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ABSTRACT: Fitting coupled adiabatic potential energy surfaces using coupled R s
diabatic states enables, for accessible systems, nonadiabatic dynamics to be performed b | oaf
with unprecedented accuracy, when compared with on-the-fly dynamics. On-the-fly
dynamics has advantages, not the least of which is the ability to compute molecular .|
properties including electric dipole moments, transition dipole moments, and spin— o,
orbit couplings. The availability of these terms extends the range of processes that can

be treated with on-the-fly methods. In this work we use the example of fitting electric 1
dipole and transition dipole moments of the 1,2'A states of ammonia to show how to i\ ]
bring these advantages to the fit-coupled-surface method using a diabatic

representation.

1. INTRODUCTION

The electronic structure data, energies, energy gradients, and
derivative couplings needed for accurate quantum mechanical
simulations of electronically nonadiabatic processes involving
conical intersections"” can be calculated “on the fly” as needed
in direct dynamics or obtained from fit coupled surfaces that
analytically represent these data. A major advantage of fit-
coupled-surface methods is that more accurate electronic
structure methods can be employed than are currently practical
in direct dynamics. Once the surfaces are constructed, the
computational cost of evaluating analytic electronic structure
data is negligible compared to actual ab initio calculations,
allowing long time dynamic simulations that are not practical
in direct dynamics.

In electronic structure calculations, the auxiliary molecular
properties including electric dipole moments and spin—orbit
couplings are routinely obtained at limited cost from electronic
wave functions once the eigenstates have been determined.
They can be easily incorporated into on-the-fly methods,® >
which extends the range of processes that can be treated with
these methods. By fitting auxiliary molecular properties, this
advantage can also brought to fit-surface methods. There were
previous attempts to fit auxiliary molecular properties in the
adiabatic representation.’”"* However, when it comes to
nonadiabatic processes involving conical intersections, the
adiabatic molecular properties cannot be fit due to the
singularities attributable to the conical intersection seam,
which renders them discontinuous in the space of nuclear
coordinates. The easiest solution is to transform molecular
properties to a diabatic representation, in which the
discontinuities near conical intersections disappear. Diabatized
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molecular properties become smooth functions of nuclear
coordinates and can thus be fit."> By fitting diabatized
molecular properties, more chemical processes can be treated
with the more accurate fit-surface methods.

Fitting diabatized molecular properties requires an accurate
diabatic representation, in which the energies, energy
gradients, derivative couplings, and local topography of the
conical intersection seam should be well reproduced. For
polyatomic molecules rigorous diabatic bases do not exist;'*~"*
the more precise name for such a representation is quasi-
diabatic representation.'” The attribute quasi shall be omitted
below except as needed for emphasis. Due to the fact that the
quasi-diabatic representation is not uniquely defined, a variety
of methods to construct diabatic representations have been
reported in the literature. It remains a challenging task to
construct the highly accurate diabatic representations needed
to properly diabatize molecular properties. Currently available
methods can be divided into four categories: property-based
methods,””*' methods based on configuration uniformity,zz’23
diabatization by ansatz,”* and derivative-coupling-based
methods.'® Among all these methods, the derivative-
coupling-based methods are in principle the most accurate,
as they use the derivative coupling information from electronic
wave functions to diabatize the electronic states, so that the
quality of diabatization can be quantifiably controlled through
residual derivative couplings. The derivative coupling informa-
tion is also important to the analysis of the geometric
phase,”*** the local topology of conical intersections,”*** and
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avoided-crossing regions.”® Without using the derivative
coupling information, the quality of diabatization depends to
a large extent on the physical intuition for a specific system and
is thus not strictly under control.’’ Previous derivative-
coupling-based attempts reported in literature include solving
the Poisson equation,”* " Shepard interpolation,*' ™ and
line integral methods.*”** Recently, Zhu and Yarkony (ZY)
introduced a diabatization procedure, in which the diabatic
Hamiltonian is expressed in symmetry adapted polynomials
and the ab initio electronic structure data including energies,
energy gradients, and derivative couplings are simultaneously
fit and diabatized (FaD) to generate a robust and accurate
quasi-diabatic representation.””~* Since the ab initio deter-
mined derivative couplings are available, the residual derivative
couplings can be determined and used to assess the quality of
the diabatization so that the quality of diabatization is strictly
under control. This approach ultimately provides an accurate,
quantifiably quasi-diabatic representation in a least-squares
sense. Its accuracy has been demonstrated by excellent
agreement with experimentally measured dynamical attributes
in photodissociation of ammonia.”"~>* More recently, a neural
network extension of the ZY fitting method has been
reported.” >

Since an accurate quasi-diabatic representation for ammonia
has been constructed with the ZY fitting method, ammonia is a
good initial example of fitting auxiliary molecular properties in
the diabatic representation to complement the fit-coupled
potential energy surface methods. In this work, we are
interested in fitting the electric dipole and transition dipole
moment surfaces (DMSs) for the 1,2'A states of ammonia.
The 1,2'A states are coupled by a conical intersection seam,
which plays a central role in the nonadiabatic photo-
dissociation of ammonia.

NH,(X, v) — NH5(A, v') — NH,(X, A) + H (1)

The electric dipole moments are important prerequisites for
the theoretical prediction of molecular spectra. The diabatic
dipole moment surfaces constructed in this work will provide a
crucial ingredient for predicting the intensities of rotation—
vibration transitions not only on a single adiabatic electronic
state but also between different electronic states. Being a vector
molecular property, dipole moments are more difficult to fit
than energies.””’® Special treatment concerning the symmetry
of translation, rotation, and permutation of identical nuclei and
space fixed inversion is needed for the diabatization of electric
dipole moments.

The rest of the paper is organized as follows: section 2
contains the details of the methods to fit diabatized electric
dipole moments, in which a standard orientation for ammonia
is introduced to simplify the treatment of symmetry, and a
cluster growing algorithm with Gaussian process regression is
employed to remove the arbitrariness in the sign of the
transition dipole moments. In section 3, the fitting results are
presented. Section 4 summarizes and suggests future directions
to be pursued.

2. METHODS

2.1. Molecular Properties in Adiabatic and Diabatic
Bases. At first, before fitting any diabatized properties, it is
important to know how the molecular properties transform
between the adiabatic and diabatic bases.

The adiabatic basis consists of N real-valued adiabatic
electronic wave functions Wi(r;R), k = 1 — N, which are

eigenfunctions of the nonrelativistic Born—Oppenheimer
Hamiltonian H®(r;R):

H'(5; R) Wi(; R) = E,(R) ¥i(r; R) @

where r are electronic coordinates and R are nuclear
coordinates; E; is the adiabatic energy. The Wi(r;R) are
coupled via derivative couplings. The coupling between the kth
and Ith states fy(R) takes the following form:

u(R)

(Pi(r; R)IVR¥Pi(r; R)),
_ (¥i(r; R)IVRHI¥((r; R)),
- E(R) — E(R) 3)

£(R) is singular when the kth and Ith states are degenerate,
making adiabatic basis very difficult to use when degeneracy
occurs. The degeneracy also leads to discontinuity in adiabatic
energies and molecular properties. The traditional way of
resolving this problem is to replace adiabatic basis with diabatic
basis in which the derivative couplings are negligible, and the
discontinuity in energies and molecular properties will also
disappear in general."

Adiabatic and diabatic bases are linked to each other via an
orthogonal transformation:

state

N
i(r; R) = ) Du(R) ¥(r; R)

j=1 (4)
where Dy, is the element of the orthogonal matrix D, which is
called the adiabatic-to-diabatic (AtD) transformation. The
derivative couplings of adiabatic and diabatic states are linked
by the relation

f*=D'f'D + D'VyD = D'f'D + f(D) ()

In eq 5 and below we will suppress the R dependence of a
quantity when no confusion will result. For N***¢ = 2, D has the
form

cos O(R) —sin O(R)
sin O(R) cos O(R) (6)

where O(R) is called the rotation angle. Equation S then
becomes

a _ od
£ =f£; — W0 (7)

The goal of AtD transformation is to have fg = 0; then eq 7
becomes

W = —f; )

Consider a Hermitian molecular property operator A; its
matrix form in adiabatic and diabatic bases would be

Aj(R) = (¥i(r; R)IAN¥(r; R)), ©)
d d d
A;(R) = (¥ (r; R)A(r; R)), (10)
A* and A? are linked by the same orthogonal matrix:
A = D'A'D (1)
If A is replaced with H®, then we have
[H'R) — IEY™(R)]I(R) = 0 (12)
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Table 1. Character Table of D5,(M)“

E (123), (132) (12), (23), (13)
A} 1 1 1
Al 1 1 1
A, 1 1 -1
Aj 1 1 -1
E’ 2 -1 0
E" 2 -1 0

“The star symbol (*) denotes inversion of all nuclei and electrons.

E* (123)*, (132)* (12)*, (23)*, (13)*
1 1 1

-1 -1 -1
1 1 -1

-1 -1 1
2 -1 0

-2 1 0

H¢ is the diabatic Hamiltonian, also known as the diabatic
potential energy matrix (PEM), H* is diagonal in the adiabatic
basis, E™ is the adiabatic energy of the jth electronic state,
and d’ is the jth column of D. Therefore, the orthogonal matrix
D can be obtained by diagonalizing H® with only the sign of
each column of D undetermined. Before fitting any diabatized
molecular properties, we assume that the diabatic Hamiltonian
is already constructed. In the work, we will fit the diabatized
electric dipole moment p®, where

p =pp'D" or g =D'u'D (13)

It is important to note that the electric dipole moment
operator depends on both the locations and charges of the
electrons (r;, —e) and the locations and charges of the nuclei
Ry Zpe):

ﬂ=—lei+eZZIRI=ﬂe+ﬂN
i I (14)

where g, and py denote the electronic and nuclear parts of
electric dipole moment operator, respectively.

2.2. Complete Nuclear Permutation Inversion (CNPI)
Symmetry of Diabatized Dipole Moments. The DMSs
will cover all the energy-accessible regions of the photo-
dissociation of ammonia; thus the CNPI group will be used.
Assuming the electronic character of a diabatic state does not
change, the CNPI symmetry of diabatized dipole moment can
be analyzed through the following equation:

= (), (15)

It is clear from above that the dipole has a matrix form, and
each individual block (dipole matrix element) ﬂ?} carries the
irreducible representation corresponding to irred(¥9) x
irred(u) X irred(‘I‘f), where “irred” denotes “the irreducible
representation carried by”. The CNPI group pertaining to
ammonia is Gy, also denoted as D3,(M).”® Table 1 provides
the character table of D5, (M). The two diabatic states carry A}
and A} irreducible representations, respectively.* In the space-
fixed Cartesian frame, the electric dipole moment operator g
will carry the A{ irreducible representation. Then correspond-
ingly, the three blocks of diabatized dipole moment matrix p¢;,
us,, and pf, will carry Aj, A, and A; irreducible
representations, respectively.

Since ammonia is a neutral molecule, the total electric dipole
moment will be invariant with respect to translation. Still, one
needs to design a special functional form to account for the
rotation and CNPI symmetry. However, by placing geometries
at a standard orientation, we will restrict the fitting to a certain
arrangement of geometries and the functional form for fitting
will also be significantly simplified.

2.3. Standard Orientation. For ammonia, the following
standard orientation will be used, which also defines a body-
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fixed Cartesian frame.” The unit vectors for the body-fixed
frame are denoted as e,, e, and e,. First, the three hydrogen
atoms are permuted to have Ryy, < Ryy, < Ryy,- Then, with
N set as the origin, H; is placed on the positive x-axis; i.e., the
shortest NH bond is along the x-axis. The positive z-axis is set
to be along the direction of Ry, X Ryy, and e, is the cross

product of e, and e,. Figure 1 presents the definition of this

Hs

z

¢
X Hi
Hi x
H>

Hs

Figure 1. Body-fixed Cartesian frame for NH; Two ammonia
geometries are shown, and they are related by inversion operation.

body-fixed Cartesian frame and how the coordinates transform
when the geometry is inverted. It is easy to see that the x and y
coordinates of H nuclei in the body-fixed frame remain the
same in the inverted geometry of NHj; however, the z
coordinates will have a sign change. Therefore, we can
conclude that the x and y coordinates in the body-fixed
frame are symmetric with respect to inversion of the whole
molecule, whereas the z coordinate is antisymmetric.
According to eq 15, the symmetry of each component of
diabatized dipole moments in this body-fixed frame with
respect to inversion can be obtained, and symmetries are listed
in Table 2. The body-fixed frame defined above is problematic

Table 2. Symmetries of x, y, and z Components of
Diabatized Dipole Moments in the Body-Fixed Frame with
Respect to Inversion of NH;

x component y component z component

i symmetric symmetric antisymmetric
ﬂgz symmetric symmetric antisymmetric
s, antisymmetric antisymmetric symmetric

when N, H;, and H, are collinear or nearly collinear. At such
geometries, e, is not well-defined. Fortunately, these geo-
metries are rare and can be excluded from fitting. The body-
fixed Cartesian frame and the original Cartesian frame are
linked by the three-dimensional (3D) rotation matrix (e, e,

e,).
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Placing geometries to the standard orientation restricts the
fitting of dipole moments to only a specific portion of
configuration space. First, the ascending bong length condition
restricts the fitting to only one ordering of hydrogen atoms.
The dipole moments of the other orderings can be easily
obtained through permutation symmetry, which is given in
section 2.2. Second, the body-fixed frame helps to get rid of
translational and rotational degrees of freedom. Dipole
moments in the body-fixed frame are functions of internal
coordinates alone. Therefore, in this specific portion of
configuration space, the diabatized dipole moments are smooth
functions of internal coordinates. The functional form used to
fit the diabatized dipole moments will thus be greatly
simplified.

2.4. A Cluster Growing Algorithm Removes the
Arbitrariness in the Sign of the Transition Dipole
Moment. The sign of the adiabatic transition dipole moment
from ab initio calculations is arbitrary. This arbitrariness could
make the resulting diabatized dipole moments discontinuous.
In this work, a cluster growing algorithm is used to achieve sign
consistency.”” First, an initial cluster of points with correct sign
assignments made by hand is assembled. Then the diabatized
dipole moments of the current cluster are fit by Gaussian
process regression (GPR).”® The GPR model is then used to
determine the signs of nearby points. The newly determined
points are added into the cluster, and a new iteration is
performed. After each iteration, the cluster grows, hence the
name “cluster growing algorithm”.

The success of the cluster growing algorithm hinges on the
smoothness of the diabatized properties that are being fit and
the capability of the GPR model to extrapolate. The
smoothness of the diabatized properties, a premise of this
work, can be assumed provided that the diabatic representation
in use is smooth and there are very few bad points in the ab
initio calculations. Using a physically motivated functional
form to fit diabatic properties would help the model to
extrapolate better. However, for complex systems, coming up
with a suitable and accurate functional form is tedious and is
not an easy task. Furthermore, it is not a universal solution and
varies from system to system. In this work, GPR is used, which
provides a flexible framework for probabilistic regression and is
widely used to solve high-dimensional, nonlinear regression
problems. Most importantly, it also shows the capability to
extrapolate.”” The details of the cluster growing algorithm with
GPR can be seen in Appendix A.

2.5. Diabatized Dipole Moment Fit Surfaces with
Neural Networks. Along with the sign consistency obtained
by the cluster growing algorithm, the diabatized DMSs with
GPR are simultaneously obtained. However, in ab initio
calculations, bad points with abrupt changes may occur even in
the absence of conical intersections, which would result in
discontinuities in diabatized properties. Due to the high
dimensionality of nuclear coordinate space, such disconti-
nuities are difficult to detect, which may cause wrong sign
assignments in the cluster growing algorithm. A wrong sign
determination will lead to a cascade of more wrong signs.
Therefore, the diabatized DMSs with GPR could be problem-
atic. Moreover, GPR cannot deal with symmetry properly. For
example, some components of diabatized dipole moments at
the standard orientation are antisymmetric with respect to
inversion, which means that they are zero at geometries that
are invariant with respect to inversion. GPR cannot exactly
reproduce zero values at these geometries due to the existence
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of fitting errors, which can also result in discontinuities near
such geometries.

However, if the diabatized dipole moments with proper sign
assignment can be accurately fit with smooth symmetric
functional forms, the resulting DMSs should be reliable.
Therefore, we refit the diabatized dipole moments with smooth
artificial neural network (NN) functions. NNs have been used
as a robust and powerful fitting tool. They provide flexible
functional forms to represent scattered data as accurately as
possible.””®" Special NN functional forms to account for
symmetry can also be designed, which is not allowed in GPR.
In this work, the simple feed-forward NN is employed, the
definition and structure of which were reported previously.”*
The diabatized dipole moments at standard orientation are
smooth functions of internal coordinates. In this work, the six
inverse internuclear distances (denoted 1/R), which are
symmetric with respect to inversion, are used to describe the
symmetric components and thus are the input to the NN. As
for antisymmetric components, the following functional form is
used:

SP)IHH'NN(I/R) (16)
where

(3) _ (RN - RHl)'(RN - RHZ) X (RN - RH3)

NHHH —

'NH,'NH,'NH,

is an internal coordinate that is antisymmetric with respect to
962 The functional forms for all components of
diabatized dipole moments (see Table 2) are

inversion.

pul = NN(1/R)

#yyy = NN, (1/R)

H, = QI(\ISIiHHNNS)(I/ R)

Hip, = QI(\ISIEIHHNN‘*(I/ R)

/‘éy = Qi NNy (1/R) (17)
pS = NNy(1/R)

py = NN,(1/R)

#yy, = NNy(1/R)

/“‘dez = QI(\I?IHHNN9(1/ R)

The functional forms defined in eq 17 are very simple in the
sense that no complicated symmetrized internal coordinates
such as permutation invariant polynomials’*** are used. For a
given geometry, its diabatized dipole and transition dipole
moments at standard orientation can be readily obtained from
these functions. By using the inverse of the relations to the
standard orientation, the (adiabatic or diabatized) dipole and
transition dipole moments at the original geometry can also be
easily obtained.

The NN training optimizes the NN parameters to minimize
the following performance index:
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Figure 2. Adiabatic dipole moments u3,, p3,, and pi, along the planar dissociation path. The arbitrary signs of g}, have been manually adjusted.
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Figure 3. Diabatized dipole moments p|, g, and p, along the dissociation path.

~tate N state

P@) = — Z Z Z Z {('“;}cq(m) t}kq)z

qltl]th,y,

+ (g™ = S + wTa

(18)

where w is a connecting weight, Q is the number of geometries,
,ufl;fqm) represents the NN model diabatized dipole moments,
Mik, represents the diabatized dipole matrix elements with
proper sign assignments, y,],Eq represents the adiabatic dipole
moments obtained from the NN model, and ,uZ‘,S;b) represents
ab initio dipole moments. Also, %tOTG is the regularization term
that prevents overfitting, where ¢ is a small positive factor. The
regularization term reduces the complexity of the NN model
and can help generate smooth NN functions. The Levenberg—
Marquardt algorithm which is used to minimize the perform-
ance index is very numerlcally robust and can achieve

convergence very quickly.*®

3. RESULTS

3.1. Adiabatic and Diabatized Dipole Moments. The
ab initio data including energies, energy gradients, and
derivative couplings for ammonia were those used in the
previous ZY fitting of a diabatic Hamiltonian,”® and the
corresponding diabatic PEM will be denoted as NH3ZY. The
electric dipole and transition dipole moments are obtained
from the same multireference single and double excitation
configuration (MRCISD) wave functions. The details of the
MRCISD expansion have been reported previously.*® All
electronic structure calculations reported in this work were
performed using the COLUMBUS suite of electronic structure
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codes.””*® The AtD transformation for each geometry is
obtained by diagonalizing the corresponding NH3ZY PEM. In
this subsection, all the dipole moments are shown in the body-
fixed frame defined in section 2.

Figures 2 and 3 present the adiabatic and diabatized dipole
moments along the planar dissociation path connecting the
minimum energy point on the 2'A potential energy surface to
the saddle point on that surface, the saddle point to the
minimum energy crossing point (MEX) on the 1,2'A states
conical intersection seam, and the seam point to the product
channel. This path is essential for the description of the
nonadiabatic photodissociation of ammonia, the potential
energy curves for which are shown in Figure 4. All the
geometries on the path are coplanar, which are inversion
invariant. Thus, in Figure 2, p1,, {3, {1z and pi,, are zero.
The other components, however, exhibit a discontinuity at the
conical intersection. On the other hand, after AtD trans-
formation with eq 13, the discontinuities disappear in Figure 3,
rendering all the diabatized dipole moments smooth.

Figure S provides an alternative picture of the diabatized
dipole moments, plotting each component of the diabatized
dipole moments as a function of Ryy and out-of-plane angle on
a two-dimensional (2D) grid, where the reference geometry is
the minimum of the 1'A state (C;,) and @ is the angle between
the dissociative N—H bond and the C;-axis. The correspond-
ing 2D cut of adiabatic potential energy surface is shown in
Figure 6, in which a conical intersection can be observed.
Despite the presence of the conical intersection, the smooth-
ness of the diabatized dipole moments is evident.

It is important to note that the signs of adiabatic transition
dipole moments have been manually adjusted to make
diabatized dipole moments smooth with eq 13 as seen in
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Figure 4. Potential energies of the 1,2'A states as a function of Ryy
along the dissociation path. A conical intersection (MEX) can be
observed.

Figures 3 and 5. Sign consistency in the diabatic representation
was already obtained on the 2D grid and along the dissociation
path, which form the initial cluster for the cluster growing
process.

3.2. Exclusion of Quasi-Degenerate Points in Cluster
Growing Algorithm. The initial cluster consists of 347
points, which provides a basic description of the photo-
dissociation of ammonia. The extension of the domain of the
DMSs is then achieved by the cluster growing process with
GPR. The Matérn kernel function of automatic relevance
determination with v = §/2 is used.”® To obtain optimal kernel
parameters, a limited memory quasi-Newton algorithm69 is
employed to maximize the log marginal likelihood (see
Appendix A for details).

The NH3ZY PEM was obtained by a least-squares fitting,
which is very accurate in terms of reproducing the ab initio
data. However, differences are inevitable between ab initio
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Figure 6. Potential energies of the 1,2'A states as a function of Ryy
and out-of-plane angle € on a 2D grid. A conical intersection can be
observed.

results and corresponding predictions of the NH3ZY PEM.
Most importantly, the location of the ab initio conical
intersection seam was not exactly reproduced by the NH3ZY
PEM. For example, the NH3ZY PEM predicts an energy
difference of 48.3 cm™' at MEX, which is supposed to be
exactly zero. According to eq 8, the AtD transformation
changes very rapidly near a conical intersection; this mismatch
between ab initio dipole moment and AtD transformation will
result in discontinuities of the diabatized dipole moment. The
cluster growing algorithm may fail when it explores the vicinity
of the conical intersection seam. Therefore, the quasi-
degenerate points with energy differences less than a
predefined threshold were excluded from the cluster growing
process. In this work, the threshold is set to 300 cm™", which is
about the largest mean unsigned error of the NH3ZY PEM.>

The signs of 2652 points were determined by the cluster
growing algorithm. A total of 3003 points were ensembled to
fit the diabatized DMSs.
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3.3. Neural Network Dipole Moment Surfaces. The
structure of the feed-forward NN used to refit diabatized
dipole moments is 6—60—60—9, which means that this NN
takes 6 inverse internuclear distances as input, has two hidden
layers, both of which have 60 neurons, and gives an output
with 9 components corresponding to NN; (i = 1-9) in eq 17.
The transfer function in the first and second layers is a
hyperbolic tangent function f(x) = tanh(x); in the third layer, it
is a linear function f(x) = x. wis set to 1 X 1075, and t = 1 X
107 Fifty trainings with different initial parameters were
performed.

Table 3. Ten NN Fitting Results with Smallest RMSE*

no RMSE? (%) RMSE® (%)
1 7.15 5.59
2 7.14 5.67
3 725 5.86
4 723 5.94
5 6.94 5.96
6 7.16 5.98
7 7.33 5.99
8 8.02 6.02
9 7.12 6.06

10 7.64 6.10

Table 3 lists 10 fitting results with the smallest root-mean-
square error of adiabatic dipole moments (RMSE*). RMSE® is
defined as

RMSE® =

state state

Q N N ,(m)
Zq:lzizl Zj:i ZW;é(ab)lZO.Olau[l”i;qm -

Na

a,(ab)l/wi;;(ab) |]2

Piq

(19)
Only dipole or transition dipole moments with norms no less
than 0.01 au will enter the error analysis, and N* is the number
of such dipole or transition dipole moments. Similarly, we have

the definition of root-mean-square error of diabatized dipole
moments (RMSE?)

RMSE® converged around 6% and RMSE converged around
7%. The reasonably small fitting errors indicate that the
diabatized dipole moments are smooth enough to be fit by
smooth NN functions. The final diabatized DMSs are chosen
as the average of these 10 fits. By averaging multiple results,
more accurate DMSs can be obtained.””~”* The RMSE* and
RMSE* for final DMSs are 3.85 and 4.82%.

Even though we have fitted the diabatized DMSs, the
adiabatic dipole moments may also be needed in practical
calculations. For an arbitrary geometry, the diabatized dipole
moments at a standard orientation can be readily obtained
through diabatized DMSs. By using eq 13, the adiabatic dipole
moments at the standard orientation can be obtained. Through
a simple 3D rotation (i.e., multiplied by the matrix (e, e, e,)),
the adiabatic dipole moments at the original orientation are
obtained. One still needs to permute the H nuclei and translate
the whole molecule to get back to the original geometry.
However, considering that the electric dipole moment operator
is invariant with respect to permutation of H nuclei and that
ammonia is a neutral molecule, the adiabatic dipole moments
of ammonia are thus invariant with respect to translation and
permutations of H nuclei. Therefore, adiabatic dipole moments
at the original geometry are already obtained after the 3D
rotation.

In eq 12, the sign of eigenvector d' is arbitrary, which makes
the sign of the transition dipole obtained through eq 13
undetermined. The signs of the NN model determined
transition dipoles have to be adjusted so that they can be
compared to ab initio counterparts. Figure 7 shows the global
accuracy of the NN model, comparing the NN model
determined dipole moments and the ab initio dipole moments
for p,), pyy, and py,, respectively. In all three panels, the x-axis
is the ab initio value and the y-axis is the NN model
determined value. All the points lie near the lines y = +x,
which indicates the NN model that can reproduce ab initio
dipole moments very well. The signs of transition dipole
moments are arbitrary; therefore, there are points that lie near
the line y = —x in the right panel for p,,. Figure 8 shows the
direct comparison between ab initio and NN model
determined adiabatic dipole moments at the standard
orientation along the same planar dissociation path as in
Figures 2 and 3. As can be seen, the agreement is quite
satisfactory, and the discontinuity at MEX is also reproduced.

RMSE? = In the cluster growing process, the quasi-degenerate points
were excluded. One may raise concerns about the reliability of
QN N d,(m) a1 d R the diabatized dipole moment surface in the quasi-degenerate
Zq:l Zi:l Zj:i le.dlzo.mau [lﬂijq - ﬂiqu/lﬂiqu] . P . 4 €8s
i region due to the lack of these data points. Considering the
N fact that the seam space is N™ — 2-dimensional, the
(20) smoothness of the diabatized dipole moments facilitates the
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Figure 7. Comparison of ab initio and NN model determined adiabatic dipole moments. x-axis is the ab initio value; y-axis is the NN model
determined value. The left, middle, and right panels show the results for u,, ,,, and p,,, respectively.
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Figure 9. Comparison of ab initio (symbols) and NN model determined adiabatic dipole moments (lines) on the g—h plane of MEX. The arbitrary
signs of adiabatic transition dipole moments have been manually adjusted to achieve smoothness. Adiabatic dipole moment curves in the range 8 €
[0, 27] with three different p values (0.01 in upper row, 0.0S in middle row, and 0.1 in bottom row) are shown.

interpolation of N™-dimensional NN model in a finite volume
surrounding the seam. Therefore, the effect of exclusion of
quasi-degenerate points should not be too serious. Figure 9
demonstrates how the NN adiabatic dipole moments behave
near the MEX. The orthogonal intersection adapted
coordinates based on gl’2 and h'? are used to describe the
vicinity of the MEX,*"* where g"? is the energy difference
gradient vector and h'? is the interstate coupling vector
between the 1,2 'A states. In these coordinates, the x-axis is set
to be parallel to g"* and the y-axis is parallel to h'. On the (x,
y) plane, ie., the g—h plane, the degeneracy is lifted linearly.
The polar coordinates (p, 6) with (x, y) = (p cos 6, p sin 6) on
the g—h plane are used to plot the adiabatic dipole moments,
where the unit vectors on the plane e, and e, are g"/llg"l
and h"?/||h"?||, respectively. In Figure 9, the adiabatic dipole
moment curves in the range 8 € [0, 2x] with three different p
values (0.01, 0.05, and 0.1) are shown. In general, the
smoothness of the NN adiabatic dipole moment curves is
evident and the agreement between ab initio data and NN
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model is quite good, which indicates the NN model can
interpolate well in the quasi-degenerate region.

Along the loop with p = 0.01, the ab initio energy difference
between the 1,2'A states is about 250 cm ™', which is very close
to degeneracy. In the z-component dipole moment curves
along this loop, noticeable differences between ab initio data
and the NN model can be observed. The NH3ZY PEM
predicts an energy difference of 48.3 cm™' at the true
degeneracy geometry in ab initio calculation. A small mismatch
of the conical intersection location between the NH3ZY PEM
and ab initio calculation may result in the difference in this
figure. However, as for the loops with p = 0.05 and p = 0.1, as
the energy differences become larger, which are about 1500
and 2500 cm™" respectively, the effect of the mismatch fades
away and the agreement between ab initio data and the NN
model becomes better. The NH3ZY PEM provides a very
accurate description of the conical intersection seam, and the
mismatch only occurs in a small volume in the nuclear
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Figure 10. Comparison of ab initio (upper row) and NN model determined (lower row) adiabatic transition dipole moments near the energy
minimum (C,,) of 1'A. The arbitrary signs of transition dipole moments have been manually adjusted to achieve smoothness. Each component is
ploted as a function of Ryy and out-of-plane angle 6. 0 is the angle between N—H bond and the C;-axis.

coordinate space surrounding the seam, which will not affect
the global quality of the NN DMSs.

In the framework of the Franck—Condon principle, the
transition dipole moments are necessary to determine the
probability amplitude between the ground vibronic state and
the upper vibronic state. Therefore, the accurate reproduction
of the transition dipole moments in the Franck—Condon
region is of great importance for the simulations of absorption
and emission spectroscopies.

The energy minimum of the 1'A state is of Cy, symmetry,
which is on the boundaries of the domain in which the DMSs
are fit. The domain is defined by Ry, < Ry, < Ryp,. On the

boundaries, two or three NH bonds are equal. When
evaluating the dipole and transition dipole on the boundaries,
where the ordering of H atoms is not unique, the ordering used
in the evaluation may not correspond to the ordering included
in the fitting data, which leads to wrong predictions. In order
to avoid such wrong predictions, when a geometry that has
very similar NH bonds is encountered, the DMSs are not
directly evaluated at this geometry. Instead, the relevant
diabatized dipoles are obtained through Shepard interpola-
tion’>’® based on nearby geometries, and then the adiabatic
dipole and transition dipole moments can be calculated. The
details of Shepard interpolation can be found in Appendix B.

Figure 10 shows the transition dipole moments between the
1,2'A states near the energy minimum of 1'A, in which the
transition dipole moments are plotted on a 2D grid of an NH
bond and the out-of-plane angle. The transition dipole
moments are obtained through Shepard interpolation, since
the 2D grid is on the boundaries of the domain. As can be seen
in Figure 10 , the transition dipole moments have been well
reproduced, and no wrong predictions can be seen, which also
indicates the validity of the Shepard interpolation. Considering
the high-level MRCISD calculations in use and that good
reproduction of ab initio dipole moments has been achieved,
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the NN DMSs would be suitable for spectroscopy simulations,
which will be completed in future work.

4. SUMMARY

In this work, we have constructed permanent dipole and
transition dipole moment surfaces for the 1,2'A states of
ammonia, which serve as an example of extending previous
multistate coupled potential energy surface fitting to include
auxiliary molecular properties. The DMSs are constructed by
exploiting a previously reported accurate quasi-diabatic
representation, NH3ZY PEM. The AtD transformation
removes the discontinuities in electric dipole moments due
to the conical intersections, which enables the fitting of
diabatized dipole moments. Electric dipole moment is a vector
property; the ideal functional form to rigorously account for
molecular symmetry is difficult to design. However, by placing
each geometry at a standard orientation, the functional form in
use is greatly simplified. A cluster growing algorithm with
Gaussian process regression is used to remove the arbitrariness
in the signs of transition dipole moments. Finally, the
diabatized dipole moments are represented with smooth NN
functions. The NN DMSs can reproduce ab initio dipole
moments very accurately; even the discontinuities at a conical
intersection are well reproduced. The accurate NN DMSs are
suitable for simulating IR and UV—Vis spectra of ammonia,
which will be the subject of future work.

The results presented in this work also confirm the accuracy
and validity of the NH3ZY PEM. It provides an accurate quasi-
diabatic representation that could obtain smooth diabatized
dipole moments, which makes the fitting possible. However, as
mentioned previously, the NH3ZY PEM cannot reproduce the
location of the conical intersection seam exactly, when
diabatizing the dipole moments in quasi-degenerate regions;
the small mismatch between the NH3ZY PEM and ab initio
data leads to artificial discontinuities. To avoid these
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discontinuities, the quasi-degenerate points have to be
excluded from the fitting. These artificial discontinuities are
due to the fact that the construction of quasi-diabatic
representation and the diabatization of dipole moments are
done sequentially and separately. One possible solution for this
mismatch is to diabatize the energies and dipole moments
simultaneously, which could at least make the resulting quasi-
diabatic representation and diabatized dipole moments
consistent with each other. Another molecular interaction we
are interested in is the spin—orbit coupling. Given the success
of the diabatized dipole moments shown in this work, it is
highly likely the spin—orbit couplings can also be diabatized
and fitted. Through this work, we hope that, by including
molecular properties/interactions in the construction of
coupled potential energy surfaces, more chemical processes
can be treated with accurate surface fitting methods.

B APPENDIX A: CLUSTER GROWING ALGORITHM
WITH GAUSSIAN PROCESS REGRESSION

The details of GPR are described in ref 58. In brief, GPR tries
to model some latent function y = f(x), where x is the N-
dimensional input vector. At any input x, there will be a
conditional normal distribution P(y) of function values y; given
n known function values y = [y,, ..., y,]" at n inputs [x;, ..., x,].
The mean of this conditional distribution at an arbitrary input
X« is given by

y, = kKly (21)
where ks« is a vector with n components k(x, x;), and K is a
square n X n matrix with elements k(x, xj). k(x, x;) is called the
kernel function, which relates one data point (y; = f(x;)) to
another (y; = f(x;)). Due to the explicit correlation between
data points expressed by kernels, GPR has a certain limited
capability to extrapolate beyond the known data set.”” There
are several kinds of kernel functions, and each kind has some
free parameters. The optimal parameters can be estimated by
maximizing the following log marginal likelihood:

1 Tyr—1 1 n
log L =——y Ky — —loglKl — —log2n
g 2)’ y 2 g 2 g (22)
In this work, each component of diabatized dipole moments
is represented by a GPR model. Six coordinates including xy;,

X, YHy %uy Yuy and zy, in the standard orientation are the

input of GPR, since the other six Cartesian coordinates remain
zero in the body-fixed Cartesian frame. Geometries are
inverted in advance if necessary to have z;, > 0. By placing

and inverting each geometry at its unique standard orientation,
we could ignore the CNPI symmetry during cluster growing.
At each iteration, the choice of nearby points is based on a
distance criterion. The distances between points are computed
as the Euclidean distance in the six-dimensional space of xy,

%11y Yu, ¥y Yuy and zg. The nearby points are found based on

a cutoff threshold. The cutoft threshold is adjusted to a suitable
value during each iteration. It should be neither too small nor
too large. If it is too small, there will be very few points found
nearby, and the cluster growing algorithm will need many
iterations. If it is too large, the extrapolation of GPR may not
be reliable at points far from the current cluster. The sign
assignment of a new point is done through comparison
between GPR predicted values and ab initio values with either

positive or negative sign, and the sign that gives the smaller
difference is chosen.

B APPENDIX B: SHEPARD INTERPOLATION NEAR
BOUNDARIES

When a geometry x« near the boundaries is encountered, in
order to perform Shepard interpolation, several nearby
geometries are generated in the following way: first, this
geometry is placed at standard orientation xi; then, with all
three H-N—H angles being fixed, three NH bonds are
modified to have a small change (e.g., 0.02 or 0.05 bohr) to get
away from the boundaries. The diabatized dipole moments at
these nearby geometries are then evaluated in order to
interpolate at xi. Although these geometries do not necessarily
satisfy the ascending bond lengths condition, their diabatized
dipole moments can be obtained through permutation
symmetry analyzed in section 2. For the geometries that do
not satisfy the condition, H atoms are permuted to meet the
requirement of ascending bond lengths. After permutation, the
diabatized dipole moments can be readily evaluated from NN
DMSs. According to the symmetry analysis of diabatized
dipole moments in section 2, the diabatized dipole moments of
unpermuted geometry can be easily obtained. In this work, a
modified Shepard interpolation method”*”® is used to obtain
the diabatized dipole moments at xi with the three NH bond
lengths being the independent variables.
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