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Abstract— Model Predictive Control (MPC) is a promising
technique for energy efficient control of Heating, Ventilation,
and Air Conditioning (HVAC) systems. However, the need
for human involvement limits current MPC strategies from
widespread deployment, since (i) model identification algo-
rithms require re-tuning of hyper-parameters, and (ii) opti-
mizers may fail to converge within the available control com-
putation time, or get stuck in a local minimum. In this work we
propose an autonomous MPC scheme to overcome these issues.
Two major features are embedded in this architecture to enable
autonomy: (i) a convex identification algorithm with adaptation
to time-varying building dynamics, and (ii) a convex optimizer.
The model identification algorithm re-runs periodically so as to
handle changes in the building’s dynamics. The estimated model
is guaranteed to be stable and has desirable physical properties.
The optimizer uses a descent and convergent algorithm, with
the underlying optimization problem being feasible and convex.
Numerical results show that the proposed convex formulation
is more reliable in control computation compared to the non-
convex one, and the proposed autonomous MPC architecture
reduces energy consumption significantly over a conventional
controller.

I. INTRODUCTION

Heating, ventilation, and air conditioning (HVAC) systems
are responsible for approximately 40% of the total energy
consumption of buildings [1]. Model Predictive Control
(MPC) is one of the most promising control strategies
towards reducing the energy consumptions [2].

Although MPC has been extensively studied for control of
HVAC systems, MPC architectures proposed in the literature
cannot be used in an autonomous manner. By autonomous
MPC we mean an MPC architecture capable of reliably
computing high-quality control decisions at all times without
the need for human involvement. A building’s and its equip-
ment’s behavior changes with time, and consequently models
used by the optimizer in MPC need to be updated over time.
Control-oriented models that are simple enough for MPC
need to be learned from data since first principles based
models are quite complex. The overall architecture thus
needs to be of an “adaptive MPC” type; see Figure 1. The
system identification component of such a control system
must be able to fit a model without needing human inter-
vention and obtain a model of sufficient accuracy. A second
requirement for autonomous operation is that the underlying
optimization problem must be feasible and convex at every
decision time. A non-convex controller may fail to converge
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within the time available for control computation, or get
stuck in a local minimum; see [2] and references therein.
Infeasibility has the same effect. In either case, a rule-based
controller must be used as back up when the non-convex
optimizer cannot provide a control command. Switching
between controllers induces concerns of instability and poor
transient performance [3].
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Fig. 1: Structure of the proposed building autonomous MPC
architecture.

Identification of HVAC system models from data has a
long history, but most of these algorithms are non-convex
optimization problems with few guarantees on the quality of
the model fit [4], [5]. Depending on the type and quality
of data used, they require re-tuning of hyper-parameters by
a human expert. A similar problem exists for control com-
putation. Dynamic models of building HVAC systems are
typically nonlinear, which lead to non-convex optimization
problems in control action computation. An approach used to
address this issue is linearization of models. Among works
adopting this approach, some make limiting assumptions
to obtain a linear thermal dynamic model [5]-[7]; others
linearize the dynamics around a set-point or state trajectory,
which requires an optimal, or at least near optimal trajectory
first [8], [9]. The quality of a linearized model is thus
sensitive to the choice of the optimal trajectory, and a-priori
determination of such an optimal trajectory is challenging.
After all, if it were easy there were no need for an MPC
controller.

In this paper we propose an autonomous MPC architecture
for HVAC systems. The system identification block is taken
from our prior work [10]. The proposed identification algo-
rithm is well-suited for autonomous operation: it involves
solving an optimization problem that is always feasible and
convex, and the model it returns is guaranteed to be stable
and possess properties that are consistent with properties of
a building HVAC system, such as an increase in outdoor
temperature will lead to an increase in indoor temperature.



For the control computation block, we adopt a convexifi-
cation approach in order to handle the bilinear terms in the
nominal non-convex problem. Bilinear terms are commonly
encountered in models of building thermal dynamics, and
is one of the common sources of non-convexity of the
optimization problem in HVAC MPC. We prove in this paper
that among the list of many convex approximation methods
to handle bilinearities, Convex-Concave Procedure (CCP) is
the only applicable method for our problem structure. Our
optimizer is therefore incorporated with the CCP approach,
and we prove that the proposed algorithm is feasible, descent,
and convergent. The proposed convex optimizer, and the
analysis showing the inapplicability of the alternate convex-
fication methods, is the first novel contribution of the paper.
We put together components of the adaptive building model,
the convex optimizer, and some other essential elements
in a complete closed-loop autonomous MPC architecture.
The second contribution is the performance assessment of
the closed-loop adaptive MPC scheme in conjunction with
a time-varying plant. Numerical results show the proposed
convex MPC controller is more efficient and reliable in
control computation compared to a nominal non-convex
MPC controller, and the proposed autonomous MPC scheme
consumes less energy than a conventional controller.

The rest of this paper is organized as follows. Section II
describes the HVAC system. Section III describes structure
of the proposed autonomous MPC scheme, together with
the mathematical models we use for simulation. Section IV
introduces our proposed convex controller and a nominal
non-convex comparison controller. Simulation results are
shown in Section V and Section VI concludes this work.

II. BUILDING HVAC SYSTEM

Figure 2 depicts the schematic of a typical single-zone
variable air volume HVAC system used in a commercial
building. In such system, part of the return air (at zone
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Fig. 2: A schematic of a typical single-zone variable air
volume HVAC system used in a commercial building.

temperature 7,) is recirculated. This air is mixed with outside
air (with temperature T,,) at a constant ratio (outside air ratio
«). However, this mixed air is usually hot and humid, espe-
cially for hot-humid climates. This not only makes occupants
uncomfortable, but also and more importantly causes health
concerns such as mold growth [11]. To avoid this problem,
the mixed air (with temperature T,,,) is passed through the

cooling coil, where it is cooled and dehumidified. To ensure
dehumidification, the conditioned air is usually maintained
at a low value, typically 12.8°C [12]. This conditioned air
is usually too cold for indoor climate. It is reheated by
the reheat coil up to discharge air temperature 7g,, and
then delivered into the zone. The role of the energy-efficient
control system is to vary the control commands, including
the supply air flow rate and discharge air temperature, to
maintain thermal comfort in the zone. That is, the controller
has to compute m and Tg,.

III. PROPOSED CONTROL ARCHITECTURE AND
MATHEMATICAL MODELS

In this paper we propose an autonomous MPC architecture
as shown in Figure 1, of which the main features are:

« Adaptation of building model and disturbance to handle
time-varying system dynamics, where the underlying
optimization problem is feasible and convex.

o Computation of the global optimal control decisions
from a convex control computation algorithm, which is
proved to be feasible, convex, descent, and convergent.

At a discrete sampling time, sensor measurements from
the plant and weather are collected, and are then fed into
an algorithm to estimate the disturbance (w) and building
thermal model (P). The building dynamics are unlikely
to be static: they are a time-varying system depending on
different operating conditions. Therefore we use an “adaptive
MPC” procedure: the system identification algorithm re-runs
periodically in order to cope with changes in the model and
disturbance. In this paper, this self-learning process is done
every week on Sunday at midnight with the identification
algorithm from our previous work [10]. This algorithm
involves solving a feasible and convex optimization problem,
so that the global optimum can always be achieved. The
obtained model is guaranteed to be stable and possess
properties that are consistent with properties of a building
HVAC system, such as an increase in outdoor temperature
will lead to an increase in indoor temperature.

The future control decisions (u) are calculated from the
proposed optimizer. This optimizer is formulated to be feasi-
ble and convex so that the global solution is always achieved.

The first several control decisions (over the control horizon
N.) are applied to the plant (P). The prediction time horizon
is shifted by NN. and the above process is repeated until
covering the total time span of interest (possibly endless).

Mathematical models that are used in simulations are
described in the following subsections.

A. Plant model

The indoor zone temperature 7, (°C) is affected by two
types of inputs. The first one is input signals that can be
commanded (u.), which refers to cooling/heating added to
the zone by the HVAC system, gnvac (kW). The second is
uncontrollable inputs (u.), including the outside air temper-
ature Ty, (°C), the solar irradiance 7*°! (kW/m?), and the
unknown disturbance ¢t (KW), which is the internal heat
gain due to occupants, lights, and equipments used by the



occupants. The wall temperature Ty, (°C) is unmeasurable,
and the only measurable output is the zone temperature 7T,,.

The thermal dynamic behavior of building HVAC system
is therefore represented by:

T, —T. ‘

Csz = T + Ghvac + Ae’r]bOl + Gint

C T _ Toa - Tw Tz - Tw ’ (1)
wLw = R R,

where C,,C,, R., R, are the thermal capacitances and
resistances of the zone and wall, respectively, and A, is the
effective area of the building for incident solar radiation.

The cooling/heating added by HVAC system (ghyac), 1S
bilinear function of the supply air flow rate 7 (kg/s), and
the deviation of discharge air temperature Ty, (°C) from the
zone temperature 7,:

Ghvac [k] = Cpam[k] (Tsa[k] - Tz [k])) (2)

where C), is the specific heat of air at constant pressure.

B. Energy consumption

The power consumption of the HVAC system consists
of three components: fan power, cooling power and reheat
power. The fan power is modeled as:

Pran = ayri[k]2. 3)

The power consumed by cooling coil is modeled as the
electric power used by a chiller to remove heat from the
mixed air:

ContlM(Tona M =Tea) 0 111 > T
Pcc[k] - {0 cor. o.w

NG

where T.,(°C) is the conditioned air temperature, COP,
is the chiller performance coefficient, and the mixed air
temperature T,,,(°C) is given by:

Tma[k] = aToa[k] + (1 - a)TZ[k - 1] %)

Note the cooling coil does not operate when Ty, [k] < Tea,
which only happens when the weather is very cold, and
outside air ratio « is high. The power consumed by reheat
coil is modeled as the heat it adds to the conditioned air:

Prh[k] = Cpam[k] (Tsa[k} - Tca) (6)

C. Model used by the optimizer

In this paper, we use the following second-order model
with u. = Qhvac € R, ue == [Toaa775017qint]T S RS» T =
[T,, Tw]T € R?, y :=T, € R, and a sampling period At, to
capture the building thermal dynamic:

zlk + 1] = Az[k] + Buc[k] + Fuelk]

y[k] = Cz[k] + Du.[k] + Guc[k]’

where A € R?*2, B ¢ R?*! C e R'*2, D € R, F € R?x3
and G € R'*3 are appropriate matrices. Note gpvac cannot
be commanded by the controller directly, and only m, Tg,

can be controlled directly. Therefore in our work 7 and 75,
are considered as the control commands. We treat gpyac as

)

the input to the model in order to make the model (7) linear,
and @nyac 1S computed using measurements of 7 and Tg,.
The system identification algorithm learns the model (7) with
Ghvac repeatedly, and then the control algorithm decides m
and Ty, accordingly.

IV. CONTROLLER DESIGN

The goal of the HVAC MPC controller is to minimize
energy use subject to constraints such as occupants’ comfort
and actuator limitations. A direct translation of this goal into
an optimization problem can be infeasible, but can be made
into feasible using slack variables [13]. The later one is the
nominal non-convex MPC controller formulated as follows.

A. Non-convex MPC controller

Define z[k] := [, Tsa, Tmas Trs Ghvac, 1, T2, €=, V|1 €
RY as the decision variables, in discrete time indices k =
1,..., N, where N is the prediction horizon. Let the cost be

N
J =" (At(Pu[k] + Peclk] + Pranlk]) + p(e"[k] + €V [K]))
kNl 1
=Y (gz[k:]TPz[k‘} +q" 2[k]), (8)
k=1
where
2af ‘ Cpa %‘E 01><6
P = Cpa ,
ToE Ogxs
06x1
qT = |:7CpaTca IJ&%?)?C O1x6 P P,

are obtained using models (3)-(4) and (6). The optimization
problem is:

min J &)

z[k]ﬁjzl

1
S. t. —Qhvaclk] + =2[k]T Pz[k] = 0

5 (h1,k)

equality constraints (5), (7) (ho,k-hs k)
(k] — [k — 1]] < "' At (f1,6-f2,6)
Tealk] = Toalk = 1| S TEMAE (fah-fak)
(112, Tua) € [, "] < [T5, TG] (Fsn-fsn)
T, € [T} — ", T, + €] (fo,k-f10.k)
—e"[k] <0, —€’[k] <0, (f11,6-f12,6)

where x denotes the Cartesian product, and

0 |Cpa 0  —Cpa 0ixs
Chpa

P.= 0 Ogxs )
*Cpa
O5><1

is from rewriting Eq. (2). Rate constraints (f1 x-f2,1)
and (fs x-fa,) are for £ = 2,..., N. The remaining con-
straints are for k = 1,...,N. As discussed earlier, the
conditioned air is fixed at the set-point, T, = 12.8°C'. The



minimum allowed value for the supply air flow rate, 1’ is

computed based on the ventilation requirements specified in
ASHRAE 62.1 [12], where Y > 0 in general. To ensure
reheat coil can only add heat, we require TL = T¢,. Thermal
comfort bounds are [T.X,TV]. Slack variables e, eV are
added to guarantee feasibility, and p is a penalty parameter.
The nominal non-convex MPC problem (9) is feasible, but
is non-convex since both the cost function and dynamic con-
straint (h,) are non-convex. More specifically, coefficients
of the quadratic terms are P and P, which are indefinite. It
is possible that this non-convex controller fails to converge
within the allowed time or get stuck in a local minimum.

B. Proposed convex MPC controller

The goal of this section is to solve problem (9) using an
appropriate convexification method, so that the underlying
optimization problem is convex, and the obtained solution
provides good approximation to the original one.

The proposed control computation algorithm is designed
using CCP approach. We show this algorithm is descent
and convergent, and the underlying optimization problem
is convex and feasible. Additionally, analysis showing the
inapplicability of the alternate convexification methods is
provides at the end of this section.

The basic idea of CCP is to use a convex model of the
problem and repeatedly minimize it. Specifically, convex
portions of the problem are handled exactly and efficiently,
while the non-convex portions of the problem are modeled
by convex functions that are (at least locally) accurate.

We propose the following convex control computation
algorithm incorporated with CCP approach.

Algorithm 1. At each iteration near current solution 2y,
approximate J of cost J (8) and hy i of constraint (hy ) as

N
J= (%ZgPZQ +q" 20 + (P20 + q)T (2[k] — 20) w0
k=1
+ 5 (el — 20) P (2[K] — 20)),

where P71 is the positive semi-definite part of P, and can
be computed by keeping the non-negative eigenvalues from
eigen-decomposition of P, and

1
— 28 Pozg + 28 Po(2[k] — 20).

Ik e = 5 (1D
Then we solve the following convex problem
min  J
[k, (12)
s. bt hig,hor — hs g, fi e — fiok,

and repeat steps (10)-(12) until convergence condition is met.

Proposition 1. Problem (12) is feasible and convex, and
Algorithm 1 is a descent and convergent method.

Proof of Proposition 1. Problem (9) is feasible due to the
presence of the slack variables, and the same for Prob-
lem (12). Problem (12) is convex as both quadratic cost
and linear constraints are convex over the feasible region.

The proof of CCP being a descent method can be found
in [14]. It can be shown that cost (8) is lower bounded
by 0 over the feasible region. Therefore Algorithm 1 is
convergent, because it has a lower-bounded, monotonically
non-increasing cost. O

We remark that properties from Proposition 1 are the key
features to guarantee reliable performance of our controller.
The global optimal is always obtained at each iteration as
Problem (12) is formulated to be feasible and convex.

Even though convergence may not be achieved during the
time available for control computation, the outcome obtained
from Algorithm 1 within the allowed time is still the best
solution that can be achieved over solutions from previous
iterates. In practice, this leads to a suboptimal controller.
Moreover to alleviate computation, we can always initialize
zo using old decisions to help in convergence.

1) Choice of convexification methods: The following
propositions show important properties of problems (9),
which help us to explain why we choose CCP over some
other commonly-used approximation methods such as BnB.
It is due to the inapplicability of the other method to our
problem structure.

Proposition 2. The dual of Problem (9) is unbounded from
below.

Proof of Proposition 2. The Lagrangian of (9) is:

I

k:l
Z Aighig + Z vjkfin)-
i=1 J=1

To find the dual function of (13), we minimize over z.
According to the general formula [13]:

TPz [k] + qu[k]+

l\')\»—l

L(z,A\,v)

13)

r— 14" Plq,

—0Q,

P>0

inf 2TPz4+¢Tz+4r= {
o.w.

z€R
Lagrangian (13) for our problem is unbounded from below

as the coefficient of the quadratic term is >, 2(P+ A1,z Pe),
which is indefinite. O

Branch-and-Bound (BnB) [15] is one the the most
commonly-used methods in literatures, it is inapplicable to
for Problem (9) based on Propositions 2. BnB requires
construction of a tight convex under-estimator of the NLP
within any given region of the space of the variables.
The most widely-used under-estimators are Lagrangian re-
laxation [16] or convex relaxation. However Proposition 2
shows the dual of our problem is unbounded from below,
therefore a lower bound through duality cannot be found
and Lagrangian relaxation cannot be applied here. Common
convex relaxation options are McCormick envelope [15] and
Reformulation Linearization Technique (RLT) [17]. Both
of them reformulate a problem via the addition of certain
nonlinear constraints that are generated by using the products
of the bounding constraints. However, constructing such



products require knowledge of bounds on variables that are
involved. In our problem, we do not know thermal comfort
limits because of the introduction of slack variables. Hence
convex relaxation is also not applicable for our case.

C. Baseline controller

The baseline controller — against which the performance
of the proposed MPC controller is compared — is chosen
as the single maximum controller which is widely used
in practice [18]. The controller operates the HVAC system
in three modes depending on the zone temperature. When
the zone temperature exceeds an upper bound, the supply
air flow rate varies within the allowed range to maintain
thermal comfort, and the discharge air temperature is kept
at minimum allowed value. When the zone temperature is
below a threshold, the discharge air temperature is varied
within an allowed range, and the flow rate is kept at a
minimum. When the zone temperature is within the upper
and lower bounds, the discharge air temperature and the flow
rate are both kept at the minimum allowed values.

V. SIMULATION RESULTS AND DISCUSSIONS

A number of comparions are provided. One is comparison
of the proposed control architecture with a conventional rule
based controller, called single-max controller, that is widely
used in buildings. The other is a comparison between the
proposed architecture with another one that uses the original
non-convex formulation of the optimization problem. The
purpose of the second comparison is to check if autonomous
operation is still possible even without convexification.

A. Simulation setup

The simulation parameters are chosen based on an audi-
torium (~ 470m?) in Pugh Hall located in the University of
Florida campus. The values for plant parameters are listed
in Table I. The plant is a time-varying system, for which the
resistance and capacitance parameters have 3% of increment
per week, and the effective area for incident solar radiation
decreases 3% every week.

TABLE I: Simulation parameters for plant

C. 94~107 KkWHK | Cp 20.0~21.9 kWh/K
R. 0.70~0.76 KKW | R, 0.70~0.76 KKkW
A 6.3~7.0 m?
TABLE II: Parameters for MPC
ml 0.42 kg/s T} 21.9 °C
mU 472 kg/s 7 23.6 °C
m’e¢ 0.2 kg/s/min | Tea 12.8 °C
TL 12.8 °C a 0.5 N/A
TV 30.0 °C ay 4175  Wi(kgls)?
Tret* 056 °C/min | COP. 3.5 N/A

The prediction horizon for MPC is N = 24 hours with
sampling time At = 5 minutes, and the control horizon
is N. = 15 minutes. The number of decision variables for
problems (9) and (12) is 2592(= 9NN). Estimates of model

and disturbance are obtained using the algorithm in [10], and
the algorithm re-runs periodically at every Sunday midnight,
using measurements from the previous week. The remaining
parameters are listed in Table II.

The exogenous inputs are chosen as follows: ambient
temperature is taken from weatherunderground. com,
and solar irradiance data is taken from NSRDB: https:
//nsrdb.nrel.gov/, both for Gainesville, FL. The dis-
turbance is chosen by scaling CO, data from Pugh Hall.

All numerical results presented in this work are obtained
through MATLAB®. Specifically, the plant is simulated in
SIMULINK®. Nonlinear programming solver Ipopt© [19]
is used for solving the non-convex problem (9), and
CVX® [20] package is used for estimating model and dis-
turbance, and for solving the proposed convex problem (12).
We used a Desktop computer running Linux with a 3.60GHz
x 8 CPU and 16.2 GB RAM.

B. Results and discussions

1) Comparison with the non-convex MPC controller:
We compare the control performance when the proposed
convex controller (12) and the non-convex controller (9) are
implemented in the adaptive MPC scheme. Both controllers
have similar performance in maintaining thermal comfort;
see top plot from Figure 3. On average it takes about 2.3
seconds for the non-convex controller to find a local optimum
successfully. Ipopt fails to converge to a local minimum for
0.3% of the time during the tested period. When this happen,
decision from a single maximum controller is used and as
a result, control decisions and power consumption increase
abruptly; see the middle of week 2 from Figure 3. The
proposed controller is always able to find a global optimum,
and its takes on average 1.5 seconds to do so. During the
three weeks of experiments, the convex controller consumes
approximately 1% more energy compared to the non-convex
one; see Figure 5.

The above results indicates that the proposed convex con-
troller is more reliable in control computation than the non-
convex MPC controller, as the later one may occasionally
fail to converge within the available computation time. As
a trade-off, the proposed controller consumes slightly more
energy.

2) Comparison with the baseline controller: The pro-
posed controller outperforms the baseline controller both in
maintaining temperature (see Figure 4, top) and energy use
(see Figure 5).

3) Comparison with non-adaptive MPC scheme: We also
compare the energy consumption of the proposed adaptive
MPC scheme against an MPC scheme without model adap-
tation. Figure 5 shows that during the three weeks of the
study, the adaptive scheme reduces energy use compared to
the non-adaptive scheme, in both convex and non-convex
optimization formulations.

VI. CONCLUSION

An autonomous MPC architecture for HVAC control is
presented, which involves self-adaptation of the time-varying
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disturbance and building thermal dynamics model, and con-
trol computation using a convex optimizer. The proposed
MPC scheme reduces energy use significantly over a baseline
rule-based controller. Simulation studies show the proposed
controller is more reliable in control computation compared
to a nominal non-convex MPC controller, and that model
adaptation is beneficial. Conducting additional simulation
studies for a wide variety of weather conditions and experi-
ments in real buildings are topics of future work.
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