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Abstract

In isogenic microbial populations, phenotypic variability is generated by a combination of stochastic
mechanisms, such as gene expression, and deterministic factors, such as asymmetric segregation of cell
volume. Here we address the question: how does phenotypic variability of a microbial population affect
its fitness? While this question has previously been studied for exponentially growing populations, the
situation when the population size is kept fixed has received much less attention, despite its relevance to
many natural scenarios. We show that the outcome of competition between multiple microbial species
can be determined from the distribution of phenotypes in the culture using a generalization of the well-
known Euler-Lotka equation, which relates the steady-state distribution of phenotypes to the population
growth rate. We derive a generalization of the Euler-Lotka equation for finite cultures, which relates
the distribution of phenotypes among cells in the culture to the exponential growth rate. Our analysis
reveals that in order to predict fitness from phenotypes, it is important to understand how distributions
of phenotypes obtained from different subsets of the genealogical history of a population are related. To
this end, we derive a mapping between the various ways of sampling phenotypes in a finite population
and show how to obtain the equivalent distributions from an exponentially growing culture. Finally, we
use this mapping to show that species with higher growth rates in exponential growth conditions will
have a competitive advantage in the finite culture.

1 Introduction

A central problem in microbiology is understanding how measurable phenotypic traits such as a cell’s size,
growth rate, or expression of a gene affect population dynamies [1, 2, 3, 4]. This problem is made difficult by
the fact that there is rarely a well-defined mapping from genotype to phenotype, instead, a single genotype
can give rise to a distribution of phenotypic traits throughout a population’s history. This distribution can
be generated at the cellular level due to intrinsic factors, such as the stochasticity of biochemical reactions
[5, 6, 7, 8,9, 10], or due to environmental fluctuations that affect the entire population [11, 12, 13, 14, 15].
It is now well established that a population’s long term growth rate cannot be determined by the average
values of single-cell traits, such as the growth rates or generation times of cells, but is instead determined
by the variability and heritability of phenotypes measured throughout a population. The discrepancy is an
example of non-ergodicity and results from epigenetic heritability of phenotypic traits that is present in all
populations. It is therefore necessary to quantify the distribution of a phenotypic trait, and not just its
average, in order to deduce how phenotypes affect fitness.

In the setting of exponential growth, a proxy for fitness is the population growth rate A, defined by
the relation N ~ e, where N is the number of cells at time ¢. The problem of how A is related to the
distribution of generation times has a rich history in the field of mathematical population dynamics, starting
with Euler in the 17th century. Euler derived an implicit relationship between A and the birth and death
rates of individuals in a growing population [16]. Euler’s result was rediscovered by Lotka [16] and later
adapted to microbial populations by Powell [17]. In its modern form, this result, known as the Euler-Lotka
equation, states that for an exponentially growing population in which each individually has a generation
time, 7, drawn independently from a distribution f(7), A satisfies the implicit relationship

% = /000 f(r)eAdr. (1)

Note that when generation times are deterministic (f(7) = d(7 — 79)), this reduces to relationship between
the population’s doubling time and growth rate, A = In(2)/79. Equation (1) illustrates the importance of
considering variation in phenotypic traits, not just the averages, as it can clearly be seen that the entire



distribution of generation times shapes A. However, this formula has limited applicability to understanding
fitness in microbial populations because generation times are typically not drawn independently, but rather
they are correlated between mother and daughter cells. For example, negative correlations can arises due to
cell-size regulation: if a cell grows abnormally large, its daughter cell will need to have a shorter generation
time to account for the additional size inherited from its mother [18].

The relationship between the distribution of generation times and fitness in the presence of mother-
daughter correlations is given by a more general equation, derived by Lebowitz [19]. This states that

%:/0 e M thiree (T)drT, (2)

where y,00(7) is the distribution of generation times over the entire history of a growing population; see
Figure 1 (a). Note that in generating this distribution, it is crucial to include the generation times of cells
currently in the culture. The distribution 9¢.ce(7) is, in general, distinct from the distribution of generation
times along an isolated lineage. If f(7|7’) is the distribution of generation times conditioned on the mother
cell’s generation time, it was shown that 1yee(7) satisfied the self-consistent equation [19]

Uiree(T) = 2/0 f(T|T’)1/)tree(T')e*AT'dT'. (3)

In both natural and experimental settings, populations cannot grow exponentially for very long. For
example, in rich growth conditions Escherichia coli has a doubling time of about 20 minutes and the weight
of an individual bacteria is on the order of 1 picograms, hence a single day of continuous exponential growth
starting from one cell would yield a colony that weighs around 2243 ~ 4.7 x 102! picograms, or around
5 tons. Another 24 hours of doubling would yield a colony roughly 4 times the mass of the earth. In
reality, populations of microbes are periodically diluted giving a population whose size is fixed, at least on
average. For example, in a chemostat cells are continuously flushed out as new media is pumped into the
culture. Analogous processes occur in natural environments, such as the digestive system of a host organism
where waste is periodically disposed of. In both examples, exponential growth is an inaccurate model of the
population dynamics. Instead, one could imagine a fixed population of N cells. One way to model such a
population is with a Moran process, where N is kept fixed by selecting a cell to remove from the population
at every division event. In the variant of the Moran process that we will adopt, the cell to remove is randomly
selected from all of the N + 1 cells in the population after every division (which includes the N — 1 that did
not divide and the two newborn daughter cells), thus reverting the population size back to N immediately
after any cell divides. The assumption of this model, which we will study in the large N limit, is that the
population is well-mixed and hence the probability of any given cell being removed is independent of its age
or genealogical history. If two species are present in such a population, the principle of competitive exclusion
state that one of them will eventually dominate the population.

What does the distribution of phenotypes tell us about the fate of a species in a finite population? The
standard theory [20] tells us that if two species with growth rates A; and As compete in a Moran process,
the species with a larger population growth rate will eventually dominate. However, equation (2) tells us
that the exponential growth rates are determined by the entire history of cells in a growing population,
yet in the Moran process, most of the cells are flushed out. This raises the question: How is the outcome
of a competition experiment related to the distribution of generation times, or any other measurable trait
affecting growth, among the cells in the culture? In this paper, we will address this question by analyzing the
dynamics of phenotypically heterogeneous populations. This will lead to a generalization of equation (2) for
finite populations, equation (20), which relates the population growth rate to the distribution of generation
times sampled over cells that remain in the culture. We find subtle distinctions between the phenotype
distributions in the exponentially growing population and the finite population. However, it will be shown
that the ultimate fate of species in the competition setting is independent of whether the population is
growing or kept at a fixed size. In particular, one of our main results is that species with higher values
of A; in the exponentially growing culture will always dominate the finite culture, regardless of the initial
conditions.



(a) Exponentially growing population (b) Finite population
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Figure 1: (a) (top) In a population growing exponentially the population growth rate, A, which is a proxy for
fitness, can be computed from temporal dynamics of the number of cells. (middle) A cartoon of genealogies
obtained from an exponentially growing population. Each vertical line represents a cell and the length of
the line its generation time. (bottom) A histogram of some phenotypic trait that determines generation
times obtained from the genealogical tree can be used to determine the fitness according to the Euler-Lotka
equation. The precise procedure for sampling the phenotypes will be discussed in Section 3. (b) (top) In a
finite population containing non-interacting genotypes, the principle of competitive exclusion says that one
genotype will eventually dominate the culture. (middle) A cartoon of genealogies obtained from the two
populations competing in the finite culture. (bottom) How do the distributions of phenotypes obtained from
the genealogies in the finite culture relate to fitness?

2 A general model of phenotypic variability

We start by introducing a general modeling framework allowing us to study intrinsic variability in an arbi-
trary phenotypic trait, which will be represented by the vector x = (x1,...,2;) € RL. We assume each cell is
born with a value of x drawn from a distribution f(x|x’) depending on the phenotype x’ of the mother cell.
Importantly, x may not change over the cell-cycle. For example, x could represent the initial concentration
of a protein, or some macroscopic phenotype, such as the average growth rate over the cell cycle. However,
it could not represent the age or volume of a cell, since these change over the course of the cell cycle. After a
time 7(x), the cell divides and produces two new cells with phenotypes drawn from f(x|x’) and generation
times depending on these phenotypes. This framework can capture any possible form of intrinsic (as op-
posed to environmental) generation time variability through the appropriate choices of the phenotype x and
distribution f. Therefore, existing models can be derived as specific cases of this framework. These include
models where division is asymmetric [21, 22, 23, 24] and where the relationship between successive generation
times is non-monotonic and nonlinear, such as the kicked cell-cycle model used to describe circadian rhythms

[25].



Example: cell-size regulation model

As a concrete example, we will consider a model of cell-size regulation, which has been used extensively
in the literature to understand how cells maintain homeostasis of their sizes [1]. This model will serve as
a useful illustration of how our formalism can capture the effects of stochasticity in multiple phenotypic
traits. The most important assumption of the cell-size regulation model is that cells grow exponentially at
the single cell level and divide upon reaching a size depending on their size at birth, vpi¢n. We will assume
that cells divide symmetrically so that vyt is obtained by dividing the cells mother’s size at division by 2.
Phenotypic variability is introduced by adding noise to both the single-cell growth rate as well as the volume
at division. To this end, we take the growth rate A\ and division volume vg;, of a cell to obey

In A =1n(\) 4+ 7y
Vdiv = 2(1 — @) Vbiren + 20000 + 1,

(4)

where 7, and 7, are independent normally distributed random variables. The first equation captures the fact
that growth rates are positive and approximately follow a Gaussian distribution for small noise, while the
second equation tells us how cells decide when to divide based on their volume. Here, the cell-size regulation
strategy is controlled by the parameter o. a = 1 corresponds to cells dividing at a critical size (known as
a “sizer”), while o = 1/2 corresponds to cells adding a constant size vy (known as an “adder”). We refer
to [1] for an in-depth discussion of the cell-size control model and its implications for population growth.
Within this model, the generation time of a cell can be expressed as a deterministic function of the growth
rate noise. In particular,

T(n)\a T vbirth)
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It follows that in the notation of our general modeling framework the phenotype that controls generation
times is X = (9x, v, Vbirth)- LThe conditional distribution of phenotypes is given by
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where 03 and o2 are the variances of 7, and 7,, respectively Note that in the special case where o = 1 and
1y = 0, the phenotype is given by x = In()\) and the generation time is simply 7 = In(2) /.

3 Relationship between phenotypic variability and fitness in a fi-
nite culture

We now consider a model where N, the number of cells in the population, is fixed. In order to achieve
this, every division event must correspond to a cell being expelled from the culture. As discussed in the
introduction, this can be implemented by a Moran process [26]. Since the population is not growing, we can
no longer obtain A from the exponential growth curves (as shown in Figure 1 (a)). Instead, one can measure
growth in terms of the rate per cell at which cells are expelled from the population, or the dilution rate Ap.

Intuitively, if N is sufficiently large, the continuous expulsion of cells from the culture should have no
influence on the relative frequencies of the phenotypes, and therefore the instantaneous rate at which cells
are accumulated should be equal to AN. On the other hand, since the size of the culture remains fixed,
this must be balanced by the rate at which cells are expelled, implying A =~ Ap for sufficiently large N. It
follows that Ap should satisfy the same relation as A. To make this intuition mathematically precise, we
can derive a transport equation for the joint distribution of phenotypes (x) and ages (u) at a given time,
denoted v (t,x,u), which is given by (see Appendix A),

(gt + ({i) Wt x,u) = —Ap(t,x,u). (7)



This equation is the Von Foerster equation for an age structured population [16], although the role of the
“death rate” is played by Ap, which is no longer an input to the model. Instead, Ap must be derived from
a boundary condition to ensure the population remains finite. This boundary condition is

w(t,%,0) :2/000.../000 FIK (%, () d, - - e, (8)

The term f(x|x")y(t,x’, 7(x"))dz) - - - dzj in the integrand represents the probability of a cell with phenotype
x’ dividing to produce a cell with phenotype x. The factor of 2 comes from the fact that each cell produces
two daughters. Importantly, the probability that any specific cell is expelled is 1/N, which vanishes in the
limit N — oo; therefore, equation (8) does not need to account for the fact that one of the daughter cells
could be expelled. Since each cell produces two offspring, integrating over all phenotypes and multiplying
by a factor of 2 yields the distribution of phenotypes and ages evaluated at age © = 0. Note that this is
proportional to the distribution of phenotypes among newborn cells, denoted wlﬂrth (x).
We now look at equation (7) in steady-state by setting the time derivative to zero,

) = Ao u). Q
Solving equation (9) yields
Y(x,u) = 9(x,00e ", u < 7(x). (10)

As shown in Appendix A, 1(x,0) is proportional to the tree distribution, denoted ¥f.. (x). In order to
obtain the tree distribution, we sample the phenotype of every cell throughout the entire history of the
population, including those that are expelled from the culture, and make a histogram of their phenotypes.
(In general we will use the superscript F' to indicate a distribution in the finite culture, but we omit this
when there is no ambiguity.) After inserting (10) into (8), we find

thrcc(x) = 2/0' o /O' f(X|X/)wt};cc(Xl)eiADT(XI)dxll T d.’E; (11)

When phenotypes are not correlated across generations, f(x|x') = f(x), hence it follows from (11) that
Pl oo (x) = f(x). Otherwise, 1. (x) will be distinct from the distribution of generation times obtained from
a single, isolated lineage. We may integrate with respect to x and replace Ap with A in order to obtain

1 o0 oo Ar(x
3 :/ / ¢1;Free(x)€ Ar( )dm’lmdz;. (12)
0 0

This generalizes equation (3) in two ways: first, it extends equation (3) to the context of a finite culture,
and second, it relates A to a distribution of a more general phenotype, not only the generation times. Using
this formalism, it is possible to derive the self-consistent equation for ¥,ee(7) in the exponentially growing
culture (equation (3)) in terms of ¥ (7), the tree distribution of generation times in the finite culture. To
begin, we note that ¥ (7) can be obtained by marginalizing over 9L (x):

W)= [ e de (1)

Here, ¥{,.(7) is the distribution of generation times over the history of the culture, including the generation
times of those cells that are expelled '. Applying the same marginalization procedure to the right-hand side
of equation (11) yields

wﬁrth(T):Q/ [/ [/ Felx)dy - day | oo (x)e™ 07 dary - - - daf | dr’
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0

(14)

1We emphasize that when computing wgee (7) one needs to know the generation times of the cells that are expelled from
the culture, not the age at which they are expelled.



This equation is identical to equation 3, implying ¥{ .. (7) obeys the same self-consistent equation as ¥yee(7)-
It follows that the tree distribution in the finite culture is identical to the tree distribution in the exponentially
growing culture. Integrating both sides of equation (14) with respect to 7 yields the Euler-Lotka equation
in the finite culture:

5= et (15)
0

A similar procedure can used to obtain a simple equation for the population growth rate in terms of the
distribution of any single-cell observable. For example, consider the cell-size regulation model with a = 1
and 1, = 0. In this case, the generation time is a deterministic function of the growth rate: 7 = In(2)/\. It
follows that the marginalization approach above can be used to obtain

1 oo
== / 27X F(N)d. (16)
2 0

Here we have used that growth rates are uncorrelated to replace 1% (\) with f(\). Within this model,
f(A) is simply a log-normal distribution with mean (\) and variance o3. This equation has previously been
analyzed in [27], where a saddle point approximation was carried out to obtain

A= () {1 — (1 - 1“;2)) cvi} 7 (17)

where CV represent the coefficient of variation (the standard deviation over the mean) of growth rates.
This shows that within the context of this model, growth rate variation tends to decrease population growth
[27].

4 Computing the population growth rate from cells in the culture

The tree distribution, which is required to compute the population growth rate using equation (2), is only
one of a number of ways to quantify phenotypic variability in a lineage tree and it is not always the most
convenient to work with. For example, it is often the case that one does not have access to the cells that are
expelled from the culture. An alternative distribution is given by the expression 2¢[__(x)e=*P7(*); this term
is twice the integrand of equation (12), which implies it must be a probability distribution, as it is normalized.
As was previously noted by Powell [17] in the context of a model with uncorrelated generation times, this
expression can be interpreted as the distribution of x over all cells that divide before being expelled from
the culture; see Figure 2. Following Powell’s terminology, we define the carrier distribution as

Viar(X) = 20 (x)e =270, (18)

car

To derive Powell’s interpretation of the carrier distribution in the more general setting, first note that
e Ap7(¥) ig the probability that a cell stays in the culture until it divides, given that is has phenotype x.
Also, the probability that any cell throughout the history of the population divides in the culture must be 1/2
in order for the number of cells to remain fixed. The interpretation of 1%, (x) then follows from an application
of Bayes’ Theorem where %[ (x) and L _(x) play the role of the prior and posterior, respectively.

In practice the distribution ¥ (x) may be easier to obtain than ¥f,.(x) because sampling ¥{. . (x)
requires knowledge of generation times of cells that are expelled from the culture. In certain experimental
settings, these cells may be difficult to track, and additionally, their growth may be not be statistically
identically to those cells that remain in the culture due to the different conditions in and out of the device
where cells are observed [28]. This motivates us to develop a method for estimating the population growth
rate, A, from the available lineage data. To this end, we utilize the normalization of ¥{.(x) to obtain

2= / o / eAT(X)wcar<X)dxl T d.]?l. (19)
0 0

As we have done above in equation (13), we can marginalize over the phenotype x to recast this equation in
terms of the corresponding generation time distribution:

= OoeAT T7)dT.
2= [ il (20)



Equation (20) addresses the question of how A is related to the distribution generation times among cells in
the culture.

The ancestral and division distributions

In the exponentially growing culture the distribution 2@/}tree(x)e*AT(x) has a different interpretation; it is
equal to the distribution over all the current cell’s ancestors, denoted t.ns(x) (this has been referred to as
the branch distribution in [27]). This distribution is obtained by sampling all cells in the tree excluding
those that are currently alive, as shown in Figure 2 (a). The fact that ¥Z (x) = 1.ns(x) suggests there may
be an alternative interpretation of these distributions that is common to both types of cultures. In fact,
in both the continuous culture and exponentially growing culture, the carrier (or branch) distribution can
be interpreted as the distribution of phenotypes of cells that have just divided, or the division distribution
Yaiv(x). We refer to Appendix B for the derivation.

Now consider the the distribution over the ancestral cells in the finite culture, denoted % (x). In
order to obtain 1% (x), we take the phenotypes of all cells currently alive in the culture and trace back
through their ancestors, collecting their phenotypes. How might this distribution be related to ¥ns(x) in the
exponential culture (or equivalently, the carrier distribution in the finite culture, 9% (x))? Because all cells
have a common ancestor we can compute 1% (x) by taking only the ancestor cells of this common ancestor
— as we trace back in time far enough the more recent cells make up a negligible fraction of the observed
phenotypes. .ns(x) is therefore the distribution of phenotypes obtained by looking backwards along a
lineage beginning from an arbitrary cell in the culture. If phenotypes are not correlated across generations,
then the phenotypes sampled along the lineage are independent and this is therefore equivalent to sampling
cells in the population that have divided in the culture; as we saw before, this is ©c.r(x). However, if there
are correlations across generations, we need to consider how the ancestor’s phenotypes along a lineage are
biased by the descendants’ phenotypes. This is captured by the recursive formula for 1.ns(z) (derived in

Appendix B):
F ans( ) L. /
ans( - car / / f X | '(/)tree( ) dxl‘ (21)

From this equation it is easy to see that L (x) = L () precisely when f(x|x’) = f(x), as expected from
the argument above.

Our results concerning the relationship between phenotype distributions in exponential and finite cultures
are summarized in Figure 2 (c¢). To explicitly demonstrate these relationships we performed simulations of
the cell-size regulation model. Results of these simulations are shown in Figure 2 (d). For realistic parameter
values, we see that the differences between the distributions are quite small.

5 Competition between multiple species in a finite population

Having established that the Euler—Lotka equation can be generalized to the setting of the a finite culture
in steady-state, we now consider a model in which two cells compete in a finite culture. We will once again
assume that the number of cells (V) is sufficiently large so that any stochastic fluctuations at the population
level may be ignored. Before considering these competition dynamics directly, we suppose that the two
species are grown separately in environments with unlimited space and nutrients. Under these conditions,
the number N; of cells in species i will then grow exponentially at some rate A;. It is not difficult to see that
the fraction of species 1, ¢1 = N1/(N1 + N3), evolves according to the logistic growth equation

%Qﬁ =¢1(1— P1)AA, AN =A; — Ao (22)

The quantity S = AA/As is known as the selective advantage of species 1 over species 2 and its sign
determines which species eventually takes over the culture.

We now imagine placing both species in a finite culture that can hold exactly N cells; see Figure 1
(b). As before, this is implemented by removing a randomly selected cell from the culture every time
a cell division occurs. For the moment, we will assume that nutrients are not limiting growth and the
environment is constant. Under these assumptions, we can heuristically obtain the dynamics of the frequency
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Figure 2: (a) (left) The various ways of sampling phenotypes from a lineage tree obtained in an exponential
culture. The gray horizontal line on the right panel indicates the current time of observation. The blue
highlighted lines correspond to cells that are sampled to obtain the distribution indicated above the lineage
tree. For example, to obtain 9,,s we sample all the cell in the tree excluding those that are currently
alive. (b) The same image for a finite culture. The red dots represent cells that are expelled from the culture
before they divide. (c) The relationship between distributions in the finite and exponentially growing culture.
(d) Plots of the various distributions of single-cell growth rates obtained from simulations of the cell-size
regulation model with N = 104, C’V/\2 =0.25, (\) = 1, vg;y = 2, @« = L and p) = 0.2. The lineage distribution,
which can be computed analytically for this model, is also shown. For the ancestral distribution, we have
plotted both the histogram of In A over all ancestral cells (red dashed line) as well as the result of evaluating
the right hand side of equation (21), using the carrier and tree distributions (purple line).

of species 1 in the finite setting, ¢1(t), from the exponentially growing population by uniformly sampling
N cells from the exponentially growing population at each time; this would suggest that the outcome of
a competition experiment is also determined by AA. However, we know that the steady-state phenotype
distribution determines the population growth rates. Therefore, in order to justify the heuristic argument
mathematically, it must be established that when two species are placed in a finite culture, their phenotype
and age distributions converge to their steady-states. If this condition is not met, then there is a possibility
that the outcome of the competition depends on the initial phenotype distribution. From a biological
perspective, it is important to understand what happens when the initial distribution is not in steady-state,
as it is rarely the case that ecological dynamics begin with each species in steady-state. For example, two
species from different environments may meet after being consumed by the same host organism. Unless the
conditions within the host are identical to the conditions outside, the populations will not be in steady-state
at the onset of the competition.

In Appendix C, we have derived the dynamics of ¢;(¢) within the context of the two-species Moran
process model, along with the generalization to the case of M species. There, we show that the joint density



of phenotypes and ages among species i, denoted ;(t,x, u), obeys

(887,‘ + 88u> i (t,x,u) = —A; () (t, x,u). (23)
Here A;(t) is the per capita division rate of cells of species i, which may depend on time if the system has
not reached its steady-state. In terms of 1);,

As() :/000---/000 Wt %, 75(t %)) - - - da. (24)

We have allowed for both the phenotype distribution and A;(t) to be time-dependent, since the culture may
not be in steady-state. Equation (23) holds for v < 7;(x) and is supplemented by the boundary conditions
prescribing how the phenotypes are selected at birth,

Gilt,x,0) = 2 / / S (1, X', () - di, (25)

Importantly, equations (23) and (25) are completely decoupled from the phenotype distributions of other
species and ¢;(t). In other words, the distributions of phenotypes evolve completely independently from
the frequencies of species in the culture. Some of our main results follow from this observation: First,
in a competition experiment, the phenotype distributions will converge to their steady-states regardless of
the initial conditions and relative fitnesses of each species. Second, the species with a higher value of A;
as determined by equation (2) will eventually dominate the culture, regardless of the initial state of the
phenotype and age distributions. Finally, in the special case where the initial phenotype distributions are
in their steady-states satisfying equation (8) and there are two species, the frequency ¢ (t) will obey the
logistic growth equation (22).

In Figure 3 we have shown simulations for competition between two species modeled by the random
growth rate model compared with the prediction of the logistic growth equation. When the competition
begins with the phenotype distributions in their steady-state, we see that the simulations agree exactly with
the prediction. If the initial phenotype distributions are not in steady-state, we find that the transient
dynamics differ from the logistic growth equation; however, as predicted, they converge to the trajectory of
the logistic equation within a few generations.

6 Discussion

In this paper, we have studied the dynamics of competition between phenotypically heterogeneous popula-
tions in finite cultures. While a number of studies have explored the dynamics of phenotypically hetero-
geneous populations under exponential growth conditions and shown how to relate lineage statistics to the
population growth rate (e.g., [1, 27, 29, 30, 31, 32, 33]), little work has been done concerning the dynamics
of multiple species in finite populations. In exponentially growing populations, the population growth rate
is related to the steady-state phenotype distribution. When studying competition dynamics, it is not clear
that the transient dynamics of the phenotype and age distributions do not affect the fate of species. We have
shown that even if the initial populations are not initially in steady-state, the end result of a competition
experiment can be predicted by the steady-state dynamics, which are the same for both exponential and
finite cultures.

We have also clarified the relationship between the different distributions in both the exponentially
growing and finite culture, as well as derived a simple mapping between the various distributions in the
two types of cultures. Importantly, distributions obtained in equivalent ways do not always have the same
meaning in different types of cultures. In particular, the ancestral distribution in a finite culture is not
equivalent to the ancestral distribution of the exponentially growing culture due to a bias towards surviving
cells, yet both are obtained by looking at the history of all cells in the culture. A corollary of our mapping
between the lineage statistics in different cultures is a formula for the population growth rate (given by
equation (20)) that requires knowledge only of the lineage data obtained in a sufficiently large finite culture.
In addition to relating the lineage statistics to the population growth rate, we have shown that the population
growth rate predicts the fitness of a species in a competition experiment.
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Figure 3: (a) and (b) Simulations of two species, each modeled by the random growth rate model, competing
in the Moran process compared with the prediction of the logistic growth equation (22). The blue lines
represent the average over 1000 simulations. In (a), the phenotype distributions are initially taken to be
in steady-state, satisfying the self-consistent equation (3). In (b), the phenotype distributions are initially
out of steady-state. This is achieved by drawing the initial growth rates from Gaussian distributions with
different means. In both cases, we have used o) = 0.3 for both species (\); = 1 and (A)3 = 1.1 (hence
species 2 has an advantage). We have used the sizer model for cell-size regulation and neglected any size
additive noise. (c) ¢1(t) at t = 20 generations for two populations with the same average growth rate and
different values of o2, the variance in growth rates. We have used (\); = 1 and (\)2 = 1.1, and we have
fixed o2 = 0.2 and increased o;. For both species growth rates are uncorrelated across generations. Each
circle represents the average of 1000 simulations for the same parameter values.

By demonstrating that the outcomes of ecological competition are independent of the initial conditions,
our results shed light on what is important in ecological dynamics of microbial populations. In particular,
they suggest that, in the context of the Moran process, all memory of the transient phenotypic distributions
is lost over the course of a few generations. This is important, as many natural populations do not live
in constant environments, but are repeatedly transplanted to new environments where they are forced to
compete (in a finite population) with new sets of species. For example, infectious bacteria may travel between
many different hosts, each one containing distinct populations of microbes.

We emphasize that the simple Moran process in which species are non-interacting is a very simplified
picture of ecological competition dynamics. However, by establishing the basic principles of competition in
this context, we believe our results can help guide future studies seeking to understand higher order effects.
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An interesting extension of our work could involve investigating species interactions. When species interact,
the principle of competitive exclusion breaks down, and it is possible that two species can coexist indefinitely
[20]. How does variability within species affect coexistence? A second extension would be to understand
how demographic fluctuations (fluctuations due to the finite size of the population) influence the dynamics.
If one allows for demographic fluctuations in the model, it is possible that even the species with a larger
population growth rate can go extinct. Therefore, the more relevant quantity to consider is the fization
probability, defined as the probability that one species will eventually completely dominate the culture. How
are the fixation probabilities related to the population growth rates? Do the initial conditions significantly
affect the fixation probabilities? To our knowledge, these questions have not been answered in the existing
literature.
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A Derivation of Euler-Lotka equation

Here we give a more detailed derivation of equation 12. Let (¢, x,u) denote the joint distribution of species
with phenotypes x and ages u in an instantaneous observation of a population with N > 1 microbes. We
are mostly interested in the steady-state distribution #(x,w). In this section, we omit the superscript F
because we are only concerned with the finite culture. We proceed by considering the change in the number
of cells with phenotypes in the hypercube Hizl[x;, x; + dz;) and ages between u and u + du in an interval
dt. This change is caused both by the aging of cells (not be confused with the way this term is used in [22],
where it corresponds to the deterioration of growth capacity) and the expulsion of cells from the culture.
Since each cell is chosen to be expelled with equal probability whenever a cell divides, the probability that
any given cell is expelled is simply the fraction of cells that divide per unit time multiplied by dt, or Apdt.
It follows that

N(t + dt, x,u)dxy - - deydt — Ny (t,x, u)dxy - - - dayde
change in number of cells with age u and phenotype x
~ Nyt x,u — dt)dxy - - - deydt — N(t, x, u)dzdt
cells gained from aging cells lost from aging
— Ny(t,x,u)Apdzy - - - dx;dt .

cells expelled from the culture

(26)

This equation is valid for cells that have not yet divided; hence, x and u are such that v < 7(x). Taking the
limit dt — 0 and dividing by dt gives the Von Foerster equation (7). Consider the distribution of phenotypes
among cells that are just born. This is given by ¥pirn (%) = 1¥(x,0) Ty ! where ¥ is a normalization constant
obtained by integrating 1 (x,0); ¥y = fooo ¥(x,0)dxq - - - do;. Empirically, ¥pin(X) is obtained by taking an
instantaneous observation of the population and sampling only the cells that have just been born. By solving
equation (9) and inserting the solution into (8), it is straightforward to obtain

Uhbirth (X) = 2 / FEX) Poizen (X)e 227D dgy - . (27)
0

Because this distribution is time invariant, sampling those cells that have just been born at any sequence of
times t1,to, .. .t, yields the same distribution. Carrying out this sampling procedure at an infinite sequence
of times samples every cell only once, and therefore Ypirth(X) = Yiree(X). Integrating both sides of equation
(27) results in equation (12).
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B Relationship between phenotype distributions

The age distribution
The distribution of ages in the culture g(u) is given by

g9(u) :/ " Y(x,0)e” " 2 dz, - - - dy. (28)

Another way to derive this expression is by noting that it is the probability a cell is not flushed out by age w,
times the probability that it has not yet divided by age u. In the specific context of the random generation
time model (7 = x), we obtain the result found by Powell [17] without generation time correlations:

g(u) = \Iloe_“AD/ Upiren (7)dT. (29)
To find ¥y, note that the number of cells that divide in a time dt is the number which have ages equal to

their generation time, hence

N
O gt.

NApdt = th/ U(s, s)ds = th\Ilo/ wbirth(s)e*SADds =
0 0

It follows that Wy = 2A p, which generalizes the conclusion Powell came to in the uncorrelated setting. Note
that for ¥pin(7) = 6(7 — 70), we obtain an exponential age distribution.

The ancestral distribution

In the finite culture t,,s(x) is the distribution over all cells that have descendents in the current culture. Let

(x'|x)dx1 - - - da; be the probability that a cell’s mother has phenotype in the hypercube H 1ls, o + day)
given that its phenotype is x. Bayes’ theorem tells us that

) wcdr( )

Fx) = f(x|x Voo ()

(30)
It follows that

)
wans / / f ‘X wans< )dxl ~dx; = wcar / f X‘X wtree(x) ——dxy dz;. (31)

Division distribution

In both the continuous culture and exponentially growing culture, the carrier (or branch) distribution can
be interpreted as the distribution of cells that have just divided, or the division distribution ¥giv(x). In
terms of the joint density of phenotypes and ages throughout the population, 1(x,u), the number of cells
with phenotypic trait in Hézl[xi, x; + dx;) that have just divided is

Noy(x, 7(x))dz = Np(x,0)e 2270 day - - - day = N2gree(x)e 227 @ dgy - - day. (32)

Dividing by Ndx - - - dx; gives the distribution of phenotypes among recently divided cells, which is 1qiy (x) =
three(m)e_ADT(x). As this argument works for both a finite and exponentially growing culture, the carrier
distribution, branch distribution and division distributions are identical.

Summary of distributions in the finite culture

To summarize, we have discussed the following ways to sample cells in the finite culture:

e Tree distribution (Y. (x)): Sample all the cells throughout the history of the culture, including or
excluding the current cells, but including those that are expelled before they divide.
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e Carrier distribution (¢F.(x)): Sample all the cells throughout the culture, excluding those that are

expelled before they divide.

e Ancestral distribution (YF  (x)): Sample all the cells in the history of the culture that have ancestors

that are currently in the culture. Equivalently, select a random cell from the culture at any time and
trace along a lineage backwards from this cell.

e Current cells distribution (Y5,,,(x)): Sample all the cells that are currently in the culture.

e Birth distribution (Y., (x)): From all the cells that are in the culture at time ¢, sample only those
that have just been born (meaning they have age = 0), then repeat this for all ¢ and average the results.

e Division distribution (1% (x)): From all the cells that are in the culture at time ¢, sample only those
whose age is approximately equal to their generation time, then repeat this for all ¢ and average the
results.

C Derivation of logistic growth equation

Here we provide a more systematic derivation of the logistic growth equation. Let n; denote the number of
cells of species i in a culture containing M species. Let ¢; = n;/N be the fraction of cells of species ¢ and
Y (t,x,u)dudzy - - - dx; be the fraction of cells of species ¢ with ages between u and du and phenotype xy,
between xzj and xy, + dxr. When a cell of species i reaches age 7;(¢,x) it divides, hence over an interval dt,
the number of cells in species i that divide is the product of the total number of cells in species i, or ¢; IV,
and the fraction of the these cells that have reached age u = 7;(t, x). It follows that the total number of cells
dividing in an interval dt is

M o] oo
E (,ZSZN / / 1/Ji(t,X, Ti(t,l’))dlﬂl dI‘ldt (33)
i1 o~ 20 0
- number
of cells fraction of species i cells that are dividing

in species 1

The per capita dilution rate, A(t), is obtained by dividing this expression by N. That is,

M
A(t) = Z¢iAi(t)v (34)
i=1
where A;(t) is the contribution of each species to the total dilution rate:

As() :/Ooo.../ooo (%, m5(t %))das - - - da. (35)

At a given time, the number of bacteria of species ¢ in the hypercube Hi’:ﬂfg, x4+ dx;) is

& ()N, (t, x,u)dzy - - - dzydu. (36)

Just as in the single species case, the change in the number of individuals of a given phenotype and age is
caused by aging of cells and expulsion from the population. Therefore, over an interval dt, the change in the
number of microbes of species ¢ with age u < 7;(x) is

di(t + dt)NY;(t + dt, x,u)dxy - - - dxydt — p(t) N, (¢, x, u)dxy - - - dadit
change in number of cells with age u and phenotype x in species
~ ¢; ()N (t,x,u — dt)dxy - - - daydt — ¢; (6) N (¢, x, u)dxy - - - daydt
cells gained from aging cells lost from aging
— ¢i(t)NA(t)dzy - - - daydt .

cells expelled from the culture
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For each 4, this equation is almost the same as equation (26); however, we have the additional factors of ¢;
which account for the fact that only a fraction of the cells are in species i. Taking the limit dt — 0 gives

0 0 1d
—+ — | it u) = — [ A+ ——¢(t i(t, T u). 38
(5 + 52 ) wittma = = (A4 5 fout) ) it (39)
Compared to equation (9), we have picked up an additional term depending on ¢;, so that we need to

consider the evolution of ¢; in order to completely specify the dynamics. The instantaneous growth of ¢; is
the difference between the rate at which cells of species ¢ are born (A;(¢)) and flushed out (A(t)). Hence,

d
7% = (Ai(t) = A(t))¢i. (39)
Note that with two species, equation (39) becomes the standard logistic growth equation:

d

%ﬁbl = (A1(t) = (1A (t) + (1 = ¢1)A2(1))) 1

= ¢1(1 — ¢1)(A1(t) — Aa(2))

By combing equation (39) with equation (38), we obtain equation (23). Along with an initial distribution
1¥;(0,x,u), equations (23) and (25) describe how the distribution of phenotypes and ages evolves in the mixed
culture. Importantly, these equations are decoupled from ¢;(¢) and each other. Moreover, they turn out to
be identical to the transport equations for a homogenous culture. This implies that the dynamics of the
phenotype distribution are unchanged by the competition, and the fitnesses A; are therefore determined by
the population growth rates of the individual species in exponentially growing cultures.

(40)
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