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Abstract

Applications are migrating en masse to the cloud, while ac-
celerators such as GPUs, TPUs, and FPGAs proliferate in the
wake of Moore’s Law. These trends are in conflict: cloud ap-
plications run on virtual platforms, but existing virtualization
techniques have not provided production-ready solutions
for accelerators. As a result, cloud providers expose accel-
erators by dedicating physical devices to individual guests.
Multi-tenancy and consolidation are lost as a consequence.

We present AvA, which addresses limitations of existing
virtualization techniques with automated construction of
hypervisor-managed virtual accelerator stacks. AvA com-
bines a DSL for describing APIs and sharing policies, device-
agnostic runtime components, and a compiler to generate
accelerator-specific components such as guest libraries and
API servers. AvA uses Hypervisor Interposed Remote
Acceleration (HIRA), a new technique to enable hypervisor-
enforcement of sharing policies from the specification.

We use AVA to virtualize nine accelerators and eleven
framework APIs, including six for which no virtualization
support has been previously explored. AvA provides near-
native performance and can enforce sharing policies that
are not possible with current techniques, with orders of
magnitude less developer effort than required for hand-built
virtualization support.

CCS Concepts «Software and its engineering Virtual
machines; Operating systems; Source code generation.
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Figure 1. The number of accelerators (discrete GPUs and Al ac-
celerators) and APIs released since 2010 compared to the num-
ber of accelerators officially supported by production hypervisors
(VMware ESX, Citrix XenServer, and Microsoft Hyper-V). This data
was drawn from release notes and specification sheets.

1 Introduction

Applications are migrating to the cloud in search of scalabil-
ity, resilience, and cost-efficiency. At the same time, silicon
scaling has stalled, precipitating a wave of new specialized
hardware accelerators such as TPUs [53] and IPUs [14], and
on-demand GPU and FPGA support from cloud providers.
Accelerators have driven the success of emerging applica-
tion domains in the cloud [9, 10], but cloud computing and
hardware specialization are on a collision course. Cloud ap-
plications run on virtual infrastructure, but practical virtu-
alization support for accelerators has yet to arrive. Cloud
providers routinely support accelerators [2, 3, 11, 12, 17, 18],
but do so using PCle pass-through techniques that dedi-
cate physical hardware to VMs, despite the wealth of tech-
niques known in the literature [24, 38-43, 63, 76, 84, 87, 90,
94, 95, 97, 98, 105]. This sacrifices the consolidation that
drives their business, and leads inevitably to hardware under-
utilization [19, 70, 72, 100].

The problem is increasingly urgent, as hypervisors have
not kept pace with accelerator innovation. Figure 1 shows
the evolution of accelerator framework APIs, accelerator ar-
chitectures, and hypervisor support for them over the last
decade. Specialized hardware and frameworks emerge far
faster than hypervisors support them and the gap is widen-
ing. Many factors contribute to this trend, but lack of demand
is not among them, evinced by the wide variety of accel-
erators currently available from cloud providers [2, 3, 11-
13, 17, 18]. The challenge is technical: hypervisor-level accel-
erator virtualization requires substantial engineering effort
and the design space features multiple fundamental trade-
offs for which a “sweet spot” has remained elusive.

Practical virtualization must support sharing and isolation
under flexible policy with minimal overhead. The structure of
current accelerator stacks makes this combination extremely
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difficult to achieve. Accelerator stacks are silos (Figure 2) com-
prising proprietary layers communicating through memory
mapped interfaces. This opaque organization makes it im-
practical to interpose intermediate layers to form an efficient
and compatible virtualization boundary (§2.1). The remain-
ing interposable interfaces leave designers with untenable
alternatives that sacrifice critical virtualization properties
such as interposition and compatibility (§2.3).

This paper describes AvA, which addresses the funda-
mental limitations of existing accelerator virtualization tech-
niques. AvA combines API-agnostic para-virtual stack com-
ponents with a DSL (Domain-Specific Language) and a com-
piler to automate construction and deployment of guest
libraries, hypervisor-level resource management, and API
servers. AvA uses an abstract para-virtual device to serve as a
transport endpoint for forwarding the public APIs of vendor-
provided frameworks (e.g. CUDA or TensorFlow). Unlike
currently popular user-space API remoting solutions [5, 40,
51, 79, 97], AVA preserves hypervisor-level resource man-
agement and strong isolation using a novel technique called
Hypervisor Interposed Remote Acceleration (HIRA). HIRA for-
wards API calls over hypervisor-managed communication
channels, inserting automatically-generated resource man-
agement components at the transport layer to enforce poli-
cies from the DSL specification. Critically, automation from
AvVA enables hypervisors to keep up with fast accelerator
evolution: automatic generation of components dramatically
shortens the development cycle. As Figure 1 suggests, a solu-
tion that tracks API framework evolution can track hardware
evolution as well.

AvVA supports a broad range of currently-shipping com-
pute offload accelerators. We virtualized nine accelerators
including NVIDIA and AMD GPUs, Google TPUs, and In-
tel QuickAssist. Virtualizing an API framework using AvA
requires modest developer effort: a single developer virtu-
alized OpenCL in a handful of days, a stark contrast to the
person-years of developer effort for VMware’s SVGA 1I [38]
or BitFusion’s FlexDirect [5]. AVA provides near-native per-
formance (e.g., 2.4% slowdown for TensorFlow and 5.6% for
CUDA), enforces isolation and fair sharing (§2.1) across
guests, and supports live migration. AvA is available at
GitHub utcs-scea/ava. We make the following contributions:
e We demonstrate feasibility of automatically constructed

virtual accelerator support, using a single technique to

support many architectures, APIs, versions, and policies.

e We introduce Hypervisor Interposed Remote Acceleration
(HIRA) to enable hypervisor-enforced isolation and shar-
ing policies unachievable with current SR-IOV and API
remoting systems (§3).

e We describe a novel DSL, Larrs, for describing API func-
tions, resources, and policies to enable automatic construc-
tion of virtual stacks starting from native API header files.

e We evaluate AVA on nine accelerators showing low effort,
strong properties, and good performance (§6).
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2 Background

Cloud providers currently support compute accelerators
using PCle pass-through, which dedicates the device ex-
clusively to a single guest. Despite evidence of accelera-
tor under-utilization [19, 21, 70, 72, 100], and abundant re-
search [19, 70, 72, 100, 105, 109], no practical alternative yet
exists. This section provides background to explain this trend
and motivates AvA’s design.

2.1 Virtualization Properties

Virtualization is a huge area—see [32] for comprehensive
treatment. We focus on properties critical for accelerator
virtualization: interposition, compatibility, and isolation.
Interposition. Virtualization decouples a logical resource
from a physical one through an indirection layer, intercept-
ing guest interactions with a virtual resource and providing
the requested functionality using a combination of software
and the underlying physical resource. Thus, virtualization
works by interposing an interface, and changing or adding
to its behavior. Interposition is fundamental to virtualiza-
tion and provides well-known benefits [98]. The choice of
interface and the mechanism for interposing it profoundly
impacts the resulting system’s practicality. Inefficient inter-
position of an interface (e.g. trapping frequent MMIO access)
undermines performance [90, 107]; incomplete interposition
compromises the hypervisor’s ability to enforce isolation.
Compatibility captures multiple related dimensions, in-
cluding robustness to evolution of interposed interfaces and
adjacent stack layers, and applicability across multiple plat-
forms or related devices. For example, full virtualization
of a accelerators’s hardware interface (§2.3) has poor com-
patibility in that it works only with that device. However,
it has good compatibility with guest software, which will
work without modification. Current accelerator virtualiza-
tion techniques reflect a compromise between these two
forms of compatibility.

Isolation. Cross-VM isolation is a critical requirement for
multi-tenancy: when a resource is multiplexed among mutu-
ally distrustful tenants, tenants must not be able to see/alter
each other’s data (data isolation), or adversely affect each
other’s performance (performance isolation). A poor choice
of interposition mechanism and/or interface limits the sys-
tem’s ability to provide these guarantees: e.g., API remot-
ing [5, 16, 40] can have poor isolation (§2.3) because the
hypervisor is bypassed.

2.2 Accelerator Silos

Accelerator stacks compose layered components that include
a user-mode library to support an API framework and a dri-
ver to manage the device. Vendors are incentived to use
proprietary interfaces and protocols between layers to pre-
serve forward compatibility, and to use kernel-bypass com-
munication techniques to eliminate OS overheads. However,
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Figure 2. An accelerator silo. The public API and the interfaces with
striped backgrounds are interposition candidates. All interfaces
with backgrounds are proprietary and subject to change.

interposing opaque, frequently-changing interfaces commu-
nicating with memory mapped command rings is impractical
because it requires inefficient techniques and yields solutions
that sacrifice compatibility. Consequently, accelerator stacks
are effectively silos (Figure 2), whose intermediate layers
cannot be practically separated to virtualize the device.

Current support. Most current hardware accelerators fea-
ture some hardware support for virtualization: primarily for
process-level address-space separation, and in a small hand-
ful of cases, SR-IOV (§2.3). A central premise of this paper
is that hardware support for process-level isolation could
suffice to support hypervisor-level virtualization as well, but
the siloed structure of current accelerator stacks prevents it.

2.3 Existing Accelerator Virtualization Techniques

PClIe pass-through is the current de facto standard tech-
nique for exposing an accelerator to guest VMs. It works by
dedicating the hardware interface directly to the guest. Con-
sequently, it does not interpose any interface. All benefits of
virtualization are lost, but native performance is preserved.
Full virtualization (FV) [87, 90, 94] interposes the hard-
ware interface (D in Figure 2). For accelerators, this interface
is memory mapped I/O (MMIO), necessitating trap-based in-
terposition (e.g. using memory protection or deprivileging),
which devastates performance (e.g., 100X or more [90, 107]).
Accelerator hardware interfaces are proprietary and device-
specific, so FV has poor compatibility, even across different
devices of the same type (e.g. AMD vs NVIDIA GPUs).
Mediated pass-through (MPT) is a hybrid of pass-through
and full virtualization. MPT [73, 94, 102] uses pass-through
for data plane operations, and provides a privileged control
plane interface for sensitive operations (D in Figure 2). MPT
can preserve some of the raw speedup of acceleration and
allows guests to use native drivers and libraries. However,
limited interposition limits a hypervisor’s ability to effec-
tively manage resource sharing. More importantly, hardware
support is required and, to our knowledge, Intel integrated
GPUs are the only accelerators to support MPT [94].
Para-virtualization (PV) creates an efficiently interpos-
able interface in software and adjusts adjacent stack layers
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to use it, rather than interposing an existing interface in the
stack. This necessitates a custom driver and library in every
supported guest OS for the virtual device. The technique is
powerful because enables encapsulation of diverse hardware
behind a single interposable interface. However, compatibil-
ity is compromised: guest library and OS modifications are
required, and the para-virtual device interface must be main-
tained as interfaces evolve. For example, VMware’s SVGA
II [38] encapsulates multiple GPU programming frameworks,
but keeping up with the evolution of those frameworks has
proved untenable: SVGA remains multiple versions behind
current frameworks [22, 23] (e.g., DirectX 12 [8]).

SR-IOV. Accelerators with PCle SR-IOV [60] present multi-
ple virtual devices (VFs) to system software. SR-IOV provides
an interface and protocol for managing VFs, but the device
vendor must implement any cross-VF sharing support (E in
Figure 2) in silicon. The technique can provide strong virtu-
alization guarantees [36, 37], but hardware-level resource
management is inflexible and unevolvable: current imple-
mentations are trivially vulnerable to fragmentation and
unfairness pathologies that cannot be changed. Moreover,
evidence is scant that broad SR-IOV support will emerge
for accelerators: only two current GPUs support it [4, 46],
none of the TPUs we evaluate support it; and SR-IOV inter-
face TP blocks from FPGA vendors (used by [47, 76, 96, 108])
do not implement resource management. We do not expect
this to change any time soon: SR-IOV requires significant
engineering effort vendors are not incentivized to invest.
API Remoting [30, 39, 41, 43, 44, 63, 64, 79, 101, 103] inter-
poses the top of the stack, between application and frame-
work library (A in Figure 2). Similar to system call inter-
position [25, 26, 59, 91], API calls are intercepted and for-
warded to a user-level API framework [84] in an appliance
VM [97], or remote server [40, 56]. Limited interposition
frequency, batching opportunities [40] and high-speed net-
works [5, 7] reduce overheads, making it appealing to in-
dustry. Dell Xaa$ [51], BitFusion FlexDirect [5], and Google
Cloud TPUs [13] use it to support GPUs, FPGAs, and TPUs.
However, API remoting compromises compatibility if multi-
ple APIs or API versions must be supported. Moreover the
technique bypasses the hypervisor, giving up the interpo-
sition required for hypervisor-enforced resource manage-
ment. Our experiments with commercial systems like BitFu-
sion FlexDirect [5] show vulnerability to massive unfairness
pathologies (up to 88.1%) that AvA’s hypervisor-level en-
forcement avoids (§6.5).

3 Design

For accelerator silos, the only stable and efficiently interpos-
able interface is the framework API, so we focus on tech-
niques to recover or compensate virtualization properties
lost by API remoting: interposition and compatibility. Inter-
position can be recovered by using hypervisor-managed for-
warding transport, creating an interface at which to enforce
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Figure 3. Overview of AVA.

resource management policies. AVA uses a novel technique
called Hypervisor Interposed Remote Acceleration (HIRA) to
achieve this. HIRA presents guest VMs with an abstract vir-
tual device with MMIO Base Address Registers (BARs), but
this device is not a virtual accelerator, but an endpoint that
routes communication through the hypervisor.

Using hypervisor-managed transport recovers interposi-
tion, but complicates compatibility and introduces engineer-
ing effort: HIRA requires custom guest libraries, guest dri-
vers, and API servers for each OS and API, and API-specific
resource-management code in the hypervisor. AvA mitigates
this by automatically generating code to implement HIRA
components (§4), which introduces the need to specify API
semantics and policies beyond the ability of existing Inter-
face Description Languages (IDLs) [61, 68].

AVA targets compute offload accelerator APIs, such as
OpenCL, CUDA, and TensorFlow, which control an accelera-
tor explicitly through data transfer and task creation inter-
faces. AVA consists of API-agnostic para-virtual stack compo-
nents to implement transport and dispatch for API remoting,
API-specific components that interpose and execute the API
functions, and a compiler, CAVA, which generates the API-
specific components from a specification of the APL. The API
specification is written in a new high-level specification lan-
guage, Lapis. Figure 3 shows the work-flow to support a new
API with AvA (§3.2) and the AvA stack. The API-agnostic
components may be deployed in the hypervisor or in an
appliance VM to support type I and II hypervisors [78].

3.1 AvA Components

Figure 3 provides an overview of the interaction between
the various components in a AvA-generated design.

The guest library is generated by CAvA from the Lapis
specification. It provides the same symbols as the vendor
library for the application to link against. The guest library
intercepts all API functions called by guest applications, mar-
shals function arguments and implicit state, and forwards
the call through the transport channel for remote execution.

The guest driver interacts with the virtual transport de-
vice exposed to the VM and provides a transport channel
endpoint in the VM. CAVA generates a separate transport
driver instance for each API framework.

The virtual transport device is an abstract device ex-
posed to the guest to forward API calls between the guest

and the API server. The virtual transport device exposes a
command queue interface. It is API-agnostic, and its purpose
is to provide an interposable interface for the hypervisor.

The router is an API-agnostic extension to the hypervi-
sor that implements AvA’s interposition logic. The router
performs security checks and enforces scheduling policies
on forwarded API calls according to the LAp1s specification.

The API server is an API-specific user-space process gen-
erated by CAVA. It runs either in an appliance VM (with PCle
pass-through access to the physical device) or in the host and
executes forwarded calls on behalf of the guest application. A
given API server is dedicated to a single guest process, lever-
aging process-level isolation when the hardware supports it
to guarantee fault and device context isolation.

3.2 Developer Work-flow

AvA’s API-agnostic components (§3.1) must be implemented
for each hypervisor, along with the guest drivers needed for
each supported guest OS. The development effort to build
them is amortized across all of the accelerators and frame-
work APIs supported.

AvA’s API-specific components are generated from LAPIS
by CAVA to plug into AvA’s API-agnostic components. Fig-
ure 3 shows the work-flow to support a new API with AvA.
First, CAVA automatically generates a preliminary LApIs
specification from the unmodified header file. The program-
mer refines the specification with guidance from CAVA;
adding information missing from the header file, e.g., buffer
sizes or implicitly referenced state. Once the developer is
satisfied with the API specification, she invokes CAVA to
generate code for the API-specific components and the cus-
tomized driver. CAVA also generates deployment scripts.
When a new version of an API is released, the same process
can be used, starting with the previous specification.

3.3 Communication Transport

AVA relies on an abstract communication channel that de-
fines how calls, and their associated data buffers, and results
are sent, validated, and received. The channel provides an in-
terposition point to track resources and invoke policies from
the Lapi1s specification. Using an abstract interface allows
hypervisor developers to choose the best available commu-
nication transport (e.g., shared memory FIFOs vs RDMA).
While the channel explicitly requires that all communica-
tion between the guest and the API server must take place
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through the router, no assumptions are made about the actual
location of components, which may be disaggregated.

AvVA communication is bidirectional: it must support func-
tion callbacks from the API server to the guest library, be-
cause callbacks are fundamental in many frameworks, e.g.,
TensorFlow, and must be run in the guest VM. In AVA, the
transport handles two types of payloads: commands which
contain opaque arguments and metadata for calls (e.g., thread
ID and function ID) and data which contains buffers refer-
enced from the arguments (e.g., bulk data).

3.4 Sharing and Protection

AVA re-purposes process-level isolation mechanisms (e.g.
memory protection) provided by the accelerator silo when it
is available to simplify supporting cross-guest isolation. We
anticipate that emerging accelerators will support process-
level isolation, as all GPUs do today. For accelerators that
do not natively support process-level isolation, AVA can
still share device, relying on semantic information from ad-
ditional Lap1s descriptors to generate code that supports
coarse-grain time-sharing, leveraging the same state capture
techniques we use for VM migration (§4.5). This solution ad-
mits no concurrency between tenants, but enables protected
sharing for devices which cannot otherwise be shared.

3.5 Scheduling and Resource Allocation

AVA can enforce policies (e.g., rate limiting) on shared re-
sources, e.g., device execution time, by tracking resource
consumption and invoking policy callbacks that change how
API calls from guests (§5.2.2) are scheduled. The developer
provides policy callbacks in the LAPis specification, and uses
descriptors to identify how resources are consumed. When
such a descriptor is unavailable, AvA falls back to coarse-
grained estimation of resource utilization, for example, using
wall-clock time to approximate device execution time.

3.6 Memory Management

To support memory sharing on devices with onboard mem-
ory, LAPIs resource usage descriptors enable generated code
to track the device memory allocated to each guest VM. Re-
source accounting code is auto-generated from semantic
knowledge of the device memory allocation APIs (such as,
memory types and how to compute size of buffer) provided
by descriptors in the API specification.

4 CAvVA and Laris

The AvA toolchain comprises a language (LAPIs), a compiler
(CAvVA), and a runtime library. CAvA accepts code written in
Laris (Low-level API Specification), and generates C source
for an API-specific remoting stack that implements the HIRA
design. Laris extends C declarations with descriptors to
express a broad range of semantic information necessary
to generate that stack. This includes information captured
by traditional IDLs (e.g., function parameter semantics and
data layout), as well as information required for accelerator
virtualization that is not expressible in existing IDLs.
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To understand how AVA relates to other IDL-based API-
remoting techniques, it is useful to compare it to the Sun
Network File System [82]. NFS supports remote access to the
the file system using an IDL to specify API semantics and a
compiler to automate code generation. NFS and AvA share
a number of key challenges. Both must marshal and transfer
function calls and arguments, handle asynchrony, refactor
functionality and (potentially implicit) state across newly
decoupled components. Both must preserve the resource
management and sharing support expected for a resource
managed by system software.

However, key differences between AvA and NFS arise
around additional virtualization requirements and limita-
tions in the design space. For example, virtualization requires
that AvA be able to capture of sufficient API-level state to
enable features like live VM migration. Key techniques used
by NEFS to deal with implicit state and resource management
are impractical AvA. NFS mostly eliminates implicit state
by altering the API, e.g. replacing functions using implicit
seek pointers with stateless read/write functions and off-
set parameters. To deal with resource management, sharing,
and compatibility challenges, NFS introduced the VFS layer,
providing an application-transparent interposition point at
which to centralize or delegate that functionality using code
written to run at that layer. AvA cannot alter APIs, so it ex-
poses language-level features for dealing with implicit state.
AVA cannot introduce new abstraction layers due to vendor
opacity and API diversity: so the resource management and
sharing policy are expressed at the language layer as well.

4.1 Lapis

A developer writing a LAPIs specification must be concerned
with capturing and expressing API semantics that fall roughly
into four categories: argument and data marshalling, asyn-
chrony, explicit and implicit state, and resource manage-
ment policy. To illustrate how CAVA, LAP1s, and the runtime
library, work together to address these concerns, we will
use a running example that uses the CUDA driver API in
an idiomatic scenario. The example allocates GPU mem-
ory (cuMemAlloc), makes asynchronous calls using CUDA
streams to transfer data before (cuMemcpyHtoDAsync) and
after (cuMemcpyDtoHAsync) launching a kernel (cuLaunch-
Kernel), and synchronizes the stream (cuSynchronize-
Stream). The Laris source for the four of the five CUDA
API functions required is shown in Figure 4. We elide source
for cuMemcpyHtoDAsync because it is conceptually similar
to cuMemcpyDtoHAsync.

Lapris extends C types and function prototypes with infor-
mation to serialize arguments and return values, and manage
user-defined metadata on API-level objects such as GPU ker-
nels or memory buffers. The latter can be used to specify
the higher-level semantics and behaviors required for virtu-
alization such as how to capture, transfer, and synchronize
implicit state. Descriptors are embedded in Lapis function
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continuous_rc device_memory;
instantaneous_rc kernel_invocations;
policy("policy_kern.c");
struct fn_arg_info {
// CUfunction type information, filled by other LAPIS code
int fn_argc;
char fn_arg_is_handle[64];
size_t fn_arg_size[64];
i
declare_metadata(struct fn_arg_info);
buf_registry async_DtoH;
type(CUdeviceptr) { handle; }
cuMemAlloc(CUdeviceptr *pp, size_t size) {
allocates_rc(device_memory, size);
argument (pp) { out; element { obj_record; allocate; } } }
cuMemcpyDtoHAsync (void* dst, CUdeviceptr src,
size_t size, CUstream stream) {
async; success(CUDA_SUCCESS);
argument (dst) { no_copy; buffer(size); lifetime_manual; }
register_buf(async_DtoH, stream, dst, size); }
cuLaunchKernel (CUfunction f,
uint gridDimX, uint gridDimY, uint gridDimZ,
uint blockDimX, uint blockDimY, uint blockDimZ,
uint sharedMemBytes, CUstream hStream,
void **kernelParams, void **extra) {
async; consumes_rc(kernel_invocation, 1);
argument (kernelParams) {
in; buffer(metadata(f)->fn_argc);
element {
if (metadata(f)->fn_arg_is_handle[index]) {
type_cast(CUdeviceptr*); buffer(1);
} else {
type_cast(voidx); buffer(metadata(f)->fn_arg_size[index]);
11l
argument (extra) { in; ... } }
cuStreamSynchronize (CUstream stream) {
contextual_argument void** bufs = get_bufs(async_DtoH, stream);
argument (bufs) {
in; buffer(get_n_bufs(async_DtoH, stream));
element {
buffer(get_buf_size(async_DtoH, stream, index));
out; deallocate; } } }

Figure 4. An example Lar1s description for the CUDA driver APL
Code elements in bold blue are Lapis keywords, elements in italic
green are runtime library calls, elements in gray are function proto-
types incorporated by CAVA from the original CUDA header file,
and the remaining code is programmer-provided Laris. The vari-
able index is a Lapis builtin which provides the index of the current
element of a buffer. The specification of the argument extra to
cuLaunchKernel is complex due to alignment and padding, and
is elided from this example for clarity. The file policy_kern.cis
shown in Figure 7.

declarations, can be flexibly scoped (Table 1), and applied
to values (Table 2) or functions (Table 3). Descriptors can
be conditional using an if statement. In the following dis-
cussion of LApis descriptors, we use the term “this function”
to refer the function being described or the function whose
argument is being described.

Marshalling and Managing Values and Objects. LAp1s
value descriptor usage is illustrated by the CUDA function
cuMemcpyDtoHAsync defined in Figure 4 (Line 16). The ar-
gument src is only used by the application through API
calls (AVA does not currently support UVM, see §4.7 for de-
tails). This is true of the type CUdeviceptr in general, so it is
expressed on line 12 with type(CUdeviceptr){ handle; }.
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Scope descriptors in this scope apply to ...

argument (x) {
descriptors }

the argument x, called the described argument.

element { the referenced value, called the described value; e.g., if

descriptors }  applied to an argument x, the descriptors inside apply
to *x.

type(ty) { all values of type ty.
descriptors }

if (pred) { descriptorsl apply only if pred is true; descriptors2
descriptorsl apply otherwise.

} else {

descriptors2 }

Table 1. Lapis syntax which values descriptors apply to and when
those descriptors apply.

Type The value is ...

type_cast(ty) type ty and should be cast in the generated code.

handle an API object handle.

buffer(size) a buffer of size elements.

in an input and should be copied from the application to
the API server before the call.

out an output and should be copied from the API server
to the application after the call.

no_copy a buffer which should not be copied. Useful when com-

bined with lifetimes.
a buffer which need only exist in the API server for
the length of the call. (default)

lifetime_call

lifetime_manual a buffer which should exist in the API server until it is
explicitly deallocated.

allocate a buffer which calls to this function allocate.

deallocate a buffer which calls to this function deallocate.

zerocopy a buffer which should be in zero-copy memory.

API Object Recording

obj_record This call should be recorded and associated with the

described value. The recorded calls capture the implicit
state of the value.

Add a dependency between the described value and
obj, enabling obj to be recreated if the described value
is needed.

Attach state serialization and deserialization (write
and read, resp.) functions to the described value. The
serialized data captures the explicit state of the value
and may be used in combination with implicit state.

obj_depends_on(
obj)

obj_state_cbs(
write, read)

Table 2. Laris descriptors for specifying values and objects.

The handle descriptor enables AVA to generate code that
implements an indirection layer for accessing it. The argu-
ment dst is a pointer to an application buffer of length size;
this is expressed on line 19 with argument (dst){ no_copy;
buffer(size); } which selects the argument src and speci-
fies it as a buffer of size length. The buffer will be copied
back to the application later so it is no_copy here. Because
the function is asynchronous (see below), the buffer for src
in the API server must exist at least until the copy has com-
pleted: the descriptor 1ifetime_manual on line 19 states that
the specification will indicate when the buffer is no longer
needed using deallocate (line 42).

Asynchrony and Implicit State. LaPis supports descrip-
tors for expressing semantics that arise due to asynchrony.
Most commonly, these are expressed by applying descriptors
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to functions. For example, cuMemcpyDtoHAsync in Figure 4 is
asynchronous and can return CUDA_SUCCESS before the copy
completes; this is expressed using async and success on
line 18. Asynchrony can also create implicit API-level state
whose semantics must be expressed. cuStreamSynchronize
must copy buffers back to the guest if there are outstanding
asynchronous copies. Those buffers may not be updated
in the API server until the call completes, so copy-back
must be delayed to this point. This requirement is expressed
by passing dependent buffers using contextual_argument
along with the normal explicit arguments. The LaPr1s code
on line 37-42 uses this technique along with runtime library
functions to track buffers dependent on ongoing asynchro-
nous copies. AVA supports zero-copy transport of buffers: if a
buffer allocation is described with zerocopy, CAVA allocates
zero-copy memory for the application-side buffer.
Resource Management and Policy. Lapis supports de-
scriptors to express the resources consumed by API functions.
Resources may be either instantaneous or continuous. Instan-
taneous resources are consumed by an API function imple-
mentation only once, e.g., by executing a GPU kernel upon
request. Accounting works by measuring resources used at
each function invocation. In general, instantaneous resources
are used to control throughput in some way; e.g., limiting
the amount of compute resource a client is allowed to use in
a fixed interval of time. Continuous resources capture the
ability an APIimplementation to assign a resource to a client
for a period of time. Accounting for continuous resources
tracks resources assigned to each client/VM. For example,
GPU memory is a continuous resource limited by available
physical memory, which needs to be allocated according to
a sharing policy that manages cross-VM contention for it.

Figure 4 uses descriptors to track kernel calls (cuLaunch-
Kernel) and GPU memory allocation. In LAp1s, this is ex-
pressed using two resources and descriptors on functions
to specify how much of each resource is consumed. Line 2
declares a resource representing function invocation rate.
Line 3 specifies the custom policy used to schedule function
invocations. Line 26 specifies that a call to cuLaunchKernel
counts as one unit of the kernel_calls instantaneous re-
source. Line 14 specifies that a call to cuMemAlloc allocates
size bytes of the continuous resource gpu_mem.

To specify policies, developers provide functions that sched-
ule API calls from different VMs based on the recorded re-
source usage of those VMs. In our current implementation,
policy functions are specified as eBPF programs stored in
a separate file and referenced from the LAPis source using
policy("policy_kern.c") at the top level. In future work,
we plan to extend LAPIs to express these policies directly. We
currently use eBPF because it enables unprivileged code to
run safely in the hypervisor and is available today, enabling
AVA to be used without modifying the hypervisor and with-
out trusting the developer. However, in principle, the same
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Function The function ...

sync is synchronous: application calls wait for com-
pletion in the API server.

async can be asynchronous: calls will return immedi-
ately after call dispatch.

success (v) should return v when called with async.

contextual_argument has additional context that should be transported
along with the normal arguments. This is used
to copy values or buffers which are not explicitly
arguments to the call, e.g., errno.

allocates_rc(r, x) allocates x units of the continuous resource r.

deallocates_rc(r, x)deallocates x units of the continuous resource r.

consumes_rc(r, x)  consumes x units of the instantaneous resource
r during the call.

Declarations The statement declares ...

continuous_rc r; a continuous resource r.

instantaneous_rc r; an instantaneous resource r.

utility C declaration; a global utility function or variable that is not
part of the AP but is used in the specification.

Table 3. Lapis descriptors for functions.

Metadata

declare_metadata(ty) Specify the type of value to store as metadata to
be ty.

metadata(key) Get, creating if needed, the metadata object asso-
ciated with key.

In-flight buffers

buf_registry r;
register_buf(r, k,
buf, size)
get_bufs(r, k)

Declare r to be a registry of buffers.

registers buf which is size elements attached to
key k (e.g., a CUDA stream) in registry r.

gets an array of the buffers attached to key k in
registry r.

get_n_bufs(r, k) gets the number of buffers return from get_bufs.
get_buf_size(r, k, i) gets the size of a specific registered buffer.

Zero-copy

zerocopy_alloc(n)
zerocopy_free(p)

Allocate n bytes of zero-copy memory.
Free the zero-copy memory pointed to by p.

Table 4. An except from the Laris standard library for use in
expressions and utility functions.

properties can be achieved using Laris and will provide a
significant complexity reduction for the developer.

State Capture. To support VM migration, AvA must capture
the state of API objects and recreate that state at the destina-
tion. This requires visibility into the relationships between
API calls and device state: AVA cannot simply serialize, trans-
fer, and deserialize device state to effect a migration because
AvVA’s view of device state is through the high level API and
through semantics specified by the programmer. AvA splits
object state into two categories based on descriptors from
the AVA programmer. Explicit state is serialized into AvA-
managed storage by programmer-defined functions; implicit
state is captured by recording calls which mutate an object
(e.g. a buffer) based on obj_record descriptors. In Figure 4,
obj_record descriptor is used in cuMemAlloc to expose im-
plicit state, in this case a device-side buffer which must be
allocated to recreate state at the destination.
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CUresult cuStreamSynchronize(CUstream stream) {
// Allocate and initialize the command
cu_stream_synchronize_call *cmd = allocate;
cmd->command_id = CALL_CU_STREAM_SYNCHRONIZE;
cmd->call_id = generate_call_id(); // Unique call ID
cmd->stream = stream; // Copy simple value
// Compute and attach contextual parameter bufs
void **bufs = get_bufs(async_DtoH, stream);
size_t nbufs = get_n_bufs(async_DtoH, stream);
// Attached buffers referenced from bufs
void **tmp_bufs = allocate and fill with output buffer sentinal;
cmd->bufs = attach_buffer(cmd, tmp_bufs,

get_n_bufs(async_DtoH, stream) * sizeof(void *));

// Create and register a local record of the call
cu_stream_synchronize_record *record = alloc();
record->stream = stream; record->bufs = bufs;
record->call_complete = 0; register_call(record);
// Send the command and wait for and return response
send_command (cmd) ;
wait_until(record->call_complete);
return record->ret; }

CUresult cuMemcpyDtoHAsync(void *dst, CUdeviceptr src,

size_t size, CUstream stream) {

...Allocate and initialize the command as above...
// Execute state-tracking code from spec
register_buf(async_DtoH, stream, dst, size);
...Store and attach arguments similar to above...
...Create and register a local record of the call, and send...
// Return the success value from LAPIS specification
return CUDA_SUCCESS; }

Figure 5. An outline of the generated guestlib code for

cuStreamSynchronize and cuMemcpyDtoHAsync. The real code
manages a number of additional details, e.g., threads.

Runtime Library. The Lapis standard library is illustrated
(in excerpted form) in Table 4, and is designed to support
common features we encountered across multiple APIs. State
tracking often requires storing metadata about an API ob-
ject, so the library provides a system to do that. Many APIs
support asynchronous functions for which buffers tracking
is required, so the library provides a set of function to track
buffers. For APIs that require zero-copy data transfer for
performance or because they expose hardware doorbells,
the library provides memory management functions that
expose AvA’s support for zero-copy buffers. The library also
provides common utilities such as min, max, and strlen.
Workflow. In the AvA workflow, CAVA is initially invoked
on the APT header files to generate a provisional LAPIs specifi-
cation for all functions in the API; the developer then refines
that specification. For perspective, the actual provisional
specification generated by CAVA for the functions in Fig-
ure 4 totals 107 lines, of which 29 lines are deleted, 9 lines
are changed, and 21 lines are added to reach the final specifi-
cation used in our evaluation. CAVA can infer the semantics
of functions and arguments in simple cases and provides
safe defaults when possible (e.g., by default, functions are
synchronous and numeric types are opaque). For cases that
do not admit a conservative guess, CAVA emits code that
will cause an error, e.g., for “direction” (in/out parameters),
which provides programmer guidance about what additional
information is required and where it should be expressed.
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void api_server_handle_command(call) {
switch (call->command_id) {
case CALL_CU_STREAM_SYNCHRONIZE: {
// For handles, get the real address
CUstream stream = handle_deref(call->stream);
// Get pointers to shadows of the attached buffers
void **bufs = get_buffer(call, call->bufs);
size_t nbufs = get_n_bufs(async_DtoH, stream);
for (size_t i = 0; i < nbufs; i++)
bufs[i] = get_shadow_buffer(call, bufs[i]);
// Perform call
CUresult stat = cuStreamSynchronize(stream);
// Construct and send the return command
cu_stream_synchronize_ret *ret_cmd = alloc();
ret_cmd->command_id = RET_CU_STREAM_SYNCHRONIZE;
ret_cmd->call_id = call->call_id; ret_cmd->ret = stat;
// Attach sync buffers to return command
void **tmp_bufs = alloc();
for (size_t i = 0; i < nbufs; i++)
tmp_bufs[i] = attach_buffer(ret_cmd, bufs[i],
get_buf_size(async_DtoH, stream, i));
ret_cmd->bufs = attach_buffer(ret_cmd, tmp_bufs,
nbufs * sizeof(void *));
send_command (ret_cmd) ;
break; }
case CALL_CU_MEMCPY_DTOH_ASYNC: {
...Extract dst, stream, and size from call...
// Get or allocate the shadow buffer
void *dst = get_shadow_buffer(call, call->dst);
// Execute state-tracking code from spec
register_buf(async_DtoH, stream, dst, size);
// Perform call
CUresult stat = cuMemcpyDtoHAsync(dst, src, size, stream);
...Construct and send the return command...
break; } ... } }
Figure 6. An outline of the generated API server code for

cuStreamSynchronize and cuMemcpyDtoHAsync.

Writing a Lap1s specification requires user-level knowl-
edge of the APL The developer must understand the API
function semantics but does not need to know how to imple-
ment the API or understand details of AvA or API remoting.
Our experience is that most APIs (e.g., OpenCL [89]) provide
documentation sufficient to achieve this. However one API
(the CUDA runtime API) required LAP1s specifications for
undocumented functions which required more developer ef-
fort to produce. The real target users of AvA are hypervisor
developers, cloud providers, and accelerator vendor software
engineers, for whom the required knowledge can be safely
assumed, and for whom the reduction in development effort
is compelling even for complex APIs.

4.2 Code Generation

CAVA generates several separate components for each API
function, including a stub function, a call handler, a return
handler, and a replay handler for VM migration.

The generated stubs, in Figure 5, construct a command
from the arguments (including handling lists of asynchro-
nous output buffers on lines 11-13) and then send it, via
the hypervisor, to the API server. The hypervisor enforces
resource sharing policy at the router based on the resource
accounting and policy descriptors. The API server, in Fig-
ure 6, deserializes the arguments from the command and
then performs the real call. The results of the call are passed
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back to the guest lib in the same was as the call is made. The
API server also transfers (lines 18-23) the shadow buffers reg-
istered during calls to cuMemcpyDtoHAsync (line 31) back to
the guest. The guest lib handles the response by completing
record-and-replay tracking, looking up the API call record,
copying transferred shadow buffers into application buffers,
and marking the call complete (code elided for brevity).

The AvA API-agnostic components provide shadow buffer
management primitives that the generated code uses to main-
tain API server-side shadows of application buffers. AvA’s
shadow buffers function as a caching layer that can buffer up-
dates and apply them in batch. In most cases, copy operations
to synchronize shadow and application buffers are required
only at API call boundaries, so AvA-controlled buffers are
transparent to the guest, work without true shared mem-
ory between the guest and API server, and are faster than
page-granularity software shared memory. In cases where
updates must be made visible in the guest without an API
call to serve as a synchronization point, true shared memory
between the guest lib and the API server can be specified
using LAPIS’s zerocopy support.

Currently, CAvA only supports C as an output language,
but this is not a fundamental limitation of AvA. We expect
implementations for C++ and Python to be straightforward.

4.3 Mapped memory

AVA does not currently map API server host memory into
guest application space by default. However, AvA still sup-
ports applications that use device-mapped memory by copy-
ing data between the guest and API server. The implemen-
tation uses Lapis descriptors to track mapped buffers and
ensure they are always passed as contextual arguments to
synchronization functions, e.g., cuSynchronizeStream. Im-
portantly, the technique respects the semantics of the APIL:
even without AVA the only way an application can guar-
antee that device writes are visible to the application is to
call a synchronization function. However, some GPUs do
make writes visible between synchronization functions and
research systems rely on it to implement accelerator-driven
communication (e.g. GPUfs [85]), but will not function cor-
rectly with AvA. The limitation is not fundamental, and we
plan to address it in future work.

4.4 Resource accounting and scheduling

CAVA supports resource accounting using LAPIs descrip-
tors which specify the type and quantity of resources each
API function consumes. To enforce resource sharing require-
ments, the code generator changes how API calls are handled
by inserting accounting code in the router and hooks to call
programmer-provided policy functions. For continuous re-
sources, the generated code may need to generate an artificial
failure in response to an allocation request. This requires
that the compiler know how to fake a failure by constructing
return values and/or executing specific code to change the
library state. For instantaneous resources, enforcement is
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map_def cmd_cnt, priority;
kernel_calls = ava_get_rc_id("kernel_calls™);
tot_id = 0; // ID of total in cmd_cnt
int consume(__sk_buff *skb) {
vm_id = load_ava_vm_id(skb)
amount = load_ava_rc_amount(skb, kernel_calls);
vm_cnt = map_lookup_elem(&cmd_cnt, &vm_id);
tot_cnt = map_lookup_elem(&cmd_cnt, &tot_id);
fetch_and_add(vm_cnt, amount);
fetch_and_add(tot_cnt, amount); }
int schedule(__sk_buff *skb) {
...Load vm_id, vm_cnt, vm_pri, tot_cnt, and tot_pri...
if((xvm_cnt) *(*tot_pri) <= (kvm_pri) *(*tot_cnt))
return HIGH_PRIO;
else return LOW_PRIO; }
Figure 7. An example eBPF policy program (simplified for clarity).

This is referenced from Figure 4 as policy_kern.c.

implemented by delaying certain calls until other VMs have
a chance to perform their instantaneous operations.

CAVA generates code to compute resource usage informa-
tion in the hypervisor from call arguments. This code makes
the call arguments available, similarly to Figure 6 lines 27-29.
Then executes the expression to compute the used resources
(e.g., size bytes of memory for cuMemAlloc) and records the
usage via an API-agnostic component of AvA.

In Figure 4, the specification of cuLaunchKernel includes
resource usage descriptors and a reference to a custom sched-
uler. Figure 7 shows code for an eBPF based scheduler. The
consume function is called when the API server reports re-
source utilization to the hypervisor, which in this case, is
every time an API call is made. The schedule function is
called whenever a command reaches the head of its VM’s
queue to compute the priority for the command. The router
dispatches commands in priority order (highest to lowest).
The AVA policy functions take an __sk_buff argument con-
taining the AvA command information. This allows AVA to
use the existing eBPF infrastructure directly.

The algorithm in Figure 7 is simplified for clarity. It counts
the number of commands each VM sends (consume, lines 9—
10) and prioritizes VMs which have have sent less than their
share of the total commands (schedule, lines 13-15). A real
policy would periodically reset or slowly reduce the counts
and use additional information to properly handler varied
command costs [1, 65, 80].

4.5 VM Migration

AVA supports VM migration using record-and-replay [67],
augmented with explicit serialization to reduce the number
of calls that must be replayed. Recreating explicitly managed
state is more efficient and predictable because the devel-
oper has full control over it, making tracking of mutations
unnecessary. In many cases, the programmer-defined seri-
alization functions are thin wrappers around API functions.
For example, for CUDA device buffers, serialization func-
tions wrap cuMemcpyDtoH and cuMemcpyHtoD. Implicit state
requires less developer effort and can capture state that can-
not be obtained through the API (e.g., the size of a buffer).
CAVA automatically generates all the record and replay code
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required to migrate objects that have been annotated. CAvA
also provides the obj_depends_on descriptor to specify de-
pendencies between API objects (e.g., a memory object may
depend on a configuration object used to set its attributes).
AvVA remaps resource handles that change due to replay.
When a migration is triggered, the router invalidates the
transport channel to the guest so that no new API calls are
transmitted. Once all in-flight API calls have been completed,
the router quiesces the device, invoking API synchroniza-
tion functions (e.g., c1Finish), and begins transferring and
recreating device state on the target device. Explicit state
is recreated by invoking developer-provided code; implicit
state is recreated by replaying recorded API invocations.

4.6 Memory Over-subscription

While memory over-subscription is uncommon for main
memory in virtual environments, it remains important for
accelerators because on-board memory capacity is typically
small [28, 29, 62]. To swap out a victim object, the API server
extracts and stores its implicit and explicit state. To swap
an object back in, the API server replays the recorded APIs
to recreate implicit state, and calls the developer-provided
function for explicit state. This swapping is at buffer object
granularity, instead of at page granularity [52, 54, 99].

4.7 Limitations

AVA relies on a translation layer in which guests access
API-level objects in the API server through handles. This in-
troduces some limitations on support for full unified virtual
memory, device-side memory allocation, and application
polling for device-side writes (discussed in §4.3), most of
which manifest only in combination with VM migration.
AvVA is able to preserve pointer-is-a-pointer semantics for
the memory translation layer by using an identity mapping
between handle-space and the API server virtual address
space. However, AvA’s techniques for supporting VM migra-
tion cannot be guaranteed to recreate the API server virtual
address space with exactly the same virtual mappings at the
migration target, so when state is recreated, it will be iso-
morphic to the source state, but that identity mapping may
not be preserved. Supporting GPU mapped memory by map-
ping API server memory into the guest address space has
a similar limitation: mappings cannot be reliably preserved
across the migration, so AvVA cannot support migration for
applications that use zero-copy. AVA could fix this if acceler-
ator memory management APIs provided more control over
the virtual address space. Device-side memory allocation is
not visible to AvA through framework APIs, so migration
for such workloads is not yet supported. AvA currently does
not support demand-paging between accelerators and guest
memory: this limitation is not fundamental, and we plan
to implement support for it in the near future. AVvA does
not support migration in the presence of application-level
non-determinism.
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5 Implementation

We prototyped AvA on Linux kernel 4.14.0 with QEMU 3.1.0
and LLVM 7.0. Our resource management modifications to
the KVM hypervisor took 1,500 LoC. We modified the QEMU
virtio-vsock device and the corresponding vhost-vsock host
driver to enable interposition (§5.2). The para-virtual trans-
port device, which is used for both interposition and trans-
port, was built as a QEMU display adapter (500 LoC). The
guest driver is 500 LoC long, each transport channel is about
400 LoC on average, the CAVA was implemented in 3,200 LoC
of Python code. Other libraries accounted for 2,000 LoC.

5.1 Transport

AvA supports several interchangeable transports, allowing it
to support disaggregated hardware via sockets, as well as local
execution via guest-API server shared memory. The socket
transport uses either a TCP/IP network socket or an inter-VM
socket (VSOCK) to transport commands and data. The socket
layer copies data multiple times, and incurs queuing delays.
Shared memory provides efficient data transfer when the
guest and the API server are on the same physical machine.
The hypervisor exposes a contiguous virtual buffer to the
VM through the virtual transport device PCle BAR (base
address register). The guest para-virtual driver manages the
virtual BAR and assigns a partition to each guest application.
AvVA uses the shared buffer to transport buffers to the API
server, but still uses a socket (currently VSOCK) to transport
commands to retain hypervisor interposition.

5.2 Hypervisor Interposition and Mediation

AvVA enables hypervisor mediation by interposing the trans-
port channel. We extended QEMU virtio-vsock [45, 81] (a
host/guest communication device) to build the virtual device.
The corresponding vhost-vsock host driver was extended to
perform interposition during packet delivery.

When forwarding an API call, the command is always sent
on the modified VSOCK channel, while the argument buffer
can be transferred via either VSOCK or guest—API server
shared memory. Transferring the command via VSOCK pro-
vides a doorbell to the router—the router then schedules
the invocation based on resource limits. The API server and
guest application have unfettered access to the shared mem-
ory, but the API server does not know what the requested
operation is or where the buffers are until the hypervisor
forwards the command.

5.2.1 Policies in eBPF

AvA supports policies written as eBPF (Extended Berkeley
Packet Filter [66]) programs. We defined a new eBPF program
type that can be loaded into KVM via ioctl. AVA reuses the
same eBPF instruction set as socket filtering, and leverages
the unmodified LLVM compiler to compile the eBPF program.
The eBPF verifier had to be modified to verify the memory
accesses of the new type of program. We provide helper
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functions for AvA eBPF programs. Leveraging eBPF allows
AVA to take advantage of eBPF program verification at a
very low cost (4.3% of AvA’s internal overhead).

The current implementation computes resource utilization
in the API server and then reports this utilization to the
hypervisor. This simplifies the implementation somewhat,
but will be changed in the future so that resources tracking
can be performed fully in the hypervisor.

5.2.2 Scheduling

AVA provides a weighted fair queuing (WFQ) scheduler, with
two rate control algorithms. Each VM v sharing the device is
configured with one share s,,. v’s average device time usage
is Ly = Su/2yev So, Where V is the set of running VMs.
VM ©v’s device utilization time is accumulated into T,,(¢) in
the time window [, t+1). If a VM’s device usage time exceeds
its share s,,, API calls from v will be postponed until its
utilization proportion becomes lower than the threshold. The
scheduling window is 500 ms (or the interval between two
adjacent calls), and device utilization is updated upon every
API completion. AvA supports the following algorithms:
Fixed-rate polling where the delay is a fixed interval d
(usually longer than the time window).

Feedback control where the adaptive delay, d, (), is com-
puted by the additive-increase multiplicative-decrease (AIMD)
algorithm [1] below (a = 1 ms and b = 1/2; see §6.5).

d, (t) x b,
dy, (1) + a,

if VM v exhausted its share

otherwise

dv(t+1)={

5.3 Shadow Resources

AVA supports threading and long-lived buffers by shadowing
them in the API server. The API server spawns a shadow
thread when a new guest thread makes its first API call, and
reuses it for all future calls from that thread. For synchro-
nous calls, the guest thread will be blocked while the shadow
thread executes the call. Shadow threads are destroyed when
the original thread is destroyed or when the guest application
exits. Similarly, the worker allocates a new shadow buffer
when it is first notified of a buffer annotated with a long life-
time and deallocates it when the application calls a function
annotated with deallocates. Reverse shadows, guest library
buffers, and threads which shadow an API server resource,
are supported in the same way.

5.4 Callbacks

When an API registers a callback, the guest library stores
both the original application userdata/tag value and the
function pointer in a buffer. This buffer is then supplied as
the userdata argument to the API server. The API server
registers a generated stub function with the accelerator API.
When the API framework calls the stub in the API server, a
callback is made to the guest library with the guest library
buffer as the userdata argument. The guest library finally
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API Gen # LoC Churn Benchmark Hardware

X 39 7514 14318 NVIDIA GTX 1080
OpenCL 1.2 Rodinia

v~ 38 1060 2868 AMD RX 580
CUDA 10 Driver Vv~ 16 266 410 Rodinia  NVIDIA GTX 1080
CUDA 10 Runtime v 93 1358 1973 Rodinia  NVIDIA GTX 1080

TensorFlow 1.12C Vv 46 501 887 Inception NVIDIA GTX 1080
VGG-net Google Cloud

T Flow 1.13Py X
ensorFlow 1.13 Py n/a 3245 5972 Inception TPU v2-8

TensorFlow 1.14Py v/ 111 1865 2557 “c"  NvIDIA GTX 1080
networks

TensorFlow X na 1205 2005 oMl o Bdge TPU

Lite 1.13 examples

NCSDK v2 v’ 26 479 1279 Inception Movidius NCS v1

GTISDK 4.4 v 38 284 ses Ofcial Gyr.falcon 2803
examples Plai Plug

Custom FPGA on .

AmorphOS [55] v’ 4 30 40 BitCoin AWSF1

QuickAssist 1.7 v 19 444 676 QATzip  Intel QAT 8970

HIP v’ 41 624 990 Galois [75] AMD Vega 64

Table 5. Development effort for forwarding different APIs, along
with the benchmarks [33, 86, 92] and hardware used to evaluate
them. The # column indicates the number of API functions sup-
ported. The Python APIs are forwarded dynamically, making #
inapplicable. Gen indicates whether the API forwarding was gen-
erated by CAVA or was written by hand. LoC is the number of
lines of code (including blank lines and comments) in the CAvA
specification or C/Python code. Churn is the total number of lines
modified in commits.

extracts the original application userdata value and func-
tion pointer and performs the call back into application code.
The call to the guest library uses the same protocol as calls to
the API server, so all features of AvA apply to callbacks. For
example, callbacks block the API server thread that called
them if the callback is synchronous.

6 Evaluation

AVA was evaluated on an Intel Xeon E5-2643 CPU with
128 GiB DDR4 RAM, using Ubuntu 18.04 LTS, and Linux
4.14 with modified KVM and vhost modules. Guest VMs
were assigned 4 virtual cores, 4 GiB memory, 30 GB disk
space, and ran Ubuntu 18.04 LTS with the stock Linux 4.15
kernel. API servers and VMs were co-located on the same
server for all experiments except live migration and the FPGA
benchmarks. Experiments involving a Google Cloud TPU
were carried out on a Google Compute Engine instance with
8 vCPUs (SkyLake), 10 GiB memory, and a disaggregated
Cloud TPU v2-8 in the same data center. The guest VM
was located on the same instance via nested virtualization.
Experiments for the custom FPGA API were done on an AWS
F1 f1.2xlarge instance (with 1 Virtex UltraScale+ FPGA, 8
vCPUs, and 122 GiB memory). For live migration, a second
similar server was used as the remote machine, and the
servers were directly connected by 10 Gigabit Ethernet.

6.1 Development Effort

We present our experience building API remoting systems by
hand and with CAvVA as evidence of the significant reduction
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Figure 8. End-to-end execution time on virtualized APIs or accelerators normalized to native execution time. tf_py is the handwritten
TensorFlow Python API remoting with AvA API-agnostic components.
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CUDA-accelerated TensorFlow APIs normalized to native execution Figure 10. Overhead on a m1cro—?3enchmark with varying twork
time. per call and data per call. The plot is log-log and the trend is linear.
in developer effort CAVA provides. We characterize devel- the AMD Radeon RX 580 GPU, as the kernels executed
oper effort to virtualize eleven APIs and nine devices in terms 3x slower, allowing more of AvA’s overheads to be amor-
of the lines of code in the CAVA specifications or C/Python tized. The benchmarks for CUDA runtime API and CUDA-
code (LoC in Table 5), and the number of lines of code modi- accelerated TensorFlow are mostly call-intensive. The geo-
fied (Churn in Table 5) during development (counted from metric mean overhead is 79.6%, 4x faster than FlexDirect.
commits). Building an API remoting system for OpenCL, The TensorFlow benchmarks for the handwritten Python
which supports all the APIs needed to run the Rodinia [33] API remoting system, and Movidius benchmarks show low
benchmarks, by hand took more than 3 developer-months, overhead—0% overhead on VGG-net running on TensorFlow
and spanned 7,514 LoC (see row 1 of Table 5). Supporting Python (Cloud TPU), and 7% slowdown for image classifi-
the same subset of OpenCL with AVA, took a single devel- cation on TensorFlow Lite (Coral Edge TPU)—as they are
oper a little over a week, and the resulting API specification compute-intensive. Each offloaded kernel performs a lot
was 1,060 LoC long. Even in cases where we couldn’t lever- of computation per byte of data transferred, with relatively
age AvA—TensorFlow and TensorFlow Lite Python APIs— few API calls. The Gyrfalcon benchmarks enjoy a slight
leveraging AvA’s API-agnostic components enabled us to speedup as time spent loading and initializing the library
build a HIRA system with reasonable effort (3,245 lines of are eliminated by using a pre-spawned API server pool. The
Python code and 2 developer weeks for TensorFlow Python). QuickAssist accelerator proved challenging to virtualize, as

it is a high-data-rate kernel-bypass encryption/compression
accelerator. Applications that run on this device are data-
intensive: computation per transferred byte is very low. We
ran the Intel QATzip compression application on the Silesia
corpus [35] using synchronous QAT APIs: while the applica-
tion only experienced a 1.38x end-to-end runtime slowdown,
its throughput was 2.2x lower on average. AvA was not able
to keep up with the high throughput of the device, due to
data transfer and marshalling overheads, as the time spent
transferring data between the guest and the host was equiv-

6.2 End-to-end Performance

Figure 8-9 shows the end-to-end runtime, normalized to
native, for all benchmarks, accelerator and API combina-
tions we support (see Table 5). AVA introduces modest over-
head for most workloads. Excluding myocyte, the Rodinia
OpenCL benchmarks on NVIDIA GTX 1080 GPU slowed
down by 7% on average. The outlier, myocyte has over 2Xx
overhead because it is extremely call-intensive—it makes
over 200,000 calls in 18.5 s; most others make between 30 and

3,000 calls. For comparison, FlexDirect sees 3.3% slowdown alent to compute time on the accelerator. We are exploring

for myocyte; GPUvm sees 100x or more for call-intensive zero-copy techniques to ameliorate this. We note that QAT
workloads [107]. Myocyte experienced lower overhead on on AVA is fair, unlike the onboard SR-IOV support.
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6.3 Micro-benchmarks

To understand performance trade-offs for AvA, we ran a
micro-benchmark that transferred different amounts of data
per call and simulated accelerator computation for different
lengths of time by spinning on the host. Figure 10 shows
compute-intensive applications (represented by the lines for
100 ms and 1,000 ms of work) suffer the lowest overhead, as
data transfer is amortized by time computing on that data.
Data-intensive applications (represented by the 1 ms and
10 ms lines) experience severe slowdowns as the data trans-
ferred per call increases, such as when 64 MiB is moved for
only 1 ms of compute. Call-intensive applications transfer
little data and have short kernels, so control transfer dom-
inates execution, (e.g. 28% overhead on 1 ms calls with no
data).

Relative Runtime
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Figure 11. End-to-end runtime of CUDA benchmarks (relative to

native) using synchronous and asynchronous specifications.

6.3.1 Asynchrony Optimizations

Synchronous APIs calls that have no output of any kind re-
main semantically correct if executed asynchronously. For
example, c1SetKernelArg is a synchronous OpenCL API, but
can be forwarded asynchronously to reduce the overhead of
these calls. The application’s execution will not be faithful
to native execution, as the library would return immediately
after the command is sent to the API server. Any resulting
errors will be delivered from a later API call. Similar tech-
niques were applied in vCUDA (lazy RPC) [84] and rCUDA
(API batching) [40].

We annotated several synchronous APIs—cuLaunchKer-
nel, cuMemcpyHtoD, and resource free functions—as asynchro-
nous. Figure 11 shows that this optimization results in a 5%
speedup on average (geometric mean) in end-to-end runtime
(normalized to native) for CUDA Rodinia benchmarks.
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Figure 12. Scalability of multiple VMs running a single application
each, and multiple applications in a single VM, with AvA. Runtime
is relative to running the same number of applications natively.
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Figure 13. Unfairness of the fixed and adaptive scheduling algo-
rithms with two different measurement periods. The width of the
shaded areas show the probability of the bias (unfairness) being a
specific value in any given measurement window. The horizontal
bar shows the median and the vertical line runs from the minimum
to the maximum.

6.4 Scalability

To evaluate scalability, we ran multiple instances of the
OpenCL gaussian benchmark simultaneously in a vary-
ing number of VMs with a NVIDIA GTX 1080 GPU. The
gaussian benchmark fully saturates the GPU. The AvA
overhead (~10%) does not increase as the number of VMs or
applications increases, as shown by the near-perfect scaling
in Figure 12. The GPU kernel execution has an average 5.7%
slowdown each time the number of VMs and applications
is doubled. This slowdown is small due better utilization of
the physical device and other system resources.

Accelerators without process-level protection or sharing
support (e.g., Intel Movidius NCS) do not scale will with AvA,
as multiple applications attempting to use the device have to
be serialized. AvA added modest overheads (11%) in a case
where 4 VMs were all running inception on the NCS v1. We
note that AvA still provides benefit by enabling a hypervisor
to expose and share the device across guest VMs.

6.5 API Rate Limiting

To measure the fairness achieved by AvA, we repeatedly exe-
cuted kernels drawn from six CUDA OpenCL benchmarks in
pairs simultaneously in two VMs. The kernels last from 1 ms
to 100 ms. Figure 13 shows the fairness of the execution with
fixed-rate polling and feedback control method in 500-ms
and 1-s measurement windows. We compute the unfairness
as |t; — ta] / (1 + t2), where t; is the device time used by VM;
in the time window.

For fixed-rate polling (p = 5 ms), median unfairness in a
1 s window is 2.6%, and scheduling overhead was 7%. For
feedback control (@ = 1 ms and b = 1/2), median unfairness
is 2.4% in a 1 s measurement window, with 15% overhead.

6.6 Live Migration

We live-migrated a VM with 4 GB memory, that was running
OpenCL applications from the Rodinia benchmark suite, be-
tween two servers that were directly connected via a 10 Gib
Ethernet link, both equipped with NVIDIA GTX 1080 GPUs.
Migration was triggered at random points in each bench-
mark, and the application could not make API calls for the
duration of the migration. Migrating the VM without AvA
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Figure 14. Live migration downtime for single-threaded OpenCL
benchmarks on NVIDIA GTX 1080. This downtime is in addition
to the ~75 ms of downtime of the VM migration itself. Migration
downtime does not include time spent waiting for executing ker-
nels to complete (accounted as latency), as the application is still
performing useful computation on the accelerator during that time.

or GPU usage takes 19 s with a 75 ms downtime on average.

Figure 14 shows the downtime experienced by applica-
tions in the VM, not including downtime for migrating the
VM itself. 200 samples were collected for myocyte, 150 for
gaussian and lud, and 50 for all others.

The dominant cost is command transfer and replay, but
this cost is also affected by the size of the benchmark’s state.
Figure 14 shows a bimodal distribution of downtime for most
benchmarks. This is an artifact of applications allocating
device memory before entering a steady execution state, and
freeing it at termination. Migrations that occur before device
memory allocation do not need to transfer significant state;
migrations that occur after device memory allocation do.

7 Related Work

Section 2 provides detailed related work for AvA; this sec-
tion addresses related work not covered there. Our previous
work [106] proposed many key ideas in AvA; this paper
fleshes out and evaluates those ideas.

GPU virtualization. Table 6 shows prior GPU virtualiza-
tion and trade-offs across virtualization properties (see §2).
FPGA virtualization has a long history [31, 34, 48, 57, 58,
69, 74, 77, 88]. Most prior work relies on hardware-specific
features, focuses on sharing in a single protection domain [55],
or virtualization primitives [83]. AvA can be combined with
any of these techniques to virtualize FPGA accelerators.
Nooks [91] uses kernel-level interposition mechanisms that
are similar in spirit to AvA. AvA’s compiler generates com-
ponents that, like the wrappers and XPC in Nooks, provide
transparent control across address space and machine bound-
aries. Object tracking and shadow copies in Nooks’ NIM are
similar to the object tracking and shadow buffers in AvA.
RPC frameworks [27, 71, 93, 104] provide an interface de-
scription language (IDL) and tools to easily implement those
interfaces. Unlike the CAVA language, these IDLs do not
capture all the semantics of existing C interfaces required to
implement a HIRA API remoting design. CAvA also gener-
ates code for controlling remote resources.
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Table 6. Comparison of existing compute GPU virtualization pro-
posals. lib unmod and OS unmod indicate support for unmodi-
fied guest libraries and OS/driver. lib compat and HW compat
indicate support for a virtual interface that is independent of the
framework or hardware virtualized. sharing and isolation indicate
cross-domain sharing and isolation. Grayed-out cells indicate that
the metric is meaningless for that design. * indicates that while AvA
requires library and OS modifications, it automates these changes.

Program specification languages [50] allow programmers
to specify properties of functions and their behavior, and are
generally used to check correctness.While such languages
allow (nearly) arbitrary predicates on programs, they are not
designed to provide semantic information to other tools, and
do not support features like state tracking.

Foreign Function Interface tools allow one language to
call functions written in another, such as C. Some [20] make
use of C headers, but require manual annotations in many
common cases. Unlike AvA, language specific DSLs [6, 15],
do not support marshalling data structures and encapsulate
rather than export the C APL

8 Conclusion

Virtualization techniques that rely on clean separation of
software layers are untenable for accelerator silos. AVA is an
alternative approach that interposes compute-offload APIs,
uses automation to provide agility, recover hypervisor inter-
position, and shorten development cycles.
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A Artifact

This appendix describes the experimental workflow, arti-
facts, and results from this paper. The evaluation focuses on
automatically generated accelerator virtualization stacks for
accessible hardware on a local machine, and provides con-
figurations and execution steps to reproduce the expected
productivity, end-to-end performance, and fairness results.

e Compilation: GCC 5.5+, LLVM 7.0 (customized), Python 3.6+,

Bazel 0.26.1

Platform: Ubuntu 18.04, Linux kernel 4.14 (customized)

Virtual machine: QEMU 3.1 (customized), guest kernel 4.10+

Data set: Table 5 in paper

Run-time environment: AVA_CHANNEL=SHM

AVA_WPOOL=TRUE

AVA_ROOT=/path/to/ava/source (A.1, A.3)

DATA_DIR=/path/to/rodinia/data (A.1)

Hardware: Intel Xeon CPU E5-2643, NVIDIA GTX 1080

GPU, Intel Movidius stick v1

e Execution: start API server in the host and run benchmark-
ing scripts in the guest VM

e Output: all benchmarks output the elapsed execution time

Experiments: parameters are set and tunable in bench-

marking scripts

Selected frameworks: OpenCL 1.2, CUDA 10.0 (driver and

runtime), NCSDK 2.10, TensorFlow 1.14

Selected accelerators: NVIDIA GTX 1080 GPU, Intel Mo-

vidius stick v1

¢ How much disk space required (approximately)?: 40 GB
excluding VM images

e How much time is needed to prepare workflow (ap-
proximately)?: one day

e How much time is needed to complete experiments
(approximately)?: one day

o Publicly available?: Yes

e Code licenses: BSD 2-clause

Archive: DOI:10.5281/zenodo.3596935

A.1 Description

The source and benchmarks are host on GitHub utcs-scea/ava and
utcs-scea/ava-benchmarks, and archived at Zenodo/3596935.

Hardware dependencies. This AE requires NVIDIA GTX 1080
GPU with CUDA 10.0, and Intel Movidius stick v1 with NCSDK 2.10.

Data sets. Please refer to benchmark directories for data set infor-
mation. Most data sets are contained in those directories, except
Rodinia 3.1 data set which is available at Virginia LAVA lab. To
prepare the Rodinia data set, download and unpack rodinia_3
.1.tar.bz2 to $DATA_DIR. To prepare the NCSDK input graph,
NCSDK needs to be installed in host. We generate the input (as
described in README) in host and copy it to guest.

A.2 Install accelerator drivers and runtime
A.2.1 OpenCL 1.2 and CUDA 10.0 for NVIDIA GTX 1080

Install cuda_10.0.130_410.48_linux and verify the installation by
clinfo and nvidia-smi. CUDA SDK also needs to be installed
in guest to compile CUDA benchmarks, but NVIDIA driver is not
required.

H. Yu, A. M. Peters, A. Akshintala and C. J. Rossbach

A.2.2 NCSDK 2.10 for Intel Movidius stick
Follow the README of NCSDK benchmarks to install NCSDK v2.

A.2.3 TensorFlow 1.14 and cuDNN 7.5

Download and install cuDNN 7.5 (or 7.6.4) at NVIDIA developer
zone. The guest VM requires a customized TensorFlow from (yuhc/
tensorflow-cudart-dynam). The build instructions are in the reposi-
tory’s BUILD.md.

A.3 Installation

Clone utcs-scea/ava then follow its README.md to clone associ-
ated repositories, install software dependencies, setup environment
variables, and build customized kernel, QEMU, and LLVM. Before
compiling the source, turn off the debug mode completely by ap-
plying #undef DEBUG at $AVA_ROOT/include/debug.h:9.

Generated stack and API server. Generate and build the virtual-
ization stack by following the instructions in the README. The
optimized specifications such as opencl.async.nw.c and cuda.
async.nw.c can be used in the same way.

API server manager. Simply run make in $AVA_ROOT/worker.
A.4 Experimental workflow
A.4.1 Line count

Example specifications are put in $AVA_ROOT/cava/samples. The
length of specification (LoS) is growing over the time. LoS and
number of virtualized APIs (NoA) are counted by:

$ wc -1 opencl.nw.c
$ ctags -R -f - cuda.nw.c | grep -w f | wc -1

A.4.2 Start API server

Follow AvA’s README to start API server. This step needs to
be done for testing every new API framework (NCSDK, CUDA,
etc.). API servers and manager can be terminated by Ctrl+C and
restarted at any time. For fairness experiment, start manager by
sudo -E ./manager --policy. This will install an integrated
fair scheduler for device time.

A.4.3 Start guest VM

There is an example script to start VM in $AVA_ROOT/vm. In
$AVA_ROOT/vm/scripts/environment, IMAGE_FILE is the path
to the VM’s image, and DIR_QEMU is the path to QEMU. The VM
boot script is $AVA_ROOT /vm/run. sh, where the QEMU parameter
must contain:

## In $AVA_ROOT/vm/run.sh

-enable-kvm -machine accel=kvm -cpu host,kvm=on \
-device vhost-vsock-pci,guest-cid=5 \

-device ava-vdev

When creating multiple VMs for fairness experiment, each VM
must be assigned a different guest CID. The end-to-end performance
experiment needs one VM, and the fairness experiment needs two.

A.4.4 Setup guest VM

The guestdrv source and compiled guestlib need to be copied
to VM. Furthermore, the benchmark must load guestlib instead
of original framework library at runtime. It is necessary to install
essential tool chains to compile benchmarks in guest, e.g. CUDA
(nvcc).
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Guest directory structure. Set AVA_ROOT in guest. To simplify the
following process, clone benchmarks to $AVA_ROOT/benchmark,
and create $AVA_ROOT/cava (or repeat A.1 in guest).

Guestdrv and guestlib. Run $AVA_ROOT/vm/setup. sh to setup
guestdrv and guestlib in the two VMs.

A.4.5 Execute benchmarks

Make sure AVA_CHANNEL (=SHM) and AVA_WPOOL (=TRUE) are con-
sistent between guest and host. Also set AVA_ROOT (=/home/hyu/
ava in the demo VM) and DATA_DIR (to Rodinia data set).

End-to-end performance experiments.

OpenCL. Every Rodinia OpenCL benchmark directory contains
a run script to execute the benchmark. To run the same bench-
mark in host, comment util/make.mk:7-8 before compiling the
benchmark. To run all benchmarks, use scripts/test_cl.sh,
and parse the result with scripts/parse.sh.

NCSDK. The benchmarking scripts are run_movidius.sh and
test_movidius.sh.

CUDA driver. The benchmarks! are under $AVA_ROOT/benchmark
/rodinia/cuda. The instructions are same as those for OpenCL
benchmarks.

CUDA runtime. The benchmarks are under $AVA_ROOT /benchmark
/rodinia/cudart. Link guestlib using script 1ink_1ib. sh which
creates symbolic links to 1ibguestlib.so. To run a benchmark,
use LD_LIBRARY_PATH=../util ./run in guest and ./run in
host. To run all benchmarks, use scripts/test_cudart. sh.

TensorFlow. The benchmarks are under $AVA_ROOT/benchmark/
tensorflow/python, and its README includes steps to run the
benchmarks.

Fairness experiments

Recompile kernel. Define KVM_MEASURE_POLICY in the header
$AVA_ROOT/include/devconf.h: 21, Then recompile and rein-
stall kernel.

Setup environment. Generate guestlib and API server with speci-
fication samples/opencl.sched. c, which is a simplified OpenCL
specification but with resource (device time) report to hypervisor.

Prepare two VMs. Spawn two VMs with different guest CID, and
setup guest driver and library by ./setup.sh cl_nw.

Get measurement data. In /sys/kernel/debug/tracing, set cur-
rent tracer to nop, enable tracing (echo 1 > tracing_on), and
read data from trace_pipe.

Execute benchmarks in parallel. In  $AVA_ROOT/benchmark/

rodinia/micro/rate-limit,

$ ./rate-limit.sh gaussian gaussian

L All benchmarks were ported from original Rodinia to use CUDA driver
APIL Srad2_v2 faults occasionally even when running in host.
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The two VMs’ host names are specified in in pssh-hosts and
run. sh. The script runs gaussian and gaussian in the two VMs
correspondingly in parallel. The guest AVA_ROOT and DATA_DIR
must be setinrate-1limit. sh to access the appropriate directories.
The two benchmarks can be picked from the set {gaussian, heartwall,
hotspot, hotspot3D, lavaMD, nn, nw, pathfinder, streamcluster}.

A.5 Evaluation and expected result
A.5.1 Productivity

The LoS and NoA counted in A.4.1 should be close to the num-
bers shown in Table 1. {LoS/NoA} indicates the average lines of
specification required to virtualize one API.

A.5.2 End-to-end performance

OpenCL, NCSDK, CUDA driver. The virtualization overhead of
these three APIs should be close to the result in Figure 8.

CUDA runtime and TensorFlow. The overhead of CUDA run-
time API and optimized TensorFlow API virtualizations should be
close to the result in Figure 9. For unoptimized version, loading
TensorFlow library takes ~ 50 s. This time is reduced to be less
than 3 s with the optimized version.

A.5.3 Fairness

At running benchmarks on two VMs simultaneously, the device
time usages of VMs are printed via trace_pipe.

## Running gaussian and heartwall

# cat trace_pipe
device_time_measure_timer_callback: [intv1=500 ms]
vm#1 consumed device time = 256984 us
device_time_measure_timer_callback: [intv1=500 ms]
vm#2 consumed device time = 212812 us

The device time usage is measured based on the reports from
API server. The benchmark’s kernel execution time that crosses the
measurement window will be counted into the next interval. But
this bias is suppressed when the window increases, e.g., to 1 s.

The unfairness is calculated by |t; — ta| / (t1 + t2), where ¢; is
the device time used by VM; in the time window. The distribution
of unfairness values should match Figure 13.

A.6 Notes

We select representative accelerators and functionalities to be evalu-
ated in this AE. Other supported features require specific hardware
(e.g., PCle devices, high-speed NIC, and dual machines), platforms
(e.g., AWS F1 and AmorphOS for FPGA, Google Cloud for TPU),
and very different (some are exclusive) configurations and environ-
ments. We leave those specifications and evaluation instructions in
$AVA_ROOT/cava/samples and $AVA_ROOT/benchmark for fur-
ther reference.


https://github.com/utcs-scea/ava-benchmarks/blob/master/tensorflow/python/README
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