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Group Split and Merge Prediction with 3D
Convolutional Networks

Allan Wang1, and Aaron Steinfeld1

Abstract—Mobile robots in crowds often have limited nav-
igation capability due to insufficient evaluation of pedestrian
behavior. We strengthen this capability by predicting splits and
merges in multi-person groups. Successful predictions should
lead to more efficient planning while also increasing human
acceptance of robot behavior. We take a novel approach by
formulating this as a video prediction problem, where group splits
or merges are predicted given a history of geometric social group
shape transformations. We take inspiration from the success of
3D convolution models for video-related tasks. By treating the
temporal dimension as a spatial dimension, a modified C3D model
successfully captures the temporal features required to perform
the prediction task. We demonstrate performance on several
datasets and analyze transfer ability to other settings. While
current approaches for tracking human motion are not explicitly
designed for this task, our approach performs significantly better
at predicting the occurrence of splits and merges. We also draw
human interpretations from the model’s learned features.

Index Terms—Human-Centered Robotics, Human Detection
and Tracking

I. INTRODUCTION

ONE goal of human-robot interaction (HRI) is to enable
trust and acceptance of robots in public settings. A key

capability in support of this goal is social navigation when a
robot is maneuvering among pedestrians. Traditionally, mobile
robots have poor navigation skills in crowded areas, which can
lead to the freezing robot problem [38] or result in displays
of confusion or unpredictability. Humans may perceive these
behavior as rude or dangerous [20], [24].

In this work, we try to predict social group splits and
merges. Our analysis of social groups is inspired by a human
perceptual process known as Gestalt [7], where humans men-
tally group individuals moving together at a similar direction
and pace into a single unit. This has been used successfully
for robot perception of human crowds [3]. Likewise, past
work suggests that individuals within such a group may have
social ties among them [23] making it inappropriate for a
robot to plan a path that cuts through a group. Predicting
splits and merges is important also because it may lead to
more efficient robot navigation. Knowing when and where
a split or merge will occur allows path planning towards
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Fig. 1. Predicting social group splits and merges offer navigation benefits for
mobile robots. We first generate social group shape sequences from available
pedestrian information. Then we use our model to predict splits and merges.
The blue circles represent the locations of splits and merges.

a split point or preemptive avoidance of merging groups.
This planning consideration can form more natural navigation
paths, increasing trust and acceptance from humans.

We formulate our group dynamics analysis as a video event
prediction and localization problem. As shown in Figure 1,
we attempt to predict if a split or merge will happen given a
history of social group shape images. If an event occurs, we
also attempt to predict where it will happen. Deep learning
techniques have shown great potential recently for many real-
world tasks. Acting as complex function approximators [18],
deep learning models can approximate implicit functions not
yet sufficiently studied. Predicting splits and merges based on
temporal and spatial features within social group shapes is one
such implicit function.

Our problem is different from many other video analysis
tasks. First, the inputs to our model are textureless binary
image videos, as shown in Figure 1. The model needs to rely
on the subtle temporal features in the transformations of group
shapes because it is impossible to predict splits and merges
from a single image, unlike action recognition tasks [13], [14],
[31]. Second, our model uses social group shapes, because
group shapes can be generated from noisy, raw sensor inputs
such as point clouds and, depending on the formulation of
group shapes, can be used to account for occluded pedestrians
[3]. This makes our task different from tasks that require
precise tracking of pedestrians such as the trajectory prediction
tasks [1], [9], [28], [40]. Third, our network tries to predict an
event in the future. In other words, the defining features that
signal the event are not available to the network, as opposed
to tracking tasks [12], [27], [46].

In summary, we utilize a 3D convolutional network to
predict the occurrence and location of group splits and merges,
given a sequence of video frames representing the evolution
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of social group shapes. Our contributions include:

1) Definition of a new formulation for the split-merge
problem, which includes example pipelines to generate
social group shape images;

2) A slightly modified C3D architecture [37] with demon-
strated effectiveness;

3) Concrete evidence that shows the effectiveness of 3D
Convolutions due to our task uniqueness;

4) Discussions of human behavioral implications from our
model’s learned features.

II. RELATED WORK

A. Social Interaction Between Pedestrians

Traditionally, researchers have tried to understand pedes-
trian social behavior from a definitive standpoint by drawing
inspirations from topics in physics, such as fluid dynamics [10]
and potential energy [4]. Helbing and Molnár’s Social Force
model approach [11] employs attractive and repulsive forces
to model pedestrian interactions. While inspiring, these rule-
based models are too simple to account for the complexities
that arise within human interactions.

Due to its superior performance, machine learning has
played an active role in analyzing other types of pedestrian
behavior. A popular topic in the field is pedestrian trajectory
prediction. [1] uses the SocialLSTM model to account for
neighboring pedestrian’s actions. [40] uses Social Attention to
bypass the local neighborhood assumption. [9] uses generative
adversarial models with a global social pooling layer. More
sophisticated models developed by [29] employ a multi-modal
approach by taking the local image patches around pedestrians
as extra inputs. These models generate predicted trajectories
that simulate realistic pedestrian interaction behavior. How-
ever, these models require precise tracking of pedestrian loca-
tions, which is often infeasible for real-world robot platforms.

There have also been studies on the grouping of pedestri-
ans. Previously, [34] proposed using structural support vector
machine-based learning to model social groups, [22] modeled
the grouping process as a sequential Monte Carlo process.
Additionally, the dynamics of grouping has been actively
incorporated in pedestrian tracking problems. [27] and [46]
believe social groups can be used to enhance the tracking
of pedestrians, including social group merges and splits. [12]
incorporated group splits and merges in an extended maxi-
mum a posteriori problem. [21] utilized Bayesian multiple-
hypothesis tracking. However, due to the nature of the tracking
task, pedestrian information during merging or splitting is
available to these models. In some cases, even future pedes-
trian information is available to the models. In contrast, our
task is a prediction task and is excluded from observing any
information about the pedestrians from the moment when the
split or merge happens.

A similar category of tasks that has potential application
in pedestrian behavior analysis is group action recognition.
[13] uses hierarchical recurrent networks to identify joint
actions performed by athletes during a sporting event. [31]
and [32] utilize a similar concept on pedestrians to predict

group activities such as queuing or crossing the street. Resem-
bling trajectory prediction tasks, these approaches depend on
tracking individual pedestrians. In addition, these approaches
only model within-group activities, whereas splits and merges
involve multiple groups.

B. Deep Learning of Videos

The Long-Short Term Memory network (LSTM), a kind
of Recurrent Neural Network (RNN), has also shown recent
success in sequential data analysis tasks. Some models use
LSTMs to process the features produced by CNNs [5], [41].
[30] and [25] proposed Convolutional LSTM (ConvLSTM)
for video prediction tasks. However, [39] suggested that any
form of RNN breaks the aforementioned video patches into
short clips, likely leading to sub-optimal performance. Our
initial attempts on RNN-based architectures also resulted in
unsatisfactory performance.

In recent years, Convolutional Neural Networks (CNN) have
had great success in tackling image processing challenges
because of their ability to encode useful spatial features from
huge numbers of images [44]. [14] proposed a 3D CNN that
was similar to a traditional CNN, but used 3D kernels to jointly
encode spatial-temporal features. Shortly after, [37] created
a C3D network to classify videos successfully. Since then,
many networks based on 3D convolutions [19], [36], [39] have
shown great performance on tasks such as action recognition.
We believe C3D’s success lies in its ability to combine video
frames together as video patches.

III. APPROACH

Group shapes can be generated using arbitrary algorithms,
assuming that the resulting group shapes reflect temporal pat-
terns as the pedestrians progress. We first formulate two group
shape generation algorithms. One from pedestrian information
to compare our approach with trajectory prediction models.
And another from simulated 2D laser scan points to demon-
strate the flexibility of group shape generation algorithms that
our model can handle.

A. Group Shapes from Pedestrians

Social group definition. In our definition, a social group
is formed when a number of people who are in close
proximity of each other share largely similar motion char-
acteristics. Therefore, when a group of fast-walking people
make a small split to pass a slow-walking pedestrian, the
fast group is maintained, but they do not include the slow-
walking pedestrian in their group due to the different walking
speeds. Suppose there are n pedestrians in frame Vi. The
motion characteristics we use to define grouping are their
positions Pi = {(xi1, yi1), (xi2, yi2), . . . , (xin, yin)}, their
velocity directions Θi = {θi1, θi2, . . . , θin}, and their velocity
magnitudes Si = {si1, si2, . . . , sin}.

Grouping algorithm. For each image frame Vi, we apply
the approach from [3], the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm [6]. We
apply DBSCAN three times, each time within the clusters
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Fig. 2. Left: A sample individual social space. Right: A sample group space
from simulated laser scans. Note that the lower-right pedestrian is occluded
from the ”robot” (blue circle) and is not included in the group.

from the previous DBSCAN. We performed DBSCAN in the
order of Θi, Si, Pi, and obtain the group membership labels
Li = {li1, li2, . . . , lin}. During each DBSCAN pass, we use
a threshold value to determine the clustering boundary. These
threshold values are determined by observing the grouping
outcomes on the dataset, and group membership assignments
can be changed by adjusting these values.

Individual social space. Once we have the group mem-
bership labels, we can define how to generate a social group
space. We first define the social space of a single pedestrian
fs(x, y, θ, s) as a 2D asymmetric Gaussian distribution similar
to [16], shown in Figure 2. Given s, we first construct four
axes corresponding to the front, the two sides and the rear
of the pedestrian, with the pedestrian location (x, y) as the
origin. Each axis has a variance value:

σf = max(2s, 0.5), σs =
2

3
σf , σr =

1

2
σf (1)

Then, according to [16], each individual’s social space can
be defined by the following equations:

Le(ϕ) =

√
C

cos2 γ/(2σ1) + sin2 γ/(2σ2)
(2)

fs(x, y, θ, s) =

(
x+ cos(ϕ+ θ)Le(ϕ)
y + sin(ϕ+ θ)Le(ϕ)

)
,

for 0 < ϕ ≤ 2π
(3)

where we define C = 0.35, γ = mod (ϕ, π/2) and σ1, σ2
are the variances of two axis that are closest to angle ϕ.

Group Social Space. After defining individual social space,
for each group membership j in image frame Vi, we first
obtain all the pedestrians belonging to this group Gij =
{k|lik = j}. Then, we construct individual social spaces for
each of them Sij = {fs(xik, yik, θik, sik)|k ∈ Gij}. Next,
we construct a convex hull around the set of these social
spaces Hij = convexhull (Sij). This convex hull Hij is the
group social space for group label j in image frame Vi. Some
example social group shapes are shown in Figure 1.

Splits and merges. Group splits and merges occur when
group memberships of the pedestrians change from frame Vi
to frame Vi+1. As shown in Figure 1, if pedestrians who had
the same group membership Gij now have two memberships
among them G(i+1)j1 , G(i+1)j2 , then a split occurs. Similarly,
if pedestrians who had different group memberships Gij1 , Gij2

now have the same membership G(i+1)j , a merge occurs. Note
that j 6= j1 6= j2.

B. Group Shapes from Simulated Laser Scan Points

Most robots will not have data representing overhead views
where the full perimeter of convex hulls are visible. Likewise,
many robots may only be equipped with a laser scanner and
not have access to full video scenes. Therefore, it is important
to also examine the performance of our approach when a robot
is limited to a single laser scan plane.

Simulated Laser Scans. For each video frame Vi, we place
a “robot” at a random location in the scene unoccupied by
pedestrians. The robot is a point and emits rays of lines around
itself with 0.1 degree resolution. We assume each pedestrian
to be a circle with a diameter of 0.5 meters. A scan point is
defined when one of the robot’s rays touches the perimeter
of a pedestrian’s circle. We further add a standard Gaussian
noise truncated at ±5 cm to the coordinates of each scan
point. Each scan point shares the same orientation and speed as
its corresponding pedestrian. Similar to definitions in Section
III-A, we now have laser scan point information that can also
be represented as Pi = {(xi1, yi1), (xi2, yi2), . . . , (xin, yin)},
Θi = {θi1, θi2, . . . , θin}, and Si = {si1, si2, . . . , sin}.

Grouping algorithm. Similar to Section III-A, we apply
DBSCAN on Θi, Si, Pi to obtain the group membership labels
Li = {li1, li2, . . . , lin}.

Group Social Space. We no longer assume known pedes-
trian locations as the “robot” only sees the laser scan points
(Figure 2, right), so we generate social spaces directly from
laser scan points. As would occur with a real laser scanner,
the “robot” sometimes fails to observe occluded pedestri-
ans. We obtain the group space Hij of group label j by
constructing a convex hull around the group of laser scan
points Gij = {k|lik = j} in video frame Vi: Hij =
convexhull ({(xik, yik)|k ∈ Gij}). The splits and merges fol-
low the same formulation as in Section III-A.

C. 3D Convolution Neural Network

The Third Spatial Dimension. Evidence for why 3D
convolution works has been vague. Both [14] and [37] pro-
posed 3D Convolutions based on mere intuition that 3D
kernels connect spatial features and temporal features together.
Although [37] provided examples of learned features, it is
hard to distinguish whether these features belong to the spatial
dimension or the temporal dimension, as even one frame in
the video can signal the entire action. In our case, identifying
whether a split or merge takes place from a single image
is impossible, so we supplement [14] and [37]’s intuition by
providing more concrete evidence.

As shown in Figure 3, splits and merges have unique
volumetric features [15] in the temporal dimension. They both
represent shapes similar to tree branches. In our task, the
decisive branching moments are not available to our model.
Thus, an alternative interpretation of our model’s goal is
to perform 3D object classification by analyzing voxel-grid-
represented 3D objects and predict whether these 3D objects
will evolve into tree branches.

The architecture. We largely leverage the C3D architecture
[37], shown in Figure 4, because it has demonstrated strong
performance in action recognition tasks. A difference between
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Fig. 3. Volumetric features of a merge (left) and a split (right). Only features
before the branch (the 17th layer) are visible to our model.

our network and C3D occurs after the pool5 layer where
our network progresses into two branches with two fully
connected hidden layers of 4096 units. The first branch outputs
a three-class prediction score p = (p0, p1, p2) with the classes
arranged in the order of no-action, a merge, and a split. The
second branch predicts a 2D pixel coordinate r = (rx, ry),
indicating a possible split or merge location regardless of what
the other branch predicts.

The location of group splits and merges is a vague concept.
When asked where exactly a split or merge takes place, few
people can agree on a fixed pixel location. In our problem,
we define the ground truth location to be the midpoint of the
shortest line that connects the involved two social group spaces
as shown in Figure 1. In practice, extreme pursuit of the split
and merge location accuracy is meaningless.

Two-task loss function. We have two output layers, the
ground truth one-hot class prediction score pt = (pt0, pt1, pt2)
and the previously defined ground truth event location rt =
(rtx, rty), so we combine the two loss functions together
(similar to [8]) as follows:

L(p, r, pt, rt) = Lcls(p, pt) + λδ(pt)Lloc(r, rt) (4)

Lcls is the softmax cross-entropy loss function representing
the class prediction loss,

Lcls(p, pt) = −
2∑

i=0

pti log

(
epi∑2
j=0 e

pj

)
(5)

Lloc is the L2 loss function representing the location prediction
loss,

Lloc(r, rt) = (rtx − rx)2 + (rty − ry)2 (6)

δ(pt) is to ensure that the location loss will only be incor-
porated if the ground truth event is a merge or split. Given
that both p and pt have their class indexes in the order of
no-action, merge and split, δ(pt) is of the form:

δ(pt) =

{
1, if arg maxi(pti) ≥ 1

0, otherwise
(7)

The hyper-parameter λ in Eq. (4) controls how much the
location loss influences the overall loss.

IV. EXPERIMENTS

A. Setup

Our default experiment setting is very similar to [37]. With
input videos of size 16 × 224 × 224, the network has 8

3D convolution layers and 5 3D max-pooling layers. Each
convolution layer has a kernel size of 3 × 3 × 3 and strides
1×1×1. This configuration was found to be the most effective
[37], similar to 2D CNNs [33]. Each max-pooling layer has
a kernel size of 2 × 2 × 2 and strides 2 × 2 × 2, except for
pool1, which has strides 1× 2× 2 to accommodate for our
16-frame inputs.

During training for all of the experiments, we used λ =
0.005. Using an Adam optimizer, the initial learning rate was
set to 1e−5 with a batch size of 1. Details on the inputs to
the network are presented in the following section.

B. Datasets

Our raw dataset was a mixture of the publicly available ETH
dataset [26] and UCY dataset [17]. These two datasets have
been commonly used in pedestrian trajectory prediction prob-
lems [1], [28], [40], [43]. Both datasets contain complex group
interaction behaviors [26] and have their videos recorded at 25
FPS. The ETH dataset [26] contains two sets of data from two
scenes (ETH and HOTEL). The UCY dataset [17] contains
three sets of data from another two scenes (ZARA1, ZARA2,
UCY1).

To generate training data for a merge instance, suppose
the merge happens at time i + 1 and we want to predict
this event n number of frames beforehand. Also, suppose the
merging groups have labels j1, j2. From this, we can first
obtain convex hulls Hj1 = (H(i−n−15)j1 , . . . ,H(i−n)j1) and
similarly convex hulls Hj2 by following the procedures in
Section III. Next, we pasted these convex hulls into blank
images, frame by frame, to generate a binary social space
video W = (Wi−n−15, . . . ,Wi−n). Because we want to filter
out noisy groups, W would be invalid training data if j1 or j2
is missing in these 16 frames. Generating training data for a
split follows a similar method, the only difference being that
there is now only one convex hull blob in the input video
instead of two convex hull blobs.

To generate training data for no-action cases, we randomly
sampled a time step i + 1 and a group label j in Li. Then,
we constructed Hj = (H(i−15)j , . . . ,Hij) and generated the
training data W . We also need to construct no-action data with
two convex hull blobs to distinguish between merge and no-
action. In this case, the second convex hull sequence Hj′ was
defined such that the centroid of Hij′ was the nearest neighbor
to the centroid of Hij among all the convex hull centroids at
time i.

Unfortunately, group splits and merges are infrequent
events. Training on inputs that are 1 frame ahead of the event
only gives us a total of 477 splits and 367 merges across all
5 sets of data. To improve training, we first performed scale
normalization for each W to limit the size range of all convex
hull blobs. This was done by cropping the empty space around
the input volumetric feature. Then, we performed translation
normalization so that the geometric center of the group shapes
in the last input frame is at the center. We then performed data
augmentations to randomly flip the video images or rotate
them by an arbitrary angle. Also due to the scarcity of the
events, we did not perform evaluations on time horizons longer
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Fig. 4. Our 3D convolutional neural network architecture. Each blue block represents a 3D convolution block with the number indicating the amount of
output channels. Each orange block represents a pooling block. Each yellow block represents a fully connected layer. The portion of our architecture within
the green block is the same as C3D [37] before the fully connected layers. Sharing the pool5 layer, two branches of fully connected layers predict split and
merge occurrences and locations respectively.

TABLE I
COMPARISON OF OUR APPROACH WITH SOCIAL-LSTM, SOCIAL-GAN AND SR-LSTM MODELS ON PREDICTION ACCURACY (F1 SCORE)

Method S-LSTM [1] S-GAN [9] SR-LSTM [45] Ours Ours: Laser Scans
Prediction Time 1 frame 0.5 sec 1 frame 0.5 sec 1 frame 0.5 sec 1 frame 0.5 sec 1 frame 0.5 sec

ETH

N.A. 58.4 56.3 66.2 53.6 68.9 59.0 60.5 64.2 49.5 41.7
Merge 36.6 16.7 59.7 40.0 58.0 39.0 76.7 80.0 76.9 45.8
Split 53.3 27.9 63.2 29.3 54.8 11.8 86.5 87.3 71.7 46.7
AVG 49.4 33.6 63.0 41.0 60.6 36.6 74.6 77.1 66.0 44.7

HOTEL

N.A. 57.2 56.8 67.3 54.1 69.3 58.1 58.5 53.1 65.0 53.2
Merge 44.5 14.8 68.9 22.2 67.7 12.9 78.5 63.6 79.4 74.8
Split 56.3 53.1 55.3 27.8 68.7 18.2 88.4 86.3 82.9 56.7
AVG 52.7 41.5 63.8 34.7 68.6 29.7 75.1 67.7 75.8 61.6

ZARA1

N.A. 57.9 51.4 60.8 53.9 57.9 54.1 62.5 60.0 58.5 50.0
Merge 57.1 24.0 78.1 25.0 57.1 48.3 76.0 62.5 78.4 80.0
Split 40.9 30.8 47.6 18.8 50.0 19.4 90.6 92.0 83.0 86.2
AVG 52.0 35.4 62.2 32.5 55.0 40.6 76.4 71.5 73.3 72.1

ZARA2

N.A. 55.7 50.0 58.2 51.7 55.8 51.5 49.5 50.5 56.1 55.6
Merge 34.5 20.4 43.4 16.7 40.4 30.8 81.2 70.6 69.1 30.8
Split 35.3 20.9 34.5 22.6 34.6 22.2 78.7 75.5 77.4 75.9
AVG 41.8 30.4 45.4 30.3 43.6 31.5 69.8 65.5 67.5 54.1

UCY1

N.A. 51.5 50.2 50.8 51.4 52.2 52.4 59.6 59.7 51.4 57.2
Merge 31.6 34.7 34.9 26.3 32.3 26.9 54.8 52.9 58.0 48.8
Split 34.4 41.2 36.2 29.3 24.5 22.1 82.6 84.5 77.8 83.3
AVG 39.2 42.1 40.6 35.7 36.3 33.8 65.6 65.7 62.4 63.1

Total Average 47.0 36.6 55.0 34.8 52.7 34.4 72.3 69.5 69.0 00.0

than 0.5 seconds. At 0.5 seconds, there are only a total of 313
splits and 214 merges. And at 1 second, there are only a total
of 229 splits and 153 merges.

C. Evaluation

Due to the size of dataset, we performed leave-one-out
cross-validation. This evaluation approach is also adopted by
[1], [9], [45]. We trained our model on 4 sets of data and
evaluated it on the remaining set.

Comparisons with trajectory models. A logical approach
is to generate group shapes from trajectory prediction models.
Because local overhead image patches around pedestrians are
infeasible to a ground-based, real-world robot, we did not
compare with models that take local image patches as inputs
(e.g., [29], [42]). Therefore, we used Social-LSTM [1], Social-
GAN [9] as baselines and SR-LSTM [45] as the state-of-the-
art model for comparisons.

Social-LSTM, Social-GAN and SR-LSTM use input se-
quences of 8 frames, so we changed the pool2 layer of our
model to have strides 1× 2× 2 similar to pool1. For these
models, we applied our grouping algorithm on the first frame
to determine the pedestrians’ original group memberships. We
then fed the pedestrians’ trajectories into these models to

obtain the predicted future trajectories. Next, we applied our
grouping algorithm to the predicted future trajectories to obtain
their new group memberships. The change in memberships
allowed us to determine whether these models can predict
splits, merges, or no-actions. We evaluated the models on all
of the merges and splits and an equal number of no-action
sequences on the test dataset. Then, we used the leave-one-
out approach following a similar evaluation methodology as
[1], [9], [45].

To allow location prediction accuracy comparisons, we also
modified the trajectory based models by applying our group
shape generation pipeline on the predicted trajectories. Once
we obtained the group shapes, we applied our definition to
estimate the split and merge location.

Since this is a categorization, all models were evaluated
on the usual classification metrics of precision, recall, and F1
score for the three ground truth events (no action, merge, and
split). We only report F1 scores in Table I, but saw our model
regularly outperform the others for all three metrics.

As shown in Table I, our method was generally better
than these techniques. Although for a different task, Social-
GAN and SR-LSTM models still outperformed the baseline
Social-LSTM models. However, our approach outperformed
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TABLE II
COMPARISON OF OUR APPROACH WITH SOCIAL-LSTM, SOCIAL-GAN

AND SR-LSTM MODELS ON LOCATION PREDICTION ERROR (IN PIXELS)

Dataset ETH HOTEL ZARA1 ZARA2 UCY1
S-LSTM 9.21 11.20 5.56 19.41 27.58
S-GAN 7.73 9.46 5.88 7.98 14.14

SR-LSTM 6.55 8.03 5.53 7.22 8.91
Ours 17.66 13.89 15.11 15.55 21.86

Ours: Laser Scans 19.56 18.78 15.55 20.45 26.86

all other models on all three metrics, especially for splits and
merges. Social-LSTM, Social-GAN and SR-LSTM models
performed better in predicting no-actions, but they were weak
at rejecting false negatives, resulting in an overall F1 score that
was on par with our model. We also observed that all three
models showed a strong bias towards predicting no-actions.
This demonstrates that individual pedestrian-based models are
unable to accurately capture complex pedestrian interactions,
such as grouping, even when modified for social behaviors.

When making predictions 0.5 seconds ahead, the trajectory
models incur a significant performance downgrade while our
model’s performance drops moderately. This indicates that
our model successfully captures the temporal clues within
the inputs to predict temporally distant splits and merges. In
contrast, the trajectory models are lackluster when predicting
splits and merges in the far future. Note that the trajectory
models’ performances lowered to near random guess levels
and are likely to downgrade further for longer time horizons.

Our model’s performance on predicting no-actions was
generally worse than for splits and merges. This is because
too much data variation exists in the no-action class during
training. Our model was trained on equal numbers of each
class instance. In reality, no-action instances vastly dominate
pedestrian interactions and map to far more possible social
group shape transformations. However, feeding too much
training data from the no-action class leads to the class
imbalance problem [2]. The issue of large data variety with
limited amounts of data is an important area for future work.

In Table II, we can see that the state-of-the-art baseline
models performed ∼ 10 pixels better than our approach. This
is expected because our definition of split and merge location
is dependent on pedestrian positions, which are unknown
to our model. Due the arbitrary nature of split and merge
locations, 10 pixels is not a huge practical advantage. We also
believe that being able to predict whether a split or merge will
occur is more important than pinpointing the location.

Accuracy across parameters. Recall from Section III
that we use DBSCAN as our grouping algorithm with three
threshold values. These threshold values were determined
subjectively, so a sensitivity analysis was performed on models
trained with inputs from the social generation method in Sec-
tion III-A. Varying these values also simulates how pedestrian
behavior in social groups can vary greatly across cultures
(e.g., [35]). Therefore, this analysis shows how well our model
transfers when one of the grouping parameters changes. We
selected two models evaluated on ETH and UCY1 to represent
a normal and a difficult scenario, because our model performed

TABLE III
SENSITIVITY ANALYSIS ON DIFFERENT SETS OF GROUPING PARAMETERS

(F1, LOCATION ACCURACY IN PIXELS)

Threshold
Values ETH UCY1 Threshold

Values ETH UCY1

↓ P = 1.5

O = 30
V = 1.0

48.7
(17.05)

70.1
(15.79)

↑ P = 2.5

O = 30
V = 1.0

63.7
(16.69)

60.9
(22.64)

P = 2.0
↓ O = 15

V = 1.0

54.6
(17.05)

64.0
(15.15)

P = 2.0
↑ O = 45

V = 1.0

70.1
(14.75)

64.7
(18.67)

P = 2.0
O = 30

↓ V = 0.5

63.2
(16.75)

66.2
(18.58)

P = 2.0
O = 30

↑ V = 1.5

64.6
(16.25)

66.3
(19.02)

P = 2.0
O = 30
V = 1.0

65.9
(16.54)

67.2
(18.98)

moderately on ETH and the worst on UCY1 as shown in Table
I. Then, we adjusted each grouping parameter to examine our
model’s adaptability.

We evaluated performance using event prediction accuracy
and average event location prediction error. The latter was
measured in the normalized images, as mentioned at the end
of Section IV-B. This error can be significantly less when the
prediction is projected back to the raw image.

In Table III, P is the position distance threshold in meters;
O is the velocity orientation threshold in degrees; and V
is the velocity magnitude threshold in meters per second.
Arrows indicate an increase or decrease of the corresponding
parameter from the value used for the single frame prediction
in Table I. The values of average location errors are in
parenthesis. From the table, we can infer that our approach
demonstrates excellent model transfer abilities across different
parameter settings both in terms of prediction accuracy and
location prediction error.

Comparison to simulated laser scans. As mentioned in
Section III, we approximated a simulated laser scan for use
in our model. This was to demonstrate that our model is
compatible with various types of inputs. Input video sequences
generated from simulated laser scans are noisier and can ne-
glect occluded pedestrians when compared to those generated
from basic pedestrian information. Training for this analysis
was stopped once performance had reached levels comparable
to our regular approach. As shown in Table I and Table II,
applying our model on simulated laser scans results in similar
prediction accuracies, but location predictions are less accurate
due to inputs being more challenging.

Future work should examine performance from real laser
scan data, but this analysis hints that our approach will be
effective with laser scans.

Group interaction signals and evidence on 3D CNN.
A key concern is whether the process is understandable by
humans. We took the feature map of conv5b and followed
the deconvolution pipeline [44] to trace the feature map
layer back to the input image space. We selected the highest
activation value in the conv5b feature map for four example
cases. We then inspected the corresponding input image space
projections to examine what parts of the input image contribute
to these activation values (Figure 5). The results suggest that
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Fig. 5. Visualization of our model using the method from [44]. The first four rows are two inputs corresponding to two cases of splits and their learned
contributions to the highest activation value in conv5b. The last four rows correspond to two cases of merges.

the features captured by our model can also be interpreted
from a behavioral perspective:

1) In the first split example, our network focused on the
portion of the leading edge close to the bottom-left
individual. As the bottom-left person moved farther
away from the other person, our network captured the
increase in length of that portion of the leading edge.
From a human perspective, a leading edge increase
reflects a gap increase within the group.

2) In the second split example, our network focused on
the round edge above the person at the top. The
projected features show that as time progresses, the
network rotated its attention along the group space
boundary counter-clockwise. From a human perspective,
this means that a subgroup within the group starts to
show signs of changing movement direction.

3) In the first merge example, our network focused on the
two edges of the two groups that are closest to each
other. Over time, our network captured the trend that
these two edges are approaching each other, indicating
a merge. This is also consistent with how humans predict
merges by observing diminishing gaps.

4) In the second merge example, as a group of people
walked past an individual, the individual sped up and
joined the group. As a result, the social space around
this individual grew larger. Our network captured this
by noticing the shrinking of two “cracks” around their
combined social space. From a human perspective, this
can be interpreted as an individual’s behavior evolving
to conform with a group’s behavior.

Based on the the learned features shown in Figure 5, we can
infer that our model captures temporal features of our input
data. If we concatenate these learned temporal features frame
by frame, we can then interpret the results as spatial features

of our volumetric features. Examples include an enlarging
surface, a slightly twisted round curve, two surfaces that are
about to intersect, and the narrowing of two dents, etc.

V. CONCLUSION

To enhance robot navigation efficiency and social navigation
near groups of moving pedestrians, we present a 3D CNN
model for predicting social group splits and merges. We first
developed a pipeline that transformed pedestrian information
into social group spaces. Then, we utilized a modified C3D
network [37] since volumetric features [15] can transform the
temporal dimension into a spatial dimension and 3D CNNs
excel at encoding 3D spatial features. We showed that our
approach was (a) on par with, or better than, the state-of-the-
art pedestrian trajectory prediction models for predicting the
occurrence of splits and merges and (b) transferred well across
different prediction times and cultural settings. However, our
approach does require a diverse training dataset.

This work included secondary results valuable towards
future research efforts. We provide examples demonstrating
that our model learns features that can be interpreted from a
human perspective. We also showed, using an approximation
of laser scan data, that our approach has potential for robot
deployments that lack access to overhead views. Finally, our
model’s success also provides evidence that 3D Convolution
learns temporal features in videos.

This work is only a partial step towards giving robots the
ability to predict group events and navigate in an appropriate
manner. Future work will involve solving the data variation
imbalance problem for the no-action class. We also need
more data to strengthen the model’s adaptability for different
scenes and enable prediction of group event time. Finally, we
need to modify our social group space generation pipeline
to enable real-world robots to fully take advantage of this
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approach. This will allow future systems to skip the expensive
step of detecting individual pedestrians, which is needed for
trajectory-based approaches. This will also confirm that laser
scanners and robot camera views that occlude group members
can be supported with our approach.
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