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ABSTRACT 
Teachable interfaces can empower end-users to attune ma-
chine learning systems to their idiosyncratic characteristics
and environment by explicitly providing pertinent training
examples. While facilitating control, their effectiveness can
be hindered by the lack of expertise or misconceptions. We
investigate how users may conceptualize, experience, and re-
flect on their engagement in machine teaching by deploying a
mobile teachable testbed in Amazon Mechanical Turk. Using
a performance-based payment scheme, Mechanical Turkers
(N = 100) are called to train, test, and re-train a robust recog-
nition model in real-time with a few snapshots taken in their
environment. We find that participants incorporate diversity
in their examples drawing from parallels to how humans rec-
ognize objects independent of size, viewpoint, location, and
illumination. Many of their misconceptions relate to con-
sistency and model capabilities for reasoning. With limited
variation and edge cases in testing, the majority of them do
not change strategies on a second training attempt.

Author Keywords 
teachable interfaces; interactive machine learning; object
recognition; crowdsourcing; personalization

INTRODUCTION 
As machine learning and artificial intelligence become more
present in everyday applications, so do efforts to better cap-
ture, understand, and imagine this coexistence. Experts from
diverse disciplines are working together and critically exam-
ining the impact of algorithmic decisions, their assumptions,
and their biases [5, 7, 9, 14, 36]. Error-prone, computationally
complex, and failing in ways unexpected by humans, such
algorithms called early on for transparency, interpretability,
accountability, and control [54, 56, 50, 18, 61]. More recently,
these efforts have redoubled (surveyed in [1, 62]), fueled by
funding and legal initiatives such as the DARPA Explainable
Artificial Intelligence [24] and the European Union’s General
Data Protection Regulation [15], while feeding into future
initiatives such as the Algorithmic Accountability Act [16].
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Figure 1: Given an object category, MTurkers are called to
choose three object instances and train a robust personal ob-
ject recognizer using their mobile camera. Here we include
examples from some of the participants’ selected objects.

Machine teaching [51, 64] lies at the core of these efforts
as it enables end-users and domain experts with no machine
learning expertise to innovate and build AI-infused1 systems.
Beyond helping to democratize machine learning, it offers an
opportunity for a deeper understanding of how people perceive
and interact with such systems to inform the design of future
interfaces and algorithms [3] – a perspective this paper shares.

Within this paradigm, teachable interfaces [48, 37] explore
applications where users can explicitly train a model with
their generated data and labels. While facilitating user control,
the effectiveness of these applications can be hindered by the
lack of expertise or misconceptions about machine learning.
Though personalization is often the ultimate goal (e.g., [34]),
the interactive nature of these interfaces can help users in
return to uncover basic machine learning concepts (e.g., [27]).

In this paper, we examine how people conceptualize, experi-
ence and reflect on their engagement with machine teaching
in the context of a supervised image classification task, a task
where humans are extremely good compared to machines,
especially when they possess prior knowledge of the image
classes. Using a teachable interface for object recognition, we
recruit participants (N = 100) through Amazon Mechanical
Turk2 to choose three objects in their environment and train
a model to distinguish between them in real-time using the
camera on their mobile phones, as shown in Figure 1.

1A term in Amershi et al., 2019 [4] for “systems that have features
harnessing AI capabilities that are directly exposed to the end user.”
2https://www.mturk.com/
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Why crowdsourcing. Beyond being utilized as a platform Table 1: Related studies’ characteristics juxtaposed with ours.
for obtaining labeled data quickly at low cost, crowdsourc-
ing is also employed for behavioral and perception studies [22] [30] [10] [34] [27] [65] This study

interactions with machine learning systems, surveyed in [59].
Allowing us to quickly recruit a large participant pool for this
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study, it also enables data collection outside a laboratory to ob-
tain high variability and real-world illumination, backgrounds,
and camera manipulations in the user’s environment.
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We build a web-based testbed for a mobile teachable object
recognizer and ask participants to train and evaluate it on three
objects of choice within an object category (Figure 1). Cate-
gories represent daily objects that span different characteristics
such as size, shape, color, material, and function. Through
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(e.g., [26, 12, 52]) including those for understanding people’s
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sa performance-based payment scheme [28], participants are
called to iterate and reflect over their efforts with the goal of
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making their recognition models more robust. Serving as an
oracle, they are tasked with delivering a teaching set to the
recognition model to help it learn the classification task.

We conduct a contextualized quantitative analysis on the par-
ticipants photos, their written responses, as well as their model
performance. We find that diversity, important in machine
learning, is deemed important by a majority of participants
and incorporated in teaching strategies, drawing from parallels
to how humans generalize across object size, viewpoint, lo-
cation, and illumination [45]. Many misconceptions relate to
consistency; few think that it is good to be consistent and teach
with almost identical examples; others failed to be consistent
on incorporating diversity across classes. While participants
have good intuition on importance of discriminatory features
in teaching but on evaluating their models, we observe suscep-
tibility to missing edge cases. Last, we see that the majority of
participants do not change strategies on a second attempt even
though possess a reasonable intuition on what would be im-
portant. We see how our findings and insights can help better
understand non-experts’ interactions with machine teaching
and guide the design of future teachable interfaces that can
anticipate users misconceptions and assumptions.

RELATED WORK 
We discuss prior work on machine teaching with a focus on
teachable interfaces that most relate to our study. Prior work on
behavioral studies using crowdsourcing is briefly mentioned
to highlight elements that we draw from.

Machine Teaching 
Machine teaching involves a teacher who knows the decision
boundaries and designs an optimal training set for one or
more students [64]. In this paper, the teacher is a human and
the student is a classification model who is being trained to
classify images of objects, as shown in Figure 2, though the
inverse – machines teaching humans to classify images – is
also an active area of research [31]. There is a rich literature
on sequential machine teaching with humans as the teacher,
e.g., programming by demonstration for teaching robots to
manipulate objects [58, 19]. However, in this review we focus
on prior work that utilizes batch teaching, where examples are
given as a set and their order does not matter.

Batch teaching is a very common paradigm for many real-
world AI-infused systems, e.g., using face recognition, fraud
detection and speech recognition. This is typically done by
experts in the field and end-users are hardly exposed to the un-
derlying mechanisms that could help explain their limitations.
Teachable interfaces3 that fall under this machine teaching
paradigm, have the potential to help in this direction as they
can enable non-experts to uncover basic machine learning
concepts (e.g., [27]). Moreover, with advances in transfer
learning [46, 55], they can spur innovation as end-users can
re-purpose models trained on vast amounts of data for new but
related tasks, e.g., personalize assistive technologies [32].

We look into prior work employing teachable interfaces, a term
perhaps not originally used by the authors. Here, we focus
on a subset of interactive machine learning literature, where
users are called to generate all the training and testing exam-
ples for a personalized model. Table 1 presents representative
examples of prior studies from 2011-2019 on gesture recog-
nition for musicians [22], sign language [30] and educational
applications [27], personalized sound detectors for people who
are deaf/Deaf or hard-of-hearing [10], personal object recog-
nizers for blind people [34], and physical activity classifiers
for young athletes [65]. In contrast to this work, prior stud-
ies tend to have smaller participant pools and are typically
conducted in a controlled setting, where the researchers are
present. Partially this could be due to the user characteristics
of interest; people with disabilities [10, 34], children [27], and
students [65]. Another reason could be challenges in remote
data collection as it would require a working prototype [10,
34] or specialized devices from the users [27, 65]. Our teach-
able object recognition testbed, utilizing built in camera in a
mobile phone, and existing crowdsourcing platforms allow us
to reach a larger participant pool that can be further scaled.

As shown in Table 1, the input modality for the teaching set
was more often based on sensing [22, 27, 65] and videos [22,
30] with one example for sound [10] and photos [34]. For

3A term coined by Patel and Roy (1998) [48], where “the user is a
willing participant in the adaptation process and actively provides
feedback to the machine to guide its learning.”
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the last two, participants could not assess the quality of their
teaching examples – participants who were deaf/Deaf or hard-
of-hearing could not hear the sounds they recorded [10] and
blind participants could not see the photos they took [34]. In
this paper, we choose images as the input modality for the
teaching set. This allows us to tap into a large user group of
non-experts that can simply use their mobile phones to take the
photos in a real-world setting. More so, by choosing an object
classification task, an accessible task to many where they can
serve as the oracle, we are given the opportunity to explore
how humans teach a high-dimensional decision boundary to
machines by feeding them only with few instances. More
importantly, this modality allows us to visually inspect the
teaching set for common patterns in users’ behavior.

Similar to most of the prior work in Table 1, our analy-
sis is based on observed behaviors and participant feedback.
Leveraging prior work in neuroscience, we examine how non-
experts’ teaching strategies draw parallels in machine robust-
ness to human robustness, where object recognition involves
generalization across size, location, viewpoint and illumina-
tion [45]. While prior work did not include such a fine-grained
analysis of the participants’ input, it provided insights and
anecdotal evidence that guided the design of our study such as
the need for iterations [22, 65, 27], which may vary not only
across participants but also due to the underlying algorithm
and task [21]. For comparison purposes and time sake, we
opted to keep the number of iterations constant at two. Similar
to our study, the number of classes were limited (2-5) with an
exception of 15 [34], where there were no iterations.

Crowdsourcing and Online Behavioral Studies 
Despite the potential risks in data validity [47, 42], advantages
such as subject anonymity, prescreening, diversity, efficiency,
and low cost have made crowdsourcing platforms attractive for
user studies both in social [41, 49] and cognitive [53] science
with a focus on behavioral and perception studies (e.g., [26,
12, 52]). A building block for the machine learning commu-
nity, crowdsourcing has been utilized to generate data and
annotations, validate existing systems, incorporate feedback
from humans, and observe how people interact with machine
learning models, surveyed in [59]. We build on this prior
work adopting a performance-based payment scheme [28] to
incentivize participants while ensuring a rate of $15/hour [25].
Perhaps the closest work to our study is that of Yang et al. [63],
where online interviews with non-experts (N=98) were used
to elicit how people with no machine learning expertise per-
ceive machine learning processes. While the survey did not
include hands-on interactions with a teachable interfaces, the
findings stressed the need for future work on helping people
build better learning algorithms, further motivating our work.

TESTBED: TEACHABLE OBJECT RECOGNIZER 
To explore how non-experts conceptualize, experience and
reflect on their engagement with machine teaching, we build a
web-based teachable object recognizer for mobile phones. Par-
ticipants can train, test, and re-train it to distinguish between
three objects of their choice. In this case, a test corresponds
to a ‘direct’ evaluation [22], where participants take photos of
their objects in real-time and observe the model’s behavior. To

T=machine,
S=machine

Human vs. 
machine

Model-based vs.
model-free

Angelic vs.
adversarial

Batch vs.
sequential

Theoretical vs.
empirical

Teaching signal

Student awareness

One vs. many

T=machine,
S=human

T=human,
S=machine

Synthetic / constructive
teaching Hybrid teaching Pool-based teaching

Model-based teaching Graybox teaching

Angelic teaching Adversarial teaching

Batch learning Sequential learning

One student Many student

The student anticipates teaching The student does not 
anticipate teaching

Model-free teaching

Theoretical teaching Hybrid Empirical teaching

T=human,
S=human

Figure 2: Characterization of our testbed in the machine teach-
ing problem space [64], where T stands for teacher and S for
student. A human T employs a pool-based, model-free, an-
gelic, empirical teaching. The testbed has a single recognition
model S learning in batch mode, unaware that is being taught,
while considering T as a friend (no adversarial examples).

help us better contextualize our observations, participants also
provide background information and feedback4.

Our machine teaching problem. As shown in Figure 2, we
adopt Zhu et al. [64] machine teaching problem space to char-
acterize the teachable interface in our testbed as a system
where human is the teacher and machine is the student. The
teacher provides, in batch mode, a finite pool of examples
consisting of labeled photos of objects as the teaching signal.
The teacher takes a model free approach, treating the student
as a blackbox, though we anticipate that humans may already
have some assumptions on how the black box works or should
work. The student, employing a convolutional neural network,
does not anticipate teaching, i.e., assuming training examples
are independent and identically distributed and that there are
no errors. More so, the teacher is considered a friend, i.e., no
adversarial training. Last, we assume that the teacher uses
heuristic teaching methods to improve the performance of the
student, the object recognition model in our case. We aim to
better understand these heuristic methods, factors they may
relate to, as well as assumptions that people may have.

Model. For each user, our testbed creates a new convolutional
neural network using the Google Inception V3 [57] pre-trained
on ImageNet [17]. Everytime the user provides a teaching set,
the last layer of the pre-trained model gets replaced with a new
softmax layer and re-trained with the user’s images with 500
steps and a gradient descent learning rate of 10−2. Models are
trained on our 8 GPU server in real-time asynchronously; the
app continues to run and ask users for open-ended feedback
while the training continues in the back. The web interface
communicates with the server using the Flask API [6].

Interface. As shown in Figure 3, initially the testbed asks
for background information, technology experience, and fa-
miliarity with machine learning. Then, it provides five object
category options: bottle, cereal, drink, snack, and spice, with
three sample icons for each category indicative of the preferred
shape. Categories are inspired by prior work on personal ob-
ject recognizers [34] and are engineered to elicit objects that

4Questions and prompts can be found in the supplementary material.
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Figure 3: Testbed screenshots: questionnaires, category selec-
tion, object labeling, and camera view in training and testing.

are present in daily life but differ in size, shape, color, material,
and function. Participants can choose to train only on one of
the categories. To avoid object shape or size from being a
factor in any observed inconsistencies between the classes,
they are asked to use objects (a total of three) that fall within
the same category; three, the smallest number for multiclass
classification and previously used in teachable interfaces for
non-experts [37], minimizes challenges in finding different
object instances within a category in a real-world environment
as well as the task completion time (already 40 mins long). Af-
ter labeling their objects, participants are guided through five
interactions with the machine learning model (the student)5:

Preliminary test (TS0): Participants are asked to take photos
of their objects to see if the existing non-personalized model
can recognize them. The instruction reads: “Take a photo of
an object (name at the top) by tapping on the camera screen.
The existing model will try to predict it.” Given an object label
displayed at the top, one takes a photo of the corresponding
object and sees the recognition result (a label displayed for 3
seconds). This repeats 15 times (5 times per object in a random
order). As expected, during this interaction recognition results
will not match participant’s labels as the generic model is
based on Google’s Inception V3 and is not yet personalized.
There is a dual motivation behind this interaction. First, it
helps familiarize with the interface, which simulates the native
camera app. Second, it helps collect evaluation examples
unbiased from one’s teaching experience that is to follow.

Train 1 (TR1): Participants are asked to train the object rec-
ognizer with the following instructions: “Train our object
recognizer to identify robustly your objects anywhere, anytime,
for anyone. We will randomly choose one of your objects and
ask you to take 30 photos of it. You will be paid $2 extra if
your examples pass our robustness test.” Here, we hint that
model robustness means to be able to recognize an object
anywhere, anytime, for anyone. Motivated by Ho et al. [28]
performance-based payment scheme, we also create the im-
pression of a ‘secret’ test distinguishing examples best for
5All instructions can be found in the supplementary material.

robustness, though on our end this is merely a naive quality ex-
amination (e.g., photos of objects in a screen rather than in the
real-world). As shown in Figure 3, given an object label dis-
played at the top, participants take 30 sequential photos. This
repeats 3 times (1 time per object in a random order). Thus,
the first teaching set comprises 90 photos (30 per object).

Test 1 (TS1): Similar to TS0, participants are asked to “Test
the trained object recognizer again to see how robust it is.”
Here, recognition labels match participants’ labels except in
cases of misclassification, where an object is misrecognized as
one of the other two. Again, no confidence scores are shown.

Train 2 (TR2): Participants are given an opportunity to re-train
their model from scratch with the following instructions: “You
told us what you would do differently, now show us! On the
next screen, take 30 more pictures of the requested object.
You will be paid $3 extra if this training does better than the
previous one in our robustness test.”

Test 2 (TS2): As in TS1, users can test the re-trained model.
The instruction given to the participant was “The object rec-
ognizer is trained again. Test the trained object recognizer.”

Eliciting Feedback. The testbed includes the following open-
ended questions: “What did you think was important to con-
sider when training the object recognizer?” after TR1; “If
you were to retrain the system to make it more robust, what
would you do differently?” after TS1; “How did you position
the object in the image?”, “How did you decide the distance
of the camera from the object?”, and “How did you decide
which side of the object is visible in the image?” at the end.

CROWDSOURCING STUDY 
We deploy our testbed in Amazon Mechanical Turk (IRB
#1255427-1) and investigate how non-experts crowdworkers
teach a machine a high-dimensional decision boundary such as
a fine-grained image classification with a few examples only.

Participants 
We recruited 143 participants over 10 days. However, data
from 43 were excluded from the analysis – 7 helped in piloting,
1 used the same object for all classes, 3 took photos of objects
in display screens, 2 took photos with no objects. The other 30
had technical problems by attempting the task simultaneously

How would you classify your 
level of familiarity with machine learning?

Use apps that can recognize type of objects, 
food, or plants through the camera

Take pictures using a mobile phone

Use a mobile device 1%

77%

9%

99%

21%

87%

0%

2%

4%

100 50 0 50 100

100 50 0 50 100

Never
Once a month

Several times a month
Once a week

Several times a week
Once a day

Several times a day

51% 49%

Percentage
Not familiar at all Slightly familiar Somewhat familiar Extremely familiar

Figure 4: Participants’ technology experience and familiarity
with machine learning mostly ranging from slightly (have
heard of it but don’t know what it does) to somewhat familiar
(I have a broad understanding of what it is and what it does).
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with our system failing to distribute them across the 8 GPUs,
losing data from 12 and interrupting the task for other 18; all
were compensated and the bug was fixed. The 100 participants
who were included in the dataset ranged from 20 to 60 in age
(µ=32.6, σ=8.3); 49 were male, 50 female, and 1 non-binary
with 90 reporting being right handed. No one reported a visual
or motor impairment. As shown in Figure 4, the majority of
participants are frequent users of mobile devices taking photos
with them weekly, though many of them don’t use any appli-
cations for recognizing objects, food, or plants. When asked
about familiarity with machine learning, 6 reported never hav-
ing heard of it, 45 had heard of it but didn’t know what it does,
48 had a broad understanding of what it is and what it does,
and only one reported having extensive knowledge.

Procedure 
With the goal of attracting non-experts in machine learning,
we opted for a HIT description that minimizes technical terms:

“You will be asked to take photos of everyday products such
as soda cans, cereal boxes, and spices to teach your phone
to automatically recognize them. To see how well the object
recognition works you will test it by giving a single photo at
the time.” A warning message was displayed if participants
attempted to start the study from a device other than a mobile
phone. Only one participation was allowed.

Through piloting, we estimated that a study session could be
successfully completed within 30-40 minutes. Adopting a
$15/hour compensation rate [25] all participants received a
total of $10 once all the data collection was completed. To
incentivize participants, we used a performance-based pay-
ment scheme [28], where this amount was split as $5 flat
participation, $2 bonus for passing “our robustness test” in
the first attempt to train, and $3 bonus for achieving a better
performance in “our robustness test” the second time around.
Given that objects differ across participants it was not possible
to have an ideal ‘secret robustness test’; bonus was decided
merely on a quality check. While the testbed’s connection is
persistent and one could do other tasks in between, we observe
that participants took on average 35.57 minutes (14.21-79.86,
σ=12.85) to complete the study, very close to our estimates.

ANALYSIS OF BEHAVIOR 
We explore how participants conceptualize, experience and
reflect on their engagement with machine teaching by looking
at the photos they took for the teaching and testing sets as
well as changes in their behavior when repeating the process.
Observations are contextualized with participants’ responses.

Visual Attributes in Photos. We collected a total of 22,500
photos from 100 participants across all training and testing
interactions. To uncover patterns in participants’ teaching
strategies, photos were coded using thematic coding [11]. Two
researchers independently created initial codebooks of visual
attributes in photos across four dimensions, i.e., size, location,
viewpoint, and illumination; prior work on visual object un-
derstanding [45] indicates that our ability to recognize objects
generalizes across these dimensions. We want to see how par-
ticipants draw parallels from their understanding of robustness
in these dimensions to enable machines to do the same.

Figure 5: Examples of variation attributes in teaching sets.

Figure 6: Sample photos considered by the count attributes.

Researchers discussed disagreements to produce a final code-
book, shown in Tables 2–4 with examples in Figures 5 and 6.
There are two types of attributes: binary and count. Binary at-
tributes capture presence of variation or inconsistency within a
teaching or testing set of photos. If a participant varied photos
for an object along an attribute such as distance (VSizeDist) or
background (VLocBg), the corresponding attribute is 1; oth-
erwise 0. Similarly, variation inconsistency across the three
objects is captured through binary attributes, named ISize, ILoc,
IView, IIllum. Count attributes indicate the number of photos
within a set with a certain characteristic such as presence of
participant’s hand (CHands) and use of flashlight (CFlash) or a
quality issue such as dark (QDim) and blurry (QBlurry) photos.
There was substantial agreement (Cohen’s kappa=0.80).

Subjective Feedback. Participants’ responses to the open-
ended questions were also analyzed with a thematic coding ap-
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Table 2: Variation attributes, true if a variation is present for at least one object.

Variation Definition
VSizeDist True if camera distance, ratio of object height to frame, differs for two or more photos using [0, 0.25), [0.25, 0.5), [0.5, 1.0), and [1.0, ∞) bins.
VLocBg True if the background differs for two or more photos, i.e., different locations or perspectives of a space.
VViewSide
VViewAngle
VViewPos

True if the side of objects differs for two or more photos.
True if the angle between the camera and the object with the same side of object differs for two or more photos.
True if the position of the object in the camera frame, center, top left, top right, bottom left, or bottom right, differs for two or more photos.

VIllumExp
VIllumSrc

True if the exposure to light differs for two or more photos taken at the same location.
True if the source of light differs for two or more photos because they were taken at different locations.

Table 3: Inconsistency attributes, true if there is an inconsistency in variation across the three objects.

Count Definition
ISize True if the camera distance varies in the photos for one or two objects but not all three.
ILoc True if the background varies in the photos for one or two objects but not all three.
IView True if size, angle, or position capturing viewpoint varies in the training photos for one or two objects but not all three.
IIllum True if light exposure or source capturing illumination varies in the training photos for one or two objects but not all three.

Table 4: Count attributes, number of photos with a given characteristic including those looking at quality issues.

Count Definition
CCrop Number of photos where the object is cropped, i.e., object is close to the camera, out of frame, or obscured by another object.
CReshape Number of photos where the object was reshaped (e.g., opening a lid of a package).
CContents Number of photos where the contents inside a package was taken out of the container or the inside of the package is visible.
CNoBg Number of photos where were the background is not visible because the photos are filled with the object completely.
CPlainBg Number of photos where the background includes two or fewer colors with no or very simple textures.
CClutBg Number of photos where the background is cluttered with objects other than the object of interest.
CTextBg Number of photos where the background includes a wall, floor, or furniture with texture.
CHands Number of photos where the participant’s hand(s) is visible in the photo.
CLogo Number of photos where the side with the logo (or label) of the object was visible in the photos.
CFlash Number of photos where the brightness varies in different parts of the photo like using flashlight.
QSmall Number of photos where the object is too small (height of the object < 25% of the height of the photo).
QDim Number of photos where the brightness of the photo is too dark to recognize texture or edge of the object.
QBlurry Number of photos where the object of interest is blurry.
QIrrelevant Number of photos where the photo includes only irrelevant objects without the object of interest.

TS0 TR1
100

80

60

40

20

0

TS1 TR2TS2

Variation Inconsistency

TS0 TR1TS1 TR2TS2

VSizeDist VLocBg VViewSide VViewAngle
VViewPos VIllumExp VIllumSrc VNone

ISize ILoc IView IIllum

Figure 7: Number of participants per variation and inconsistency attribute across all five interactions with the model: preliminary
test (TS0), train 1 (TR1), test 1(TS1), train 2 (TR2) and test 2 (TS2). The graphs on the left indicate how participants incorporate
diversity in their photos in terms of object size, viewpoint, location, and illumination when they train and debug their models.

CCrop RReshape CContents CNoBg
CTextBgCClutBg CHands CLogo

CPlainBg
CFlash

QSmall QDim
QBlurry QIrrelevant
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Figure 8: Percentage of photos per participant given a count attribute, with standard error as error bars. Participants took photos
mostly with the logo on it and many of them against a textured or cluttered background. Often the objects were cropped in the
camera frame and sometimes participants’ hands were included in the photos. Surprisingly, few participants opened the object and
trained the model on their content as well. The most common quality issues were blurry and dim photos though not that prevalent.
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proach [11]. The same two researchers who coded the photos,
created initial codebooks and merged them through discus-
sions resolving disagreements. Responses were coded inde-
pendently with a substantial agreement (Cohen’s kappa=0.73).

Results 
What Are Non-experts’ Teaching and Debugging Strategies? 
We explore how variation6, inconsistency, and other attributes
manifest on participants’ image sets when they are first called
to train the object recognizer on objects of their choice.

Incorporating diversity in teaching. Diversity plays an im-
portant role in machine learning [23]. When incorporated in
the teaching set, it ensures that examples can provide more
discriminatory information to help the model learn. By look-
ing at participants’ photos (results in Figure 7) and by reading
their responses, we find that the majority of the participants
share this intuition, but not all. In detail, 23 participants (age
21–60, µ=37.57, σ=9.87) did not include any kind of variation
in their TR1 teaching set – 3 of them reported never having
heard of machine learning, 12 had heard of it but did not know
what it does, and 8 had a broad understanding of what it is and
what it does. Immediately after training, when asked about
what they considered important, 5 participants referred to the
need for consistency, which in this context contradicts the way
machines and people learn. For instance, P6 said “I figured I
needed to be consistent when I took the picture so they looked
similar.” and P30 “Keeping the pictures the same.” Others,
who did not consider this type of consistency, mentioned that
it is important to have a good quality photo where the object
is well framed (4) with visible labels (8) and images that are
clear (6) with ample light (2). Without even having tested their
model, P2 said: “Getting different angles and perspectives so
the trainer could recognize it more easily” – a contradiction
to their initial teaching set that had no variation. We observed
that in TR2, P2 reflected on this observation and varied both
the object size and viewpoint. Only two other participants
from this group did so as well, P5 and P18. They said having
the “name and color in” is important in TR1 but also varied
the camera distance (P5) and angle (P18) in TR2.

However, the majority of participants (N = 77) diversified
examples in their first attempt. They varied either size
(N = 65) or viewpoint (N = 63), with some considering lo-
cation (N = 39) and illumination (N = 19). Light exposure
was least diverse (N = 4). Looking at responses on impor-
tant considerations for training, many participants (N = 52)
mentioned these strategies7 and reflected on the need for di-
versity with concrete terms such as “different”, “various”,

“all”, “many”, “multiple”, “every”, “variety”, and “difference”
combined with “angles”, “views”, “sides”, “facets”, “back-
ground”, “lighting”, “distance”, and “positioning”. These
terms correspond to the four dimensions of our coding scheme
informed from prior work on visual object understanding [45],
highlighting that humans’ strategies for machine teaching par-
allel their own abilities. However, only 11 participants (age:
µ = 34,σ = 8.71) incorporated diversity in their teaching set
6A preliminary analysis of this appears in a work-in-progress [29].
7All questions, instructions, and prompts prior to training were care-
fully edited not to prime participants towards our coding attributes.

across all four dimensions – 3 reported having heard of ma-
chine learning with no further understanding, and 8 had a
broad understanding of what it is and what it does.

Being fair and consistent between classes. Model consis-
tency across classes is a desirable trait in machine learning
with many social implications for fairness, whose definition is
still being debated in the community (e.g., [44, 43]). There is
anecdotal evidence on non-experts learning to balance class
proportions in the training set over multiple iterations [22, 65].
By keeping the number of training examples constant, we look
into their behavior across other potential disparate treatments.
Given that many participants considered diversity important
for good performance, we explore how fair8 (i.e., consistent)
they are in incorporating diversity across their three objects,
with results shown in Figure 7. Beyond the 23 participants
who did not introduce any variation for any object, we find
that there were 30 other participants that were consistent. This
is promising, especially since this included participants from
all levels of familiarity with machine learning: not familiar
at all (N = 1), slightly familiar (N = 11), somewhat familiar
(N = 17), and the only participant in our study that reported
being extremely familiar (N = 1). While none of these partici-
pants explicitly mentioned consistency as important, we find
that more than half of them (N = 16) continued doing so in
their second attempt at training, in TR2. For the remaining
47 participants, their inconsistencies were found in variations
related to all four dimensions: object size (N = 21), viewpoint
(N = 31), location (N = 10), and illumination (N = 5).

Deciding what to show in the teaching set. We analyze
the fine-grained count attributes in teaching and training sets
(Figure 8) to uncover common teaching patterns across par-
ticipants. Khan et al. [35] observed that one of the most
prominent teaching strategies for a binary classification task
among non-experts, called the extreme strategy, is consistent
with the “curriculum learning” principle [8, 40], where par-
ticipants start with the most extreme examples and continue
with those closer to the decision boundary9. While our batch
teaching task does not allow for a similar sequential analysis,
we find that almost all participants (N = 98) included the logo
(or label) of objects in their teaching sets; on average 84.9%
(SD = 25.0) of any participants’ images included logos. This
indicates that participants understand that logos and labels
tend to include the most discriminatory features, which serve
as the most extreme examples. Then, through variation they
add less discriminative viewpoints that are closer to the deci-
sion boundary. Indeed, 18 participants explicitly mentioned
logos or labels being important in training. For instance, P36
said “... trying to have a constant label view” and P46 “... a
clear shot of the front of the package with minimal background

8In this work classes are object instances that fall within the same
category and consequently share similarities such as shape, size, and
material in the context of the decision making task of incorporating
variation. Thus, we consider “individual fairness” [20], where “sim-
ilar individuals should be treated similarly”, and explore whether
object instances within a category are being treated the same by a
participant when introducing variation in the training photos.
9In the Khan et al. [35] study participants did not generate the exam-
ples but they ordered them as most representative of the two classes
and chose to teach one by one using all of them or a subset.
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interference.” When looking deeper at these responses though,
we find that many of the participants assumed that the machine
would read the text. For example, P28 said “It [the model]
recognizing the different cereals by name” and P44 “Getting
a clear shot where the writing and the size are clear.”

In terms of the background, we find that the majority were
textured (N = 66) or cluttered (N = 62), while many used
plain (N = 48) and a few none at all (N = 11) – the latter two
are preferred since very few varied the object location. We
observe that 26 participants included their hands in the photos.
The presence of hands has been leveraged to better distinguish
objects by modeling the contextual relationship between grasp
types and object attributes [13] or to estimate the object of
interest in a clutter environment [38, 39]. However, given this
study’s fine-grained task, the grasp is expected to be similar
across object of the same category. Thus, the presence of
the hand doesn’t really help, especially if it is not applied
consistently across classes. More surprisingly, we observe
that 8 participants reshaped their objects, e.g., opened the
lid, and 4 decided to train on the content of the object as
well, e.g., cinnamon powder. When asked what is important
for training, one of these participants, P76, said: “Getting
lots of different angles and different ways the spice could
be portrayed.” In general, there were not many photos with
quality issues. Participants took clear photos in most cases
and many of them mentioned the importance of image quality
in their responses, but some (N = 36) mistakenly took a few
blurry photos. Also, objects sometimes appeared too small
(N = 17) and occasionally the light was dim (N = 9).

Debugging and including edge cases in testing. When
asked to evaluate their model in TS1, many participants
(N = 30) did not diversify their images at all – 2 of them
reported never having heard of machine learning, 17 had heard
of it but didn’t know what it does, and 11 had a broad under-
standing of what it is and what it does. This means that they
did not check whether the recognizer is robust. We also find
that compared to training, fewer participants diversify their
testing set across object size (N = 57), viewpoint (N = 49),
location (N = 21) and illumination (N = 6). This could be ex-
plained by many factors such as: smaller number of photos in
testing (15) compared to training (90); difficulty in conceptu-
alizing robustness; assumptions about machine’s generalizing
capabilities; not anticipating future uses of the model under
different circumstances; or simply minimizing efforts for this
HIT. Logos were still included by the majority of the partici-
pants (N = 98) and the same number of participants (N = 11)
took photos that did not include any background, keeping their
testing data consistent with their training examples. Similar to
what Zimmermann et al. [65] observed, participants “enacted
[testing] practices wherein their models appeared to have high
reliability but questionable validity.” We also find that par-
ticipants took fewer photos with plain background (W = 756,
Z = 2.17, p = .030, r = 0.15), and objects that were too small
(W = 126.5, Z = 2.61, p = .011, r = 0.18) using a Wilcoxon
signed rank test. None of the interesting object reshaping,
or content images present in training, carried over to testing;
a similar behavior to Kacorri et al. [34], with “exaggerated”
variation in training unobserved in testing.

Do Teaching Strategies Evolve Through Iteration? 
Prior work indicates that the interactive nature of teach-
able interfaces can help users uncover machine learning con-
cepts [27]. We ask participants whether they would do some-
thing differently were they to retrain the model for a second
time and offer a bonus if they could make it even more robust.

Updating teaching strategies to improve performance. “Is
this information a signal or noise” was one of the most com-
mon debug strategies by experts [63]. We investigate whether
participants employ a similar approach by comparing TR2 to
TR1 in terms of the variation, inconsistency, and other im-
age characteristics, which serve as information signals for the
model. Using a McNemar test for binary and Wilcoxon signed
rank test for count attributes, we find the only significant dif-
ference is variation of location as observed by changes in the
photo background (VLocBg). More participants diversified
the background in their teaching set on the first attempt than
the second (χ2(1, N = 100) = 4.35, p = .037,φ = 0.21, the
odds ratio is 11.86). As in Zimmermann et al. [65], we sus-
pect that participants were trying to maximize performance
by increasing consistency between their training and testing
data, even though in our prompts we had defined robustness as
ability to recognize the objects anywhere, anytime, for anyone.
No other significant differences were observed, though this
could be partially explained by limitations in the binary nature
of our variation and inconsistency attributes failing to cap-
ture changes in magnitude. We shed light into other possible
explanations by looking at participant’s responses.

When asked about what they would do differently if they were
to retrain, some (N = 22) said "nothing", "wouldn’t do it dif-
ferently", and "would not change anything". Few said they
had nothing to change because they were satisfied with the
performance in TS1 (N = 6). For instance, P23 said "Noth-
ing it seems very robust after the learning phase." This was
not a surprise given that in TS1 participants did not opt for
a thorough evaluation, as discussed above. "Having no idea
what to change" was also mentioned by some (N = 19) re-
flected by terms such as "not sure", "unsure", "I can’t think
of anything", "have no idea", or "don’t know". Indeed, we
find that the models of these 22 participants perform well
on their own test data with an average F1 score of 0.981
(SD = 0.048)10 and significantly better than the rest of the
participants (U = 1472, Z = 5.22, p < .001,r = 0.52); a trend
that carries over to the second attempt.

Few participants wanted to change elements of the teaching
process such as improving the testbed (N = 3), taking photos
faster (N = 1), adding more classes (N = 2), or adding more
samples (N = 6). Yang et al. [63] characterized the latter as
“most non-experts’ only strategy to improve a model’s per-
formance.” Others focused on improving the quality of their
teaching set such as better focus (N = 5), more light (N = 2),
show labels (N = 2), better framing with a certain distance
(N = 1), and centering (N = 1). Few participants (N = 2)
explicitly mentioned the importance of the background, with
P83 saying “I would try to change the color of the background
to ensure that it knows what the actual object is. I think it was

10Only recognition labels are available in testing and no scores.
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confused by the curry because of the black stove background
which may look like the black cap of the cumin.” Surprisingly,
one participant (P85) pointed to discriminatory limitations of
their objects uncovering challenges in fine-grained classifica-
tion by stating “Change objects to not look so similar.”

Last, some participants (N = 22) explicitly indicate that adding
more variation in their training set is something they would
do. For instance, P14: “I would take a wider variety of an-
gles” and P21: “Take picture from many different locations
lighting and positions.” Only one, P36 mentioned doing so in
testing, “Test different sizes”. When examining what they ac-
tually did in their second attempt at training, we find differing
approaches: some indeed started incorporating new variations
(N = 13), some perhaps changed the magnitude as variations
were present in both first and second attempt (N = 5), and
others (N = 4) did not make those changes. While variation
for these 22 participants was mostly limited to the 4 dimen-
sions (size, viewpoint, location, and illumination), few other
participants (N = 5) indicated that they would also include
different forms of the same object, e.g., different containers,
perhaps difficult within this study.

ANALYSIS OF PERFORMANCE 
We report the performance of the models that the participants
train by looking at the predicted labels during the first and
second round of testing using the F1 score measure (F-score).

Relating observed behavior to performance. Participants
achieved on average a 0.75 (SD = 0.38) F-score in their first
attempt to train the model. Using a multiple linear regression,
we explore how attributes capturing their behavior in teach-
ing and testing may relate to the relative performance of their
models. While this performance is far from an ideal controlled
robustness11, it can provide some context for the observations
above such as participants’ behavior in the second attempt.
We use a square root transform of the F-score12 as the de-
pendent variable. As independent variables, we use variation,
inconsistency, and count attributes in TR1 and TS1 and their
interaction. For model selection, we use stepwise variable se-
lection based on Akaike information criterion (AIC) [2] with
results shown in Table 5. We find that only 28% of the vari-
ability in recognition performance is accounted by this model,
as indicated by the adjusted R-squared metric. While this
is modest, it is not surprising, as there are many factors that
can contribute to the performance of an image classification
algorithm. For instance, performance can vary based on object
similarities, a common challenge in fine-grained classification;
a similarity that is not directly captured by our attributes.

In training, we find that variation in light exposure (VIllum-
Exp) relates positively with the F-score, though very few par-
ticipants included this type of diversity in their teaching set.
We also see that the number of images where the object is
taken against a plain background (CPlainBg) has a negative re-
lationship with model performance. Though counter-intuitive,
we suspect that lack of diversity in the background might have

11Such a neutral test is unrealistic in our study since participants
choose different objects in different environments.

12Transformation is used to meet the normality assumption.

Attempt Variable Estimate Std. Error t value
(Intercept) 0.939 0.048 19.79***
VIllumExp 0.167 0.063 2.64**
VIllumSrc -0.076 0.049 -1.55TR1 CCrop 0.000 0.002 0.12
CPlainBg -0.002 0.001 -2.50*
CTextBg -0.001 0.001 -1.55
VSizeDist -0.068 0.037 -1.81.
VViewSide 0.108 0.038 2.83**TS1 VViewPos -0.089 0.045 -1.97.
CCrop 0.048 0.012 4.04***
CClutBg -0.007 0.003 -2.14*
QBlurry -0.016 0.009 -1.74.

TR*TS CCrop -0.001 0.000 -3.16**
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
Residual standard error: 0.157 on 87 degrees of freedom
Multiple R-squared: 0.3681, Adjusted R-squared: 0.2809

F-statistic: 4.223 on 12 and 87 DF, p-value: 3.195e-05

Table 5: Modeling recognition performance based on attributes
capturing variation, inconsistency, and other characteristics.

contributed to a model that does not generalize well, e.g., when
tested. This seems to be supported by the negative relationship
of the number of cluttered background images during testing.

In testing, we find that variation in object size (VViewSide)
relates positively with the F-score. We also see that the num-
ber of images where objects appear to be cropped (CCrop) has
a positive relationship with model performance. A plausible
explanation could be that these attributes capture participants’
behavior of zooming in on the object’s most discriminative
features, thus helping the model to distinguish objects. How-
ever, when considered as an interaction between training and
testing (TR1*TS1-CCrop), this attribute appears to be nega-
tively related to the model performance perhaps pointing to
the sensitivity for consistency between the two – if you crop
objects in one case, then it helps to do so in the other as well.

Improving performance the second time around. As
shown in the previous analysis, we observe few changes in
participants’ teaching strategies in the second training as cap-
tured by our attributes – though some participants said they
would do things differently. We find that this is also reflected
when comparing the performance of their second model to the
first. On average, participants achieved a 0.746 (SD = 0.38)
F-score the first time and a 0.749 (SD = 0.28) the second
with no significant change (W = 80.5,Z = −0.16, p = .871).
However, participants who indicated they would do noth-
ing to improve their model after the first attempt (N = 22),
seem to achieve significantly higher performance than the rest
(U = 1472,Z = 5.22, p < .001, r = 0.52) and this is a consis-
tent trend across both attempts (U = 1459.5,Z = 5.12, p < 
.001, r = 0.51). Looking at these relative low F-scores for
such a simple 3-way classification task, it is surprisingly that
the second group of participants did not further improve their
performance even though they expressed reasonable strategies.
Perhaps the incentives were not strong enough and they had a
higher threshold for errors, or there was not enough time and
iterations to try things out. It could simply be that their object
instances were too similar. Indeed, the majority (N=38) of the
participants in this group had chosen spices.
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DISCUSSION 
We see how our results, some being new insights, others
strengthening prior empirical and anecdotal evidence, can
help better understand non-experts’ interactions with machine
teaching and guide the design of future teachable interfaces.
We highlight some of them with the following suggestions:

Account for teaching strategies: Our observations suggest
that non-experts mainly tend to teach with clear representative
examples and sometimes incorporate examples that are closer
to the decision boundary through variation, which draws from
parallels to how humans generalize for similar recognition
tasks. In the case of object recognition, these were object
size, viewpoint, location, and illumination [45]; though all
four were considered only by a few. Our analysis also suggest
that beyond class imbalance [22, 65], there can be other dis-
parate treatments such as inconsistency in the way variation is
incorporated across classes.

Anticipate misconceptions: A prevalent misconception re-
lates to consistency. While it is true that consistency between
training and testing data will result in better performance, as-
suming they both represent real-life examples, some thought
that being consistent entails teaching with multiple identical
examples with no variation whatsoever. Other misconcep-
tions relate to the capabilities of the machine for reasoning.
For example, participants would train with visually disparate
examples from both the container and its content separately.
Others would assume that the models were able to infer the
text.

Help users craft evaluation examples: Our observations in-
dicate that testing examples tend to be less diverse or not at all.
Thus, it is no surprise to see many people wanting to change
nothing, being satisfied with the performance, or not knowing
what to do. Even those who did change their behavior when
training for a second time, it was to not vary the background
rather than making their model more generalizable. Help may
look different based on the goal of the teachable interface. If
it is personalization (e.g., [33]), then it could mean guiding
the user to generate examples that are more representative of
future use cases [22]. However, if it is an application intended
to uncover machine learning concepts (e.g., [27]) perhaps pro-
moting more model-breaking examples [60] would be more
appropriate; though in the context of a teachable interface this
could lead to users training the model with less authentic data
to simply improve its performance [65].

This work has several limitations listed below:

Task: We explore machine teaching in a narrow context, that
of a supervised 3-way image classification task. This allows
us to dive deep in our analysis using a fine-grained scheme
when coding participants examples informed from prior work
on visual object understanding. However, it also limits the
generalizability of our findings. We attempt to overcome this
by connecting our results with that of prior work when possible.
Three, the smallest number for multiclass classification, was
selected to minimize challenges in finding different object
instances within a category in a real-world environment as
well as the task completion time (already 40 minutes long).

Study: While teachable object recognizers are real-world ap-
plications [38], they are typically intended for blind users.
Thus, the sighted participants may lack motivation in this
study. We attempt to compensate for this lack of incentives
with a performance-based payment scheme [28] creating the
impression that we have a ‘secret’ test to distinguish models
that are more ‘robust’; though on our end this is merely a naive
quality examination. By doing so, combined with the fact that
the testbed shows only the predicted labels but no confidence
scores in testing, we might have limited participants’ criteria
for model evaluation [22] to just correctess.

Analysis: Through crowdsourcing we were able to quickly
recruit a large participant pool and collect data outside a lab in
the users’ environment. However, this limited our control over
the object instances that participants could use as well as the
opportunity to create our own evaluation set for comparing the
performance of the models against the same data.
To allow some time before testing for the photos to be received
on our server and the models to be trained on our GPUs,
participants were asked to review their training photos and
select 10 out of 30, 5 out of 10, and 1 out of 5. We are
still analyzing these data while considering more fine-grained
variation and inconsistency attributes.

CONCLUSION AND FUTURE WORK 
We have presented a crowdsourcing study, where MTurkers
choose three objects in their environment and iteratively train
a model to distinguish between them in real-time using the
camera on their mobile phones. By doing so, we were able to
explore, with a large participant pool (N = 100), an instance
of a machine teaching problem with a task where many non-
experts can serve as the oracle. Our findings and insights
can contribute to the ongoing discussion on how non-experts
conceptualize, experience, and reflect on their engagement
with machine teaching. To allow for study replicability and
future comparisons, we have provided a detailed description
of our testbed, its framing within the machine teaching prob-
lem space from Zhu et al. [64], and the list of questions and
prompts used in the study.

Our results are based on a fine-grained analysis of the par-
ticipants’ examples contextualized by their responses, back-
ground, and model performance. We discuss how they can
guide the design of future teachable interfaces to anticipate
users tendencies, misconceptions, and assumptions. Given
our research group’s interest in teachable interfaces for acces-
sibility [33], our next step will be to explore whether these
insights and data from sighted participants could be lever-
aged for the design of effective teachable object recognizers
for blind users. Our rationale is that insights from this study
can perhaps enable us to decouple non-experts misconcep-
tions from challenges in camera manipulations among blind
users [38].
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