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Abstract— Many robot applications being explored involve
robots leading humans during navigation. Developing effective
robots for this task requires a way for robots to understand and
model a human’s following behavior. In this paper, we present
results from a user study of how humans follow a guide robot
in the halls of an office building. We then present a data-driven
Markovian model of this following behavior, and demonstrate
its generalizability across time interval and trajectory length.
Finally, we integrate the model into a global planner and run
a simulation experiment to investigate the benefits of coupled
human-robot planning. Our results suggest that the proposed
model effectively predicts how humans follow a robot, and
that the coupled planner, while taking longer, leads the human
significantly closer to the target position.

I. INTRODUCTION

With more robots being deployed in public, scenarios will
arise where robots guide humans through complex indoor
spaces (e.g., navigational aides for people who are blind,
tour guides, and security escorts). In order to effectively plan
for such tasks, robots must be aware of where the following
human is — to drop them off in a pose convenient for reaching
their final destination, to avoid running them into obstacles,
and to ensure a smooth navigational experience. For example,
it is possible to walk a person who is blind into a door
frame or corner if the robotic guide does not know where
the person is positioned relative to it. Therefore, such robots
must understand how humans follow robots and incorporate
that information into their planning system.

In this paper, we present a predictive model of how a
human follows a robot for scenarios where the human holds
onto the robot. This model was developed, optimized, and
validated on data from a user study in which users held onto
a mobile robot as it guided them inside an office building. In
order to integrate into traditional global planners, this model
is Markovian and sensor-free. We demonstrate the model’s
robustness and effectiveness at predicting following behavior.
We also present results from a simulation experiment that
demonstrates the benefits of integrating the model into a
global planner for coupled human-robot planning. To the best
of our knowledge, this is the first predictive model of how a
human follows a robot while holding onto it.
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II. RELATED WORK

Many robots have been developed to guide humans
through spaces. They have acted as navigational aides [1],
[2], tour guides [3], [4], and shopping assistants [5], [6]. A
recent survey [7] covers advancements in this area. However,
many such navigation systems either do not account for
the fact that a human is following or naively increase the
robot’s bounding box to prevent the human from colliding
with obstacles [8]. One work investigates how humans follow
a mobile robot when not holding on to it and reports that
humans’ following behavior depends on the curvature of the
robot’s trajectory and the robot’s acceleration [9]. However,
this work does not present a way to incorporate these insights
into planning. Other works present methods to predict human
trajectories [10], [11] and incorporate those predictions into
a local planner [12]. However, these methods require sen-
sors that update human position in-real-time, making them
inadequate for applications in global planning. Further, they
focus on how human trajectories evolve without external
influences, and do not explicitly model how robot motion
influences human motion. Finally, other works that focus on
robot navigation in human spaces have studied how robots
should follow or approach humans [13], [14], walk side-by-
side with humans [15], or navigate around humans [16], [17].

Within global planning, there has been research into
planning for tractor-trailer robots, where a coupled body
passively follows the actively moving robot [18], [19]. These
efforts use mathematical models to calculate how the trailer
moves as a function of the tractor’s movement. Such models
are insufficient for our purpose because humans are agents
that do not passively follow the robot with rigid form and
motion. However, there is still merit in this analogy and we
draw inspiration for our coupling model from these efforts.

III. DATA COLLECTION USER STUDY DESIGN

To gather data on how humans follow a robot, we ran
an IRB-approved data collection user study (n = 10), with
participants recruited through an online participation pool
and by word-of-mouth in the Pittsburgh metropolitan area.
Participants held onto the handle of a mobile robot as it
guided them along trajectories through the hallways of an
office building. Our mobile robot (Fig. 1 Left) was a Pioneer
P3DX base with a SICK LMS 111-10100 laser scanner and a
compliant adjustable handle (ranging from 0.96 m, setting 1,
to 1.11 m, setting 6, off the ground) developed from past
research [20]. The robot contained a static map of the office
building and used the Adaptive Monte-Carlo Localization
(AMCL) algorithm provided by ROS navigation to localize.
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Fig. 1: Left: The robot circled the user during calibration,
storing images of the vest. Middle: Processed calibration
data. Yellow arrows are detected AprilTag poses over time,
the blue arrow is the calculated torso pose, and red arrows are
average poses per tag (to calculate static transforms). Right:
A view from the robot’s camera, showing how markerless
methods would have difficulty detecting torso pose.
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Fig. 2: The five pre-recorded trajectories every participant

went on. Trajectory 6 (not shown) was over five times longer
and was teleoperated by the experimenter.

The robot used a backwards-facing ZED stereo camera to
track participants as they followed it. We opted for an on-
board sensor strategy instead of mounting sensors in the
environment in order to track users over longer trajectories.
Finally, participants wore a vest with AprilTags [21] (48-52
tags, depending on the vest size) to enable robust person-
tracking in twisted postures (e.g., Fig. 1 Right). The ZED
camera and AprilTags were only used for data-collection,
and are not required to utilize the model in planning.

The robot guided the participant along six trajectories in
the hallways of an office building, each ending at a door. The
first five trajectories (Fig. 2) were pre-recorded and played
back during the study, and were inspired by a prior user
study [22]. These trajectories took short paths (7 - 16m)
and incorporated a variety of movements including gradual
and in-place turns. The order of these trajectories for each
participant was balanced with a Latin square to mitigate
ordering effects. We then ran the sixth trajectory, which took
a longer (80 - 90m) path that involved multiple rotations and
varying robot speeds. Due to the complexity, this path was
teleoperated by an experimenter from behind the participant.

After consenting to the research, participants selected their
preferred vest size and were led to the hallway. We started
with a calibration phase to ensure proper torso perception
(Fig. 1 Left). We proceeded to a familiarization phase, where
the participant experienced robot navigation under different
handle height settings (1 - 6, with 1 being the shortest) and

hand-holding configurations (right, left, or both) to find the
most comfortable fit. The experimenter teleoperated the robot
during this phase. Participants were asked to maintain their
selected configuration for the remainder of the study. After
familiarization, participants followed the robot along all six
trajectories. For all trajectories, the experimenter walked
behind and wirelessly issued small trajectory corrections
when needed. If a trajectory did not complete (due to tech-
nical difficulties, an AprilTag falling off, passing pedestrians
that impacted following behavior, etc.) the experimenter
repeated it after the sixth trajectory. Afterwards, participants
completed a semi-structured interview about the experience.

IV. DATA PROCESSING

After data collection, we processed the raw data into
sequences of paired human and robot poses. To extract this
information, we used the ArUco marker detection library
[23] to convert raw image data per frame into a list of
detected marker poses (X, y, z, roll, pitch, yaw) in R3.
With the calibration data (Fig. 1 Middle), we calculated
the participant’s torso pose by averaging the position of
all detected AprilTags and the orientation of a pre-selected
group of tags at the front-center of the chest. We then
calculated static transforms between each AprilTag’s average
pose and the participant’s torso pose. With the trajectory data,
we calculated human torso pose per frame by applying the
static transforms from calibration to the detected AprilTag
poses, using a rolling window of size 40 frames (0.67 secs)
to prevent noise. This form of torso pose prediction was
necessary because lighting conditions or particular robot
turns sometimes caused only one tag to be visible in a frame.

With both calibration and trajectory data, we removed
outliers that were > d units away from > p proportion
of the points. We applied this procedure at multiple stages
of data processing, separately for position and orientation.
A manual analysis was conducted after data processing to
ensure the calculated torso poses visually matched participant
poses from recorded user study videos.

A. Creating the Dataset

Finally, we combined all trajectories into a unified dataset.
First, for each trajectory we paired the human and robot
poses that were closest in time and reduced the poses to
three dimensions of interest: x, y, and 6 (yaw). We then
subsampled every trajectory so that the time interval between
consecutive human-robot pose pairs was roughly At := 0.2
seconds. Then, we split the trajectories to a fixed number of
seconds, T' := 15, each. We took every possible T length
sub-trajectory — the one from 0.0 seconds to 15.0 seconds,
the one from 0.2 seconds to 15.2 seconds, 0.4 to 15.4, etc.
Later in the paper, to investigate the robustness of the model
to time intervals and trajectory length, we vary At and 7.

V. DATA ANALYSIS

We had 7 female and 3 male participants, with average
age 24.8 (SD = 7.9). 6 participants chose to hold the robot
with their right hand, 3 with both hands, and 1 with their



left hand. 5 participants picked handle setting 1 (the lowest),
2 picked handle setting 2, 2 picked handle setting 5, and
1 picked handle setting 6. In the semi-structured interview,
some participants explained that their handle height choices
were based on day-to-day activities that were similar to the
robot navigational experience, such as pushing a stroller or a
shopping cart. Some participants liked holding onto the robot
because it freed their attention and allowed them to look at
their surroundings. Others would have preferred to follow the
robot visually instead of holding on, due to jerkiness and a
lack of predictability in the robot’s motion.

We observed three common participant behaviors. First,
there was a notable lag between robot motion and human
motion. When the robot started moving or began a turn, par-
ticipants stayed in-place briefly, extending their arm before
following the robot. This lag was most evident on turns,
where participants first rotated just their arm before moving
their whole body to follow the robot. Second, while the robot
was in motion, participants actively compensated by moving
towards a more comfortable holding position. For example,
participants would move to a position directly behind the
robot even after the robot stopped. Third, we noticed that
during turns, participants often did not face the direction
of the robot but rather the tangent direction of the turn
(Fig. 3 Bottom). These factors became guiding principles
as we developed models of human following behavior.

We conducted a preliminary analysis to understand under-
lying trends, using the Dynamic Time Warp algorithm [24]
to align trajectories across participants. Table I shows the
average and standard deviation of human displacement from
the robot, for every pair of corresponding human-robot poses.
As can be seen, there was a large variability in participant
following behavior. The bias to situate to the left of the robot
could be due to hand-holding preference (the 6 right-holding
participants had a greater average perpendicular displacement
of 0.14 m) or because the robot moved on the right side of
the hallways to align with American norms. Furthermore,
the participants’ 0.89 m average parallel distance from the
robot could be related to handle height, as the 5 participants
who set the handle setting to 1 had a smaller average parallel
displacement of 0.85 m. Fig. 3 Top illustrates this variability.
Note that not all this variability is due to individual factors,
as robot trajectories varied slightly across participants.

VI. MODEL FITTING

We compared variants of a baseline coupling model as well
a geometric coupling model. In this section, we detail the
model requirements, the models we trained, and the process
of training and evaluating the models.

A. Model Requirements

The ultimate goal of the coupling model is to take a stream
of robot poses — generated by a global planner — and output
a corresponding sequence of predicted human poses. Since
this coupling model has to integrate into existing planners, it
must follow the Markov property — that a human predicted
pose at time ¢ only depends on the robot pose and human
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Fig. 3: Top: The average robot (dark blue) and human
(black) paths for Trajectory 3, and each participant’s path
(red). Bottom: Participants swung out less for gradual turns
(Left, Trajectory 4) than for in-place turns (Right, Trajectory
5). In both, the participant’s torso angle (red arrow) turned
somewhat towards the tangent direction of the turn (light
blue).

TABLE I: Average Human-to-Robot Displacement”

Parallel (m) | Perpendicular (m) Orientation (rad)

0.891 (0.083) | 0.085 (0.091) -0.05 (0.218)

"Values are: Avg (StdDev). Away from the robot, to the left of the robot,
and counterclockwise are positive for the three columns respectively.

predicted pose from time ¢ — 1. Given these requirements, the
model must have two capabilities. (1) Initial Pose Prediction
uses a single robot pose as input and produces a predicted
human pose as output. (2) Next Pose Prediction uses an old
robot pose, an old human predicted pose, and a new robot
pose as input, and produces a new human predicted pose as
output. Since global planners do not allow for intermediate
sensing of the human until execution, our model predicts
human poses solely from robot poses.

B. Models

The baseline model, Baseline (Base) predicts that the
human is always directly behind the robot, at a distance
¢ away, facing the robot. Since Base does not account
for the aforementioned tendency for participants to turn
towards the tangent direction of a turn, we developed
BaselineAngleOfMotion (BaseAOM). BaseAOM pre-
dicts that the human faces a weighted average of the angle of
motion (the angle between the old and new predicted human
poses) and the angle to the robot (the angle between the new
predicted human pose and the robot), with weight a.

Neither baseline model accounts for the aforementioned
lag in following behavior, nor the range of angular and linear
configurations the human could make with the robot due
to the human arm’s compliance. Therefore, we developed a
more sophisticated geometric model, Geometric (Geo),
which constructs a region within which the human can
comfortably hold onto the robot and assumes the human
will move the minimal distance to remain in that region.
This region (Fig. 4) is defined by centerOffset, regionOffset,
regionSize, and regionAngle. When predicting pose at time
t, the model constructs the new region based on the new
robot pose. It then predicts the new human position to be the
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Fig. 4: The geometric model’s position prediction, which
creates a region of occupancy around the robot and assumes
that the human moves the minimal distance such that they
still remain within this region.

closest point in the new region to the old human position. We
tested three variants of this model, differing in orientation
prediction. Geo predicts that the human always faces the
center of the region’s arcs. GeometricAngleOfMotion
(GeoAOM) predicts that the human faces a weighted average
between the angle of motion and the angle to the center of
the arcs, with weight a. However, neither model accounts
for the aforementioned observation that while the robot is
pulling the human, the human is actively compensating by
moving towards a more comfortable location. Therefore,
we developed GeometricCompensation (GeoC), which
predicts the human will move to a weighted average (weight
B) of the “pull pose” (predicted by GeoAOM) and the
“compensation pose” (directly in the center of the region,
facing the robot). All models predict initial pose by assuming
the human is a fixed distance from the robot (in the middle
of the region for geometric models), facing the robot.

In summary, our proposed model, GeoC, has 6 parameters:
centerOffset, regionOffset, regionSize, regionAngle, o, and 3.
Its update function takes in a new robot position and an old
predicted human position. It first transforms the region of
occupancy to be centered around the new robot pose, given
the fixed centerOffset, regionOffset, regionSize, regionAngle
(Fig. 4). It then finds the point in the region that is closest to
the old human pose, and sets that as the position of the “pull
pose.” Next, it gets the angle from the old human position
to the new human position and the angle from the human
to the robot, and sets the orientation of the “pull pose” to a
weighted average of them (weight «). It then calculates the
“compensation pose,” which is directly in the middle of the
region of occupancy, facing the robot. Finally, it sets the final
human pose to a weighted average of the “pull pose” and
“compensation pose” (weight 3). Note that all the formerly-
mentioned models are degenerate cases of GeoC. For exam-
ple, GeoC becomes Base with the hardcoded parameters of
a = 1.0, B := 0.0, centerOffset + regionOffset := (¢, and
regionAngle := 0. Although this guarantees that the latterly-
mentioned models will outperform the formerly-mentioned
ones, we test them across various metrics to understand each
addition’s contribution to predictive capabilities.

C. Model Training

All our models were trained using the DIRECT optimiza-
tion algorithm [25], a deterministic algorithm which itera-

tively trisects parts of the parameter space until it reaches the
termination criteria. The DIRECT algorithm is guaranteed
to eventually find a global optima on any continuous real-
valued function with bounded first-derivatives. To optimize
the model, we calculate two errors. The orientation error
eg calculates the average root mean squared error between
predicted and actual human orientation, and the position
error e, calculates average root mean squared error between
predicted and actual human position.
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In the above equations, D is the dataset composed of
trajectories 7, angleDist calculates the minimum distance
between two angles, and dist calculates the euclidean
distance between two (z,y) points. ¢ and h' refer to the
robot and human’s actual poses at time t. h’, and hy refer
to the (x, y) position and yaw angle of the human at time t.
ht refers to the model’s prediction function, which returns
a human pose at time ¢. We combine these error functions
into a joint error:

Cs
1+C5- €xy

where C1, Cs, and C'5 are positive constants. We chose this
error function because, in coupled motion, human orientation
is constrained by human and robot position. The human will
generally face towards the robot as they follow the robot,
with some deviations for situations like turns. Therefore, we
weight ey by the inverse of ey, to prioritize minimizing
position error before minimizing orientation error. For this
study, we use C, Cs, Cy := 1.0. We run DIRECT optimiza-
tion for 200 - P function evaluations, where P is the number
of parameters in the model being trained.

e:=C1"egy+ ey

D. Model Evaluation

We evaluated our model using k-fold cross validation, in
which the complete dataset is partitioned into %k equal-sized
sets and we separately train on every subset of k—1 partitions
and test on the held-out partition. Importantly, we partition
the overall trajectories and then divide them into 71" length
sub-trajectories; this ensures that sub-segments of the same
overall trajectory do not appear in both the training and
test sets. All models were trained and tested on the same
random partitions. We then computed average performance
statistics across the k iterations. Since [9] found that humans’
following behavior depends on the curvature of the robot’s
trajectories, we separated trajectories in the dataset into
“straight” or “curved” trajectories. We then ensured that
each random partition had a proportional distribution of each
trajectory type. A trajectory was categorized as “curved” if



its curvature was above a fixed Kipreshhoid- The curvature
of a trajectory was calculated by averaging the curvature at
every point along the trajectory, given by
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where derivatives are taken with respect to time. For this
study, we use Kipresn = 0.40.

For a single train-test cycle, we computed the joint error e
on the test set, as well as the position error e, and orienta-
tion error ey on: (1) the whole test set; (2) just the “straight”
subset of the test set; and (3) just the “curved” subset of the
test set. Across the k train-test cycles within one round of
cross validation, we report the average and standard deviation
of these values. For this study, we used k := 10 partitions.
To eliminate randomness, we repeated the cross validation
procedure 5 times and averaged the aforementioned statistics
across the repeats. We also conducted a repeated measure
one-way ANOVA to determine whether the error differences
across model pairs were significant'.

VII. RESULTS

Table II shows the results for the aforementioned models.
The move from baseline to geometric models improved
position prediction, most of which was on curved trajectories.
This validates our intuition that the geometric models would
be better at modeling the lag in following behaviors, which
was most evident during turns. Further, the move from base-
line to geometric models also greatly improved orientation
prediction. This illustrates the aforementioned dependency
between position error and orientation error; since the human
and robot are coupled, accurate orientation prediction is
contingent upon accurate position prediction.

Moving from regular orientation prediction to angle of
motion prediction increased orientation prediction, mostly
for curved trajectories. This also validates our intuition that
angle of motion prediction models the participants’ tendency
to orient towards the tangent direction of the turn. Further,
angle of motion prediction improved Base much more
than Geo. This is likely because much of the improvement
in orientation prediction had already been obtained in the
change from baseline to geometric, so angle of motion
prediction had less room for additional improvements.

Finally, GeoC outperformed every model on every metric,
and significantly outperformed every model on every metric
except for GeoAOM on orientation error. This validates our
intuition that GeoC models the fact that humans actively
compensate as the robot is moving, a tendency that primarily
affects position but also orientation. Further, not only is
GeoC the best, it is also able to predict human position to
within 0.156 m and human orientation to within 0.24 rad,
an accuracy that should be sufficient for most planning and
obstacle avoidance tasks.

In the subsequent sections, we probe GeoC’s applicability
to existing planners by modifying factors that are known

IThe repeated factor was the train-test set and the fixed factor was the
model. Pairwise comparison was done with Tukey HSD.

to vary across planners. Specifically, we vary At, the time
interval, and T, the trajectory length, in the train and test data
to understand how GeoC would function in planners that use
a different simulation time or plan for different amounts of
time than the model was trained on.

A. Generalizability Across Time Intervals

Due to GeoC’s compensation per timestep, the model
implicitly has a dependency on time. Specifically, the more
frequently it is called, the closer the predicted human pose
will move to the “compensation pose”. Therefore, the per-
formance of the model may change if incorporated into a
planner with a different step size than it was trained on.
To investigate this dependency, we created two additional
datasets, with time interval At := 1,2 seconds respectively.
Table III and IV shows the position error and orientation
error of GeoC trained and tested on each of the three datasets
(maintaining the same partitions across all train-test pairs).
Although every pairwise difference across test time intervals
(for a fixed train time interval) was significant, the errors
across a single train time interval were small, within 0.015
m and 0.031 rad. Therefore, while GeoC’s training procedure
works for situations where data is captured at different time
intervals, the fact that there are significant differences and
that each model performing best on the same time interval
demonstrates a learned dependency on time. In future work it
may be useful to develop a model that explicitly incorporates
time; however, such a model may be harder to integrate into
existing planners that do not simulate movement time.

B. Generalizability Across Trajectory Length

As different planners may plan a different number of steps
into the future, our model must be able to generalize to
situations where it is applied on a trajectory of different
length than it was trained on. To investigate how well a
trained instance of GeoC generalizes to previously unseen
trajectory lengths, we trained and tested GeoC on trajectory
lengths T := 2.5,7.5,15.0. Table V and VI shows the
position and rotation error of GeoC trained and tested on
each of the three datasets (maintaining the same partitions
across all train-test pairs). For position error, there was only
a significant difference in the 7" := 2.5 training length, where
the 7" := 2.5 test length was significantly better. For rotation
error, the T := 15 test length was significantly worse than
all others across all train lengths. Despite these significant
differences, the maximum difference across error averages
within a single train length was 0.01 m for position error and
0.005 rad for rotation errors, which is nearly imperceptible
by humans. These results demonstrate that the model is
robust to trajectory length, which enables it to effectively
integrate into a variety of global planners.

VIII. PLANNING WITH THE COUPLING MODEL

Given that GeoC is our best and most generaliz-
able coupling model, we created a simulation experiment
to investigate the value of integrating it into a global
planner. Specifically, we compared two global planners:



TABLE II: Model Comparison On The Complete Dataset”

. Position Error, ezy (m) Orientation Error, eg (rad)
Model Name | Joint Error, e ATl Straight T Curved ATl Straight Curved
Basc 04357 (0.080) | 0.1767 (0.041) | 0.1627 (0.042) | 0.186T (0.041) | 0.3057 (0.076) [ 0.2317 (0.070) 0.3607 (0.073)
BascAOM | 0.3927 (0.076) | 0.1767 (0.041) | 0.1627 (0.042) | 0.186T (0.041) | 0.2541 (0.071) [0.2157 (0.074) 0.2831 (0.063)
Geo 0.3681 (0.063) | 0.1597 (0.035) | 0.1571 (0.041) [ 0.1617 (0.032) | 0.2421 (0.065) | 0.2091 (0.073) 0.2697 (0.059)
GeoAOM | 0.3657 (0.067) | 0.1621 (0.035) | 0.1581 (0.041) | 0.164T (0.032) | 0.2351 (0.067) | 0.2061 (0.075) 0.2607 (0.061)
GeoC 0.357 (0.072) | 0.156 (0.035) | 0.156 (0.040) | 0.156 (0.034) | 0.233 (0.072) | 0.204 (0.011) 0.255 (0.068)

*5 repeats of 10-fold cross validation. Values are: Avg (StdDev). 1 represents a significant difference with GeoC (controlled and p < 0.05)

TABLE III: Position Error of GeoC Across Time Intervals

Test Time Interval (sec)
1.0
0.164 (0.034)
0.158 (0.038)
0.158 (0.039)

0.2
0.156 (0.037)
0.160 (0.042)
0.162 (0.042)

2.0

0.171 (0.033)
0.161 (0.037)
0.160 (0.039)

0.2
1.0
2.0

Train Time
Interval (sec)

TABLE 1V: Rotation Error of GeoC Across Time Intervals

Test Time Interval (sec)
1.0
0.238 (0.067)
0.232 (0.072)
0.236 (0.077)

0.2
0.232 (0.075)
0.259 (0.080)
0.267 (0.085)

2.0
0.249 (0.065)
0.241 (0.06)
0.242 (0.072)

0.2
1.0
2.0

Train Time
Interval (sec)

RobotOnlyPlanner plans in robot space and only uses
the coupling model to compute the robot’s goal pose, while
CoupledPlanner plans in human and robot space by
using GeoC to calculate where the human likely moves at
each step of robot motion. We then simulated the robot
guiding a human using each planner and tested multiple
criteria related to human pose and distance to obstacles to
compare the planners. For this experiment, we trained GeoC
on all the data for At := 0.2 and T := 15 secs. This
resulted in the optimized parameters centerOffset = 0.241 m,
regionOffset = 0.421 m, regionSize = 0.269 m, regionAngle
= (0.696 rad, o = 0.643, and 3 = 0.802.

A. Experiment Setup

1) Planners: Both planners were given human goal poses.
RobotOnlyPlanner used the coupling model to reverse-
engineer the robot’s goals from the human goals and then
planned solely in the robot’s space. CoupledPlanner, on
the other hand, incorporated the coupling model throughout
planning and planned in both the human and robot’s space to
get the human to the target human goal. Both planners used
A* graph search, where the nodes consisted of robot pose
(rg, Ty, r9) and velocity (v, w), and the edges simulated robot
trajectories under feasible velocities given pre-defined ac-
celeration limits. CoupledPlanner additionally included
human pose (hg,hy,hg) in the state, and the edges first
simulated feasible robot trajectories, and then transformed
them into human trajectories using the coupling model. In
both planners, edge cost was determined with the same for-
mula: a weighted linear combination of the distance traveled,
the distance between the positions projected forward by 1
sec, orientation change, and closeness to obstacles along that
edge. However, RobotOnlyPlanner calculated that cost

TABLE V: Position Error of GeoC Across Length

Test Traj Length (sec)
2.5 7.5 15.0
Train Traj 2.5 10.159 (0.029) | 0.160 (0.031) | 0.160 (0.035)
Length (scc) 7.5 10.157 (0.030) [ 0.158 (0.030) | 0.158 (0.030)
) 15.0 | 0.158 (0.030) | 0.159 (0.031) | 0.159 (0.035)

TABLE VI: Rotation Error of GeoC Across Length

Test Traj Length (sec)
2.5 7.5 15.0
Train Traj 2.5 10.231 (0.057) | 0.229 (0.061) | 0.234 (0.069)
Length (sec) 7.5 10.230 (0.057) [ 0.228 (0.062) | 0.233 (0.070)
15.0 [ 0.231 (0.057) | 0.229 (0.061) | 0.234 (0.070)

using robot poses, while CoupledPlanner calculated that
cost using human poses. Finally, all state space elements
were discretized with a finer granularity closer to the goal,
to allow more nuanced motions as the robot approached the
target. Both planners ran until timeout, at 20,000 cycles,
or until they reached a node within a threshold distance and
orientation from the goal. Upon timeout, the planner returned
the best path found so far based on cost and heuristic, or
failed if even the best path was too far from the goal. Both
global planners outputted a robot path, which was passed on
to the local planner. These planners were inspired by planners
for self-driving cars and tractor-trailer vehicles [18], [26].

Our local planner was built on top of ROS navigation
stack’s base_local_planner. It used the trajectory roll-
out algorithm [27] to determine feasible trajectories, and
evaluated them using a weighted linear combination of: (1)
distance to the target robot path; (2) distance to the local
goal along the target path; and (3) distance to obstacles.
The robot trajectories from both RobotOnlyPlanner and
CoupledPlanner were passed to the same local planner,
which planned solely in robot space.

2) Environment and Procedure: We simulated the Willow
Garage office using an open source map on the Gazebo
platform. We chose human start and goal poses based on in-
teresting features and likely places humans would go within
the office area. Fig. 5 shows the 29 selected start and goal
positions. To ensure repeatability, we localized the robot once
per start position using AMCL, and then reset the robot to
that pre-localized state per planner. We then sent a set of hu-
man goal poses to the planner, which RobotOnlyPlanner
used to reverse-engineer corresponding robot goal poses (by
calculating where the robot would be if the human were in
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Fig. 5: The 29 trajectories we evaluated. The green arrows
next to goal poses show desired ending orientations. Green
trajectories were completed by both planners, red trajectories
were only completed by RobotOnlyPlanner, blue tra-
jectories were only completed by CoupledPlanner, and
grey trajectories were completed by neither.

the middle of the region of occupancy). After each planner
generated a robot path, the local planner followed that path.
Due to sensor and robot motion stochasticity, each trajectory
was repeated 5 times per planner.

As the local planner was executing, we ran the coupling
model in-real-time (making calls every 0.2 seconds) to
simulate where the human would be. We kept track of the
average, max, and min distance between the human and the
closest obstacle per timestep. After the local planner finished
execution, we calculated (x,y,6) differences between the
final human pose and the closest of the human goal poses.

B. Results

As mentioned, we evaluated 29 paths on both planners.
Not all the paths were completed by either planner. Both
planners successfully executed 22 of those paths, where
success was determined by at least one attempt succeeding.
RobotOnlyPlanner successfully executed 3 paths that
CoupledPlanner did not, and CoupledPlanner suc-
cessfully executed 2 that RobotOnlyPlanner did not. 2
paths were completed by neither planner. For all the paths
that did not complete, the global planners still found valid
trajectories but the local planner failed to evaluate them due
to: the robot’s handle moving too close to walls, the local
planner reaching local optima, or the local planner being
unable to maneuver narrow hallways. Of the 22 paths that
both planner completed, CoupledPlanner timed out 11
times and RobotOnlyPlanner timed out once.

Table VII shows the results of the simulation. The dif-
ferences for all measures except Max Obs Dist. between
planner were significant?>, p < 0.001. The results show
that while both planners were similarly effective at obstacle
avoidance, CoupledPlanner dropped the user off much
closer to their target position. The large standard deviation

2Calculated through a multi-level linear model using REML with trajec-
tory as a random factor.

TABLE VII: Robot Only Planner versus Coupled Planner”

RobotOnlyPlanner | CoupledPlanner
Avg. Obs. Dist. (m)* 1.16 (1.22) 1.11 (1.16)
Max Obs. Dist. (m) 1.57 (1.48) 1.61 (1.42)
Min Obs. Dist. (m)* 0.60 (0.82) 0.51 (0.80)
Goal Dist. (m)* 0.31 (0.05) 0.17 (0.09)
0 Goal Dist. (rad)* 0.1 (0.2) 1.0 (1.1)

“Values are: Avg (StdDev) across 22 paths (only successful attempts)
completed by both planners. * represents a significant difference.

in obstacle distance is likely due to the varied map areas we
ran the simulation in. Finally, although CoupledPlanner
performs much worse than RobotOnlyPlanner on 6 goal
distance, most of this error comes from cases where the local
planner terminated while trying to exit a local minima with
low position distance but high orientation difference. Such
difference could be minimized with more search cycles or a
better tuned cost parameters.

Although CoupledPlanner took longer (7778 compare
to 4440 average cycles) and timed out more often, we believe
this difference is acceptable given that it delivers users closer
to their target position. In a navigation system that interleaves
planning and execution, CoupledPlanner only needs
to be used near the end of the plan, thereby impacting
only a short portion of overall navigation. Finally, these
execution times could be improved with global planners that
incorporate parallelization, optimization, and/or stochasticity.

IX. CONCLUSION

In this paper, we presented a predictive model of how a
human follows a robot while holding on. We collected data
on human following behavior and trained multiple baseline
and geometric models. The best model generates a region
within which the human can comfortably hold onto the robot,
assumes the human moves the minimum amount to stay in
that region, and assumes the human actively tries to move to
a more comfortable position while being pulled by the robot.
We also demonstrated the model’s generalizeability across
time intervals and trajectory lengths, with small acceptable
errors. Finally, we incorporated a trained instance of this
model into a global planner to compare a planner that only
plans in the robot space to one that jointly plans in the human
and robot spaces. We found that the planner that jointly plans
in the human and robot spaces, although slower, delivers the
human much closer to their target position.

As with most novel efforts, there are limitations. First, our
sample of human following behavior was small (n = 10),
which may have introduced unwanted bias. Second, our robot
never reversed. Although we felt this was reasonable since
backing up while a human is holding on is usually unsafe,
there may be cases where the robot must reverse. Third,
design factors such as robot height, mass, behavior, and
volume play a role in human following behavior [28], so it is
possible that following behavior would change with different
robots. However, given that the principles that motivated
the creation of our model — the lag between human and
robot motion, humans actively repositioning themselves, and



humans turning towards the tangent direction of a turn —
are due to the anatomy of the human arm, we believe
that the core aspects of GeoC will generalize to different
robot designs. Fourth, our model was developed from data
of following behavior in an office building. Although how
a human follows a guide robot may be different in open
areas or areas with many obstacles, our setting allowed us
to explore map features that are crucial to leading people
in many buildings. Fifth, how humans follow robots may
change as robot navigation becomes more commonplace.
However, we did not observe novelty effects in our user
study, possibly due to the initial familiarization phase. Sixth,
our model was trained on real-world robot motion data,
whereas the data sent to it through a global planner will
be simulated robot motion data. However, since the goal
of global planners is to generate paths that are feasible
for robots to navigate, we believe the paths will be similar
enough for the coupling model to generalize (a belief sup-
ported by the coupling model’s applicability in the simulation
experiment). Finally, some participants wanted to visually
follow the robot instead of holding on, and it is unclear how
our model may generalize to that scenario.

This work reveals exciting new avenues for future re-
search. On the modeling front, a model that accounts for
contextual factors such as walls or pedestrians could be more
applicable. One idea is to develop a model that, rather than
predicting one human pose at a time, predicts a probability
distribution over human poses that can be transformed based
on environmental factors. In addition, a model that accounts
for coupling factors such as interaction force, torque, or
guiding velocity would likely describe following behavior
more accurately, although it may be harder to integrate into
existing planners. Further, a model that accounts for individ-
ual preferences, such as hand-holding and handle height, may
prove more effective at predicting following behavior. Our
initial investigation into this revealed that hand-holding pref-
erence may influence a perpendicular offset in participants’
position relative to the robot. On the planning front, future
work includes developing a local planner that incorporates
human pose and evaluating the end-to-end, human-aware
navigational system in a real-world experiment. One option
for this local planner is using our coupling model, whose
Markovian nature lends itself well to incorporation in state-
of-the-art local planners. An alternative is using sensors to
measure human position as the robot is moving. Finally,
on the design front, future work should explore how robot
design — notably, the design of the coupling link between the
human and the robot — influences human following behavior.
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