotopic envelope convolutions of closely related lipids in the LC
and m/z domains (for example, as reported in Fig. 6) iSF is still able
to correctly classify each convolved component. For instance, 11 of
the 85 lipid inputs (all of which were correctly classified as TL by
LIPNET) were partially convoluted in the LC retention time and m/z
domains. Of the 11 convolved lipids, 6 were partially convolved by
closely related species that differed by a degree of unsaturation. In
regions of full LC convolution (e.g. retention times at which two
lipids that differ by one degree of unsaturation are eluting; an
example of which is shown in Appendix B.8), the third isotopologue
peak of the singly-charged, unsaturated species (which eluted first
in each case) was fully convolved with the monoisotopologue peak
of the saturated species (which elutes second in each case). How-
ever, by sampling from the leading edge of the saturated species’ LC
peak and the trailing edge of unsaturated species’ LC peak, suffi-
ciently pure isotopic envelopes were obtained. The other 5
convolved lipid components were partially convolved in the m/z
domain (i.e., each isotopologue peak convolved up to ~20% peak
height; an example for which is shown in Appendix B.9), but
extracted isotopic features were sufficiently pure for iSF to classify
each component correctly.

4. Conclusions

In this study, we describe an in silico fractionation approach for
classification of small biological compounds from MS data via iso-
topic ratio analysis using a neural decision tree. The FFNNs estimate
the relationships that define and separate biomolecular classes
(e.g., lipids, glycans, polypeptides, etc.) based on their respective
isotopic distribution patterns and, therefore, their elemental com-
positions. The FFNNs utilized to demonstrate iSF (PEPNET, LIPNET,
and LIPSUBNET) were sensitive in their application to experimen-
tally detected chemical components: PEPNET had a TPR of 100%,
LIPNET had a TPR of 100%, and LIPSUBNET had a combined TPR of
95% (without confidence threshold constraint). The specific
demonstration presented here, constitutes one possible design and
application of iSF; however, depending on the sample composition
and class types present in the sample, the iSF workflow can be
tailored for a wide variety of multi-class component mixtures.
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