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Acoustic voice variation within and between speakers
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Little is known about the nature or extent of everyday variability in voice quality. This paper describes
a series of principal component analyses to explore within- and between-talker acoustic variation and
the extent to which they conform to expectations derived from current models of voice perception.
Based on studies of faces and cognitive models of speaker recognition, the authors hypothesized that a
few measures would be important across speakers, but that much of within-speaker variability would
be idiosyncratic. Analyses used multiple sentence productions from 50 female and 50 male speakers of
English, recorded over three days. Twenty-six acoustic variables from a psychoacoustic model of voice
quality were measured every 5 ms on vowels and approximants. Across speakers the balance between
higher harmonic amplitudes and inharmonic energy in the voice accounted for the most variance
(females = 20%, males = 22%). Formant frequencies and their variability accounted for an additional
12% of variance across speakers. Remaining variance appeared largely idiosyncratic, suggesting that
the speaker-specific voice space is different for different people. Results further showed that voice
spaces for individuals and for the population of talkers have very similar acoustic structures.

Implications for prototype models of voice perception and recognition are discussed.
© 2019 Acoustical Society of America. https://doi.org/10.1121/1.5125134
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I. INTRODUCTION

What makes your voice yours? Individuals’ voices, their
“auditory faces” (Belin et al., 2004), provide significant clues
to personal identity along with information about talkers’
long-term physical, psychological, and social characteristics,
based on the variability these factors introduce into voice.
Because even small changes in emotion, social context, and
physiologic state can cause significant variability in voice, no
speaker ever says the same thing in exactly the same way
twice, whether quality is intentionally or incidentally manipu-
lated (see Kreiman and Sidtis, 2011, for extended review).
However, the extent and nature of within-speaker variability
in voice are unknown, despite the fact that the acoustic signal
serves as input to the perceptual system, which must be able
to cope with this variability in order to achieve a stable per-
cept and/or recognition. Information about acoustic variability
is thus critical for formulating models of voice quality and
talker recognition. This paper describes a series of analyses
exploring within- and between-talker acoustic variation and
the extent to which they conform to expectations derived
from current models of voice perception.

Although listeners can cope to some extent with acoustic
variability to establish stable identity percepts, across voices
and listeners many studies have shown that within-speaker var-
iability makes voice recognition and discrimination challeng-
ing tasks. In forensic contexts, for example, an earwitness’s
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ability to identify a person from a voice lineup diminishes
when vocal variability is introduced. Listeners often fail to
reliably discriminate between talkers when exposed to voices
disguised using falsetto, hyponasality, creaky voice, or whis-
pering (Hirson and Duckworth, 1993; LaRiviere, 1975; Reich
and Duke, 1979; Reich et al., 2005; Wagner and Koster,
1999); and changes in a speaker’s emotional state substan-
tially impair listeners’ abilities to recognize (Saslove and
Yarmey, 1980; cf. Read and Craik, 1995) or discriminate
among talkers (Lavan ef al., 2019). Within-talker variability
can also interfere with a listener’s ability to judge that sam-
ples come from the same (rather than different) talkers. In a
“telling voices together” task, listeners frequently judged that
exemplars from a single talker came from multiple speakers
when samples were drawn from different speaking situations
with varied interlocutors (Lavan et al., 2018).

Facial recognition poses similar challenges to viewers,
who must cope with changes in lighting, expression, and ori-
entation in order to identify or discriminate among faces
(Hill and Bruce, 1996; O’Toole et al., 1998; Patterson and
Baddeley, 1977). Because similarities exist in voice and face
processing (Stevenage et al., 2018; Yovel and Belin, 2013),
recent findings from the face perception literature may pro-
vide insight into mechanisms for coping with acoustic voice
variability. In particular, facial identity learning improves
when viewers are exposed to highly but naturally varying
sets of images of one person (for example, with changes in
orientation or emotion) during training (Kramer et al., 2017,
Murphy et al., 2015; Ritchie and Burton, 2017). This
suggests that variation in the same face provides useful
person-specific information and thus is important in identity

© 2019 Acoustical Society of America


https://doi.org/10.1121/1.5125134
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5125134&domain=pdf&date_stamp=2019-09-09
mailto:yoonjeonglee@ucla.edu

learning and perception (Burton, 2013; Burton et al., 2016;
Jenkins et al., 2011). To our knowledge, no parallel studies
have appeared for voice learning, but some classic findings
suggest acoustic variability may also provide important
information to listeners. These studies have reported that
increasing phonological length (i.e., the number of individ-
ual phonemes; Schweinberger et al., 1997) or acoustic dura-
tion (Bricker and Pruzansky, 1966; Cook and Wilding, 1997;
Legge et al., 1984) of the voice samples leads to more accu-
rate vocal identity processing, due to the increased variety in
speech sounds available in longer stimuli or the longer dura-
tion (or both), which provide listeners with added articula-
tory and acoustic variability (cf. e.g., Lively et al., 1993, for
similar effects in learning phonological categories).

Taken together, these studies of faces and voices suggest
that listeners need to learn how a particular voice varies in
order to recognize it accurately and efficiently. At first glance,
this claim appears consistent with prototype-based models of
the cognitive and neural processes underlying voice identity
perception (Latinus and Belin, 2011a; Lavner et al., 2001;
Papcun et al., 1989; Yovel and Belin, 2013). In these
accounts, listeners encode and process voice identity in rela-
tion to a population prototype, which is a context-dependent
“average-sounding” voice, defined as a central tendency in a
distribution of exemplars (Patel, 2008) that resides at the cen-
ter of a multidimensional acoustical “voice space.” Each
voice is further represented in terms of its deviations from
that group prototype, stored as a unique “reference pattern”
for that identity and passed on for further analysis (Latinus
and Belin, 2011b; Papcun et al., 1989). On further consider-
ation, however, it becomes apparent that these models are
underspecified with respect to two important issues. First, the
relationship between between-talker variability in quality and
the population prototype is unknown. Although it is com-
monly assumed that prototypes are statistical averages
derived from multiple samples of a given talker’s voice (e.g.,
Latinus and Belin, 2011a; Maguinness et al., 2018), to our
knowledge no data exist about how much detail (and what
kind of detail) about quality is actually needed to specify the
prototype, and how much is reserved as “deviations” from the
prototype. Second, the nature (or even the existence) of simi-
lar reference patterns for individual talkers and the way in
which within-talker variation affects formation of these pat-
terns have not to our knowledge been addressed, although
such patterns would seem to be essential for the formation of
stable representations of voices and thus for voice recognition
(Lavan et al., 2018).

Existing cognitive and neuropsychological models of
voice perception and recognition have not been fully
exploited to generate clear hypotheses about the nature and
extent of even between-talker acoustic variability in voice,
which has been studied far more than within-talker variabil-
ity. As discussed above, these models posit the existence of
an acoustic voice space organized around a population proto-
type, so that voices are encoded and later recognized in
terms of their distance from the prototype and the manner in
which they deviate from this (presumed) population average.
Because voice production and perception have co-evolved, it
follows that if the perceptual models are correct, then there
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should be some acoustic features that consistently explain
significant between-talker acoustic variance across all the
talkers in a population. These features would characterize
the central category member for the population of talkers,
consistent with the existence of a perceptual space organized
around a prototype, and would also specify the location of
each voice in the space with respect to the prototype.
Remaining differences between voices should be idiosyn-
cratic, so that the features that differentiate pairs of talkers
depend on the precise acoustic information involved in each
comparison (e.g., Kreiman and Gerratt, 1996). This would
be consistent with what has been found for faces
(Maguinness et al., 2018; Stevenage et al., 2018; Yovel and
Belin, 2013), although we cannot assume that faces and voi-
ces are perceived in similar ways at all processing stages.

Predictions are less clear for variation within a single
talker across utterances, although studies of variation in
faces may again offer some clues. Principal component anal-
yses examining how images of a face vary across different
photographs of that person (Burton et al., 2016) showed that
the first few components (left-to-right head rotations, angle
to camera, the direction of lighting; and changes in expres-
sion like smiles, eye movements, mouth opening, or lip
rounding during speech) emerged consistently across indi-
viduals and accounted for the most variance in different pho-
tos of the same person. Dimensions appearing in later
principal components (from the fourth onward) did not gen-
eralize well from one person to another, so that some fea-
tures were shared across faces, and some dimensions of
variability were idiosyncratic to specific faces. Given the
many similarities between face and voice processing in iden-
tity perception (see Yovel and Belin, 2013, for review), this
suggests that voice spaces for individual talkers should be
similarly structured. If “prototypes” for individual talkers are
characterized by the same features across talkers, then these
features would naturally characterize a population prototype
against which each individual voice could be assessed.

Results from our preliminary studies (Keating and
Kreiman, 2016; Kreiman et al., 2017) are also consistent with
the hypothesis that voice spaces for individual talkers are
structured similarly to population voice spaces. In those
experiments, we used linear discriminant analyses to identify
the acoustic features that maximally distinguished a large
number of individual voices. A small number of variables
[FO, F4, the root mean square energy calculated over five
pitch pulses (energy), the relative amplitudes of the first and
second harmonics (H1-H2), and the amplitude ratio between
subharmonics and harmonics (SHR)] proved important for
distinguishing both male and female voices, but these
accounted for only about 50% of the acoustic variance in the
data, the remaining variance being explained by different var-
iables depending on the particular voices being compared.

In the present study we focused on the acoustic attrib-
utes that characterize different voice samples from individ-
ual talkers, as well as on the population of talkers as a
whole. Following Burton et al. (2016), we used principal
component analysis to assess voice variation both within and
across speakers. The components that emerge from such
analyses can be thought of as forming dimensions of an
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acoustic space specific to a given voice, in which that voice
varies, in contrast to the discriminant analysis approach in our
previous work. Based on Burton ef al. (2016) and on proto-
type models of voice processing, we hypothesized that a few
common acoustic dimensions would consistently emerge
from analyses of individual speakers as explaining the most
within-talker acoustic variability, but that much more of what
characterizes vocal variability within a speaker would be idio-
syncratic. Because voice quality is inherently dynamic, we
tested the above hypothesis against multiple sentence produc-
tions from 100 native speakers of English, using a set of
acoustic measures that combine to completely specify voice
quality (Kreiman et al., 2014). This approach contrasts with
previous studies of vocal acoustic spaces (e.g., Baumann and
Belin, 2010; Murry and Singh, 1980; Singh and Murry,
1978), which used limited sets of steady-state vowels.
Finally, we compared the dimensions characterizing acoustic
variability across speakers to those characterizing within-
speaker acoustic variability, also in contrast to previous work.

Il. METHOD
A. Speakers and voice samples

In this experiment, the voices of 50 female and 50 male
speakers were drawn from the University of California, Los
Angeles Speaker Variability Database (Keating et al., 2019).
All were native speakers of English, similar in age (F:
18-29, M: 18-26), with no known vocal disorder or speech
complaints, and all were UCLA undergraduate students at
the time of recording. As noted previously, virtually nothing
is known about acoustic differences between different popu-
lations of speakers. For this reason, in this initial study we
opted to control for possible systematic differences between
populations by studying a homogeneous group, so that we
would be able to unambiguously attribute acoustic differ-
ences to within- or between-speaker factors, without the
added complication of differences between populations.
Recordings were made in a sound-attenuated booth at a sam-
pling rate of 22 kHz using a Bruel & Kjaer % in. microphone
(model 4193) securely attached to a baseball cap worn by
the speaker.

The database provides significant within- and between-
speaker variability. Speakers were recorded on three different
days and performed multiple speech tasks including reading,
unscripted speech tasks, and a conversation. In order to con-
trol for variations due to differences in phonemic content or
emotional state across talkers, this initial study used record-
ings of five Harvard sentences (IEEE Subcommittee, 1969;
Table I), read twice each day for a total of six repetitions per

TABLE I. Reading materials.

Harvard sentences

A pot of tea helps to pass the evening.
The boy was there when the sun rose.
Kick the ball straight and follow through.
Help the woman get back to her feet.
The soft cushion broke the man’s fall.
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sentence over three recording sessions on different days.
Variability reported in this paper was calculated across sen-
tence productions (different repetitions, sentences, and days),
and its scope is limited to the reading task.

B. Measurements and data processing

Acoustic measurements were made automatically every
5 ms on vowels and approximants (i.e., /l/, /r/, /w/) excerpted
from each complete sentence, using VoiceSauce (Shue et al.,
2011). Following the psychoacoustic model of voice quality
described in Kreiman et al. (2014), acoustic parameters
included fundamental frequency (FO); the first four formant
frequencies (F1, F2, F3, F4), the relative amplitudes of the first
and second harmonics (H1*-H2*) and the second and fourth
harmonics (H2*~H4%*); and the spectral slopes from the fourth
harmonic to the harmonic nearest 2kHz in frequency
(H4*-H2kHz*) and from the harmonic nearest 2kHz to the
harmonic nearest S5kHz in frequency (H2kHz*-H5kHz).
Values of harmonics marked with “*” were corrected for the
influence of formants on harmonic amplitudes (Hanson and
Chuang, 1999; Iseli and Alwan, 2004). Our preliminary studies
(Keating and Kreiman, 2016; Kreiman et al., 2017) showed
substantial correlations between the relative amplitude of the
cepstral peak prominence (CPP) in relation to the expected
amplitude as derived via linear regression (Hillenbrand et al.,
1994) and the four measures of the shape of the inharmonic
(noise) source spectrum included in the psychoacoustic model,
so for simplicity CPP was used as the only measure of spectral
noise and/or periodicity in these analyses.

Several additional modifications were made to adapt the
model to automatic measurement of continuous speech.
Formant dispersion [FD, often associated with vocal tract
length (Fitch, 1997)] was calculated as the average difference
in frequency between each adjacent pair of formants (cf.
Pisanski et al., 2014 for related measures). Amplitude was
measured as the root mean square energy calculated over five
pitch pulses (energy). Period doubling, which is not included
in the original psychoacoustic model but is common in the
speech of UCLA students, was measured as the amplitude
ratio between subharmonics and harmonics (SHR; Sun,
2002). Finally, dynamic changes in voice quality were quanti-
fied using moving coefficients of variation (moving CoV
= moving a /moving u) for each parameter. In choosing this
measure, we assumed that listeners do not generally rely on
exact pitch and amplitude contours or on the precise timing of
changes in spectral shape when telling speakers apart,
although such details can be salient when discriminating
among speech tokens from a single speaker. This approach
has the added advantage that quantifying the amount of vari-
ability is straightforward, whereas there is no obvious way to
quantify and objectively compare exact patterns of acoustic
variation. Table II provides a complete list of variables.

Data frames with missing or obviously erroneous
parameter values (for example, impossible 0 values) were
removed. Next, for each speaker, the obtained values of each
acoustic variable were normalized with respect to the overall
minimum and maximum values from the entire set of voice
samples from males or females, as appropriate, so that all
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TABLE II. Acoustic variables.

Variable categories Acoustic variables

Pitch FO
F1, F2, F3, F4, FD
HI1*-H2%*, H2*-H4*, H4*~H2kHz*,
H2kHz*-H5kHz
CPP, energy, SHR
Coefficients of variation
for all acoustic measures

Formant frequencies
Harmonic source spectral shape

Inharmonic source/spectral noise
Variability

variables ranged from O to 1. Then, for each sentence pro-
duction, a smoothing window of 50ms (10 observations)
was used to calculate moving averages and moving coeffi-
cients of variation for the 13 variables during that sentence.
Across speakers, the above winnowing and post-processing
steps resulted in about 515k data frames (F: 266k, M: 249k).

C. Principal component analysis

In principal component analysis (PCA), variables that are
correlated with one another but relatively independent of other
subsets of variables are combined into components, with the
goal of reducing a large number of variables into a smaller set
which is thought to reflect internal structures that have created
the correlations among variables. As moderate correlations
were expected between variables, we employed an oblique
rotation to create the simplest possible factor structure for our
data (Cattell, 1978; Thurstone, 1947). Analyses were con-
ducted separately for each speaker (within-speaker analyses)
and for the combined male and female speakers as groups
(combined speaker analyses). For within-speaker analyses,
PCA was performed separately on each individual talker’s
acoustic measurement data (26 variables: moving averages for
13 variables + moving coefficients of variation for the same
13 variables) to reveal the dimensions of the acoustic variabil-
ity space for that particular voice. For combined speaker analy-
ses, PCA was performed separately on the acoustic data (all 26
variables) from females and males, pooling the 50 speakers’
data in each analysis. PCs were restricted to the resulting facto-
rial solutions with eigenvalues greater than 1, ensuring that
each retained factor accounted for an interpretable amount of
variance in the data (Kaiser, 1960). Results were also visually
confirmed with Scree plots (Cattell, 1966). Following usual
practice, variables with loadings (weights) at or exceeding 0.32
on a given component were considered to form a principal
component (Tabachnick and Fidell, 2013).

lll. RESULTS

Although all 26 acoustic variables were entered simulta-
neously into the analyses, for brevity and clarity results are
first described with respect to five categories, following
Kreiman et al. (2019): (i) FO; (ii) formant frequencies (F1,
F2, F3, F4, FD); (iii) harmonic source spectral shape
(H1*-H2*, H2*-H4*, H4*~H2kHz*, H2kHz*-H5kHz); (iv)
spectral noise (CPP plus energy and SHR); and (v) the coef-
ficients of variation for all measures (CoVs) (Table II).
Detailed analyses follow these summary descriptions. We first
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present results from within-speaker PCA analyses, followed
by analyses of the combined male and female speakers.

A. Within-speaker PCAs: Common dimensions and
speaker-specific patterns

Analyses for individual speakers resulted in between six
and nine principal components (PCs) having eigenvalues
greater than 1. Most speakers showed seven (31/100 speakers)
or eight (59/100 speakers) extracted PCs. These components
accounted for 65%-74% (M = 69%) of the cumulative acous-
tic variance for individual female speakers and 62%—73%
(M = 68%) for individual male speakers (see Appendix A for
details). While all individual PCs were included in subsequent
analyses, because the higher order PCs accounted for very
small amounts of acoustic variability (Appendix A), only the
first six are reported in detail.

We first counted the number of times each acoustic cate-
gory appeared in a within-speaker solution, cumulated across
the 50 speakers in each group. Figure 1 shows the distribution
of variables with respect to weight in the first six components.
The first component accounted for 17%—23% (M =20%) and
20%—-25% (M =22%) of the variance for females and males,
respectively. For both females and males, the combined coef-
ficients of variation emerged most frequently in PC1 across
individual speakers (blue bars in Fig. 1).

Sub-analyses of factors contributing to the first PC are
shown in Figs. 2 and 3. For most speakers, PC1 represented the
combination of variability (measured by CoVs) in source
spectral shape (F: 41/50 speakers, M: 46/50 speakers) and in
spectral noise (F: 45/50 speakers, M: 47/50 speakers), which
usually emerged together (F: 40/50 speakers, M: 44/50 speak-
ers) (Fig. 2). An additional analysis (Fig. 3) revealed that across
speakers all four CoV measures of source spectral variability
(H1*#-H2*, H2*-H4*, H4*-H2kHz*, H2kHz*-H5kHz)
emerged in the first component, but H2kHz*~-H5kHz predo-
minated; spectral noise variability was mostly related to coeffi-
cients of variation for CPP.

For most of the remaining speakers (F: 10/50 speakers,
M: 4/50 speakers), formant frequency CoV was the most
representative variable in the first component. Last, two
male speakers showed source spectral shape alone as the pri-
mary variable associated with this PC.

PC2 accounted for an average of 12% of acoustic variabil-
ity, for both male and female speakers (ranges: females
=10%—-16%; males =10%—14%.). For both females and
males, formant frequencies (F: 50/50 speakers, M: 41/50
speakers) and/or their CoVs (F: 21/50 speakers, M: 30/50
speakers) emerged most frequently as the second PC (Fig. 1).
Sub-analyses are shown in Fig. 4; bars in this figure include
both formant frequencies and coefficients of variation for each
formant. Formant dispersion (F: 37/50 speakers, M: 28/50
speakers) and F4 (F: 35/50 speakers, M: 28/50 speakers)
appeared most important and frequently appeared together as a
pair across speakers.

PC3-PC6 combined to account for an average across
voices of 29% (females) and 28% (males) of the acoustic
variance in the data (see also Appendix A), but in contrast to
the first two PCs, this variance was largely idiosyncratic, and
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FIG. 1. Distribution of acoustic parameters plotted (stacked histogram) against the rotated component loadings (weight) for the first 6 PCs. Upper panel:

female speakers. Lower panel: male speakers.

no particular acoustic category predominated (Fig. 1). For
PC3-PC6, the distributions of the five variable categories and
their weights overlapped highly, for both male and female
speakers, reflecting differences across voices in the amount of
variance explained by each measure. As shown in Fig. 1, most
of the variables are approximately evenly distributed across
PCs, with the exception of FO (red bars), which emerged only
sporadically. In other words, the component in which each
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variable appeared differed across individuals, ranging from
PC3 to PC6 (~nine) across individuals; and no single compo-
nent accounted for substantial variance.

Notably, FO and/or its CoV only emerged in the first two
components for 4/100 speakers (two female and two male).
Among those four speakers, only one (male) speaker showed
FO as the most weighted variable within the PC (red bar in
PCl1, Fig. 1, bottom panel).
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FIG. 2. (Color online) Distribution of variability parameters in PC1 plotted against the rotated component loadings (weight) for female speakers (upper panel)
and male speakers (bottom panel). “CoV” = coefficient of variation.

1. Interim summary and discussion for formant dispersion and F4. The first two PCs were largely

To summarize, variability (measured by coefficients of ~ shared across voices, and together accounted for slightly more
variation) in source spectral shape and spectral noise, especially than half of the explained variance in the underlying acoustic
in H2kHz*~H5kHz and CPP, accounted for the most acoustic data (32%-34% total). The remaining PCs differed widely
variability within individual speakers. Across speakers, the next across voices, and cumulatively accounted for slightly less than
most frequently emerging variables were means and variability half of the explained variance (28%-29% total).

H1*-H2* CoV H2*-H4* CoV H4*-H2kHz* CoV H2kHz*-H5kHz CoV
20
15
g
2
3 10-
-
5 -
0! |

10 05 00 05 10-1.0 05 00 05 10-10 -05 00 05 10-1.0 -0.5 00 05 1.0

weight
H1*-H2* CoV H2*-H4* CoV H4*-H2kHz* CoV H2kHz*-H5kHz CoV
20
= 154
3
3 10+
=
04 |}
-10 -05 00 05 1.0-10 -05 00 05 10-1.0 -05 00 05 1.0-1.0 -05 00 05 1.0
weight

FIG. 3. (Color online) Distribution of spectral source variability parameters in PC1 plotted against the rotated component loadings (weight) for female speak-
ers (upper panel) and male speakers (bottom panel). “CoV” = coefficient of variation.
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The general picture that emerges from these results is
one of surprisingly similar acoustic organization across talk-
ers. This pattern of a common core of variables shared by
virtually all voices, accompanied by unique deviations from
that central pattern, is consistent with what might be required
as input to a recognition/perception system organized around
prototypes, and suggests that such a model applies to
between-talker variability as well as to within-talker acoustic
variability. The analyses in Sec. III B test this hypothesis.

B. Between-speaker group PCA: “General” voice
spaces

As described above, a second set of PCAs examined the
structure of the acoustic space for the combined groups of
female and male speakers. Eight PCs were extracted for both
speaker groups, accounting for 67% of the cumulative vari-
ance for female speakers and 66% for male speakers. Not
surprisingly, given how consistent results were across indi-
vidual speakers, patterns of acoustic variability in these
multi-talker spaces largely mirrored the patterns found
within speakers. Figure 5 shows the group results, and details
of the analyses are included in Appendix B. The first PC
weighted most heavily on variability (measured by CoVs)
in source spectral shape and spectral noise, accounting for
18% and 20% of variance across females and males, respec-
tively. As in the within-speaker analyses, coefficients of var-
iation for H2kHz*-H5kHz and CPP were the most
important components of this PC.

The second component accounted for 11% of acoustic
variance in female voices and corresponded to formant fre-
quencies (F4, FD, F3). For males, spectral slope in the
higher frequencies (H4*-H2kHz*, H2kHz*-H5kHz) and
F2 accounted for 10% of variance in the combined acoustic
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data. The opposite was observed for the third component: an
additional 10% of the variance was accounted for by spectral
shape in the higher frequencies and F2 for females; formant
frequencies accounted for 9% of the variance in male voices.
FO only emerged in later components (PC5 for females, PC4
for males) with noise and spectral shape variables, and
accounted for very little variance in the data (6% for females,
7% for males). CoVs for FO and noise measures emerged in
PC6 for female speakers and PC7 for male speakers and
accounted for 5% of acoustic variance across speaker groups.

IV. DISCUSSION

Acoustic variability is a key factor in models of voice
perception and speaker identification, because perceptual
processes must cope with variable input in order to achieve
perceptual constancy. Using PCA, this study identified voice
quality measures that accounted for perceptually relevant
acoustic variance both within individual speakers and for
pooled groups of speakers. Unlike previous studies of vocal
variation, which typically used sustained vowels produced in
isolation by relatively small numbers of talkers, this study
included multiple complete sentences from large numbers of
female and male talkers, and thus reflected vocal variation
within and across utterances and multiple recording sessions.

As hypothesized, results of analyses of within-speaker
acoustic variability paralleled findings for individual faces
(Burton et al., 2016), in that a small number of components
emerged consistently across talkers. For both females and
males, variability in higher-frequency harmonic and inhar-
monic energy (often associated with the degree of perceived
breathiness or brightness; Samlan et al., 2013) combined to
account for the most variance within talkers. These two mea-
sures generally emerged as a pair within the same PC,
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FIG. 5. Acoustic parameters emerging in 8 PCs for female speaker group (upper panel) and male speaker group (bottom panel). Variables within each PC are
ordered from the highest absolute value of rotated component loadings (weight) to the lowest value. See also Appendixes B 1 and B 2 for variance accounted

for by each PC. “CoV” = coefficient of variation.

consistent with the manner in which they covary in control-
ling the perceived levels of noise in a voice (Kreiman and
Gerratt, 2012). The second PC was consistently associated
with higher formant frequencies and with the average inter-
val between formant frequencies (i.e., formant dispersion).
These measures have been associated with speaker identity
(e.g., Ives et al., 2005; Smith et al., 2005) and with vocal
tract length and perception of speaker size (Fitch, 1997;
Pisanski et al., 2014), but appear to be relatively independent
of vowel quality (Fant, 1960).
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However, an equal amount of within-talker acoustic variabil-
ity was in fact specific to individual voices. The talker-specific
dimensionality of the derived voice spaces differed across differ-
ent talkers, and different measures, different combinations of mea-
sures, or different orderings of the same sets of measures emerged
in PCs after the first two. This suggests that each individual
“auditory face” is indeed unique, allowing for the formation of
person-specific patterns/representations for a particular voice.

Similar dimensions also emerged in the first three compo-
nents from group PCAs combining the 50 male and 50 female
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speakers into separate group analyses, with the balance
between higher-frequency harmonic and inharmonic energy
again accounting for the most variability. Frequencies of higher
formants, formant dispersion, and mid-frequency measures
(near the F2 range) emerged in the second and third compo-
nents, with only differences in order of emergence across
groups. As with analyses of individual voices, later compo-
nents included very different measures across the two groups.
Although this finding may appear trivial given the homogene-
ity of the individual results, in fact there is no a priori reason
why individual solutions should coincide as they did, and no a
priori reason why individual and group acoustic spaces should
be so similar. However, prototype models seemingly require
that acoustic spaces for individual talkers and population
spaces be structured similarly, so that listeners can evaluate the
location of each voice with respect to the population prototype.
This result thus provides strong evidence consistent with such
models.

Two limitations of this work must be noted. First, acous-
tic measures were based on read speech, not on spontaneous
vocalization or conversation. This has the advantage of con-
trolling for variations due to differences in phonemic content
or emotional state across talkers, while still sampling vari-
ability across utterances and recording sessions within talk-
ers, but clearly does not represent the full range of acoustic
variability that occurs within a talker in an average day’s
phonation. The UCLA Speaker Variability Database
(Keating et al., 2019) also includes a recording of an
unscripted telephone conversation for each talker, and analy-
ses are underway to determine how well the present findings
extend to more natural utterances. Second, the sample of
speakers studied was restricted with respect to speakers’
ages (a limitation of the database) and native languages (a
design decision). For this initial study, we view both of these
limitations as necessary: No information is available about
differences in acoustic variability across different popula-
tions of speakers, and even speculation is lacking with regard
to how many and what kinds of populations exist, so no basis
exists for distinguishing variability within a population from
variability across populations. The methods presented here
offer a means of investigating this question, which will be
important for further development of models of voice per-
ception. Similarly, the manner (if any) in which within- and
between-speaker acoustic variability interact with linguistic
factors such as tone and phonemic voice quality differences
remains unknown, again making it desirable to control this
factor in the present study. A systematic investigation of the
interactions among these factors is also underway.

The fact that FO did not emerge early among the princi-
pal components extracted for either the within-speaker or
group analyses is counter-intuitive, given how important FO
is to many aspects of voice perception (e.g., Baumann and
Belin, 2010; Kreiman et al., 1992; Murry and Singh, 1980;
Singh and Murry, 1978; Walden et al., 1978; see Kreiman
and Sidtis, 2011, for review). The lack of a major FO compo-
nent in our results may be an artefact of our normalization
technique, which was based on acoustic ranges but did not
take into account differences in perceptual sensitivity to dif-
ferent variables. However, we note that previous studies
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reporting an FO factor have used similar normalization pro-
cedures and steady-state vowels (e.g., Baumann and Belin,
2010). We additionally note that FO may vary in limited
ways during reading, reducing its contributions to both
within- and between-speaker acoustic differences. However,
FO did emerge as important for discriminating among voices
for both females and males in our previous studies using lin-
ear discriminant analysis (LDA) and the same voice stimuli
(Keating and Kreiman, 2016; Kreiman et al., 2017), making
it unlikely that our results are due to the use of read speech
in this study. (Future studies using spontaneous speech will
test this possibility directly.) Finally, LDA and PCA differ in
the nature of the questions they ask: LDA provides insight
into the variables that maximally separate stimuli, while
PCA can reveal the structure of the acoustic space in which
the stimuli vary, somewhat analogous to ‘“telling voices
apart” versus “telling voices together” (Lavan et al., 2018).
These different emphases may partially explain differences
in the importance of FO across experiments. In any event,
this apparent discrepancy between acoustic structure and
perceptual data requires further consideration.

These results have implications for current prototype-
based models of voice processing (Kreiman and Sidtis,
2011; Lavner et al., 2001; Yovel and Belin, 2013), which as
previously noted are underspecified with respect to within-
person variability in voice. Perceptual processes must be
adapted to the acoustic input they receive, so understanding
the structure of acoustic voice spaces can provide insight
into why and how voice perception functions as it does.
Converging evidence from different scientific disciplines has
shown that assessing who is speaking utilizes both featural
and pattern recognition strategies. Perceiving unfamiliar voi-
ces requires both reference to a population prototype and
evaluation of the manner in which the voice deviates from
that prototype, while familiar voices are recognized using
holistic pattern recognition processes (Schweinberger et al.,
1997; Van Lancker et al., 1985; see Kreiman and Sidtis,
2011, for review). Our results suggest that reference patterns
for individual speakers are mainly computed over the bal-
ance of higher-frequency harmonic versus inharmonic
energy in the voice and over formant dispersion, and are
located in a group voice space with similar structure.
However, this shared structure accounts for only a fraction
of either within- or between-speaker acoustic variability,
with most variability being idiosyncratic. Thus, it may be
misleading to think of prototypes as “average tokens” com-
puted across complete acoustic signals. Our results suggest
instead that they are specified by a very small number of
acoustic attributes.

These results further suggest that for unfamiliar voices,
“deviations from the prototype” include two different kinds
of variability: differences within talkers from their own pro-
totype, and deviations of representations for individual
speakers from a group prototype. Listeners who are unfamil-
iar with the voices should be adept at assessing the second
kind of variability (“telling voices apart”; Lavan et al.,
2018), given that the same acoustic features appear to char-
acterize both group and individual prototypes. However, lis-
teners who are unfamiliar with a talker’s voice should have
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difficulty in associating different tokens of a single talker’s
voice with each other (“telling voices together”; Lavan
et al., 2018), given their unfamiliarity with the specific idio-
syncrasies that characterize that talker’s overall acoustic var-
iability. The present data allow us to make specific acoustic-
based predictions about which voice samples from different
talkers will be confused and which samples from the same
talker will fail to be correctly recognized as coming from the
same talker. These predictions will be explored in our ongo-
ing work.

Finally, these results suggest that learning to recognize a
voice involves learning the specific manner(s) in which that
voice varies around its prototype—in other words, variability
in voice may be essential to learning, in the same way that it
is essential for learning faces (Kramer et al., 2017; Ritchie
and Burton, 2017) and categories of any kind. Previous stud-
ies have suggested that familiar voices are unique patterns,
such that a given feature may be essential for recognizing
one voice, but irrelevant for another (Lattner et al., 2005;
Schweinberger, 2001; Van Lancker et al., 1985). The present
data are consistent with this view; but familiarity with a
voice involves much more than knowledge of acoustic vari-
ability. Mental representations of familiar voices are linked
to faces (e.g., Schweinberger, 2013), and hearing a familiar
voice activates a plethora of personal information about the
speaker, possibly organized in “person identity nodes” (see
Kreiman and Sidtis, 2011, section 6.6, and Barton and
Corrow, 2016, for review). Thus, the manner in which voices
become familiar, and even what familiarity entails, remain
unknown, although the present data shed some light on pos-
sible mechanisms of acoustic learning.

V. CONCLUSION

Principal component analysis identified measures that
characterize variability in voice quality within and between
speakers and provided evidence for how voice spaces—indi-
vidually and generally—may be formulated with reference
to acoustic attributes. Among the large array of vocal param-
eters available for each individual voice, a few components

(the balance between high-frequency harmonic and inhar-
monic energy in the voice, and formant dispersion) emerged
consistently across talkers, but most within-speaker acoustic
variability in voice was idiosyncratic. Results further
showed that the measures that were frequently shared by
individual talkers also characterized voice variation across
talkers, suggesting that individual and ‘“general” voice
spaces have very similar acoustic structures. This aligns
well with the input seemingly required by prototype models
of voice recognition. Our results have implications for unfa-
miliar voice perception and processing, specifically provid-
ing evidence for the nature of reference patterns and
deviations from “average-sounding” across voices, in indi-
vidual and universal voice spaces. Going forward, it will be
essential to consider how listeners organize these identified
measures of within-person variability into a personal iden-
tity and how that relates to perceived differences between
talkers.

ACKNOWLEDGMENTS

This work was supported by National Institutes of
Health (NIH) Grant No. DCO01797 and National Science
Foundation (NSF) Grant No. IIS-1704167. Preliminary
analyses of these data appeared in Proceedings of the 19th
International Congress of Phonetic Sciences. We thank
Abeer Alwan, Zhaoyan Zhang, Bruce Gerratt, and three
anonymous reviewers for valuable comments. We also thank
Meng Yang for help with VoiceSauce analyses. The UCLA
Speaker Variability Database is freely available by request
to the second or third author. A text file including results of
the acoustic analyses can be downloaded from https://
doi.org/10.5281/zenodo.3308312.

APPENDIX A: AVERAGE PERCENTAGE OF ACOUSTIC
VARIANCE EXPLAINED BY EACH PC AS A FUNCTION
OF THE NUMBER OF PCS, FOR FEMALE AND MALE
SPEAKERS. NUMBERS IN PARENTHESES INDICATE
THE NUMBER OF SPEAKERS FOR WHOM THAT
NUMBER OF PCS WAS EXTRACTED

9 PCs 8 PCs
PC (F: 8/50, M: 1/50) (F: 29/50, M: 30/50)
1 F: 19% (17%-21%), F: 20% (18%-23%),
M: 21% M: 22% (20%-25%)
2 F: 12% (10%-13%), F: 12% (11%-16%),
M: 10% M: 12% (10%—14%)
3 F: 10% (8%-11%), F: 10% (9%-11%),
M: 9% M: 10% (8%—11%)
4 F: 8% (1%-8%), F: 8% (7%-9%),
M: 7% M: 7% (6%-9%)
5 F: 6% (5%—6%), F: 6% (5%1%).
M: 7% M: 6% (5%-1%)
6 F: 5% (5%), F: 5% (5%—6%).
M: 4% M: 5% (5%—6%)
7 F: 5% (4%-5%), F: 4% (4%-5%)
M: 5% M: 4% (4%-5%)

7 PCs 6 PCs
(F: 13/50, M: 18/50) (F: 0/50, M: 1/50)
F: 20% (18%-23%), F: N/A,
M: 22% (20%-25%) M: 22%
F: 13% (11%-14%), F: N/A,
M: 12% (10%~—13%) M: 13%
F: 10% (8%-11%), F: N/A,
M: 10% (9%—12%) M: 10%
F: 8% (7%-9%), F: N/A,
M: 7% (6%-9%) M: 7%
F: 6% (5%-1%), F: N/A,
M: 6% (5%—7%) M: 6%
F: 5% (5%—6%). F: N/A,
M: 5% (4%-6%) M: 5%

F: 4% (4%—-5%),
M: 4% (4%—5%)
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(Continued)

9 PCs 8 PCs 7 PCs 6 PCs
PC (F: 8/50, M: 1/50) (F: 29/50, M: 30/50) (F: 13/50, M: 18/50) (F: 0/50, M: 1/50)
8 F: 4% (4%-5%), F: 4% (4%),
M: 4% M: 4% (4%)
9 F: 4% (4%),
M: 4%
Total F: 73% (71%-74%), F: 69% (68%—72%), F: 66% (65%—68%), F: N/A,
M: 71% M: 70% (67%-73%) M: 66% (65%—68%) M: 63%
(Continued)
APPENDIX B: PCA PATTERN MATRICES FOR FEMALE
(1) AND MALE (2) SPEAKER GROUP ANALYSES Variance
PC Variable group Variables Weight explained
1. PCA pattern matrix for female speaker group Spectral shape H2kHz*—H5kHz 0.66
analysis. “CoV” = coefficient of variation Formant frequency variability F2 CoV 0.63
3 Formant frequencies F4 0.97 9%
Variance FD 0.92
PC Variable group Variables Weight explained F3 0.54
4 FO FO —0.73 7%
1 Spectral shape variability ~H2kHz*-HSkHz CoV ~ 0.82 18% Noise Energy ~057
Noise variability CPP CoV 0.76 Spectral shape H2#_H4* 0.57
Spectral shape variability H4*-H2kHz* CoV 0.59 5 Spectral shape H1%—H2* ~0.79 6%
H2*-H4* CoV 0.57 Noise SHR 0.69
2 Formant frequencies F4 0.90 11% CPP 0.52
FD 0.83 6 Formant frequencies F1 0.90 5%
E3 0.70 Formant frequency variability F1 CoV —0.35
3 Spectral shape H4*-H2kHz* —0.85 10% 7 FO variability FO CoV 0.70 59
Formant frequencies F2 —0.76 Noise variability SHR CoV 0.69
Spectral shape H2kHz*-H5kHz 0.65 energy CoV 0.46
Formant frequency variability F2 CoV 0.62 8  formant frequency variability FD CoV 0.96 4%
4 Spectral shape H2*-H4* 0.83 8% F4 CoV 0.93
Formant frequency F1 0.76 F3 CoV 0.53
5 Spectral shape HI1#-H2* —-0.73 6%
FO FO —0.53
Spectral shape variability H1*-H2* CoV 0.52
Noise SHR 0.42 . o ) o
6 Noise variability SHR CoV 071 5% BalitonAJ . J., and (;logrov.v, lS L.. (2036C). tRec;;gr}gz;ngl 5a(;ld identifying peo-
L ple: A neuropsychological review,” Cortex 75, 132—150.
Fp Vana.blh.t?, FO Cov —0.68 Baumann, O., and Belin, P. (2010). “Perceptual scaling of voice identity:
Noise variability Energy CoV -0.57 Common dimensions for different vowels and speakers,” Psychol. Res.
Noise CPP 0.50 74(1), 110-120.
7  Formant frequency variability FD CoV —-0.93 5% Belin, P., Fecteau, S., and Bédard, C. (2004). “Thinking the voice: Neural
F4 CoV —0.90 correlates of voice perception,” Trends Cogn. Sci. 8(3), 129-135.
F3 CoV ~0.52 Bricker, P. D., and Pruzansky, S. (1966). “Effects of stimulus content and
Fl CoV 043 duration on talker identification,” J. Acoust. Soc. Am. 40(6), 1441-1449.
3 Noise energy 0.79 49 Burton, A. M. (2013). “Why has research in face recognition progressed so

2. PCA pattern matrix for male speaker group analysis.
“CoV” = coefficient of variation

PC Variable group

1 Spectral shape variability
Noise variability
Spectral shape variability

2 Spectral shape
Formant frequencies

Variance
Variables Weight explained
H2kHz*-H5kHz CoV ~ 0.81  20%
CPP CoV 0.76
H1*-H2* CoV 0.69
H2*-H4* CoV 0.65
H4*-H2kHz* CoV 0.56
H4*-H2kHz* —-0.82 10%
F2 —0.69
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