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ABSTRACT: We present, for systems of moderate dimension, a fitting
framework to construct quasi-diabatic Hamiltonians that accurately represent ab 4000 | Ts
initio adiabatic electronic structure data including the effects of conical
intersections. The framework introduced here minimizes the difference between
the fit prediction and the ab initio data obtained in the adiabatic representation,
which is singular at a conical intersection seam. We define a general and flexible
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fit Hamiltonian may behave poorly in insufficiently sampled regions, in which case -10000 | C.H.O 1A
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a machine learning theory analysis of the fit representation suggests a
regularization to address the deficiency. Our fitting framework including the
regularization is used to construct the full 39-dimensional coupled diabatic
potential energy surfaces for cyclopentoxy relevant to cyclopentoxide photo-
electron detachment.
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I. INTRODUCTION incorporated to yield a unique and continuous representation

. . . 1—4 . . . . 1 1 1
When conical intersections are involved in a nonadiabatic along a seam of conical intersections, where the degeneracy

process,””* a quasi-diabatic”'® Hamiltonian (H?) can greatly introduces ambiguity. However, when this approach is applied
facilitate a reliable simulation. A variety of diabatizations have to adiabatic states that are only quasi-degenerate (energy gap up
been reported in the literature, based on smooth molecular to 2000 cm™" in ref 44 or 0.05 eV in ref 48), the ab initio
properties,'' ~'° ansatz of diabatic states,'’ " configuration electronic Hamiltonian contains nonzero off-diagonal elements
uniformity,”' ~*” and derivative couplings.”*~>' When accuracy in the partially diagonalized representation, which must be
is the primary concern, it would be safest for diabatizations to treated. In order to incorporate the off-diagonal contribution,
employ multireference electronic structure methods which here we introduce an alternative treatment by defining the merit
provide derivative coupling information e)gplicitly, such as function to be the difference between H” in its eigenbasis and the
multiconfigurational self-consistent field**™** (MCSCF), ex- ab initio Hamiltonian (H®) already in its eigenbasis, each
tended multistate multireference second order perturbation transformed (by U™) to a common but arbitrary representation.

theory’®*” (XMS-MRPT2), quasi-degenerate N-electron va-
lence state second order perturbation theory38 (QD-NEVPT2),
and multireference configuration interaction®”*° (MRCI).
The focus of this work is a well-established derivative-
coupling-based method which accurately fits energies, energy
gradients, and the energy difference scaled derivative couplings
obtained from ab initio electronic wave fuctions.”'~™*’ This
framework directly compares the fit prediction in the adiabatic
representation to the corresponding ab initio quantities. Into this
framework a partial diagonalization technique** has been

Our merit function is general and flexible, allowing any
convenient representation to measure the fitting error, but it
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reduces to a familiar one if the adiabatic representation is chosen
(UM = 1) or an accurate fit is obtained. Here we )propose an
alternative representation (transformation by U?) for geo-
metries with quasi-degenerate electronic states, which is similar
to the partially diagonalized representation and easy to
implement.

A fitted Hamiltonian may behave poorly in an insufficiently
sampled region. The common practice is to generate an initial fit
from chemically important geometries, then fill the holes (large
negative values due to ill-defined polynomials) in the fitted
potential energy surfaces with additional geometries. However,
this solution may fail in a moderate-dimensional case because
the volume of a space grows exponentially over its dimension-
ality, making it hopeless to saturate the entire space with finite
number of geometries. If we reconsider the poor behavior in a
more abstract way, e.g., from a machine learning point of view,>"
then it can be regarded as an overfitting problem, which can be
treated with regularization. Compared to the hole filling
technique, regularization is appealing for the following reasons:

(1) Negligible extra fitting cost is introduced. The regulariza-
tion term is a norm of the fitting parameters, while the
hole filling technique requires fit—ab initio difference
evaluation at every hole filling geometry, which can
become prohibitively expensive in a moderate-dimen-
sional case.

(2) A limited number of additional geometries are required.
Standard regularization techniques require no additional
geometries at all; although additional geometries serving
as a development set may be helpful to tune the
regularization hyperparameter. This is advantageous,
even for small molecules, when ab initio calculations are
expensive, which is almost always the case in accuracy-
demanding problems.

We will discuss this issue further in section IL.B.

This paper is organized as follows. Section ILA elaborates the
definition of our merit function. Section ILB proposes a
representation to measure the fit-ab initio difference at
geometries with quasi-degenerate adiabatic states and suggests
a regularization for surface fitting. Our algorithm is summarized
in section II.C. With an eye to a future spectral simulation, our
fitting framework is applied to construct full 39-dimensional
coupled potential energy surfaces for cyclopentoxide photo-
electron detachment. The results are presented in section IIL
Section IV summarizes and discusses directions for future work.

Il. THEORY

IlLA. Merit Function. To determine a model quasi-diabatic
Hamiltonian HY(Q; ¢) representing N"*“ electronic states by
fitting a training set, a merit function is required to estimate the
performance of H*(Q; c), where Q is the nuclear coordinate
vector, ¢ is the fitting parameter vector. For the approach of
interest here the training set is based on energies, energy
gradients and energy difference scaled derivative couplings
obtained from ab initio determined adiabatic electronic wave
functions. The existing fitting schemes based on this
approach®' ™ share a common adiabatic merit function
£,4(c), that is

M
eu(e) = 2 wlp 1EAQ; o) — E(Q)I
i=1

+ IVH{(Q;; ©) — VHIY(Q)II] W

4540

where E is the N vector of energies, p is a scaling factor
accounting for the difference in the units between E and VH, w
is the fitting weight (there are different ways to pose w; for
simplicity here, we use one weight per geometry), M is the
number of geometries contained in the training set, superscripts
d and ab indicate coming from H? or ab initio, subscript a is short
for adiabatic, and F denotes the Frobenius norm. Here

H*(q, Q)li; (9, Q)) = E*(Q)lig(q, Q)
[VH;];(Q) = (i;(q, QIVH(q, Q)lj; (4, Q)),

where q denotes the electronic coordinates. The Frobenius
norm squared of a D; X D, X -+ X D, nth-order tensor is

(22)

(2b)

Dl DZ D»x
2 2
NAllE = E E E Af
172 n
i=1i,=1 =1 (3)

The adiabatic representation is singular along a conical
intersection seam. Any unitary transformation of the degenerate
states is still a legal adiabatic representation, and usually the
rotation defining the orthogonal®' branching space’” vectors are
chosen. However, nothing conceptually forbids using an
alternative representation. Here we introduce an alternative
merit function &(c)

M
e(c) = X, wlp* IHA(Q, o) — H*(Q)II,
i=1
+ IVHYQ; ¢) — VH(Q)I] @
i i’F
where subscript r denotes the matrix representation of the
operator. Comparing eq 4 to 1, H substitutes for E, and r replaces
a. &(c) reduces to £,4(c) when r = a choosing the adiabatic
representation or an accurate fit is obtained. If HY is accurate
enough, then the fitting error would always be negligible no
matter which representation it is defined in.

Il.LB. Composite Representation. In principle, any non-
singular representation is compatible with &(c). In practice,
when a geometry (Q,) is far away from a conical intersection
seam, the adiabatic representation works fine, so we simply leave
it; when a Q; has quasi-degenerate energy levels, however, an
alternative representation must be adopted. A desirable
alternative should be able to be

(1) Determined based solely on single point information. If
not, then it is a nonlocal problem, which is as hard as our
goal, constructing a global HY rather than a simple
subproblem.

(2) Uniquely transformed from quasi-diabatic (for HY) or
adiabatic (for H™) representation up to only trivial
changes (e.g., the multiple solutions to eqs A7 or A10, see
Appendix A). If not, then it is as ill-posed as the quasi-
degenerate adiabatic representation.

Bearing these limitations in mind, we propose an alternative
representation obtained by diagonalizing VH-VH, which is
defined as

Nstute
[((VH-VH)]]; = Z [VH]y-[VH];
k=1

(5a)

We will suppress the superscript x and subscript r when no
confusion will result.

The VH-VH composite representation is desirable in that,
first, it is a local or single point transformation and second, it is

https://dx.doi.org/10.1021/acs.jpca.0c02763
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unique except at degenerate points of VH-VH. Since it is
unlikely to have H and VH-VH both degenerate at a same
geometry, this composite representation is almost always
qualified as an alternative. Moreover, the composite representa-
tion is as valid as a previously reported partially diagonalized
representation®” and easy to implement. In the N = 2 case eq
Sa leads to the requirement
Sy7hy =0 (sb)
which is to be compared with the condition for the partially
diagonalized representation
g;h; =0 (50)
Here s;;, g;; and h;; are the average energy, energy difference and
interstate coupling gradients®" of adiabatic states i, j. A detailed
comparison of the proposed representation to the partially
diagonalized representation is presented in Appendix A.

To construct coupled potential energy surfaces of moderate
dimension, the training set is highly limited: it is not possible to
saturate an exponentially growing space with data at finite
number of geometries. Consequently, a fitted H? of moderate
dimension may poorly reproduce H* in insufficiently sampled
regions, due to incomplete knowledge of the performance of H
outside the training set. This is the situation encountered in this
work as explained in section IIL.A. The possible poor behavior of
the fitted H is similar to overfitting (the inaccurate behavior) in
machine learning:*’

(1) Overfitting happens in insufficiently sampled regions and
adding additional data points (geometries) helps.

(2) The hypothesis class is rich (the fitting expansion is large)
enough to fit the chemically important region accurately.

These similarities indicate the applicability of regularization, a
well-established cure to overfitting in machine learning, to H*
construction. The use of regularization techniques to construct
the surface fitting algorithm is described in Appendix B.

I.C. Algorithm. Our machine learning motivated algorithm
to determine H*(Q; c), which is derived in Appendix B,
minimizes a loss function

2

L(c) = e(c) + ullc - cpll2 )

where £(c) has been defined in eq 4, and u and [ (p stands for

prior) are introduced in eq B6. For Q,, ifE;‘fl(Qi) -E"(Q) =6

for all j € [1, N****), then every operator is in the adiabatic

representation; otherwise, the composite representation must be
used.

The minimization of L(c) is performed using the trust
region53 continued with the Dai—Yuan conjugate gradient.54

lll. RESULTS AND DISCUSSION

Alkoxy radicals are important participants in atmospheric and
combustion processes, and photoelectron spectroscopy is a
powerful experimental technique with which to study them.
Here we apply our fitting framework to cyclopentoxy (CsH,0)
to construct an H?, which will be employed to determine the
photoelectron spectrum of cyclopentoxide (CsHyO™) in future
work. The experiment®® has been done by Alconcel and
Continetti. Figure 1 pictures the CsHyO radical and indicates
the atom labeling used in this section.

In the Condon approximation, the photodetachment of an
electron from the negative ion C;H,O~ (the precursor)
produces neutral CsHoO (the target or residual) in a vibronic

4541

Figure 1. Cyclopentoxy 1,2’A minimum energy crossing structure,
along with (a) normalized g, the energy difference gradient vector, or
(b) normalized h, the interstate coupling vector. The principle
component of g is the scissoring of O—C1—H1, while the rocking of
O—C1—-HI1 dominates h. If we borrow the language of the C, point
group, then g is almost A’, while h is almost A”. The atom numbering
used in the text is also indicated.

state. For a low temperature experiment, the precursor resides in
its ground vibronic state, which can be adequately described by a
quadratic approximation obtained from an ab initio nuclear
Hessian. Therefore, only for the neutral residual is an HY,
comprised of 2 electronic states and 39 nuclear internal
coordinates, required.

The two-state description is necessitated by a low-lying
conical intersection which produces a Jahn—Teller type
interaction that couples the lowest two potential energy surfaces
of CsHyO. The precursor equilibrium geometry (anion
minimum, AMIN) has a higher symmetry (C, point group)
than the low energy region (C; point group). The ground state
minimum (MIN) and the Jahn—Teller saddle point (SP) are
largely contained within the branching space of the 1,2°A
minimum energy crossing (MEX). A 1-dimensional sketch of
the involved potential energy surfaces is provided in Figure 2.

Section IILA outlines the construction of H%. Section IIL.B
assesses the quality of H.

lILA. Construction of HY The electronic structure
description adopted here for CsH,O is a previously reported
MRCI with single and double excitations (MRCISD), with 6
frozen core orbitals, 15 doubly occupied orbitals, and a S-
electron 3-orbital active space. The atomic orbital basis set is cc-
pVTZ" for the oxygen and the carbons, and cc-pVDZ’* for the
hydrogens. This MRCISD is comprised of 19 302 445
configuration state functions. All electronic structure computa-
tions are performed using the COLUMBUS*****°~% suite of
programs. The zero of potential energy is taken as that of MIN.

https://dx.doi.org/10.1021/acs.jpca.0c02763
J. Phys. Chem. A 2020, 124, 4539—-4548
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Figure 2. Sketch of the potential energy surfaces involved in
cyclopentoxide (CsHyO~) photoelectron detachment. The crude
adiabatic states are labeled with the irreducible representations of C,
point group. CsHyO™ ground state minimum (anion minimum, AMIN,
1452 cm™), cyclopentoxy (CsH,;O) ground state minimum (MIN, 0
em™), 1,2°A minimum energy crossing (MEX, 515 cm™), and ring-
opening transition state (TS, 5056 cm™) are circled. Experimental
adiabatic electron affinity (AEA, 1.5 eV) is also marked.

CsHyO may experience a ring opening, which is unrelated to
the low energy photoelectron spectrum reflecting a classical
barrier of 5056 cm™" and a dramatic geometry change from the
precursor. However, the ring-opening channel complicates the
determination of vibronic states. The vertical excitation of the
precursor is only 1452 cm™, after accounting for adiabatic
electron affinity (see Figure 2), which supports the validity of
approximating the coupled CsHyO potential energy surfaces as
bound.

For bound systems, the electronic Hamiltonian matrix
elements can be well described by polynomials based on
internal coordinates. The polynomial origin is set to MEX.
There is non-negligible anharmonicity along the linear
synchronous transit path from MEX to AMIN, so we cannot
stop at a quadratic approximation. Owing to the dimensionality,
a simple quartic expansion over full 39 degrees of freedom
(123410 terms) is unaffordable, so to the quadratic approx-
imation we add a quartic expansion for only eight important
coordinates listed in the left most column in Table 1, resulting in
820 terms through quadratic order + 450 third and fourth order
terms = 1270 terms in total. Since there are three independent
elements in a 2 X 2 real symmetric H%, the total number of the
fitting parameters is 3810. The training set contains 356
geometries (equivalent to 42364 independent fitting equations),

of which 257 are within Jahn—Teller region as follows: MIN and
78 geometries around it, MEX and 78 geometries around it, SP
and 78 geometries around it, 10 along the linear synchronous
transit path from MEX to MIN, and 10 along the linear
synchronous transit path from MEX to SP. Others are around
the precursor equilibrium geometry: AMIN and 78 geometries
around it and 20 along the linear synchronous transit path from
MEX to AMIN.

This is the (limited) training set. As suggested above it is not
possible to obtain an ample training set for the 39-dimensional
CsH,yO. Without regularization the fitting algorithm, minimizing
the first term on the right-hand side of eq 6, produces potential
energy surfaces with holes. Filling the holes in the fitted surfaces
with additional points merely pushed the holes further from the
chemically important region, but the spectral simulation remains
compromised. This failure necessitated the introduction of
regularization in the surface fitting, which is including the second
term in eq 6. We constructed the prior c, for the regularization as
follows:

(1) Generate a harmonic fit using the 257 Jahn—Teller region
geometries.

(2) Determine MRCISD wave functions on an extra 9 (30)
geometries for each of the 2 (4) bond lengths (angles)
described at fourth order, then generate 6 independent
quartic 1-dimensional fits from these geometries.

(3) Determine MRCISD wave functions on an extra 106
geometries for the 2 dihedral angles described at fourth
order, then generate a quartic 2-dimensional fit from these
data.

(4) Fill the remaining elements of c, with 0.

This ¢, showed qualitatively correct behavior, further from the
chemically important region. So not unexpectedly a regulariza-
tion based on it yielded a well-behaved fitted H%. Another factor
involved in the regularization is the hyperparameter y. Our
choice is ¢ = 0.1 considering the balance between accuracy in
and out of the training set.

Before executing our fitting algorithm, the final missing parts
of eq 6, w and p must be defined. Various choices are allowed.
Here the construction used

. pab
1, lel (Ql) < Ethresh

2

i Ethresh - Eref
, else

Labry o
El (Q,) - Erzf (73)

Table 1. Representative Bond Lengths in A, Bond Angles and Dihedral Angles in Degree, for Cyclopentoxy Ground State
Minimum (MIN), 1,2*A Minimum Energy Crossing (MEX), and Jahn—Teller Saddle Point (SP), Computed from MRCISD (ab)

and the Quasi-diabatic Hamiltonian (d)

MEX“ MEX?
C1-0 1.3827 1.3829
Cl-H1 1.0914 1.0913
0-C1-C2 1122 1122
0-C1-C3 109.8 109.9
H1-C1-C2 112.6 112.6
H1-C1-C3 111.6 111.4
C5—-C4—C3—-Cl1 —43.0 —42.7
C3-C4—C5-C2 37.6 387

MIN“? MIN? Spet sp?

1.3795 1.3796 1.3803 1.3803
1.0898 1.0898 1.0918 1.0918
105.4 105.4 113.6 113.5

111.1 111.0 109.6 109.6

111.8 1119 112.9 112.9

1132 113.2 110.7 110.7

—43.0 —43.1 —41.8 —41.9
37.6 36.9 39.9 39.7
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max{IIVH;b(Qi)IIM }

max{ H;‘b(Qi)IIM}

(7b)

where E, is chosen as the 1,2*A minimum energy crossing (515
em™), E,,.q, is set to 0.003 hartree (660 cm™'), lIAlly; is the
largest absolute value among all entries of A, and max{-} denotes
the maximum among the training set. This p is simply a
convenient choice. This w comes from a straightforward idea
that, the low energy region (lower than E,,.,) is of the most
interest, while the importance of high energy region fades. We
set 5 t0 0.0001 hartree (22 cm™"). Then the algorithm described
in section II.C is used to construct H.

l1.B. Quality of H% As described in section IILA there are
356 points in the training set of which 71 are considered quasi-
degenerate. Of those points, 257 are included in the
regularization, to which are added 244 points. The root-mean-
square deviations (RMSD) for the nondegenerate data points
are

RMSD(E) = 9.419843 cm™*
RMSD(VH) = 3.643409 x 10 * au

and for the quasi-degenerate (energy difference <22 cm™") data
points we find

RMSD(H) = 4.497788 cm ™!
RMSD(VH) = 2.819638 X 10~ au

These results are quite encouraging but a clearer picture emerges
from the tables and figures which follow.

Table 1 reports the H? and MRCISD determined key internal
coordinates for MIN, MEX, and SP. The fit and ab initio
determined structures are in excellent agreement, with the
largest error in a bond distance (angle) [dihedral angle] being
0.0002 A (0.2°) [1.1°]. Table 2 extends the comparison to
harmonic frequencies for MIN and SP. Most normal modes are
well reproduced to within a several wavenumbers.

Parts a and b of Figure 3 assess the quality of H in the vicinity
of the MEX, reporting the energy and the derivative coupling
along paths in the g and h directions, with the MEX as the origin.
As shown in Figure 1, the principle component of g is the
scissoring of O—C1—H1, while the rocking of O—CI1-H1
dominates h. H? reproduces the MRCISD results quantitatively.
Parts c and d of Figure 3 report the g—h plane cross sections of
the ground state and the pair of states, respectively. These plots
are generated purely from H as they would be too expensive for
MRCISD. From Figure 3¢, we can see that MIN and SP are
largely contained within the branching space of the MEX.

To understand the behavior of the coupled potential energy
surfaces perpendicular to the branching plane of MEX we stretch
the C—O bond, which is one of the key internal coordinates and
whose direction is almost perpendicular to g and h. Figure 4a
presents the energetically accessible region (recall from Figure 2
that AMIN is only 1452 cm™ higher than MIN), within which
1%A and 2?A barely separate. If we zoom in around MEX as
shown in Figure 4b, we find that the 1,2°A degeneracy breaks
slowly but linearly, as a result of the small but nonzero projection
of the C—O bond stretching in the g — h plane. It is worth noting
that H” agrees with MRCISD quantitatively in both parts a and b
of Figure 4.

Potential energy surfaces can be rather flat along torsional
coordinates, so the resulting fits can easily produce holes outside
the training set. Although only the chemically important regions

4543

Table 2. Harmonic Frequencies in cm ™' for Cyclopentoxy
Ground State Minimum (MIN) and Jahn—Teller Saddle
Point (SP), Computed from MRCISD (ab) and Quasi-
diabatic Hamiltonian (d)

mode MIN® MIN Spe sp¢
1 60.73 54.02 —1369.43 —1427.25
2 251.98 238.97 30.38 56.86
3 374.91 357.39 260.96 252.26
4 408.05 416.06 446.43 484.22
s 583.42 583.21 527.48 530.80
6 703.91 701.64 589.55 589.95
7 843.06 834.73 775.07 779.92
8 885.08 888.70 853.04 845.15
9 906.83 909.44 872.08 874.49
10 939.63 939.26 913.46 908.65
11 961.96 961.52 958.01 955.36
12 979.65 966.07 962.13 962.26
13 1052.88 1061.19 1008.48 1006.25
14 1075.83 1079.33 1061.35 1068.27
15 1097.25 1090.95 1083.83 1084.62
16 1120.44 1135.01 1108.56 1107.32
17 1241.42 1248.99 1165.83 1174.62
18 1261.25 1264.30 1251.03 1254.35
19 1301.38 1296.51 1270.73 1275.41
20 1310.86 1307.05 1304.14 1298.46
21 1344.95 1345.99 1313.55 1309.49
22 1376.05 1368.86 1372.88 1373.87
23 1402.90 1400.57 1400.18 1401.48
24 141323 1408.98 1412.05 1419.17
25 1423.55 1423.71 1418.88 1421.50
26 1453.64 1464.22 1430.43 1438.85
27 1539.77 1538.93 1540.34 1539.84
28 1542.22 1540.66 1542.46 1542.53
29 1551.95 1551.68 1553.00 1553.17
30 1574.06 1573.44 1573.78 1573.62
31 3118.15 3119.53 3109.16 3115.57
32 3134.24 3133.59 3126.38 3130.56
33 3134.99 3139.82 3130.50 3131.98
34 3144.70 3141.96 3141.34 313841
35 3158.14 3157.48 3153.70 3154.81
36 3188.75 3189.26 3186.39 3186.60
37 3191.68 3194.80 3191.99 3192.69
38 3199.76 3203.95 3204.42 320321
39 3212.06 3210.20 3212.67 3208.30

have to be fitted quantitatively, holes may appear due to inexact
polynomial cancellation. To validate the globally bound
behavior of HY, we twist the dihedral angle C4—-C5—-C2—Cl.
Figure Sa reports the coupled potential energy surfaces +60°
from the 1,2 A MEX, which includes points a dramatically long
way from the training set. H? always behaves reasonably. If we
zoom in around the MEX as shown in Figure 5b, we find that H*
is best between —30° and 0°, a much broader range than the
training set which extends, +5°, from the 1,2°A MEX.

IV. CONCLUSIONS

We have presented a fitting framework to construct quasi-
diabatic Hamiltonians which accurately represent ab initio
adiabatic electronic structure data and include the effects of
conical intersections for systems of moderate dimension. This
framework consists of a general and flexible merit function along
with an alternative representation to avoid problematic quasi

https://dx.doi.org/10.1021/acs.jpca.0c02763
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regularization term is included, this fitting framework success-
fully constructs coupled 1,22A potential energy surfaces for
cyclopentoxy, of sufficient accuracy to describe cyclopentoxide
photoelectron detachment. The photoelectron spectrum of
cyclopentoxide will be determined employing the constructed
H? in future work.

B APPENDIX A

Derivation of Equations 5b and 5c): The Composite
Representation and Comparison to the Partial
Diagonalization Approach
As noted in the main text, partial diagonalization is a unique
unitary transformation of the eigenstate representation of
electronic Hamiltonian H that avoids fitting the energy
difference scaled derivative coupling data near a conical
intersection. In this appendix we compare this approach with
the composite representation reported in section ILB.

Let U = exp(®), where © is a skew symmetric matrix, be the
N transformation that transforms H, that is

Hy, = Ey, (A1)
We focus on the 2-state case where
l//iz cos (9,1Z —sin 9; 7
z = . z z [/I
Y sin 917 cos 6’1-]- i (A2)

where superscript z can be pd or cr, denoting the partially
diagonalized representation or the composite representation.
The transformed gradients are

VH? = exp(—@)w}jvmwi v) exp(©)

=exp(-0)| g, or, |exp(©)
VH; VH; (A3)
Define
1
sij = E(VHii + VI‘I}]) (A4a)
-1 VH. — VH,
g; = 5 (VH; - VH,) (Adb)
h; = VH, (Adc)
Using eq A2 in eq A4 gives
5 =5 (As2)
g; = cos 291-;-Zgi]_ + sin 29i]-zhl-j (ASb)
h; = cos 20;h; — sin ?‘Hifgi;‘ (Asc)

A well-established choice to determine Hf}d is to require”’

pd g pd _
&; hy” =0 (A6)

The partial diagonalization is the extension of eq A6 to an
arbitrary number of states, letting all state pairs satisfy g%}d 1 hﬁ-d
provided the energy separation is less than a preassigned
threshold. eq A6 leads to

2 A pd _ . pd
(Ilh, I IIgij ||2 ) sin 40} 2, h;; cos 40 (A7)
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which would always yield unique 6“1;‘1 (up to a several 7/4, in total
8 different transforms), unless ||h,4j||22 - IIgthIZ2 =gjh; =0.
Alternatively using eq 5

2 2
IVH, I, + IVH, I > (VH, + VH,)-VH,

VH-VH = R R
(VH, + VH]-]-)VHU- IIVH]-]-II2 + IIVH,-}-II2
(A8)
and noting that
(VH,; + VHI.].)'VH,.]. = 2s;°hy (A9)

We may choose a 6 so that (VH-VH) is diagonal, i.e. si L
hy, that is

o . . cr
sjhy cos 20,7 = s; g; sin 20;

(A10)

Like eq A7, eq A10 would always yield unique 65 (up to a
several 7z/2, so in total four different transforms), unless sihy =
s;g; = 0. From the properties of eqs A7 and A10, we can tell that
composite representation is as valid as the partial diagonalization
in 2-state case. The more general case of an arbitrary number of
states”*”"? will be the subject of a future work.

It is worthwhile to note that the composite representation is
very easy to implement. As a Hermitian matrix, VH-VH can be
diagonalized using standard routines. The derivative of the
eigenbasis of VH-VH with respect to a parameter ¢ (e.g. the
fitting parameter) can also be conveniently evaluated in a
standard way. Let

(VH-VH)g, = A, (A1)
The derivative of ¢ over some parameter c is
9
(ol 2l (elzvavmly)
ol—|e) =
oc | A =4 (A12)

B APPENDIX B

Derivation of Equation 6: The Regularization

To select an appropriate regularization for chemical use,” we
start from the origin of regularization: Bayesian statistics. From a
Bayesian perspective,” fitting is estimating a probabilistic model
from observed data by maximizing P(c), the posterior
probability of the fitting parameter vector ¢

P(c) = [ p(dH™(Q), VE™(Q), Q)

i=1

=[1rE" @), VH(Q)IQ, )p(c)

i=1

(B1)

where p(alb) is the conditional probability of a given b, p(c) is
the prior probability of c. It will be more convenient to use log
form

M
2 log p(Hfb(Qi); VHrab(Qi)

i=1

argmax P(c) = argmax
(4 c

1Q,, ¢) + M log p(c)

(B2)

where the final term will provide the regularization, provided we
have some prior knowledge from p(c). If we have no prior

https://dx.doi.org/10.1021/acs.jpca.0c02763
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knowledge concerning ¢, then we are equivalently applying
uniform p(c) to eq B2

M
argmaxP(c) = argmax Z log p(Hfb(Qi), VH,“b(Qi)

c i=1
|Qi! C)

In order to reduce Bayesian parameter estimation to familiar
least square fit, a Gaussian model is adopted for H#*(Q;) and

VH(Q)
p(H"(Q), VH(Q)IQ, ¢)
= ae_”“’i[/'2 IH(Q¢)-H"(Q) ”i +IVH(Q,¢)-VH"(Q) ”i]
(B4)

where a is a renormalization factor, o is a width constant, then we
arrive at

(B3)

argmax P(c) = argmin &(c)

(Bs)

where £(c) has been defined in eq 4.
In common cases, we do have some understanding of c. As
shown in section III, we can then come up with a prior

estimation ¢, via various approaches, e.g.

(1) Use a local harmonic approximation.

(2) Fit only a few selected degrees of freedoms.

(3) Simply let ¢, = 0, as what is usually done in L; and L,
regularization.

It is not new to utilize chemical experience in a prior
probability manner. The information theory”>~”® of Levine and
Bernstein provides a well-known example. To make use of ¢, in
surface fitting, a nonuniform p(c) should be placed in eq B2. The
common forms of p(c) are Laplace distribution, Gaussian
distribution, etc. Here we have used Gaussian forms owing to the
simple quadratic regularization term it will produce

p(C) — Ae—ﬂo‘llc—cpllz (B6)

where A is a renormalization factor, u reflects our confidence in
¢, over the observed training set. Plugging eqs B4 and (B6) into
B2), we obtain

argmax P(c) = argmin[e(c) + pllc — cpllzz]
= argmin L(c)
¢ (B7)

where L(c) = e(c) + ullc — cpllzz. As a hyperparameter adjusting
the strength of regularization, we suggest tuning p on a
development set which

(1) Does not overlap with the training set.

(2) Consists of geometries whose ground state energies are as
high as the total available energy in dynamics.

(3) Has areasonable size. Although it needs not to be large, at
least two geometries along positive and negative
directions of each coordinate should be ensured.

It is worthwhile to note the relationship between regulariza-
tion and constraint. Comparing to constrained optimization,
minimizing L(c) allows a slight fluctuation®” of ¢ around S

) A
argminL(c) — R ——
c H (B8)
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where 4 is the Lagrange multiplier to enforce ¢ = c,. ¢, reflects
chemical experience, so on one hand H*(Q; cp) ought to be
qualitatively correct, which means ¢ should not deviate from c,
too much, yet on the other hand, HY(Q; cp) would not
necessarily reproduce H**(Q) quantitatively; i.e., it would be
inappropriate to enforce ¢ = ¢, In conclusion, it is more
reasonable to utilize chemical experience (c,) in a regularization

manner, rather than an exact constraint to be enforced.
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