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a b s t r a c t 

Most search game models assume that the hiding locations are identical and the players’ objective is 

to optimize the search time. However, there are some cases in which the players may differentiate the 

hiding locations from each other and the objective is to optimize a weighted search time. In addition, 

the search may involve multiple search teams. To address these, we introduce a new network search 

game with consideration given to the weights at different locations. A hider can hide multiple objects 

and there may be multiple search teams. For a special case of the problem, we prove that the game has 

a closed-form Nash equilibrium. For the general case, we develop an algorithm based on column and 

row generation. We show that the Searcher’s subproblem is NP-hard and propose a branch and price al- 

gorithm to solve it. We also present a polynomial time algorithm for the Hider’s subproblem. Numerical 

experiments demonstrate the efficiency of the proposed algorithms, and reveal insights into the proper- 

ties of this game. 

© 2020 Elsevier B.V. All rights reserved. 
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1. Introduction 

The search games were first introduced by Isaacs (1965) . His

“simple search game” is defined on an arbitrary region R and is

played between a hider and a searcher. The Hider picks a point

in R and the Searcher selects a unit speed trajectory in R to find

the Hider. Payoff to the players is the search time, which is the

time required for the Searcher’s trajectory to meet the Hider for

the first time. Gal (1979) provides a more precise formulation of

the search game defined on a network Q consisting of a finite set

of connected arcs and a predetermined starting point O . The Hider

picks a point in Q to hide and the Searcher selects a unit speed

path starting from O . Since then, many variations of the network

search games have been introduced ( Alpern, 2010; 2011; 2017;

Alpern & Gal, 2006; Alpern & Lidbetter, 2013a; 2013b; 2015; Bas-

ton & Kikuta, 2015; Dagan & Gal, 2008; Gal, 1980; Garnaev, 2012;

Zoroa, Fernández-Sáez, & Zoroa, 2013 ). For example, Dagan and Gal

(2008) consider an arbitrary starting point for the Searcher, Alpern

(2011) studies a find-and-fetch search model. Other examples in-
� This material is based upon work supported by the National Science Founda- 

tion (Grant No. 1901721 ) and the United States National Institute of Justice (Grant 

No.2018-R2-CX-0011). 
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lude search problems on networks with asymmetric travel times

 Alpern, 2010; Alpern & Lidbetter, 2013b ), an expanding search

aradigm ( Alpern & Lidbetter, 2013a ), search games on a lattice

 Zoroa et al., 2013 ), search games with searching costs at nodes

 Baston & Kikuta, 2015 ), bi-modal search games to find a small ob-

ect ( Alpern & Lidbetter, 2015 ), and search games with combinato-

ial search paths ( Alpern, 2017 ). For a more recent survey of search

ames see Gal (2013) ; Hohzaki (2016) . For a background in search

ames see Alpern and Gal (2006) , Alpern and Lidbetter (2013b) ,

al (1980) and Garnaev (2012) . 

In this paper, we study a game played between a Hider and

 Searcher. The Hider picks one or more locations on a network

o hide some objects and the Searcher follows a path to find

he hidden objects such that an objective function is optimized.

he objective function is usually assumed to be the search time.

hile the Hider aims at maximizing the search time, the Searcher

ants to minimize it. Therefore, this problem can be formulated

s a zero-sum game. Majority of the papers in the literature of

earch games assume that the players do not have preference over

ifferent locations on the network and they only care about the

earch time. However, there are some cases in which the players

ifferentiate the hiding places from each other. In these cases, the

layers may want to minimize/maximize a weighted search time

ith node weights representing the rate of damage. For example,

n certain attacks (biological or chemical), casualty rate depends

n factors such as population density, environment conditions etc.

https://doi.org/10.1016/j.ejor.2020.06.046
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.06.046&domain=pdf
https://doi.org/10.13039/100000001
mailto:abdolmajid.yolmeh@rutgers.edu
mailto:gursoy@soe.rutgers.edu
https://doi.org/10.1016/j.ejor.2020.06.046
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herefore, different locations may have different casualty rates

nd the overall damage will be proportional to exposure time

nd casualty rate. Another example is the problem of detecting

n eavesdropping agent over communication channels ( Garnaev,

aykal-Gürsoy, & Poor, 2016 ). Different channels may have differ-

nt transmission capacities and the rate of damage to the network

ill be proportional to the detection time and the capacity of the

hannel. The only study that considers node weights in the search

ames is conducted by Zoroa, Zoroa, and Fernández-Sáez (2009) .

owever, they only consider such games on lattices, not general

raphs. 

The problem of searching for a hidden object in discrete time

nd discrete space has been well studied in the literature. Black-

ell studied the problem of finding a hidden object in a set of

oxes ( Matula, 1964 ). Given a probability distribution over the

oxes of containing the hidden object and a search cost for each

ox, the objective is to minimize the expected cost of finding the

bject. Game-theoretic variants of this game have also been stud-

ed ( Bram, 1963; Gittins & Roberts, 1979; Lin & Singham, 2015;

oberts & Gittins, 1978; Ruckle, 1991 ). Less attention has been

iven to the search games with multiple hidden objects. Assaf and

amir (1987) and Sharlin (1987) study a search game with sev-

ral hidden objects with the objective of finding one of these ob-

ects with minimum expected cost. Lidbetter (2013) extends this

ame to finding all of the hidden objects at minimum expected

ost. Alpern, Fokkink, Op, and Lidbetter (2010) introduce caching

ames in which a Searcher with a limited resource aims to maxi-

ize the probability of finding a certain number of hidden objects.

idbetter and Lin (2017) introduce multi-look search problems in

hich the Searcher can find at most one hidden object each time

 box is opened. In other words, to find all of the hidden objects

n a box, the Searcher may have to open it multiple times. 

We propose a new discrete search game in which different lo-

ations have different weights and the payoff to the players is

roportional to the search time and the location weight. In this

etting, the location weights represent the rate of damage at that

ocation. The players want to minimize/maximize the overall dam-

ge to the network, which is represented as a weighted search

ime. The game is played between a Searcher who controls a set

f homogeneous search teams and a Hider who picks hiding lo-

ations to hide the objects. The hiding locations are dispersed on

 network and the time it takes to visit a location depends on

he previously visited location. We first consider a special case

f this game and characterize the Nash equilibrium. Afterwards,

e develop a column and row generation procedure to solve the

eneral form of the game. The rest of this paper is organized as

ollows. Section 2 introduces the weighted discrete search game,

resents examples and derives the Nash (saddle-point) equilibrium

n closed form for a special case of the original game. Section 3

evelops a solution approach based on column and row genera-

ion to solve the general game. Section 4 demonstrates numeri-

al experiments to investigate the efficiency of the proposed algo-

ithms and gain insight into the properties of the game. Finally,

ection 5 presents the main conclusions of the paper and future

esearch ideas. 

. Problem description 

A Searcher and a Hider play a zero-sum weighted search game.

he Searcher controls a set of S search teams and the Hider con-

rols a set of H objects to hide. The game is played on a complete

raph G = (N, E) , where N = { 0 , 1 , 2 , . . . , n } is the set of nodes in

he graph and E = { (i, j) : i, j ∈ N, i � = j} is the set of edges. Using

he approach in Gal (1979) , let node 0 represent the origin, which

s a predetermined location where all search teams are initially lo-

ated. Let N = { 1 , 2 , . . . , n } denote the set of n potential hiding lo-
h 
ations. These locations are dispersed at the nodes of a network,

nd each location may differ in its rate of damage, and its diffi-

ulty to search. The Hider hides the objects in these potential lo-

ations. The Searcher uses a set of homogeneous search teams to

nd the hidden objects. It takes a search team v i time units to in-

pect location i ∈ N h and, for each edge ( i , j ) ∈ E , the time required

o travel from location i to location j is denoted by d ij . If a loca-

ion is inspected, the search team will find the hidden object, if

ny, i.e., false negative response is not possible. Each location i has

 weight denoted by w i . This weight represents the rate of dam-

ge to the network, if the Hider decides to hide an object at lo-

ation i . In other words, the weight w i represents the damage in-

urred in node i per unit of time, if there is an object hidden in

his node. This damage rate will be in effect until the object is

ound by a search team. Therefore, if there is a hidden object in

 node, then the overall damage in that node will be equal to the

eight of the node multiplied by the time it takes to find the ob-

ect. Throughout the paper, we assume, without loss of generality,

hat the locations are sorted in the order of decreasing weights,

.e., w 1 > w 2 > · · · > w n . We also assume that all parameters of the

ame are known to both players, i.e., this is a complete informa-

ion game. Fig. 1 demonstrates an example of the weighted net-

ork search game with n = 5 nodes, two objects and two search

eams. Matrix d denotes the matrix of travel times d ij . Vectors v

nd w represent the vector of inspection times, v i , and weights,

 i , respectively. 

The objective of the Hider is to maximize the expected total

amage to the network, while the Searcher wants to minimize the

amage. A pure strategy for the Hider (also called a pure hiding

trategy throughout the paper) is to select a hiding location to hide

ach object. We assume that hiding more than one object in a lo-

ation does not increase the rate of damage in that location. Hence,

t is not beneficial for the Hider to hide multiple objects in a sin-

le location. A pure strategy for the Searcher (also called a pure

earch strategy throughout the paper) is to select a joint sched-

le for search teams that ensures the search of every node exactly

nce. In other words, a joint schedule assigns each node to exactly

ne search team and determines the order in which the search

eams visit their assigned nodes. For example, for the search game

nstance characterized in Fig. 1 , an example of joint schedule is to

ssign schedules 0 → 1 → 2 → 3 and 0 → 4 → 5 to search teams 1

nd 2, respectively. This means that, this joint schedule prescribes

earch team 1 to start from the origin and visit nodes 1, 2, and

, respectively. Similarly, search team 2 starts from the origin and

isits nodes 4 and 5, respectively. 

The proposed model is a zero-sum simultaneous-move game

ith a finite number of strategies. This type of game is also

nown as a matrix game. In our proposed matrix game model,

he Searcher plays as the row player, and the set of all possible

ure search strategies constitute the rows of the matrix. The Hider

lays as the column player, with the set of all possible pure hid-

ng strategies constituting the columns of the game matrix. We use

 to denote the set of all possible pure search strategies and k to

ndex them. Let x k be the probability of using search strategy k

n the Searcher’s mixed strategy. Hence x = (x 1 , x 2 , . . . , x | K| ) repre-

ents a mixed strategy of the Searcher, where | K | denotes the car-

inality of set K , x k ≥ 0, for all k ∈ K and 

∑ | K| 
k =1 

x k = 1 . Similarly, we

se � to denote the set of all possible pure hiding strategies and

ndex them by l . Let y l denote the probability of using hiding strat-

gy l . We define binary parameter z l 
i 
, which is equal to 1 if hid-

ng strategy l involves hiding an object in location i , 0 otherwise.

ere, a hiding strategy prescribes which locations will have an ob-

ect hidden. Thus, if there are two objects hidden at the third and

fth nodes on the five-node network example in Fig. 1 , we may

ave (z l 
1 
, z l 

2 
, . . . , z l 

5 
) = (0 , 0 , 1 , 0 , 1) . In case there is only one object

idden, then l may represent a pure hiding strategy of choosing

http://cbs.wondershare.com/go.php?pid=5237&m=db
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Fig. 1. A complete instance of the weighted search game. 
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the l th node to hide the object, i.e., (z l 
1 
, z l 

2 
, . . . , z l n ) = (0 , . . . , 0 , z l 

l 
=

1 , 0 , . . . , 0) . Then, y l corresponds to the probability of choosing

the l th node to hide the object. A mixed strategy of the Hider

is denoted as y = (y 1 , y 2 , . . . , y | �| ) , y l ≥ 0, ∀ l ∈ �, and 

∑ | �| 
l=1 

y l = 1 .

We use parameter t k 
i 

to denote the time at which joint schedule

k completes inspection in location i . For example, for the search

game instance in Fig. 1 , if joint schedule k is to assign schedules

0 → 1 → 2 → 3 and 0 → 4 → 5 to search teams 1 and 2, respectively,

then search team 1 starts from the origin and visits node 1. Thus

 

k 
1 

= d 01 + v 1 = 4 is obtained. After visiting node 1, search team

1 visits node 2. Therefore, t k 
2 

= t k 
1 

+ d 12 + v 2 = 4 + 1 + 4 = 9 . Sim-

ilarly, we can compute the vector (t k 
1 
, t k 

2 
, . . . , t k 

5 
) = (4 , 9 , 13 , 3 , 6) .

For S = 1 , we also use parameter r k 
i 

to denote the order of visit-

ing location i while using schedule k . If the Searcher and the Hider

use mixed strategies x and y , respectively, then the expected total

damage is v ( x , y ) = 

∑ 

k ∈ K 
∑ 

l∈ �
∑ 

i ∈ N h w i t 
k 
i 

z l 
i 
x k y l . The Nash equilib-

rium (saddle point) of the game is a point ( x ∗, y ∗) such that no

player can benefit by unilaterally changing his or her strategy. In

other words, at a Nash equilibrium point ( x ∗, y ∗) , the following in-

equalities hold ( Barron, 2013 ): 

v ( x 

∗, y ) ≤ v ( x 

∗, y ∗) ≤ v ( x , y ∗) . 

The expected total damage in equilibrium, v ( x ∗, y ∗) , is called the

value of the game. The following theorem describes the saddle-

point equilibrium for a special case. 

Theorem 1. If all travel times are the same, i.e. d i j = d, ∀ (i, j) ∈ E,

the search time is the same at each node, i.e. v i = v , ∀ i ∈ N h , and

there is only one search team and one hidden object, i.e. S = H = 1 ,

then the equilibrium is characterized by 

y i = 

{ 

1 
w i ∑ m 

j=1 
1 

w j 

, i = 1 , 2 , . . . , m, 

0 , i = m + 1 , . . . , n, 

(1)

E [ search order of the i th node ] 

= 

∑ 

k ∈ K 
r k i x k = 

m (m + 1) 

2 

1 
w i ∑ m 

j=1 
1 

w j 

, i = 1 , 2 , . . . , n, (2)

where m = arg max 
i ∈{ 1 , 2 , ... ,n } 

i (i +1) 
2 ∑ i 

j=1 
1 

w j 

. Moreover, the value of the game is:

 

∗ = (d + v ) 
m (m +1) 

2 ∑ m 
j=1 

1 
w j 

. 

Note that in this case, one can write t k 
i 

simply as t k 
i 

= r k 
i 
(d + v ) .
roof. Based on the definition of Nash Equilibrium, ( x, y ) is an

quilibrium if and only if for some u : 

(d + v ) w i 

∑ 

k ∈ K 
x k r 

k 
i 

{
= u, y i > 0 , 

≤ u, y i = 0 , 

⇒ w i 

∑ 

k ∈ K 
x k r 

k 
i 

{
= 

u 
d+ v ≡ ū , y i > 0 , 

≤ ū , y i = 0 . 
(3)

In this equation, the term (d + v ) w i 

∑ 

k ∈ K x k r k i 
is the expected

otal damage if the Hider decides to hide the object in location

 . This equation indicates that, for all nodes i with y i > 0, the ex-

ected total damage, (d + v ) w i 

∑ 

k ∈ K x k r k i 
, should be the same. Oth-

rwise, the Hider will be willing to deviate from the current mixed

trategy by redistributing the y i probabilities to increase his payoff.

oreover, for all nodes i with y i = 0 , the expected total damage,

(d + v ) w i 

∑ 

k ∈ K x k r k i 
, should not be greater than u . Similarly, for the

earcher we have the following condition: 

n 
 

i =1 

w i y i r 
k 
i 

{
= ū , x k > 0 , 

≥ ū , x k = 0 . 
(4)

We define A as the set of active nodes in which the Hider hides

he object with a positive probability, i.e., A = { i | y i > 0 } . Clearly, if

 , j ∈ A with w i > w j , the expected search orders will satisfy 

E [ search order of the i th node ] 

= 

∑ 

k ∈ K 
x k r 

k 
i = 

ū 

w i 

< 

ū 

w j 

= E [ search order of the j th node ] . (5)

On the other hand, given the set of active nodes A , if w i y i =
, a constant for all i ∈ A , then y i = c/w i = 

1 
w i ∑ 

j∈ A 1 
w j 

since 
∑ 

i ∈ A y i =

 . Furthermore, for any k ∈ K , it holds that 
∑ 

i ∈ A r k i 
≥ | A | (| A | +1) 

2 . This

s true because the minimum of 
∑ 

i ∈ A r k i 
is achieved only in the

ase that the nodes in set A are visited before the other nodes. In

his case, the order of visiting all nodes in A , follows the natural

umbers up to | A |, that is 
∑ 

i ∈ A r k i 
= 

∑ | A | 
r=1 

r = 

| A | (| A | +1) 
2 . Therefore,

e have 

 

i ∈ A 
w i y i r 

k 
i = 

1 ∑ 

j∈ A 
1 

w j 

∑ 

i ∈ A 
r k i ≥ | A | (| A | + 1) 

2 

1 ∑ 

j∈ A 
1 

w j 

. (6)

hus, the Searcher should visit during the first | A | instances, each

ne of the locations in A , regardless of the exact order, that is r k 
i 

∈
 1 , . . . , | A |} for all i ∈ A , and k ∈ B = { l : x > 0 } . 

http://cbs.wondershare.com/go.php?pid=5237&m=db
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Fig. 2. Example of a weighted network search game with n = 3 hiding locations. 

t  

T

R  

E  

M  

w  

i  

o  

v  

d

R  

s  

w  

e  

s  

a  

r  

i  

(  

G

E  

o  

g  

N  

d  

w  

t  

v  

c  

a  

n  

T  

f  

Y  

0  

u

L  

s  

t

P  

a  

i  

l  

Remove


Watermark

Wondershare
PDFelement
Following the above discussion, given the set of active nodes A ,

e can show that the following is a solution to Eqs. (3) and (4) : 

 i = 

{ 

1 
w i ∑ 

j∈ A 
1 

w j 

, i ∈ A, 

0 , i / ∈ A. 

(7) 

E [ search order of the i th node ] 

= 

∑ 

k ∈ K 
x k r 

k 
i 

⎧ ⎪ ⎨ 

⎪ ⎩ 

= 

| A | (| A | +1) 
2 

1 
w i ∑ 

j∈ A 
1 

w j 

, i ∈ A, 

≤ | A | (| A | +1) 
2 

1 
w i ∑ 

j∈ A 
1 

w j 

, i / ∈ A. 

(8) 

oreover, we can show that, based on this solution, the expected

otal damage is ET D (A ) = (d + v ) 
| A | (| A | +1) 

2 ∑ 

j∈ A 1 
w j 

. Note that, using sched-

les that visit nodes in set A before other nodes, the quantity ū

an be obtained from (4) , which can be used to derive (8) from

3) . 

Next step is to characterize the active set A . We show that,

or any active set A with i ∈ A , j / ∈ A , w j > w i , the Hider can re-

lace node i with node j to create an active set A 

′ that leads to

 higher ETD. This is because ET D (A ) = (d + v ) 
| A | (| A | +1) 

2 ∑ 

j∈ A 1 
w j 

is an in-

reasing function of w i , i ∈ A . Therefore, replacing w i with w j will

ead to a higher ETD. Thus, knowing that w i values are sorted, the

ctive set with the highest ETD is of the form A = { 1 , 2 , . . . , l} and

he cut-off index l = m is, by assumption, the cut-off index that

eads to the highest ETD. Therefore, the Hider cannot increase the

TD by changing the active set from A = { 1 , 2 , . . . , m } to any other

et. 

Next, we show that there exists a search strategy characterized

y Eq. (2) . The space of possible vectors for the expected visiting

rders is the convex hull of all permutations of the set { 1 , 2 , . . . , n }
iven as 

on v (R ) 

= 

{ 

r̄ ∈ R 

n , 

n ∑ 

i =1 

r̄ i = 

n (n + 1) 

2 
, 
∑ 

i ∈ Q 
r̄ i ≥

(| Q| + 1 

2 

)
, Q ⊆ { 1 , 2 , . . . , n } 

} 

, 

(9) 

here r̄ i is the expected visiting order of node i , i.e., r̄ i = 

∑ 

k ∈ K r k i 
x k .

his space is called permutahedron and is not full-dimensional

 Lancia & Serafini, 2018 ). To show that there exists a strategy for

he Searcher, we need to prove that the expected visiting orders,

rom Eq. (2) , are in the permutahedron. Obviously, 
∑ n 

i =1 ̄r i = 

n (n +1) 
2 

s true. We proceed to demonstrate that the other inequalities

re also valid. We show that the inequality is valid for | Q| = l

ith 1 ≤ l < n . For each l , it is enough to prove the inequality for

 = { 1 , 2 , . . . , l} (for other sets of size l , the inequality will follow

ue to ordered node weights). We need to show that: 

l 
 

i =1 

m (m + 1) 

2 

1 
w i ∑ m 

j=1 
1 

w l 

≥
(

l + 1 

2 

)
= 

(l + 1) l 

2 

, 

mplying 

m (m +1) 
2 ∑ m 

j=1 
1 

w l 

≥
l (l +1) 

2 ∑ l 
i =1 

1 
w l 

. 

But, this is true based on the assumption that index m is cho-

en so that this inequality holds. Therefore, there exists a search

trategy that satisfies Eq. (2) . This completes the proof. �

emark 1. Using the expected search order values obtained in

q. (2) , we can compute a mixed search strategy for the Searcher

n polynomial running time of O ( n 2 ). This can be done using
he decomposition algorithm provided in Yasutake, Hatano, Kijima,

akimoto, and Takeda (2011) . 

emark 2. Theorem 1 indicates that, when d i j = d, v i = v , ∀ (i, j) ∈
, i ∈ N h and H = S = 1 , the Nash equilibrium is of threshold type.

eaning that, there exists a cut-off index, m , such that the Hider

ill only consider the first m locations and ignore the remain-

ng ones. This theorem can be used to obtain an upper bound

n the value of the game in general by taking d = max i, j d i j and

 = max i v i . Similarly, a lower bound can be computed by taking

 = min i, j d i j and v = min i v i . 

emark 3. The Nash equilibrium characterized in Theorem 1 pre-

cribes lower hiding probabilities for locations with higher

eights. The reason for this counter-intuitive outcome is that the

xpected visiting order of the locations with higher weights is

maller in equilibrium. Therefore, even though the rate of dam-

ge is higher for locations with higher weights, the expected du-

ation of damage is smaller for these locations. This observation

s in line with the results obtained in the area of security games

 Baykal-Gürsoy, Duan, Poor, & Garnaev, 2014; Yolmeh & Baykal-

ürsoy, 2017 ). 

xample 1. We consider an example with n = 3 nodes to hide

n a network shown in Fig. 2 . In this figure, node 0 is the ori-

in and the remaining nodes are the potential hiding locations.

ode weights are shown on top of each node. We assume that

 i j = 1 , v i = 1 , ∀ (i, j) ∈ E, i ∈ N h , and S = H = 1 . Using Theorem 1 ,

e can obtain the critical index m = 2 . The hiding probabilities ob-

ained are: y 1 = 

1 
w 1 

1 
w 1 

+ 1 
w 2 

= 0 . 4 , y 2 = 

1 
w 2 

1 
w 1 

+ 1 
w 2 

= 0 . 6 , y 3 = 0 , and the

alue of the game is: V ∗ = (d + v ) 
m (m +1) 

2 ∑ m 
j=1 

1 
w j 

= 21 . 6 . Using Eq. (8) , we

an compute the expected search order for nodes 1 and 2 as 1.2

nd 1.8, respectively. Note that, because node 3 is always the last

ode that is visited, the expected search order of this node is 3.

o transform these expected visiting orders into a mixed strategy

or the Searcher, we use the decomposition algorithm described in

asutake et al. (2011) . Using this algorithm, the search schedule

 → 1 → 2 → 3 is used with probability 0.8, and the search sched-

le 0 → 2 → 1 → 3 is chosen with probability 0.2. 

emma 1. Given an upper bound V on the value of the game, any

earch strategy k ∈ K that completes inspection at any node i at time

 

k 
i 

with t k 
i 

> 

V 
w i 

does not belong to a Nash equilibrium. 

roof. We show that the Hider can improve his payoff by hiding

n object in location i . The expected damage from hiding an object

n location i is: w i t 
k 
i 

> V ≥ V ∗. Therefore, using search strategy k

eads to an expected damage value that is higher than the expected

http://cbs.wondershare.com/go.php?pid=5237&m=db
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damage in equilibrium. Therefore, strategy k does not belong to a

Nash equilibrium. �

One way to solve the proposed weighted search game is to gen-

erate all of the possible strategies for both players and solve the

resulting matrix game. However, for both players, the number of

possible strategies grows exponentially as n increases. Therefore, it

is not possible to generate all of the possible strategies for prob-

lems of larger size. In addition, even though the number of possi-

ble strategies is large, only a small number of them are expected

to be used in the Nash equilibrium. In the next section, we use this

idea to develop an efficient column and row generation algorithm

to obtain a Nash equilibrium for this game. 

3. Solution approach for general weighted search games 

In this section, we develop a solution algorithm based on col-

umn and row generation ( Muter, Birbil, & Bülbül, 2013; Riedel,

Smith, & McCallum, 2012 ) to find a Nash equilibrium for the

weighted search game introduced in the previous section. The pro-

posed solution method can also be described as a modification of

the algorithm introduced in Godinho and Dias (2010, 2013) . Be-

cause this is a zero-sum game, we can write the following linear

program (LP) to obtain a Nash equilibrium for this game: 

LPM Minimize u 

subject to u ≥
∑ 

k ∈ K 
x k 

∑ 

i ∈ N h 
w i t 

k 
i z 

l 
i , ∀ l ∈ �, 

∑ 

k ∈ K 
x k = 1 , 

x k ≥ 0 , ∀ k ∈ K. 

This LP is called the linear programming master problem (LPM).

In this formulation, K is the set of all possible joint schedules, in-

dexed by k . x k is a decision variable representing the probability

of using joint schedule k ∈ K in the Searcher’s mixed strategy. In

general, the sets K and � may be exponentially large; however,

the number of strategies used is expected to be much smaller. Our

proposed column and row generation algorithm uses this idea to

start with small subsets K 

′ ⊂ K and �′ ⊂� of search and hiding

strategies and generates them as needed. The starting subsets K 

′ 
and �′ could be any set of feasible strategies. Using the restricted

set of strategies K 

′ and �′ we obtain the following LP: 

LPM-RS Minimize u (10)

subject to u ≥
∑ 

k ∈ K ′ 
x k 

∑ 

i ∈ N h 
w i t 

k 
i z 

l 
i , ∀ l ∈ �′ , (11)

∑ 

k ∈ K ′ 
x k = 1 , (12)

x k ≥ 0 , ∀ k ∈ K 

′ . (13)

This problem is called LPM with Restricted Strategies (LPM-RS).

The dual of LPM-RS is 

Dual LPM-RS Maximize v (14)

subject to v ≤
∑ 

l∈ �′ 

∑ 

i ∈ N h 
w i t 

k 
i z 

l 
i y l , ∀ k ∈ K 

′ , (15)

∑ 

l∈ �′ 
y l = 1 , (16)

y l ≥ 0 , ∀ l ∈ �′ . (17)

In this formulation, y l is the dual variable corresponding to con-

straint (11) in LPM-RS. This variable represents the probability of
sing hiding strategy l in the Hider’s mixed strategy. Moreover, v is
he dual variable corresponding to constraint (12) which represents

he minimum expected total damage. Next step is to find new

trategies in K �K 

′ and ���′ that could improve the current opti-

al solution for the corresponding players. Given the optimal dual

olution y l of LPM-RS, the reduced cost of joint schedule k ∈ K �K 

′ 
s given by 

∑ 

l∈ �′ 
∑ 

i ∈ N h w i t 
k 
i 

z l 
i 
y l − v . Based on the concept of du-

lity in linear programming, optimality of LPM-RS is equivalent to

he feasibility of its dual. Therefore, joint schedules that violate the

onstraint v ≤ ∑ 

l∈ �′ 
∑ 

i ∈ N h w i t 
k 
i 

z l 
i 
y l , can improve the current opti-

al solution. Consequently, we need to look for a joint schedule

 such that: 
∑ 

l∈ �′ 
∑ 

i ∈ N h w i t 
k 
i 

z l 
i 
y l − v < 0 . Note that, y l values are

xed, and the problem is to find a joint schedule k with t k 
i 

such

hat: 
∑ 

l∈ �′ 
∑ 

i ∈ N h w i t 
k 
i 

z l 
i 
y l − v < 0 . Therefore, we are looking for a

ew joint schedule k that leads to a smaller expected total dam-

ge, 
∑ 

l∈ �′ 
∑ 

i ∈ N h w i t 
k 
i 

z l 
i 
y l , than the current expected total damage,

 . To obtain an improving strategy for the Hider, we consider the

PM-RS. Given the optimal solution x k of LPM-RS, the current ex-

ected total damage is u . Therefore, the Hider should look for a

ew hiding strategy l with z l 
i 

such that the expected total damage,

.e., 
∑ 

k ∈ K 
∑ 

i ∈ N h w i t 
k 
i 

z l 
i 
x k , is greater than the current expected total

amage, i.e., u . 

Section 3.1 develops a mathematical program and solution al-

orithms to solve the Searcher’s subproblem. Section 3.2 character-

zes the Hider’s subproblem and gives a polynomial time solution

lgorithm to solve this subproblem. Section 3.3 presents the over-

ll column and row generation algorithm and provides bounds on

he value of the game. 

.1. The Searcher’s subproblem 

In this section, a flow type formulation is developed for the

earcher’s subproblem. Here is a list of parameters and variables

sed to formulate the Searcher’s subproblem: 

• x ij : Binary variable, for ( i , j ) ∈ E , it is equal to 1 if a search team

visits location j immediately after visiting location i . 
• t i : Non-negative variable, time at which a search team com-

pletes inspection at location i . 
• N 

+ (i ) : Set of immediate successors of node i in graph G , i.e.,

N 

+ (i ) = { j ∈ N| (i, j) ∈ E} . 
• N 

−(i ) : Set of immediate predecessors of node i in graph G , i.e.,

N 

−(i ) = { j ∈ N| ( j, i ) ∈ E} . 
• M : A big number. 

Note that the set of edges E may not always correspond to a

omplete graph. Specifically, when developing a branch and price

lgorithm in Section 3.1.2 , the set of edges E will be modified due

o branching. Therefore, the sets of immediate successors and pre-

ecessors of a node, N 

+ (i ) and N 

−(i ) , need to be defined with the

ssumption that the underlying graph may not be complete. Us-

ng this notation, the Searcher’s subproblem can be formulated as

ollows: 

inimize 
∑ 

i ∈ N h 
w i 

∑ 

l∈ �′ 
z l i y l t i (18)

ubject to 

∑ 

j∈ N + (i ) 

x i j = 1 ∀ i ∈ N h , (19)

∑ 

j∈ N + (i ) 

x i j −
∑ 

j∈ N −(i ) 

x ji = 0 , ∀ i ∈ N h , (20)

∑ 

i ∈ N + (0) 

x 0 i = S, (21)

http://cbs.wondershare.com/go.php?pid=5237&m=db
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t i + v j + d i j − t j ≤ M(1 − x i j ) , ∀ (i, j) ∈ E, j � = 0 , 

(22) 

x i j ∈ { 0 , 1 } , ∀ (i, j) ∈ E, (23) 

t i ≥ 0 , ∀ i ∈ N. (24) 

In this formulation, the objective function (18) corresponds to

he reduced cost. Constraint (19) ensures that each location is vis-

ted exactly once. Constraint (20) is the flow conservation con-

traint for the search teams. Constraint (21) ensures that each

earch team exits the origin exactly once. Constraint (22) computes

he visit times for each location. This constraint also eliminates the

nfeasible subtours. 

The Searcher’s subproblem is a generalization of the multi-

le travelling repairman problem ( Luo, Qin, & Lim, 2014 ) with

eighted delays. Because the travelling repairman problem is NP-

ard, the Searcher’s subproblem is also NP-hard. This indicates that

he Searcher’s subproblems are hard to solve. Therefore, in the next

ections, we develop efficient algorithms to solve the Searcher’s

ubproblems. 

emark 4. Even though the Searcher’s subproblem is NP-hard in

eneral, if S = 1 and d i j = d j , for all ( i , j ) ∈ E , then this problem

an be solved in polynomial time. Specifically, in this case, the

earcher’s subproblem is equivalent to a single machine schedul-

ng problem to minimize the weighted sum of completion times.

his problem can be solved by using Smith’s rule ( Smith, 1956 ),

hat is visiting nodes in non-increasing order of 
w i 

∑ 

l∈ �′ z l i y l 
d i + v i . 

.1.1. A simulated annealing search strategy generator for the 

earcher’s subproblem 

In this section, we develop a simulated annealing (SA) algo-

ithm to rapidly obtain a high quality solution to the Searcher’s

ubproblem. SA is a probabilistic search method to approximate

he global optimal solution in a large search space ( Kirkpatrick,

elatt, & Vecchi, 1983 ). Our proposed SA algorithm starts with an

nitial solution obtained from the strategies that are used with a

ositive probability in the current LPM-RS. We then randomly gen-

rate a neighborhood solution by applying one of the following

perations: (1) randomly selecting two hiding locations and swap-

ing their places in the search schedule. (2) randomly selecting a

iding location and randomly assigning it to another search team.

f the newly generated solution leads to a better objective func-

ion than the current solution, then it replaces the current solu-

ion. The new solution may still replace the current solution even

f it leads to a worse objective function value. This happens with

robability e −�/T , where � is the amount of deterioration in the

bjective function if the new solution replaces the current solu-

ion and T is a parameter called temperature. The algorithm starts

ith a relatively high temperature and reduces the temperature as

t proceeds. Therefore, in the initial iterations, the algorithm tends

o explore more areas in the solution space and in the final phases,

t tries to exploit the current area. 

SA is an efficient algorithm in providing a fast high quality so-

ution. However, the optimality of a solution cannot be declared

hen SA fails to result in an improving solution. Therefore, there

s a need for an exact method to prove the optimality. To this end,

e propose a branch and price algorithm to solve the Searcher’s

ubproblem to optimality. 

.1.2. A branch and price algorithm to solve the Searcher’s 

ubproblem 

We employ the Dantzig-Wolfe decomposition to reformulate

he problem as a set covering model and develop a branch and
rice (BP) algorithm to solve the Searcher’s subproblem. Let �

enote the set of all admissible search schedules for the search

eams. The expected damage of search schedule s ∈ � is: ED s =
 

i ∈ N h w i 

∑ 

l∈ �′ z l i y l t is , where t is is the time at which schedule s

ompletes inspection at location i . Let a is denote a binary parame-

er indicating if search schedule s visits location i . In other words,

 is is equal to 1 if search schedule s visits location i , 0 otherwise.

or each schedule s , binary variable θ s is equal to 1 if the sched-

le s is assigned to a search team, 0 otherwise. Using this nota-

ion, the following set covering formulation can be written for the

earcher’s subproblem: 

P Minimize 
∑ 

s ∈ �
ED s θs (25) 

subject to 

∑ 

s ∈ �
a is θs ≥ 1 , ∀ i ∈ N h , (26) 

∑ 

s ∈ �
θs ≤ S, (27) 

θs ∈ { 0 , 1 } , ∀ s ∈ �. (28) 

he objective function (25) is the expected total damage corre-

ponding to the selected search schedules. Constraint (26) indi-

ates that every location needs to be visited at least once. Con-

traint (27) ensures that the number of selected search schedules

s limited by the number of search teams. Constraint (28) is the

ntegrality constraint. 

olumn generation 

This section presents a column generation approach to solve

he linear programming relaxation of the model (25) - (28) , with the

ddition of appropriate branching decisions. We call the linear re-

axation of the model (25) - (28) the Linear Master Problem (LMP).

he optimal solution to LMP is a lower bound to the corresponding

ode in the branch and bound tree. The Column generation algo-

ithm starts with a small subset of columns �′ ⊂� and generates

ew columns as needed. LMP with restricted columns is called re-

tricted linear master problem (RLMP) and the problem of finding

 new column is called the pricing subproblem. In other words,

iven the dual solution of the current RLMP, the goal of the pric-

ng subproblem is to find columns in ���′ with negative reduced

ost. If we are unable to find such a column, then the optimal so-

ution of current RLMP is the optimal solution of LMP and we can

erminate the procedure. Otherwise, we add new columns to RLMP

nd repeat the process. 

he pricing subproblem 

At each branch and bound node, the column generation proce-

ure is performed to get a lower bound of the Searcher’s subprob-

em. The RLMP is 

inimize 
∑ 

s ∈ �′ 
ED s θs (29) 

ubject to 

∑ 

s ∈ �′ 
a is θs ≥ 1 , ∀ i ∈ N h , (30) 

∑ 

s ∈ �′ 
θs ≤ S, (31) 

0 ≤ θs ≤ 1 , ∀ s ∈ �′ . (32) 

To check if the optimal solution of the current RLMP is opti-

al for LMP, we solve the pricing subproblem. In other words, we

ook for a new column with a negative reduced cost. We use π =

http://cbs.wondershare.com/go.php?pid=5237&m=db
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(π1 , π2 , . . . , πn ) and μ to denote the corresponding dual variables

for constraints (30) and (31) , respectively. We use ( ˆ π, ˆ μ) to denote

the optimal dual solution for the current RLMP. Using this dual so-

lution, the reduced cost of schedule s is RC s = ED s −
∑ 

i ˆ πi a is − ˆ μ.

Hence, we can formulate the pricing subproblem as follows: 

Minimize 
∑ 

i ∈ N h 
(w i 

∑ 

l∈ �′ 
z l i y l t i − ˆ πi 

∑ 

j∈ N + (i ) 

x i j ) − ˆ μ (33)

subject to 

∑ 

j∈ N + (0) 

x 0 j = 1 , (34)

∑ 

j∈ N + (i ) 

x i j = 

∑ 

j∈ N −(i ) 

x ji , ∀ i ∈ N h , (35)

∑ 

j∈ N + (i ) 

x i j ≤ 1 , ∀ i ∈ N h , (36)

t i + v j + d i j − t j ≤ M(1 − x i j ) , ∀ (i, j) ∈ E, j � = 0 , 

(37)

x i j ∈ { 0 , 1 } , ∀ (i, j) ∈ E. (38)

The objective is to minimize the reduced cost given in (33) .

Constraint (34) ensures that the search schedule starts from the

origin. Constraint (35) is the flow conservation constraint. Con-

straint (36) ensures that each location is visited at most once. Con-

straint (37) indicates that, if location j is visited immediately after

location i , then the visit time of location j is at least t i + v j + d i j .

Constraint (38) is the integrality constraint for variables { x ij }. 

A special case of this pricing subproblem has been shown to

be NP-hard in Luo et al. (2014) . Therefore, this pricing subprob-

lem is also NP-hard. Thus, solving the formulation (33) - (38) di-

rectly maybe computationally expensive. To this end, we propose a

branch, bound and remember (BBR) algorithm to solve the pricing

subproblems. BBR is a branch and bound algorithm that uses mem-

ory to avoid revisiting partial solutions that have already been vis-

ited. In BBR, before branching on a partial solution, it is looked up

in the memory to see if it has already been visited. This idea has

been used in different fields of combinatorial optimization ( Jouglet,

Baptiste, & Carlier, 2004; Morin & Marsten, 1976; Sewell & Jacob-

son, 2012 ). The details of the proposed BBR algorithm are as fol-

lows. 

• Branching: The branch and bound algorithm explores partial so-

lutions through an enumeration tree. Let a partial solution de-

noted as P = (U, l 1 , l 2 , . . . , l p ) , where U is the sets of unvisited

locations; p is the number of nodes visited by the partial solu-

tion and l i is the i th visited location for i = 1 , 2 , . . . , p. Branch-

ing on a partial solution means extending it by removing one

of the locations from U and adding it to the list of visited loca-

tions. This leads to new partial solutions that need to be evalu-

ated by computing upper and lower bounds for their objective

function. 
• Lower Bound: To obtain a lower bound for a partial solution, we

use the Lagrangian relaxation method. Relaxing the constraint

that each location needs to be visited at most once results in

the following Lagrangian problem: 

Minimize 
∑ 

i ∈ N h 

( 

w i 

∑ 

l∈ �′ 
z l i y l t i − ˆ πi 

∑ 

j∈ N + (i ) 

x i j 

) 

− ˆ μ

+ 

∑ 

i ∈ N h 
λi 

( 

1 −
∑ 

j∈ N + (i ) 

x i j 

) 

(39)
subject to 

∑ 

j∈ N + (0) 

x 0 j = 1 , (40)

∑ 

j∈ N + (i ) 

x i j = 

∑ 

j∈ N −(i ) 

x ji , (41)

t i + v j + d i j − t j ≤ M(1 − x i j ) , ∀ (i, j) ∈ E, j � = 0 , 

(42)

x i j ∈ { 0 , 1 } , ∀ (i, j) ∈ E, (43)

where λ = (λ1 , λ2 , . . . , λn ) , λi ≥ 0 is a vector of Lagrangian

multipliers. This problem can be solved in pseudo-polynomial

time using a dynamic programming approach. It is well-

known that, for any vector of Lagrangian multipliers λ =
(λ1 , λ2 , . . . , λn ) , λi ≥ 0 , the optimal solution to the Lagrangian

problem (39) –(43) gives a lower bound to the original prob-

lem (33) –(38) . Moreover, the optimal solution to the Lagrangian

problem (39) –(43) is a concave function of λ. We use a subgra-

dient algorithm to estimate the optimal Lagrangian multipliers. 
• Use of memory: BBR memorizes already visited par-

tial solutions. Before considering a partial solution

N = (U, l 1 , l 2 , . . . , l p ) , BBR checks the memory to see if there is

a partial solution with the same set of unvisited nodes, U , and

the same current location, l p . If there is such a partial solution

M = (U 

′ = U, l ′ 
1 
, l ′ 

2 
, . . . , l ′ p = l p ) , such that the objective function

computed so far by N is greater than or equal to the objective

function computed so far by M and the time computed so far

by N is greater than or equal to the time computed so far by

M , then N is dominated by M and N can be pruned. BBR

uses a hash table to store already visited partial solutions along

with their corresponding objective function and time values. 
• Search strategy: Preliminary numerical tests revealed that the

best first search (BFS) strategy, in which nodes with smaller

lower bounds have higher priority of being selected, was unable

to rapidly find the optimal solution for some problems. Using

BFS, the search algorithm tends to spend a lot of time explor-

ing the nodes in the middle of the enumeration tree rather than

choosing the nodes that are deeper in the enumeration tree.

Therefore, the algorithm generated very few complete solutions

before exploring all of the nodes in the middle of the enumera-

tion tree. To avoid this issue, we use the cyclic best first search

(CBFS) strategy ( Kao, Sewell, & Jacobson, 2009; Kao, Sewell,

Jacobson, & Hall, 2012; Morrison, Sauppe, Zhang, Jacobson, &

Sewell, 2017; Sewell, Sauppe, Morrison, Jacobson, & Kao, 2012 )

in our BB&R algorithm. CBFS systematically chooses the best

nodes at all possible depths in the enumeration tree. Specifi-

cally, starting by choosing the best nodes at depth 1, CBFS con-

tinues to choose the best nodes at deeper levels in the enumer-

ation tree until it reaches the deepest level. At this point, the

algorithm goes back to depth 1 and repeats this process until

all nodes are explored. 

ranching strategy 

At each node of the branch and bound tree, we use the column

eneration algorithm to obtain an optimal solution to the linear

elaxation of the model (25) –(28) . The resulting value is a lower

ound for the corresponding node. If this lower bound is greater

han or equal to the current upper bound, then the node is pruned.

therwise, we must branch further. If the solution obtained at the

urrent node is integral and the solution value is smaller than the

urrent upper bound, then the upper bound is updated. 

Branching on θ s variables is not beneficial. Fixing θ s variables at

 leads to stopping BBR from generating a set of specific schedules,
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Algorithm 1: Pseudo-code for the overall solution algorithm. 

1 Initialize sets K 

′ and �′ . 
2 Solve LPM-RS. Let x = [ x k ] , y = [ y l ] and u be the optimal 

primal solution, dual solution and objective function value, 

respectively. 

3 Solve the Searcher’s subproblem using y as dual values and 

let t * = [ t ∗
i 

] denote the optimal solution. 

4 if v > 

∑ 

i ∈ N h t 
∗
i 

w i 

∑ 

l∈ �′ z l i y l then 

5 Add the new search strategy t * to K 

′ . 
6 end 

7 Solve the Hider’s subproblem using x as primal values and let 

z * = [ z ∗
i 
] be the optimal solution. 

8 if 
∑ 

i ∈ N h z 
∗
i 
w i 

∑ 

k ∈ K ′ t k i 
x k > v then 

9 Add the new hiding strategy z * to �′ . 
10 end 

11 if K 

′ or �′ has been updated then 

12 Go to Line 2. 

13 else 

14 Return v as the value of the game. 

15 Terminate the procedure. 

16 end 
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hich complicates the solution of the pricing subproblem. More-

ver, ruling out a specific schedule is not possible until almost all

f the schedule has already been considered by the enumeration

ree. Therefore, branching on θ s variables is not helpful in ruling

ut candidate solutions early on in the enumeration tree. Thus, it is

etter to opt for other branching strategies that are more compat-

ble with the pricing subproblem and BBR algorithm. In our pro-

osed branch and price algorithm, we branch on the edges. We

hoose the edge ( i , j ) with fractional flow ˆ x i j farthest to an inte-

er value to branch on. The flow on each edge can be calculated as

ˆ  i j = 

∑ 

s ∈ �′ θs b i js , where b ijs is a binary parameter which is equal

o 1 if edge ( i , j ) is used in schedule s , 0 otherwise. After select-

ng the edge ( i , j ) to branch on, two child nodes are created: by

etting x i j = 0 and x i j = 1 . Fixing x i j = 0 implies that the edge ( i ,

 ) is forbidden. To enforce this constraint in the pricing subprob-

em, we delete edge ( i , j ) from E and, for all schedules s contain-

ng edge ( i , j ), we remove the corresponding variable θ s from the

LMP. Setting x i j = 1 implies that the edge ( i , j ) must be used. To

nforce this constraint in the pricing subproblem, we eliminate all

f the edges ( i , j ′ ) and ( i ′ , j ) with i � = i ′ and j � = j ′ . Note that branch-

ng on the edges only leads to changes in the underlying graph and

t does not require modifying the BBR algorithm. 

.2. The Hider’s subproblem 

In this section, we formulate the Hider’s subproblem to obtain

n improving hiding strategy. The Hider’s subproblem is formu-

ated as follows: 

aximize 
∑ 

i ∈ N h 
z i w i 

∑ 

k ∈ K 
t k i x k (44) 

ubject to 

∑ 

i ∈ N h 
z i ≤ H, (45) 

z i ∈ { 0 , 1 } , ∀ i ∈ N h . (46) 

In this formulation, z i is a binary variable which is equal to 1 if

he Hider hides an object in location i . Eq. (44) , the objective func-

ion, is the expected total damage. Eq. (45) corresponds to the con-

traint on the number of hidden objects. Finally, constraint (46) is

he integrality constraint for variable z i . 

The Hider’s subproblem is a special case of 0–1 knapsack prob-

em with unit item weights. This problem can be solved in poly-

omial time by sorting the hiding locations i in a non-increasing

rder of w i 

∑ 

k ∈ K t k i 
and choosing the first H hiding locations. 

.3. Overall solution procedure and bounds 

Algorithm 1 provides the pseudo-code for the overall solution

rocedure. The column and row generation algorithm begins by

andomly generating a set of initial strategies. Then, using this set

f strategies, the LPM-RS is solved to obtain a solution x and a vec-

or of dual values y . Dual values y are then used in the Searcher’s

ubproblem to generate a new search strategy. If a new search

trategy with a smaller expected total damage is obtained, it is

dded to K 

′ . Then the Hider’s subproblem is solved to generate a

ew hiding strategy. If a new hiding strategy with a greater ex-

ected total damage is obtained, it is added to �′ . If, during the

ast two steps, either K 

′ or �′ has been updated, then the process

s repeated; otherwise the procedure terminates. Because the num-

er of possible strategies for both players is finite, the algorithm

erminates after a finite number of iterations. Moreover, when the

lgorithm terminates, no player can improve the expected total

amage in their own favor by changing their strategies. Therefore,

y definition, the algorithm returns a Nash equilibrium point upon

ermination. 
During solution procedure, we have access to lower and upper

ounds on the value of the game so that we can terminate the

lgorithm when a desired solution quality is reached. The following

emma offers solution bounds on the value of the game which can

e computed in every iteration of the solution algorithm. 

emma 2. Optimal solution to the Searcher’s (Hider’s) subproblem

ields a lower bound (an upper bound) to the expected total damage

n equilibrium. 

roof. Because the Hider’s strategy set is restricted, i.e., �′ ⊆�,

olving the Searcher’s subproblem leads to a lower bound on

he expected total damage in equilibrium. Similarly, because the

earcher’s strategy space is restricted, solving the Hider’s subprob-

em leads to an upper bound on the value of the game. �

emark 5. Note that, in order for the bound in Lemma 2 to be

alid, the Searcher’s subproblem should be solved to optimality.

n general, this bound is not monotone over the iterations, this is

alled the yo-yo effect ( Lübbecke, 2011 ). 

. Numerical experiments 

In this section, we perform computational experiments to in-

estigate the efficiency of the proposed algorithms and to gain in-

ight into the properties of the game. The algorithms are coded

n C++ and CPLEX 12.8 solver has been used to solve the LPs and

he pricing subproblems. The computational experiments are per-

ormed on a computer with 2.6 GH processor and 32 GB of RAM.

e used a maximum running time of 2 hours (7200 seconds) for

ll of the algorithms employed in this section. 

Our base set of test instances consists of randomly generated

nstances. The location of the potential hiding places are randomly

enerated on a hypothetical square with side of n units. Manhattan

istance is used to compute the travel times, d ij , between these

ocations. Location weights, w i , are generated randomly from the

ange [1, n ]. Similarly, the visit times, v i , are generated randomly

rom the range [1, n ]. 

In our first experiment, we compare the performances of differ-

nt methods for solving the Searcher’s subproblem. Specifically, we

onsider two cases: the flow-type mathematical formulation (MF)

f (18) to (24) and the branch and price algorithm (BP) developed
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Table 1 

Average run times for different number of search teams (in seconds). 

n S = 2 S = 3 S = 4 S = 5 

MF BP MF BP MF BP MF BP 

10 2.02 0.26 1.42 0.34 0.82 0.15 0.52 0.32 

15 15.67 2.59 8.01 2.28 3.94 0.69 1.11 0.18 

20 7200.00 83.82 838.34 27.42 60.04 40.62 13.83 2.71 

25 7200.00 7200.00 7200.00 2696.27 7200.00 4055.85 4537.37 520.81 

30 7200.00 7200.00 7200.00 7200.00 7200.00 5480.06 7200.00 1848.59 

Mean 4323.54 2897.33 3049.55 1985.26 2892.96 1915.47 2350.57 474.52 

Table 2 

Average run times for different number of hidden objects (in seconds). 

n H = 1 H = 2 H = 3 H = 4 

MF BP MF BP MF BP MF BP 

10 1.34 0.53 1.08 0.18 1.14 0.18 1.19 0.19 

15 4.00 0.71 6.83 0.80 9.37 1.32 8.51 2.91 

20 1914.93 38.84 1913.25 21.70 2015.77 51.84 2268.26 42.18 

25 5506.43 4214.13 6230.94 4296.92 7200.00 2787.20 7200.00 3174.74 

30 7200.00 5192.93 7200.00 5420.28 7200.00 4901.70 7200.00 6214.18 

Mean 2925.34 1889.43 3070.42 1947.98 3285.26 1548.45 3335.59 1886.84 

Table 3 

Average optimality gap for different number of search teams (%). 

n S = 2 S = 3 S = 4 S = 5 

MF BP MF BP MF BP MF BP 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

25 43.50 0.40 35.33 0.00 6.49 0.12 0.50 0.00 

30 130.27 8.31 75.61 5.94 45.30 0.10 9.77 0.03 

Mean 34.90 1.74 22.19 1.19 10.36 0.04 2.05 0.01 

Table 4 

Average optimality gap for different number of hidden objects (%). 

n H = 1 H = 2 H = 3 H = 4 

MF BP MF BP MF BP MF BP 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

20 0.32 0.00 0.23 0.00 0.08 0.00 0.10 0.00 

25 22.78 0.12 18.94 0.23 21.11 0.13 23.01 0.05 

30 61.12 4.60 61.36 2.72 53.90 2.41 84.56 4.65 

Mean 16.84 0.94 16.11 0.59 15.02 0.51 21.53 0.94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Percentage of cases in which an equilibrium is reached for different number of 

search teams. 

n S = 2 S = 3 S = 4 S = 5 

MF BP MF BP MF BP MF BP 

10 100 100 100 100 100 100 100 100 

15 100 100 100 100 100 100 100 100 

20 0 100 100 100 100 100 100 100 

25 0 0 0 100 0 50 50 100 

30 0 0 0 0 0 75 0 75 

Mean 40 60 60 80 60 85 70 95 

Table 6 

Percentage of cases in which an equilibrium is reached for different number of hid- 

den objects. 

n H = 1 H = 2 H = 3 H = 4 

MF BP MF BP MF BP MF BP 

10 100 100 100 100 100 100 100 100 

15 100 100 100 100 100 100 100 100 

20 75 100 75 100 75 100 75 100 

25 25 50 25 50 0 75 0 50 

30 0 50 0 25 0 50 0 25 

Mean 60 80 60 75 55 85 55 75 
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in section 3.1.2 . Note that the second algorithm (BP) uses SA first

to find an improving search strategy. If SA is not able to find an

improving search strategy, branch and price algorithm is used. We

consider 16 instances for each problem size, with various values

of S ∈ {2, 3, 4, 5} and H ∈ {1, 2, 3, 4}. Tables 1 and 2 compare the

average run times of these algorithms for different values of the

number of search teams and the number of hidden objects, respec-

tively. Note that, in Table 1 , run times are averaged over all values

of H ∈ {1, 2, 3, 4}. Similarly, in Table 2 , run times are averaged over

all values of S ∈ {2, 3, 4, 5}. Based on Tables 1 and 2 , for all problem

sizes, BP performs significantly better than MF. Moreover, for both

MF and BP algorithms, the run time increases as n increases and

it, generally, decreases as S increases. However, no clear pattern is

observed of the effect of increasing H on the run time. 

Tables 3 and 4 demonstrate the average optimality gap, in per-

cent, obtained for different number of search teams and hidden

objects, respectively. In these experiments, while both algorithms

are able to find the optimal solution for problems of smaller size,

BP performs significantly better than MF for larger-sized problems.
oreover, for both MF and BP algorithms, the average gap in-

reases as n increases and it decreases as S increases. 

Tables 5 and 6 display the percentages of the cases in which

n exact equilibrium is reached, for different values of S and H , re-

pectively. Based on these tables, both algorithms are able to solve

ll problem instances for n = 10 and n = 15 . However, for larger

nstances, BP performs better than MF. Moreover, as n increases,

or both algorithms, the number of cases in which an exact equi-

ibrium is reached decreases in most cases. Based on Table 5 , as

 increases, for most cases both algorithms are able to solve more

nstances to optimality. Again, Table 6 does not present any pattern

or the effect of H on the performances of the algorithms. 

Table 7 exhibits the detailed optimality gap and run time re-

ults for n = 15 and n = 30 . Based on this table, for every instance

f the problem, BP performs better than MF both in terms of so-

ution quality and run times. Moreover, the differences in perfor-

ance of the two algorithms for problem instances with n = 30 are

arger than the performance differences for problem instances with
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Table 7 

Detailed optimality gaps (in percentages) and run times (in seconds) for n = 15 and n = 30 . 

S H n = 15 n = 30 

GAP Time GAP Time 

MF BP MF BP MF BP MF BP 

2 1 0.00 0.00 12.30 2.11 123.18 11.72 7200.00 7200.00 

2 2 0.00 0.00 16.79 1.43 93.19 7.15 7200.00 7200.00 

2 3 0.00 0.00 19.95 2.56 80.55 5.54 7200.00 7200.00 

2 4 0.00 0.00 13.63 4.26 224.15 8.83 7200.00 7200.00 

3 1 0.00 0.00 2.09 0.30 77.19 6.70 7200.00 7200.00 

3 2 0.00 0.00 5.33 0.63 93.23 3.34 7200.00 7200.00 

3 3 0.00 0.00 10.85 1.41 81.89 4.11 7200.00 7200.00 

3 4 0.00 0.00 13.76 6.77 50.11 9.63 7200.00 7200.00 

4 1 0.00 0.00 1.02 0.19 33.01 0.00 7200.00 6335.38 

4 2 0.00 0.00 3.73 0.91 50.94 0.39 7200.00 7200.00 

4 3 0.00 0.00 5.66 1.17 43.27 0.00 7200.00 5129.00 

4 4 0.00 0.00 5.34 0.50 53.98 0.00 7200.00 3255.84 

5 1 0.00 0.00 0.61 0.24 11.11 0.00 7200.00 36.23 

5 2 0.00 0.00 1.48 0.22 8.07 0.00 7200.00 80.43 

5 3 0.00 0.00 1.01 0.15 9.91 0.00 7200.00 77.60 

5 4 0.00 0.00 1.33 0.12 10.00 0.14 7200.00 7200.00 

Mean 0.00 0.00 7.18 1.44 65.24 3.60 7200.00 5432.16 

Table 8 

Average number of search strategies generated (SSG), search strategies used (SSU), and percentage of generated search strategies used in equilibrium. 

n S = 2 S = 3 S = 4 S = 5 

SSG SSU % SSG SSU % SSG SSU % SSG SSU % 

10 23.50 5.25 22.34 18.50 5.00 27.03 13.25 4.25 32.08 14.00 3.50 25.00 

15 43.50 7.75 17.82 36.00 7.50 20.83 33.75 5.50 16.30 18.75 4.00 21.33 

20 109.75 12.25 11.16 97.25 10.75 11.05 68.50 9.75 14.23 53.50 8.50 15.89 

Mean 58.92 8.42 17.11 50.58 7.75 19.64 38.50 6.50 20.87 28.75 5.33 20.74 

Table 9 

Average number of search strategies generated (SSG), search strategies used (SSU), and percentage of generated search strategies used in equilibrium. 

n H = 1 H = 2 H = 3 H = 4 

SSG SSU % SSG SSU % SSG SSU % SSG SSU % 

10 22.25 5.50 24.72 17.25 4.00 23.19 16.25 4.25 26.15 13.50 4.25 31.48 

15 36.25 7.00 19.31 36.00 6.00 16.67 31.75 5.50 17.32 28.00 6.25 22.32 

20 86.50 11.50 13.29 73.25 8.75 11.95 87.00 11.25 12.93 82.25 9.75 11.85 

Mean 48.33 8.00 19.11 42.17 6.25 17.27 45.00 7.00 18.80 41.25 6.75 21.89 
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 = 15 . For the cases in which BP algorithm cannot reach the op-

imum, the optimality gap is much smaller than the gap obtained

ia MF algorithm. In the remaining experiments in this section, we

ill only consider BP algorithm as it is the more efficient algo-

ithm. 

Because our solution approach involves iteratively generating

ew strategies, it is important to investigate the size of the gener-

ted strategy sets for both players. It is also interesting to see how

any of the generated strategies are used with a positive proba-

ility in the final solution. For this experiment, we only consider

he problem sizes for which an equilibrium has been reached for

ll values of S and H , i.e., n ∈ {10, 15, 20}. Tables 8 and 9 present

he average number of search strategies generated (SSG), as well

s the average number of search strategies used (SSU) in the final

olution, for different values of S and H , respectively. The columns

abeled “%” display SSU as a percentage of SSG. Based on these ta-

les, the number of generated search strategies increases as n in-

reases. However, only a small percentage of these strategies are

sed in the final solution. Moreover, this percentage decreases as n

ncreases. Based on Table 8 , as S increases, in most cases both SSG

nd SSU decrease. No clear pattern is observed regarding the effect

f H on the number of generated or used search strategies. 

Tables 10 and 11 present the average number of hiding strate-

ies generated (HSG), as well as the average number of hiding

trategies used (HSU) in the final solution, for different values of
 and H , respectively. The columns labeled “%” display HSU as a

ecentage of HSG. Based on these tables, the number of gener-

ted hiding strategies is smaller than the number of generated

earch strategies shown in Tables 8 and 9 . However, the number

f used hiding strategies is comparable to the number of used

earch strategies shown in Tables 8 and 9 . Therefore, as seen in

ables 10 and 11 , the percentage of generated hiding strategies

sed in the final solution is larger than the percentage of gener-

ted search strategies used in the final solution. The tables also

how that the number of generated hiding strategies increases as

 increases. Based on Table 10 , as S increases, the number of used

iding strategies decreases. However, no clear pattern can be ob-

erved on the effect of S on the number of generated hiding strate-

ies. Moreover, no clear pattern is observed regarding the effect of

 on the number of generated or used hiding strategies. 

Fig. 3 illustrates the convergence of the solution for different

roblem sizes. The number of iterations needed for convergence

ncreases as the problem size increases. Moreover, the bounds are

ot monotone over the iterations and the yo-yo effect is visible

ue to the non-monotonicity of the bound in Lemma 2 . Another

nteresting observation is that, the upper bound values stabilize

uch earlier than the termination of the algorithm. This means

hat after the upper bound values stabilize, we can terminate the

olution algorithm without undermining the solution quality too

uch. 
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Table 10 

Average number of hiding strategies generated (HSG), hiding strategies used (HSU), and percentage of generated strategies used in equilibrium. 

n S = 2 S = 3 S = 4 S = 5 

HSG HSU % HSG HSU % HSG HSU % HSG HSU % 

10 11.25 5.25 46.67 9.75 4.00 41.03 7.50 2.50 33.33 7.50 1.75 23.33 

15 16.50 7.25 43.94 17.50 6.75 38.57 14.50 4.50 31.03 10.75 2.25 20.93 

20 35.25 12.00 34.04 39.25 9.75 24.84 30.50 6.50 21.31 27.50 5.25 19.09 

Mean 21.00 8.17 41.55 22.17 6.83 34.81 17.50 4.50 28.56 15.25 3.08 21.12 

Table 11 

Average number of hiding strategies generated (HSG), hiding strategies used (HSU), and percentage of generated strategies used in equilibrium. 

n H = 1 H = 2 H = 3 H = 4 

HSG HSU % HSG HSU % HSG HSU % HSG HSU % 

10 6.75 3.00 44.44 12.00 3.00 25.00 9.00 3.50 38.89 8.25 4.00 48.48 

15 9.50 5.00 52.63 15.75 5.25 33.33 17.00 5.25 30.88 17.00 5.25 30.88 

20 13.50 7.25 53.70 34.75 6.75 19.42 36.75 11.25 30.61 47.50 8.25 17.37 

Mean 9.92 5.08 50.26 20.83 5.00 25.92 20.92 6.67 33.46 24.25 5.83 32.25 

Fig. 3. Convergence of the proposed column and row generation algorithm. 

Fig. 4. The effect of number of search teams on the expected total damage in equi- 

librium. 

 

 

 

 

Fig. 5. The effect of number of hidden objects on the expected total damage in 

equilibrium. 
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Next, we study the effect of the number of search teams and

objects hidden on the expected total damage in equilibrium. An ex-

periment is designed with S ∈ {2, 3, 4, 5} and H ∈ {1, 2, 3, 4}. Fig. 4

demonstrates that, as the number of search teams increases, the
xpected damage decreases. Moreover, a diminishing returns effect

s visible in the reduction in expected total damage for each unit

ncrement in S . Fig. 5 shows that the expected total damage in-
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reases almost linearly with the number of hidden objects. More-

ver, the rate of increase is greater for smaller number of search

eams. 

. Conclusions and future research 

In this paper, we propose a weighted search game model in

hich players want to minimize/maximize a weighted search time.

e characterize the solution for a special case of the problem. In

rder to solve the general form of this problem, we develop an ef-

cient algorithm based on column and row generation. To solve

he arising subproblems for the Searcher, we propose a branch

nd price approach. We also present bounds for the expected to-

al damage in equilibrium which can be used in each iteration of

he column and row generation algorithm to estimate the quality

f the current solution so far and terminate the algorithm if the

olution quality is satisfactory. We then perform numerical experi-

ents to investigate the performance of the proposed solution al-

orithms. Our computational results demonstrate the efficiency of

he use of branch and price algorithm to solve the Searcher’s sub-

roblems. They also display a diminishing returns effect when in-

reasing the number of search teams. 

This paper addresses a gap in the literature by considering a

earch game model with different node weights. It also develops

fficient algorithms to solve this search game. However, there are

ome limitations that need to be addressed in future research.

n our proposed model, the Hider can only hide objects on the

ertices of the graph. This limitation can be partly addressed by

urther discretizing the edges and placing extra nodes. However,

xplicitly modelling hiding on the edges may yield more realistic

esults. Extending the model to accommodate uncertainty of pa-

ameters, such as travel times and location weights, is another av-

nue for future research in this area. 
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In the statement of Theorem 1, Eq. (2) and the full sentence should read: 

 [ search order of the i th node ] = 
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k ∈ K 
r k i x k = 
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, i = l k −1 + 1 , . . . , l k , k ≥ 2 , 

here m = arg i ∈{ 1 , 2 , ... ,n } max 
i (i +1) 

2 ∑ i 
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, l 1 = arg m +1 ≤l≤n max 
( l (l +1) 
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2 ∑ l 
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and for k ≥ 2 until l k = n, l k = arg l k −1 +1 ≤l≤n max 
( l (l +1) 
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. 

roof. The proof of Theorem 1 should include “Note that for l ≤ m, ” instead of “Thus, we need to show that:”

Moreover, the proof should include the following additional statements after the sentence ending with “...so that this inequality holds.”:

For m + 1 ≤ l ≤ l 1 
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nd similarly for all l k −1 < l ≤ l k until l k = n , for l k = n for all l k −1 < l < n, 

l 
 

i =1 

r̄ i = 

l k −1 (l k −1 + 1) 

2 

+ 

[ l k (l k +1) 
2 

− l k −1 (l k −1 +1) 
2 

] 
∑ l k 

j= l k −1 +1 
1 

w j 

l ∑ 

i = l k −1 +1 

1 

w i 

≥ l(l + 1) 

2 

, 

oth inequalities follow from the definition of l i ’s. Therefore, the search strategy defined by (2) is feasible. �
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