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Abstract

Recently we have developed a new 3-D numerical approach for the time dependent wave and heat equations as well as
for the time independent Poisson equation on irregular domains with the Dirichlet boundary conditions. Its extension to the
Neumann boundary conditions that was a big issue due to the presence of normal derivatives along irregular boundaries is
considered in this paper. Trivial Cartesian meshes and simple 27-point uniform and nonuniform stencil equations are used with
the new approach for 3-D irregular domains. The Neumann boundary conditions are introduced as the known right-hand side
into the stencil and do not change the width of the stencil. The calculation of the coefficients of the stencil equations is based
on the minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of the new
technique. Very small distances (0.1 h − 10−9 h where h is the grid size) between the grid points of a Cartesian mesh and the
boundary do not worsen the accuracy of the new technique. At similar 27-point stencils, the accuracy of the new approach is
much higher than that for the linear finite elements. The numerical results for irregular domains show that at the same number
of degrees of freedom, the new approach is even much more accurate than the high-order (up to the fourth order) tetrahedral
finite elements with much wider stencils. The wave and heat equations can be uniformly treated with the new approach. The
order of the time derivative in these equations does not affect the coefficients of the stencil equations of the semi-discrete
systems. The new approach can be directly applied to other partial differential equations.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Neumann boundary conditions; Local truncation error; Irregular domains; Cartesian meshes; Optimal accuracy; Wave, heat and
Poisson equations

1. Introduction

The finite element method, the finite volume method, the isogeometric elements, the spectral elements and similar
techniques represent very powerful tools for the solution of partial differential equations (PDEs) for a complex
geometry. However, the generation of non-uniform meshes for a complex 3-D geometry is not simple and may lead
to the decrease in accuracy of these techniques if ‘bad’ elements (e.g., elements with small angles) appear in the
mesh. Moreover, the conventional derivation of discrete equations for these techniques (e.g., based on the Galerkin
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approaches) does not lead to the optimal accuracy. For example, it has been shown in many publications on wave
propagation that at the same width of the stencil equations of a semi-discrete system for regular rectangular domains
with uniform meshes, the accuracy of the conventional linear finite elements can be improved from order two to
order four (e.g., see [1–8] and others), the accuracy of the conventional high-order finite and isogeometric elements
can be improved from order 2p to order 2p+2 (e.g., see [9–13] ) where p is the element order. These improvements
are based on the use of the averaged mass matrix or on the use of the special locations of the integration points
for the calculation of the elemental mass and stiffness matrices. However, the increase in the order of accuracy for
the high-order elements in [9–13] is not optimal. In [14–16] the order of accuracy of the high-order elements on
rectangular domains has been improved to 4p and this order is optimal at a given width of stencil equations. There
is a significant number of publications related to the numerical solution of different PDEs on irregular domains
with uniform embedded meshes. For example, we can mention the following fictitious domain numerical methods
that use uniform embedded meshes: the embedded finite difference method, the cut finite element method, the
finite cell method, the Cartesian grid method, the immersed interface method, the virtual boundary method, the
embedded boundary method, etc. The main objective of these techniques is to simplify the mesh generation for
irregular domains as well as to mitigate the effect of ‘bad’ elements. For example, the techniques based on the finite
element formulations (such as the cut finite element method, the finite cell method, the virtual boundary method and
others) yield the p + 1 order of accuracy even with small cut cells generated due to complex irregular boundaries
(e.g., see [17–23] and many others). The main advantage of the embedded boundary method developed in [24–28]
is the use of a simple Cartesian mesh. The boundary conditions or fluxes in this technique are interpolated using
the Cartesian grid points and this leads to the increase in the stencil width for the grid points located close to the
boundary (the numerical techniques developed in [24–28] provide just the second order of accuracy for the global
solution). Therefore, the development of robust numerical techniques for the solution of PDEs on irregular domains
that provide an optimal and high order of accuracy is still a challenging problem.

Recently in our papers [29–31] we have developed a new numerical technique for the solution of PDEs that yields
an optimal accuracy for a given structure of discrete or semidiscrete equations. Currently it is implemented for the
wave, heat and Poisson equations. We called this approach the optimal local truncation error method (OLTEM);
see [29,30]. The main features and advantages of the new approach are a high optimal accuracy as well as the use
of trivial Cartesian meshes that are modified in a simple manner in the vicinity of boundaries of complex irregular
domains. In contrast to the finite element, finite volume, isogeometric element and similar techniques, there is
no need in complicated mesh generators for multidimensional problems with irregular domains with the proposed
technique. At the same structure of the semidiscrete or discrete equations, the new technique provides the optimal
order of accuracy that exceeds the order of accuracy of many known numerical approaches on regular and irregular
domains. In [29–31] we showed that the new approach can be easily implemented in the 2-D and 3-D cases for
the Dirichlet boundary conditions. The structure of the stencil equations for the new approach with the Dirichlet
boundary conditions is similar to that for the linear quadrilateral finite elements on Cartesian meshes. We were not
able to develop the new approach with the Neumann boundary conditions using the stencils similar to those for
the linear quadrilateral finite elements. However, we implemented the new approach with the Neumann boundary
conditions in [29,30] for the 2-D case using a special selection of the grid points included into the stencils. This
selection depends on the location of a Cartesian grid with respect to the boundary with the Neumann boundary
conditions. The extension of this 2-D approach to 3-D irregular domains with the Neumann boundary conditions
becomes intractable (at least, we were not able to implement it in the 3-D case). We should also mention that the
different stencil equations were used in [29,30] for the Dirichlet and Neumann boundary conditions.

In this paper we will show that the Neumann boundary conditions can be also implemented with the compact
stencil equations that are similar to those for the Dirichlet boundary conditions. These new findings allow us to solve
not only 2-D problems but also 3-D problems with the Neumann boundary conditions for any complex irregular
domains. Similar to our previous papers, here we apply the new numerical approach to the time-dependent wave
and heat equations as well as to the time-independent Poisson equation on 3-D irregular domains with the Neumann
and Dirichlet boundary conditions.

Wave propagation in an isotropic homogeneous medium is described by the following scalar wave equation in
domain Ω :

∂2u
∂t2 − c2

∇
2u = f . (1)
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Similarly, the heat equation in domain Ω can be written as:
∂u
∂t

− a∇
2u = f . (2)

The Poisson equation in domain Ω has the following form:

∇
2u = f . (3)

In Eqs. (1)–(3), c is the wave velocity, a is the thermal diffusivity, f (xxx, t) is the loading (source) term, u is the
field variable. The Neumann boundary conditions n1

∂u
∂x + n2

∂u
∂y + n3

∂u
∂z = g1 are applied along the boundary Γ s ,

the Dirichlet boundary conditions u = g2 are applied along the boundary Γ u where the entire boundary Γ is
Γ = Γ sUΓ u and ni (i = 1, 2, 3) are the x−, y− and z−components of the outward unit normal vector. The initial
conditions are u(xxx, t = 0) = g3, v(xxx, t = 0) = g4 in Ω for the wave equation and u(xxx, t = 0) = g3 in Ω for the heat
equation where gi (i = 1, 2, 3, 4) are the given functions. According to the new approach, the semidiscrete system
for the wave and heat equations after the space discretization with a Cartesian rectangular mesh can be represented
as a system of ordinary differential equations in time. The ordinary differential equation of this system formed for
each internal grid point is called the stencil equation and can be written down as follows:

M∑
i=1

[h2mi
dnunum

i

dtn
+ ki unum

i ] = f̃ , (4)

where unum
i and dnunum

i
dtn are the numerical solution for function u and its time derivative at the grid points, mi and ki

are the unknown coefficients to be determined, f̃ (t) is the discretized loading (source) term (see the next Sections),
M is the number of the grid points included into the stencil equation, n = 2 for the wave equation and n = 1 for
the heat equation, h is the mesh size along the x-axis. The stencil equation for the Poisson equation after the space
discretization can be written as an algebraic equation:

M∑
i=1

ki unum
i = f̃ . (5)

Many numerical techniques such as the finite difference method, the finite element method, the finite volume method,
the isogeometric elements, the spectral elements, different meshless methods and others can be finally reduced to
Eqs. (4) and (5) with some specific coefficients mi and ki for the wave, heat and Poisson equations. In the derivations
below, we will assume 27-point stencils (N = 27) in the 3-D case that are similar to the 27-point stencils of the
linear quadrilateral finite elements on Cartesian meshes. Generally, stencils with any number of grid points M can
be used with the suggested approach.

Let us introduce the local truncation error used with the new approach. The replacement of the numerical values
of the function unum

i and its time derivatives dnunum
i

dtn at the grid points in Eq. (4) by the exact solution ui and dnui
dtn

to the wave or heat equation, Eq. (1) or (2), leads to the residual e of this equation called the local truncation error
of the semidiscrete equation, Eq. (4):

e =

M∑
i=1

[h2mi
dnui

dtn
+ ki ui ] − f̃ . (6)

Calculating the difference between Eqs. (6) and (4) we can get

e =

M∑
i=1

{h2mi [
dnui

dtn
−

dnunum
i

dtn
] + ki [ui − unum

i ]} =

M∑
i=1

[h2mi ēv
i + ki ēu

i ] , (7)

where ēu
i = ui − unum

i and ēv
i =

dnui
dtn −

dnunum
i

dtn are the errors of the function u and its time derivatives at the grid
points i . As can be seen from Eq. (7), the local truncation error e is a linear combination of the errors of the function
u and its time derivatives at the grid points i which are included into the stencil equation. The local truncation error
e for Eq. (5) can be obtained from Eqs. (6)–(7) with mi = 0.

In Section 2 a new numerical approach with 27 point uniform and nonuniform stencils is uniformly derived for
the 3-D wave and heat equations with zero and non-zero loading (source) term. In Section 3 we show that along
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Fig. 1. The spatial locations of the degrees of freedom ui, j,k (i = A−1, A, A+1, j = B −1, B, B +1 and k = C −1, C, C +1) contributing
to the 27-point uniform stencil for the internal degree of freedom u A,B,C located far from the boundary.

with the time dependent wave and heat equations, the new approach with 27 point uniform and nonuniform stencils
can be similarly developed for the 3-D time independent Poisson equation with zero and non-zero loading (source)
term. 3-D numerical examples with regular and irregular domains as well as the comparison with FEM are presented
in Section 4. For the derivation of many analytical expressions presented below we use the computational program
“Mathematica”.

2. A new numerical approach for the 3-D wave and heat equations

2.1. Zero load (source) f = 0 in Eqs. (1) and (2)

Here, we present 27-point uniform stencils that will be used for the internal grid points located far from the
boundary and 27-point non-uniform stencils that will be used for the grid points located close to the boundary. Let
us consider a 3-D bounded domain and a Cartesian rectangular mesh with the mesh size h where h is the size of
the mesh along the x-axis, byh and bzh are the sizes of the mesh along the y− and z−axes (by and bz are the
aspect ratios of the mesh); see Fig. 1. The 27-point stencil considered here is similar to that for the 3-D linear
quadrilateral finite elements. The spatial locations of the 26 degrees of freedom that are close to the internal degree
of freedom u A,B,C and contribute to the 27-point stencil for this degree of freedom are shown in Fig. 1 for the case
when the boundary and the Cartesian mesh are matched or when the degree of freedom u A,B,C is located far from
the boundary. In the case of non-matching grids when the grid points do not coincide with the boundary, the grid
points that contribute to the stencil for the internal point u A,B,C and are located outside the physical domain are
moved to the boundary of the physical domain as shown in Fig. 2. They form 27-point nonuniform stencils for the
internal grid points u14 (u A,B,C ) located close to the boundary. For convenience, the local numeration of the grid
points from 1 to 27 is used in Fig. 2 as well as in the derivations below for the 27-point uniform and non-uniform
stencils. In order to find the boundary points that are included into the stencil for the degree of freedom u14 (see
Fig. 2) we join the central point u14 with the 26 closest grid points of the Cartesian mesh; i.e., we have 26 straight
lines starting from point u14. If any of these lines intersects the boundary of the domain then the corresponding
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Fig. 2. The spatial locations of the degrees of freedom u p (p = 1, 2, . . . , 27) that contribute to the 27-point nonuniform stencil for the
internal degree of freedom u14 located close to the boundary.

grid points of the Cartesian mesh should be moved to the boundary. E.g., Fig. 2 shows a particular case when only
3 lines out of 26 intersect the boundary and three grid points u8, u9 and u18 (designated as ◦) are moved to the
boundary (the new locations are designated as •). In our approach, for all internal points located within the domain
we use 27-point uniform (see Fig. 1) or non-uniform (see Fig. 2) stencils. In order to describe the coordinates of the
boundary points for non-uniform stencils, we introduce 27 coefficients 0 ≤ dp ≤ 1 (p = 1, 2, . . . , 27) as follows
(see also Fig. 2):

x p = x14 + (i − 2)dph , yp = y14 + ( j − 2)dpbyh , z p = z14 + (k − 2)dpbzh , (8)

where d14 = 0, p = 9(k − 1) + 3( j − 1) + i with i, j, k = 1, 2, 3. Eq. (8) can be also used for the coordinates of
the grid points of the 27-point uniform stencil with the corresponding coefficients dp equal to unity (dp = 1). E.g.,
only three coefficients d8 < 1, d9 < 1 and d18 < 1 in Fig. 2 are smaller than one and all other coefficients are equal
to unity, dp = 1 (p = 1, . . . , 7, 10, . . . , 13, 15, 16, 17, 19, . . . , 27).

Eq. (4) for the 27-point uniform (see Fig. 1) or nonuniform (see Fig. 2) stencil for the grid point u14 (or u A,B,C )
will be assumed in the following form:

h2
27∑

p=1

m p
dnunum

p

dtn
+

27∑
p=1

kpunum
p = [h3

27∑
p=1

m̄ p
dng1(x p, yp, z p, t)

dtn
+h

27∑
p=1

k̄pg1(x p, yp, z p, t)]+ f̄14 , (9)

where f̄14 = 0 in the case of zero load (source) f = 0 in Eqs. (1) and (2), the expression in the square brackets on the
right-hand side of Eq. (9) is known and represents the Neumann boundary conditions with their time derivatives at
the stencil points with the coordinates x p, yp, z p that belong to the boundary with the Neumann boundary conditions
(see Fig. 2), the unknown stencil coefficients m p, m̄ p, kp, and k̄p (p = 1, 2, . . . , 27) are to be determined from the
minimization of the local truncation error, m p = 0 and kp = 0 if a point with the coordinates x p, yp, z p belongs
to the boundary with the Neumann boundary conditions; otherwise, m̄ p = 0 and k̄p = 0 (this means that Eq. (9)
includes only 54 non-zero coefficients m p, m̄ p, kp, and k̄p), the central grid point with the coordinates x14, y14 and
z14 is always the internal point (therefore m̄14 = 0 and k̄14 = 0), the superscript n in the time derivative in Eq. (9)
is n = 1 for the heat equation and n = 2 for the wave equation.
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Remark 1. Only 53 out of the 54 coefficients m p, m̄ p, kp, and k̄p (p = 1, 2, . . . , 27) in Eq. (9) can be considered
as unknown coefficients. This can be explained as follows. In the case of zero load (source) f = 0 and f̄14 = 0,
Eq. (9) can be rescaled by the division of the left and right sides of Eq. (9) by any non-zero scalar a1. For
example, let us select a1 = k14. In this case the rescaled coefficients of the stencil equation are: m p/k14, m̄ p/k14,
k̄p/k14 (p = 1, 2, . . . , 27), k14 = 1, kp/k14 (p = 1, 2, . . . , 13, 15, . . . , 27); i.e., there is only 53 unknown rescaled
coefficients. The case of nonzero load (source) f̄14 ̸= 0 can be similarly treated because the term f̄14 is a linear
function of the stencil coefficients (see Eq. (24)).

Remark 2. The stencil equations for the new approach are constructed only for the internal Cartesian grid points
located inside the domain. There are no stencils for the boundary points; the boundary points contribute to the
stencils of the internal points; see the right-hand side of Eq. (9). The form of the 27-point stencils in Eq. (9)
provides a high order accuracy for uniform and non-uniform stencils for the internal grid points located close to
the boundary with the Neumann boundary conditions.

The local truncation error e of the stencil equation, Eq. (9), at any time t can be written down by the replacement
of the numerical solution in Eq. (9) by the exact solution as follows:

e = h2
27∑

p=1

m p
∂nu p

∂tn
+

27∑
p=1

kpu p − h3
27∑

p=1

m̄ p(n1p
∂n+1u p

∂x∂tn
+ n2p

∂n+1u p

∂y∂tn
+ n3p

∂n+1u p

∂z∂tn
)

− h
27∑

p=1

k̄p(n1p
∂u p

∂x
+ n2p

∂u p

∂y
+ n3p

∂u p

∂z
) − f̄14 , (10)

where n1p, n2p and n3p (p = 1, 2, . . . , 27) are the x-, y- and z-components of the outward unit normal vector nnn p at
the boundary point p (see Fig. 2), function u(x, y, z, t) in Eq. (10) corresponds to the exact solution, the Neumann
boundary conditions on the right-hand side of Eq. (9) are expressed in terms of the function u(x, y, z, t) and are
moved to the left-hand side of Eq. (10). In order to represent the local truncation error e as a Taylor series, let us
expand the exact solution to the wave or heat equation in Eq. (10) into a Taylor series at small h ≪ 1 as follows:

u p = u14 +
∂u14

∂x
[(i − 2)dph] +

∂u14

∂y
[( j − 2)dpbyh] +

∂u14

∂z
[(k − 2)dpbzh] +

∂2u14

∂x2

[(i − 2)dph]2

2!

+
∂2u14

∂y2

[( j − 2)dpbyh]2

2!
+

∂2u14

∂z2

[(k − 2)dpbzh]2

2!
+ 2

∂2u14

∂x∂y
[(i − 2)dph][( j − 2)dpbyh]

2!

+ 2
∂2u14

∂x∂z
[(i − 2)dph][(k − 2)dpbzh]

2!
+ 2

∂2u14

∂y∂z
[( j − 2)dpbyh][(k − 2)dpbzh]

2!
+ · · · , (11)

∂u p

∂s
=

∂u14

∂s
+

∂2u14

∂s∂x
[(i − 2)dph] +

∂2u14

∂s∂y
[( j − 2)dpbyh] +

∂2u14

∂s∂z
[(k − 2)dpbzh] +

∂3u14

∂s∂x2

[(i − 2)dph]2

2!

+
∂3u14

∂s∂y2

[( j − 2)dpbyh]2

2!
+

∂3u14

∂s∂z2

[(k − 2)dpbzh]2

2!
+ 2

∂3u14

∂s∂x∂y
[(i − 2)dph][( j − 2)dpbyh]

2!

+ 2
∂3u14

∂s∂x∂z
[(i − 2)dph][(k − 2)dpbzh]

2!
+ 2

∂3u14

∂s∂y∂z
[( j − 2)dpbyh][(k − 2)dpbzh]

2!
+ · · · , (12)

where ∂
∂s =

∂n

∂tn , ∂
∂s =

∂
∂x , ∂

∂s =
∂
∂y , ∂

∂s =
∂
∂z , ∂

∂s =
∂n+1

∂x∂tn , ∂
∂s =

∂n+1

∂y∂tn , ∂
∂s =

∂n+1

∂z∂tn , and p = 9(k − 1) + 3( j − 1) + i
with i, j, k = 1, 2, 3; see Fig. 2. The exact solution u14 to the wave and heat equations, Eqs. (1) and (2) with f = 0
at x = x14, y = y14 and z = z14 meets the following equations:

∂nu14

∂tn
− c̄∇2u14 = 0 , (13)

∂ (i+ j+k+n)u14

∂x i∂y j∂zk∂tn
− c̄

∂ (i+ j+k)
∇

2u14

∂x i∂y j∂zk
= 0 , (14)

with c̄ = c2 for the wave equation and c̄ = a for the heat equation as well as i, j, k = 0, 1, 2, 3, 4, . . .. Here,
Eq. (14) is directly obtained by the differentiation of Eq. (13) with respect to x , y and z. Inserting Eqs. (11)–(14)



A. Idesman and B. Dey / Computer Methods in Applied Mechanics and Engineering 365 (2020) 112985 7

with the exact solution into Eq. (10) we will get the following local truncation error in space e:

e = c̄{b1u14 + h[b2
∂u14

∂x
+ b3

∂u14

∂y
+ b4

∂u14

∂z
] + h2[b5

∂2u14

∂x2 + b6
∂2u14

∂x∂y
+ b7

∂2u14

∂x∂z

+ b8
∂2u14

∂y2 + b9
∂2u14

∂y∂z
+ b10

∂2u14

∂z2 ]

+ h3[b11
∂3u14

∂x3 + b12
∂3u14

∂x2∂y
+ b13

∂3u14

∂x2∂z
+ b14

∂3u14

∂x∂y2 + b15
∂3u14

∂x∂y∂z
+ b16

∂3u14

∂x∂z2

+ b17
∂3u14

∂y3 + b18
∂3u14

∂y2∂z
+ b19

∂3u14

∂y∂z2 + b20
∂3u14

∂z3 ]

+ h4[b21
∂4u14

∂x4 + b22
∂4u14

∂x3∂y
+ b23

∂4u14

∂x3∂z
+ b24

∂4u14

∂x2∂y2 + b25
∂4u14

∂x2∂y∂z
+ b26

∂4u14

∂x2∂z2

+ b27
∂4u14

∂x∂y3 + b28
∂4u14

∂x∂y2∂z
+ b29

∂4u14

∂x∂y∂z2

+ b30
∂4u14

∂x∂z3 + b31
∂4u14

∂y4 + b32
∂4u14

∂y3∂z
+ b33

∂4u14

∂y2∂z2 + b34
∂4u14

∂y∂z3 + b35
∂4u14

∂z4 ]

+ h5[b36
∂5u14

∂x5 + b37
∂5u14

∂x4∂y
+ b38

∂5u14

∂x4∂z
+ b39

∂5u14

∂x3∂y2 + b40
∂5u14

∂x3∂y∂z
+ b41

∂5u14

∂x3∂z2

+ b42
∂5u14

∂x2∂y3 + b43
∂5u14

∂x2∂y2∂z
+ b44

∂5u14

∂x2∂y∂z2

+ b45
∂5u14

∂x2∂z3 + b46
∂5u14

∂x∂y4 + b47
∂5u14

∂x∂y3∂z
+ b48

∂5u14

∂x∂y2∂z2 + b49
∂5u14

∂x∂y∂z3 + b50
∂5u14

∂x∂z4

+ b51
∂5u14

∂y5 + b52
∂5u14

∂y4∂z
+ b53

∂5u14

∂y3∂z2

+ b54
∂5u14

∂y2∂z3 + b55
∂5u14

∂y∂z4 + b56
∂5u14

∂z5 ]

+ h6[b57
∂6u14

∂x6 + b58
∂6u14

∂x5∂y
+ b59

∂6u14

∂x5∂z
+ b60

∂6u14

∂x4∂y2 + · · · + b83
∂6u14

∂y∂z5 + b84
∂6u14

∂z6 ]

+ h7[b85
∂7u14

∂x7 + b86
∂7u14

∂x6∂y
+ b87

∂7u14

∂x6∂z
+ b88

∂7u14

∂x5∂y2 + · · · + b119
∂7u14

∂y∂z6 + b120
∂7u14

∂z7 ]

+ h8[b121
∂8u14

∂x8 + b122
∂8u14

∂x7∂y
+ b123

∂8u14

∂x7∂z
+ b124

∂8u14

∂x6∂z2 + · · · + b164
∂8u14

∂y∂z7 + b165
∂8u14

∂z8 ]}

+ O(h9) , (15)

where the coefficients bp (p = 1, 2, . . .) are expressed in terms of the coefficients m j and k j ( j = 1, 2, . . . , 27); see
Appendix A. Due to Eqs. (13) and (14), there are no time derivatives in Eq. (15). For the uniform stencil in Fig. 1
with dp = 1 (p = 1, 2, . . . , 13, 15, . . . , 27) the expressions for coefficients bp (p = 1, 2, . . .) are simplified and
some results can be obtained analytically. For example, equating to zero coefficients bp (p = 1, 2, . . . , 35) up to
the fourth order in Eq. (15) yields all zero coefficients kp and k̄p (p = 1, 2, . . . , 27) in the stencil equation after the
solution of the corresponding system of algebraic equations bp = 0, p = 1, 2, . . . , 35. This means that we cannot
generally zero all first 35 coefficients bp in Eq. (15). In order to improve the order of the local truncation error in
Eq. (15) for uniform and non-uniform stencils at small h ≪ 1, we will zero the first 20 coefficients bp in Eq. (15)
up to the third order with respect to h; i.e.,

bp = 0 , p = 1, 2, . . . , 20 . (16)

Then, in order to have a sufficient number of linearly independent equations for the calculation of the stencil
coefficients m p, m̄ p, kp, and k̄p (p = 1, 2, . . . , 27) in Eq. (9), we use the least square method for the
minimization of coefficients bp related to the fourth and higher orders of the local truncation error with the following



8 A. Idesman and B. Dey / Computer Methods in Applied Mechanics and Engineering 365 (2020) 112985

residual R:

R =

35∑
p=21

b2
p + h1

56∑
p=36

b2
p + h2

84∑
p=57

b2
p + h3

120∑
p=85

b2
p + h4

165∑
p=121

b2
p , (17)

where hi (i = 1, 2, 3, 4) are the weighting factors to be selected (e.g., the numerical experiments show that hi = 1
(i = 1, 2, 3, 4) yields accurate results). In order to minimize the residual R with the constraints given by Eq. (16),
we can form a new residual R̄ with the Lagrange multipliers λp:

R̄ =

20∑
p=1

λpbp +

35∑
p=21

b2
p + h1

56∑
p=36

b2
p + h2

84∑
p=57

b2
p + h3

120∑
p=85

b2
p + h4

165∑
p=121

b2
p . (18)

The residual R̄ is a quadratic function of coefficients m p, m̄ p, kp, k̄p (p = 1, 2, . . . , 27) and a linear function of
the Lagrange multipliers λp; i.e., R̄ = R̄(m p, kp, m̄ p, k̄p, λp). In order minimize the residual R̄(m p, kp, m̄ p, k̄p, λp),
the following equations based on the least square method for the residual R̄ can be written down:

∂ R̄
∂m p

= 0 ,
∂ R̄
∂kp

= 0 ,
∂ R̄
∂m̄ p

= 0 ,
∂ R̄
∂ k̄p

= 0 , p = 1, 2, . . . , 27 , (19)

∂ R̄
∂λp

= 0 , p = 1, 2, . . . , 20 , (20)

where equation ∂ R̄
∂k14

= 0 should be replaced by k14 = 1; see Remark 1 after Eq. (9). Eqs. (19) and (20) form a
system of 74 linear algebraic equations with respect to 54 unknown coefficients m p, m̄ p, kp, k̄p p = 1, 2, . . . , 27
(one of the coefficients m p or m̄ p and kp or k̄p is always zero and we should exclude the corresponding equations in
Eq. (19); see the explanations after Eq. (9)) and 20 Lagrange multipliers λp (p = 1, 2, . . . , 20). Solving these linear
algebraic equations numerically, we can find the coefficients m p, m̄ p, kp, k̄p (p = 1, 2, . . . , 27) for the 27-point
uniform and non-uniform stencils. As can be seen from the procedure, the 27-point stencil provides the fourth order
of the local truncation error in Eq. (15). This is one order less accurate than the fifth order of the local truncation
error of the new approach for the Dirichlet boundary conditions developed in [31] but is one order more accurate
than the order of the local truncation error for the linear finite elements with similar stencils. Moreover, due to
the minimization of the leading fourth order terms of the local truncation error in Eq. (18), at the same numbers
of degrees of freedom the new approach yields more accurate results than those obtained by the high-order finite
elements (up to the fourth order) with much wider stencils; see the numerical examples below.

Remark 3. To estimate the computation costs of the solution of 74 linear algebraic equations formed by Eqs. (19)
and (20) we solved 106 such systems with a general MATLAB solver on a simple student laptop computer
(Processor: Intel (R) Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz). The computation ‘wall’ time was T =

7356 s for 106 systems or the average time for one system was 0.007356 s. Because the coefficients m p, m̄ p, kp,
k̄p, p = 1, 2, . . . , 27 are independently calculated for different non-uniform stencils, the computation time of their
calculation for different grid points can be significantly reduced on modern parallel computers. This means that
for large global systems of equations, the computation time for the calculation of the coefficients m p, m̄ p, kp, k̄p,
p = 1, 2, . . . , 27 is very small compared to that for the solution of the global system of equations.

Remark 4. The proposed technique yields accurate results for the non-uniform stencils even with very small
coefficients di ≪ 1; see below the numerical examples. However, the new technique allows also to exclude very
small coefficients di ≪ 1 from calculations. For example, if di ≪ tol for some internal point where tol is a
small tolerance (e.g., tol = 10−3), then the non-uniform stencil for this internal point can be removed from the
global system of equations and this point can be moved to the boundary and treated as the boundary point for other
stencils. In this case, the corresponding coefficients di for this point in other stencils can be slightly greater than
one. According to the derivations in the previous Section, all equations will be valid also for di > 1. The numerical
experiments with a small tolerance tol = 10−3 show that if the point with very small coefficients di ≪ 1 is moved
to the boundary then the coefficients di for this point in other stencils can be taken as di = 1 without introducing
any significant errors.
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Remark 5. The 27-point stencil equations for the internal grid points as well as for the grid points close to the
boundary with the Dirichlet boundary conditions can be obtained from Eq. (9) with the coefficients m̄ p = k̄p = 0
(p = 1, 2, . . . , 27). The corresponding derivations are presented in our paper [31].

The final semi-discrete system of equations includes the 27-point uniform and nonuniform stencil equations (see
Figs. 1 and 2) for all internal grid points located inside the domain and close to the boundary with the Dirichlet
boundary conditions (see [31]) as well as the 27-point uniform and nonuniform stencil equations for all internal grid
points located close to the boundary with the Neumann boundary conditions (see Figs. 1 and 2 and Eq. (9)). It is
interesting to note that the final semi-discrete system of equations does not include the unknowns at the boundary;
i.e., all unknowns are introduced at the internal grid points and the Neumann boundary conditions can be considered
as the known load (source) term for the final global system of equations.

2.2. Nonzero load (source) f ̸= 0 in Eqs. (1) and (2)

The inclusion of non-zero loading (source) term f in the partial differential equations, Eqs. (1) and (2), leads
to the non-zero term f̄14 in the stencil equation, Eq. (9) (similar to Eq. (4)). The expression for the term f̄14 can
be calculated from the procedure used for the derivation of the local truncation error in the case of zero loading
(source) term as follows. In the case of non-zero loading (source) term ( f (xxx, t) ̸= 0), Eqs. (13) and (14) for the
exact solution at x = x14, y = y14 and z = z14 can be modified:

∂nu14

∂tn
− c̄∇2u14 = f (x14, y14, z14, t) , (21)

∂ (i+ j+k+n)u14

∂x i∂y j∂zk∂tn
− c̄

∂ (i+ j+k)
∇

2u14

∂x i∂y j∂zk
=

∂ (i+ j+k) f (x14, y14, z14, t)
∂x i∂y j∂zk

. (22)

Then, inserting Eqs. (11), (12), (21) and (22) with the exact solution to the wave or heat equation, Eq. (1) or (2),
into Eq. (10), we will get the following local truncation error in space e f :

e f = e − [ f̄14 − {h2 f14(m1 + m2 + m3 + · · · ) + · · · }] , (23)

where e is the local truncation error in space given by Eq. (15) for zero loading (source) term, f14 designates
function f (x, y, z, t) calculated at x = x14, y = y14 and z = z14. Equating to zero the expression in the square
brackets on the right-hand side of Eq. (23), we will get the expression for f̄14:

f̄14 = h2 f14(m1 + m2 + m3 + · · · ) + · · · , (24)

as well as we will get the same local truncation errors e f = e for zero and non-zero loading (source) term (see
Appendix B for the detailed expression of f̄14). This means that the coefficients m p, m̄ p, kp, k̄p, p = 1, 2, . . . , 27
of the stencil equations are first calculated for zero load (source) f = 0 as described in Section 2.1. Then, the
nonzero loading (source) term f̄14 given by Eq. (24) is used in the stencil equation, Eq. (9).

3. A new numerical approach for the 3-D Poisson equation

3.1. Zero source f = 0 in Eq. (3)

The derivation of the new approach for the Poisson equation is similar to that for the wave and heat equations
in Section 2. The 27-point uniform and non-uniform stencils introduced in Section 2.1 (see Figs. 1 and 2) will
be used with the new approach for the internal grid points located far from the boundary and for the grid points
located close to the boundary. The stencil equation for the degree of freedom unum

14 of the time independent Poisson
equation can be obtained from Eq. (9) with m p = 0 and m̄ p = 0 for p = 1, 2, . . . , 27 as follows:

27∑
p=1

kpunum
p = h

27∑
p=1

k̄pg1(x p, yp, z p) + f̄14 , (25)

where f̄14 = 0 in the case of zero source f = 0 in Eq. (3), the first term on the right-hand side of Eq. (25) is known
and represents the Neumann boundary conditions at the stencil points with the coordinates x p, yp, z p that belong to
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the boundary with the Neumann boundary conditions, the unknown stencil coefficients kp and k̄p (p = 1, 2, . . . , 27)
are to be determined from the minimization of the local truncation error, kp = 0 if a point with the coordinates
x p, yp, z p belongs to the boundary with the Neumann boundary conditions; otherwise, k̄p = 0 (this means that
Eq. (25) includes only 27 non-zero coefficients kp and k̄p), the central grid point with the coordinates x14, y14 and
z14 is always the internal point (therefore k̄14 = 0).

The exact solution u14 to the Poisson equation, Eq. (3), with f = 0 at x = x14, y = y14 and z = z14 meets the
following equations:

∂2u14

∂x2 = −(
∂2u14

∂y2 +
∂2u14

∂z2 ) , (26)

∂ (2+i+ j+k)u14

∂x2+i∂y j∂zk
= −

(
∂ (2+i+ j+k)u14

∂x i∂y( j+2)∂zk
+

∂ (2+i+ j+k)u14

∂x i∂y j∂z(k+2)

)
(27)

with i, j, k = 0, 1, 2, 3, 4, . . .. Here, Eq. (27) is directly obtained by the differentiation of Eq. (26) with respect to
x , y and z. For the calculation of the local truncation error, we also use Eq. (11). Inserting Eqs. (11), (26), (27)
into the stencil equation, Eq. (25), we will get the following local truncation error in space e:

e = b1u14 + h[b2
∂u14

∂z
+ b3

∂u14

∂y
+ b4

∂u14

∂x
] + h2[b5

∂2u14

∂z2 + b6
∂2u14

∂y∂z
+ b7

∂2u14

∂y2 + b8
∂2u14

∂x∂z
+ b9

∂2u14

∂x∂y
]

+ h3[b10
∂3u14

∂z3 + b11
∂3u14

∂y∂z2 + b12
∂3u14

∂y2∂z
+ b13

∂3u14

∂y3 + b14
∂3u14

∂x∂z2 + b15
∂3u14

∂x∂y∂z
+ b16

∂3u14

∂x∂y2 ]

+ h4[b17
∂4u14

∂z4 + b18
∂4u14

∂y∂z3 + b19
∂4u14

∂y2∂z2 + b20
∂4u14

∂y3∂z
+ b21

∂4u14

∂y4 + b22
∂4u14

∂x∂z3 + b23
∂4u14

∂x∂y∂z2

+ b24
∂4u14

∂x∂y2∂z
+ b25

∂4u14

∂x∂y3 ]

+ h5[b26
∂5u14

∂z5 + b27
∂5u14

∂y∂z4 + b28
∂5u14

∂y2∂z3 + b29
∂5u14

∂y3∂z2 + b30
∂5u14

∂y4∂z
+ b31

∂5u14

∂y5 + b32
∂5u14

∂x∂z4

+ b33
∂5u14

∂x∂y∂z3 + b34
∂5u14

∂x∂y2∂z2 + b35
∂5u14

∂x∂y3∂z
+ b36

∂5u14

∂x∂y4 ]

+ h6[b37
∂6u14

∂z6 + b38
∂6u14

∂y∂z5 + b39
∂6u14

∂y2∂z4 + b40
∂6u14

∂y3∂z3 + b41
∂6u14

∂y4∂z2 + b42
∂6u14

∂y5∂z

+ b43
∂6u14

∂y6 + b44
∂6u14

∂x∂z5

+ b45
∂6u14

∂x∂y∂z4 + b46
∂6u14

∂x∂y2∂z3 + b47
∂6u14

∂x∂y3∂z2 + b48
∂6u14

∂x∂y4∂z
+ b49

∂6u14

∂x∂y5 ] + O(h7) , (28)

where the coefficients bp (p = 1, 2, . . .) are expressed in terms of the coefficients k j and k̄ j ( j = 1, 2, . . . , 27); see
Appendix C. Due to Eqs. (26)–(27), there are no second and higher order partial derivatives of x in Eq. (28). In order
to improve the order of the local truncation error in Eq. (28) at small h ≪ 1, we will equate to zero the coefficients
bp in Eq. (28) for the smallest orders of h. The stencil equation, Eq. (25), includes 27 non-zero coefficients ki and
k̄i (i = 1, 2, . . . , 27) but only 26 of them can be considered as unknown coefficients (the explanation is similar
to that for the wave (heat) equation in Remark 1 after Eq. (9)). For the uniform stencil in Fig. 1 with dp = 1
(p = 1, 2, . . . , 27) the expressions for coefficients bp (p = 1, 2, . . .) can be simplified and some results can be
obtained analytically. For example, equating to zero the coefficients bp (p = 1, 2, . . . , 25) up to the fourth order
in Eq. (28) yields all zero coefficients k̄p in the stencil equation after the solution of the corresponding system of
algebraic equations bp = 0, p = 1, 2, . . . , 25. This means that we cannot generally zero all first 25 coefficients bp
in Eq. (28). In order to improve the order of the local truncation error in Eq. (28) for uniform and non-uniform
stencils at small h ≪ 1, we will zero the first 16 coefficients bp in Eq. (28) up to the third order:

bp = 0 , p = 1, 2, . . . , 16 . (29)

Then, in order to have a sufficient number of linearly independent equations for the calculation of the stencil
coefficients kp and k̄p (p = 1, 2, . . . , 27) in Eq. (25), we use the least square method for the minimization of
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coefficients bp related to the fourth, fifth and sixth orders of the local truncation error with the following residual R:

R =

25∑
p=17

b2
p + h1

36∑
p=26

b2
p + h2

49∑
p=37

b2
p , (30)

where h1 and h2 are the weighting factors to be selected (e.g., the numerical experiments show that h1 = h2 = 0.1
yields accurate results). In order to minimize the residual R with the constraints given by Eq. (29), we can form a
new residual R̄ with the Lagrange multipliers λp:

R̄ =

16∑
p=1

λpbp +

25∑
p=17

b2
p + h1

36∑
p=26

b2
p + h2

49∑
p=37

b2
p . (31)

The residual R̄ is a quadratic function of coefficients kp and k̄p (p = 1, 2, . . . , 27) and a linear function of
the Lagrange multipliers λp; i.e., R̄ = R̄(kp, k̄p, λp). In order minimize the residual R̄(kp, k̄p, λp), the following
equations based on the least square method for the residual R̄ can be written down:

∂ R̄
∂kp

= 0 ,
∂ R̄
∂ k̄p

= 0 , p = 1, 2, . . . , 27 , (32)

and
∂ R̄
∂λp

= 0 , p = 1, 2, . . . , 16 , (33)

where equation ∂ R̄
∂k14

= 0 should be replaced by k14 = 1; see Remark 1 after Eq. (9). Eqs. (32) and (33) form a
system of 43 linear algebraic equations with respect to 27 unknown non-zero coefficients kp and k̄p p = 1, 2, . . . , 27
(one of the coefficients kp or k̄p is always zero and we should exclude the corresponding equations in Eq. (32); see
the explanations after Eq. (9)) and 16 Lagrange multipliers λp (p = 1, 2, . . . , 16). Solving these linear algebraic
equations numerically, we can find the coefficients kp and k̄p (p = 1, 2, . . . , 27) for the 27-point uniform and
non-uniform stencils. As can be seen from the procedure, the 27-point stencil provides the fourth order of the local
truncation error in Eq. (28). This is one order less accurate than the fifth order of the local truncation error of the
new approach for the Dirichlet boundary conditions developed in [31] but is one order more accurate than the order
of the local truncation error for the linear finite elements with similar stencils. Moreover, due to the minimization of
the leading fourth order terms of the local truncation error in Eq. (31), at the same numbers of degrees of freedom
the new approach yields more accurate results than the high-order finite elements (up to the fourth order) with much
wider stencils; see the numerical examples below.

Remark 6. The 27-point stencil equations for the internal grid points as well as for the grid points close to the
boundary with the Dirichlet boundary conditions can be obtained from Eq. (25) with the coefficients k̄p = 0
(p = 1, 2, . . . , 27). The corresponding derivations are presented in our paper [31].

The final semi-discrete system of equations includes the 27-point uniform and nonuniform stencil equations
(see Figs. 1 and 2) for all internal grid points that are located inside the domain and close to the boundary with the
Dirichlet boundary conditions (see [31]) as well as the 27-point uniform and nonuniform stencil equations for all
internal grid points that are located close to the boundary with the Neumann boundary conditions (see Figs. 1 and 2
and Eq. (25)).

3.2. Nonzero source f ̸= 0 in Eq. (3)

The inclusion of non-zero source term f in the partial differential equation, Eq. (3), leads to the non-zero term
f̄14 in the stencil equation, Eq. (25). The expression for the term f̄14 can be calculated from the procedure similar to
that for the wave (heat) equation in Section 2.2 and is given in Appendix D. Similar to Section 3.1, the coefficients
of the stencil equations are first calculated for zero source f = 0. Then, the nonzero source term f̄14 is used in the
stencil equation, Eq. (25). The expressions for the local truncation error are the same for zero and non-zero source
functions.
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4. Numerical examples

In this Section the computational efficiency of the new approach developed in the previous Sections will be
demonstrated and compared with the 3-D conventional linear and high-order finite elements. Similar to the finite
element terminology, a grid point of a Cartesian mesh will be called a node. In order to compare the accuracy of the
new technique with FEM, the following errors are used in the numerical examples considered below. The relative
errors e j

u for the function u and e j
v for its first time derivative v at the j th node are defined as:

e j
u =

| unum
j − uexact

j |

uexact
max

and e j
v =

| vnum
j − vexact

j |

vexact
max

, j = 1, 2, . . . , N . (34)

The maximum relative errors emax
u for the function and emax

v for its first time derivative are defined as:

emax
u = max

j
e j

u and emax
v = max

j
e j
v , j = 1, 2, . . . , N . (35)

In Eqs. (34)–(35) the superscripts ‘num’ and ‘exact’ correspond to the numerical and exact solutions, N is the
total number of the grid points used in calculations, uexact

max and vexact
max are the maximum absolute values of the exact

solution over the entire domain for the function and its first time derivative, respectively. For the time dependent
wave and heat equations, the errors given by Eqs. (34)–(35) are evaluated at the final observation time T . The
errors e j

v and emax
v are used for the wave equation only. For the time integration, the trapezoidal rule is used for the

wave equation and the backward difference method is used for the heat equation. A sufficiently small size of time
steps is used in calculations. In this case the error in time can be neglected and the numerical error is related to the
space-discretization error only. For convenience, the function u is called ‘temperature’ for the heat and Poisson
equations and ‘displacement’ for the wave equation.

In order to study the effect of matched and non-matched meshes on the accuracy of the new approach in the
3-D case, first a simple rectangular parallelepiped ABC DO P Q R with the dimensions 1 × 1 × 0.8 is considered
with matched and non-matched Cartesian meshes; see Fig. 3a. Then the new approach is applied to a 3-D complex
irregular domain presented by a prism ABC DO P Q R with a spherical hole; see Fig. 5a.

The 3-D problems for the irregular domain are also solved by the tetrahedral linear and high-order finite elements
(e.g., see Fig. 6 for an example of a tetrahedral mesh) using the commercial software C O M SO L .

4.1. 3-D wave equation

Here, first we consider two test problems for the wave equation on regular and irregular domains with the
following exact solutions:

u(x, y, z, t) = sin(β1x) sin(β2 y) sin(β3z) cos(β4t) (36)

with β1 = β2 = β3 = 5π , β4 = 5
√

3π and zero loading function f = 0, and

u(x, y, z, t) = sin(β5x) cos(β6 y) sin(β7z) cos(β8t) (37)

with β5 = β8 = 5π , β6 = β7 = 4π and non-zero loading function f (x, y, z, t) = (−β2
8 + c2(β2

5 + β2
6 +

β2
7 )) sin(β5x) cos(β6 y) sin(β7z) cos(β8t). The wave velocity c = 1 and the observation times T = 0.2 for zero

loading and T = 0.25 for non-zero loading are selected. For these problems, the initial conditions at time t = 0 in
the entire domain and the combined Neumann and Dirichlet boundary conditions along the entire boundaries are
applied according to the exact solutions, Eqs. (36) and (37).

4.1.1. A rectangular parallelepiped
First, let us analyze the effect of matched and non-matched cubic (by = bz = 1) Cartesian meshes on the

accuracy of the numerical results obtained by the new approach on the rectangular parallelepiped ABC DO P Q R
(see Fig. 3) with the exact solution given by Eq. (36). The Dirichlet boundary conditions are imposed on all faces
except the face O P Q R where the Neumann boundary conditions are imposed. In order to create a simple non-
matched Cartesian mesh of size h, we use a matched Cartesian mesh of size h for the rectangular parallelepiped and
then move the upper face O P Q R of the rectangular parallelepiped in the z direction by a distance ξh (0 ≤ ξ ≤ 1)
with respect to the fixed Cartesian mesh; see Fig. 3b. In this case, the height H of the parallelepiped is changed
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Fig. 3. A rectangular parallelepiped ABC DO P Q R with matched (a) and non-matched (b) Cartesian meshes of size h and the aspect ratios
by and bz . (c) zooms a part of the non-matched mesh (b) located close to the upper boundary O P Q R.

from 0.8 to 0.8 + ξh. The 27-point stencils for the grid points located close to the upper boundary include 18 grid
points inside the parallelepiped and 9 boundary points on the upper face with the Neumann boundary conditions
(see Fig. 3(b,c)). For non-matched meshes, the coordinates of these boundary points are calculated according to the
procedure described in Section 2.1 (see also Fig. 2). The corresponding coefficients di (i = 1, 2, . . . , 27) used for
the nonuniform stencils close to the upper boundary O P Q R are:

d1 = d2 = · · · = d13 = 1 , d14 = 0 , d15 = d16 = d17 = d18 = 1 , d19 = d20 = · · · = d27 = ξ

with 0 ≤ ξ ≤ 1.

Remark 7. Despite the fact that for the matched and non-matched meshes we consider the rectangular parallelepiped
with slightly different heights, the exact solutions for these rectangular parallelepipeds are the same and are given
by Eq. (36). This allows us to estimate the effect of parameter ξ of the non-matched meshes with the selected
element size h on the accuracy of numerical results.

Fig. 4 shows the logarithm of the maximum relative errors in displacement emax
u and in velocity emax

v as a
function of ξ at the selected mesh sizes h = 1/10 and h = 1/20. As can be seen from Fig. 4(a, c) emax

u and emax
v

are almost constant in the range 0.1 ≤ ξ ≤ 0.5 and become slightly greater in the range 0.5 ≤ ξ ≤ 1. At very small
10−9

≤ ξ ≤ 10−3 these errors are almost constant (see Fig. 4(b, d)). There is a small variation of emax
u and emax

v in
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Fig. 4. The logarithm of the maximum relative errors in displacement emax
u (a, b) and in velocity emax

v (c, d) as a function of the coefficient
ξ (a, c) and Log10ξ for small ξ (b, d). The numerical solutions of the 3-D wave equation with zero loading function for the rectangular
parallelepiped (see Fig. 3) are obtained by the new approach on cubic (by = bz = 1) Cartesian meshes of sizes h = 1/10 (curve 1) and
h = 1/20 (curve 2). (b, d) zoom (a, c) along the x-axis for 0 ≤ ξ ≤ 0.1. Symbols □ and ⃝ correspond to the results for the different
coefficients ξ used in the calculations.

the range 10−3
≤ ξ ≤ 10−1; see Fig. 4(b, d). These observations indicate that there is no degradation in accuracy

of the new approach at very small distances ξh between the boundary points and the internal grid points included
into the stencil; i.e., in contrast the finite elements, the large differences in distances between the points included
into the non-uniform stencil do not worsen the accuracy of the new approach.

4.1.2. A prism with a spherical hole (with the exact solutions given by Eqs. (36) and (37))
Next, let us analyze the accuracy of the new approach applied to a more complex irregular domain represented

by a prism ABC DO P Q R with a spherical hole; see Fig. 5a. Two problems for the 3-D wave equation with zero
and non-zero loadings are solved by the new approach on the irregular domain. The Neumann boundary conditions
are imposed on the upper face RO P Q and on the spherical surface of the hole whereas the Dirichlet boundary
conditions are imposed on all other faces; see Fig. 5a. An example of a cubic (by = bz = 1) Cartesian mesh used
with the new approach is shown in Fig. 5b.

Fig. 7 presents the errors emax
u and emax

v as a function of the number of degrees of freedom N in the logarithmic
scale obtained by the new approach (curves 1) and by the conventional finite elements (curves 2–5) at mesh
refinement. The slopes of curves 1 at large N in Fig. 7 approximately describe the order of accuracy of the new
approach because 3√N is approximately proportional to mesh size h (this is strictly valid for regular domain with
matched meshes). As can be seen from Fig. 7, the new approach yields the order of accuracy which exceeds three
for zero and non-zero loadings. This is in agreement with the theoretical results of Section 2.

Curves 2–5 in Fig. 7 present the errors emax
u and emax

v for the tetrahedral linear and high-order finite elements (see
Fig. 6 for an example of a tetrahedral finite element mesh for the prism with the spherical hole). It can be seen from
Fig. 7 that at the same N the new approach yields more accurate results than those obtained by the conventional
linear and high-order (up to the fourth order) finite elements. It is important to mention that the high-order finite
elements have much wider stencils and require much more computation time compared to that for the new approach
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Fig. 5. (a) A 3-D prism ABC DO P Q R (A(0, 0, 0), B(1, 0, 0), C(1, 1, 0), D(0, 1, 0), O(0, 1, 1), P(0, 0, 0.8), Q(1, 0, 0.6), R(1, 1, 0.8)) with
a spherical hole of radius 0.25 centered at (0.4, 0.6, 0.3). b) A cubic Cartesian mesh for the new approach.

Fig. 6. (a) An example of a tetrahedral finite element mesh generated by the commercial software COMSOL for the discretization of the
3-D prism ABC DO P Q R with the spherical hole (see Fig. 5a). b) shows a part of the mesh in the vicinity of the spherical hole.

at the same N . It is also interesting to note that at accuracy of 1%, the new approach reduces the number of degrees
of freedom by a factor of greater than 1000 compared to that for the linear finite elements with similar stencils
(e.g., compare curves 1 and 2 in Fig. 7c at Log10emax

u = −2 ). This leads to a huge reduction in computation
time for the new approach at a given accuracy. This reduction in computation time will be even greater if a higher
accuracy is needed.

In order to study the convergence and numerical stability of the new approach in more detail, Fig. 8a presents the
variation of the errors emax

u and emax
v at the variation of the grid size h of a Cartesian mesh with small increments

∆h =
1

Nx −1 where Nx is the number of the grid points along AB (Nx = 11, 12, . . . , 31); see Fig. 5a. Curve 1 in
Fig. 8a corresponds to curve 1 in Fig. 7a; and curve 2 in Fig. 8a corresponds to curve 1 in Fig. 7c. As can be
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Fig. 7. The maximum relative errors in displacement emax
u (a, b) and in velocity emax

v (c, d) as a function of 3√N in the logarithmic scale at
mesh refinement. N is the number of degrees of freedom. The numerical solutions of the 3-D wave equation with zero (a, c) and non-zero
(b, d) loading functions for the prism with the spherical hole (see Fig. 5a) are obtained by the new approach on cubic (by = bz = 1)
Cartesian meshes (curve 1) and by the tetrahedral linear (curve 2), quadratic (curve 3), cubic (curve 4) and quartic (curve 5) finite elements.
Symbols □, ⃝, ▽, ⋄ and × correspond to the results for the different N used in the calculations.

Fig. 8. The maximum relative errors in displacement emax
u (curve 1) and in velocity emax

v (curve 2) as a function of mesh size h in the
logarithmic scale at mesh refinement for the prism with the spherical hole (see Fig. 5a). The numerical solutions of the 3-D wave equation
with zero loading function are obtained by the new approach on cubic (by = bz = 1) Cartesian meshes. (b) zooms (a) in the interval
0.083 ≲ h ≤ 0.1. Symbols □ and ⃝ correspond to the results for the different h used in the calculations.

seen from Fig. 8a, at small variations of the grid size h the new approach converges with small oscillations. The
magnitudes of these oscillations become smaller with the decrease in h. One of the oscillations in Fig. 8a between
the mesh sizes h1 ≈ 0.083 and h2 = 0.1 is shown in Fig. 8b in more detail using smaller increments ∆h =

h2−h1
200

(for the selected meshes point A in 5a always coincides with a grid point whereas point B is located between grid
points of Cartesian meshes). Now much more oscillations can be observed between the mesh sizes h1 ≈ 0.083 and
h2 = 0.1. The oscillations of the curves in Fig. 8b are explained by the following two facts: a) the complicated
dependence of the leading terms of the local truncation error on the coefficients di that define the location of the grid
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Fig. 9. The relative errors in displacement eS
u (a) and in velocity eS

v (b) at point S(0.2, 0.2, 0.4) as a function of 3√N in the logarithmic
scale at mesh refinement. N is the number of degrees of freedom. The numerical solutions of the 3-D wave equation for the prism with the
spherical hole (see Fig. 5a) are obtained by the new approach on cubic (by = bz = 1) Cartesian meshes (curve 1) and by the tetrahedral
linear (curve 2), quadratic (curve 3), cubic (curve 4) and quartic (curve 5) finite elements. Symbols □, ⃝, ▽, ⋄ and × correspond to the
results for the different N used in the calculations.

points in the non-uniform stencil; and b) small jumps in curves 1 and 2 in Fig. 8b are related to the discontinuous
change in the location of the grid points with respect to the boundary (e.g., some grid points that are located close
the boundary inside the domain or are located on the boundary for one mesh size h will be located outside the
domain at very small variation of the grid size ∆h). It is important to mention that these oscillations in accuracy
at the variation of the mesh size h are typical for numerical techniques on irregular domains. For example, at the
transition from one finite element mesh to another one with approximately the same element sizes, the finite changes
in the angles of finite elements can occur. This also leads to the oscillations in the convergence of the finite element
techniques. We should also mention that the detailed study of convergence of the new approach (similar to that in
Fig. 8) was conducted for all numerical examples considered in this paper and it showed that the new approach
yields stable and convergence results.

4.1.3. A prism with a spherical hole (with a reference solution)
In this Section we solve a test problem for the prism with the spherical hole (see Fig. 5a) with the Neumann

and Dirichlet boundary conditions described by different functions. The initial, boundary conditions and the loading
term for the 3-D wave equation are given as follows: the initial displacements and velocities over the entire domain
u(x, y, z, t = 0) = cos(10x+7y+5z) and v(x, y, z, t = 0) = 0; the Neumann boundary conditions g1(x, y, z, t) = 0
on the face O P Q R and g2(x, y, z, t) = (x2

+ y2
+ z2) cos(3π t) on the spherical hole; the Dirichlet boundary

conditions g3(y, z, t) = cos(7y + 5z) cos(10t) on the face ADO P , g4(x, z, t) = cos(10x + 5z) cos(10t) on the face
AB Q P , g5(x, y, t) = cos(10x + 7y) cos(10t) on the face ABC D, g6(x, z, t) = cos(10x + 5z + 7) cos(10t) on the
face C DO R, g7(y, z, t) = cos(10 + 7y + 5z) cos(10t) on the face BC RQ; and non-zero load f (x, y, z, t) = 10.
The wave velocity c = 1 and the observation time T = 0.2 are selected. For this problem the exact solution is
unknown. Therefore, the numerical solution obtained on a fine mesh with the 7th order finite elements and with
1, 352, 444 degrees of freedom is selected as the reference solution for the calculation of the errors.

In order to estimate the order of convergence of the new approach and to compare the accuracy of the numerical
solutions obtained by different techniques we select a point S inside the domain with the coordinates (0.2, 0.2, 0.4)
and plot the errors in displacement eS

u and in velocity eS
v at this point S; see Fig. 9 with the errors plotted in the

logarithmic scale at mesh refinement. Fig. 9 shows that at the same number N of degrees of freedom the results
obtained by the new approach are more accurate than those obtained by the conventional linear and high-order (up
to the fourth order) finite elements (similar results can be obtained at other points). It can be also seen from Fig. 9
that the order of convergence of the new approach for the displacement and velocity exceeds three.

It can be concluded that for the 3-D wave equation with the Neumann and Dirichlet boundary conditions on
irregular domains, the new approach with the 27-point stencils (similar to those for the linear quadrilateral finite
elements) yields much more accurate numerical results than those obtained by the linear and high-order (up to
the fourth order) finite elements at the same number of degrees of freedom. Moreover, higher order finite elements
require much more computation time due to much wider stencil equations compared to those for the new approach.
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Fig. 10. The logarithm of the maximum relative error in temperature emax
u as a function of the coefficient ξ (a) and Log10ξ (b) at small ξ .

The numerical solutions of the 3-D heat equation with zero source for the rectangular parallelepiped (see Fig. 3) are obtained by the new
approach on cubic (by = bz = 1) Cartesian meshes of sizes h = 1/10 (curve 1) and h = 1/20 (curve 2). (b) zoom (a) along the x-axis at
0 ≤ ξ ≤ 0.1. Symbols □ and ⃝ correspond to the results for the different coefficients ξ used in the calculations.

4.2. 3-D heat equation

Here, we consider two test problems for the heat equation on regular and irregular domains with the following
exact solutions:

u(x, y, z, t) = η1eβ1(x−1)+β2(y−1)−aβ4t sin(β3z) (38)

with η1 = 50, β1 = 4, β2 = 12, β3 = 4π , β4 = (β2
3 − β2

1 − β2
2 ) and zero loading function f = 0, and

u(x, y, z, t) = η2 sin(β5x) cos(β6 y) sin(β7z)e(β8t) (39)

with η2 = 200, β5 = 5π , β6 = 4π , β7 = 3π , β8 = −2π and non-zero source f (x, y, z, t) = η2(β8 + a(β2
5 + β2

6 +

β2
7 )) sin(β5x) cos(β6 y) sin(β7z)e(β8t). The thermal diffusivity a = 100 and the observation times T = 0.002 (due to

the selected exponential solution in time, Eq. (38), there is a significant change in temperature during this time) for
zero source and T = 0.2 for non-zero source are selected. For these problems, the initial and boundary conditions
are applied according to the exact solutions, Eqs. (38) and (39).

4.2.1. A rectangular parallelepiped
Similar to the wave equation, first let us analyze the effect of matched and non-matched cubic (by = bz = 1)

Cartesian meshes on the accuracy of the numerical solutions obtained by the new approach for the rectangular
parallelepiped ABC DO P Q R (see Fig. 3) with the exact solution given by Eq. (38). The Dirichlet boundary
conditions are imposed on all faces except the face O P Q R where the Neumann boundary conditions are imposed.
The non-matched meshes with the 27-points non-uniform and uniform stencils are formed similar to those in
Section 4.1.1.

Fig. 10 shows the logarithm of the maximum relative error in temperature emax
u as a function of ξ at the selected

mesh sizes h = 1/10 and h = 1/20. As can be seen from Fig. 10, the error emax
u is practically constant at very small

ξ (10−9
≤ ξ ≤ 10−3) and slightly varies at small ξ (10−3

≤ ξ ≤ 0.3). Moreover, at these small ξ (10−9
≤ ξ ≤ 0.3),

the error emax
u is smaller than that at ξ = 1 corresponding to the matched meshes. This means that the large

differences in distances between the points included into the non-uniform stencil do not worsen the accuracy of the
new approach.

4.2.2. A prism with a spherical hole
Next, let us analyze the application of the new approach to the 3-D heat equation with zero and non-zero sources

on a more complex irregular domain represented by the prism ABC DO P Q R with the spherical hole; see Fig. 5a.
Two problems for the 3-D heat equation with zero and non-zero sources are solved by the new approach on the
irregular domain. The Neumann boundary conditions are imposed on the upper face RO P Q and on the spherical
surface of the hole whereas the Dirichlet boundary conditions are imposed on all other faces; see Fig. 5a. An
example of a cubic (by = bz = 1) Cartesian mesh used with the new approach is shown in Fig. 5b.
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Fig. 11. The maximum relative error in temperature emax
u as a function of 3√N in the logarithmic scale at mesh refinement. N is the number

of degrees of freedom. The numerical solutions of the 3-D heat equation with zero (a) and non-zero (b) sources for the prism with the
spherical hole (see Fig. 5a) are obtained by the new approach on cubic (by = bz = 1) Cartesian meshes (curve 1) and by the tetrahedral
linear (curve 2), quadratic (curve 3), cubic (curve 4) and quartic (curve 5) finite elements. Symbols □, ⃝, ▽, ⋄ and × correspond to the
results for the different N used in the calculations.

Fig. 11 presents the error emax
u as a function of the number of degrees of freedom N in the logarithmic scale

obtained by the new approach (curves 1) and by the conventional finite elements (curves 2–5) at mesh refinement.
As stated earlier the slopes of curves 1 at large N in Fig. 11 approximately describe the order of accuracy of the
new approach because 3√N is approximately proportional to the mesh size h. It can be seen from Fig. 11 that the
order of accuracy of the new approach exceeds three for the temperature. This is in agreement with the theoretical
results in Section 2.

Curves 2–5 in Fig. 11 present the error emax
u for the tetrahedral linear and high-order finite elements (see Fig. 6

for an example of a tetrahedral finite element mesh for the prism with the spherical hole). It can be seen from
Fig. 11 that at the same N the new approach yields more accurate results than those obtained by the conventional
linear and high-order (up to the fourth order) finite elements. It is important to mention that the high-order finite
elements have much wider stencils and require much more computation time compared to that for the new approach
at the same N .

4.3. 3-D Poisson equation

Here, first we consider two test problems for the Poisson equation on regular and irregular domains with the
following exact solutions:

u(x, y, z) = ηeβ1(x−1)+β2(y−1) sin(β3z) (40)

with β1 = 8, β2 =
√

(4π )2 − 82, β3 = 4π and zero source f = 0, and

u(x, y, z) = η sin(β4x) sin(β5 y) cos(β6z) (41)

with β4 = 5π , β5 = 4π , β6 = 3π and non-zero source f (x, y, z) = −η(β2
4 + β2

5 + β2
6 ) sin(β4x) sin(β5 y) cos(β6z).

In Eqs. (40) and (41) the coefficient η = 100 is used. For these problems, the combined Neumann and Dirichlet
boundary conditions are applied according to the exact solutions, Eqs. (40) and (41).

4.3.1. A rectangular parallelepiped
Similar to the wave and heat equations, first let us analyze the effect of matched and non-matched cubic

(by = bz = 1) Cartesian meshes on the accuracy of the numerical solutions obtained by the new approach for
the rectangular parallelepiped ABC DO P Q R (see Fig. 3) with the exact solution given by Eq. (40). The Dirichlet
boundary conditions are imposed on all faces except the face O P Q R where the Neumann boundary conditions
are imposed. The non-matched meshes with the 27-points non-uniform and uniform stencils are formed similar to
those in Section 4.1.1.
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Fig. 12. The logarithm of the maximum relative error in temperature emax
u as a function of the coefficient ξ (a) and Log10ξ (b) at small ξ .

The numerical solutions of the 3-D Poisson equation with zero source for the rectangular parallelepiped (see Fig. 3) are obtained by the
new approach on cubic (by = bz = 1) Cartesian meshes of sizes h = 1/10 (curve 1) and h = 1/20 (curve 2). (b) zoom (a) along the x-axis
at 0 ≤ ξ ≤ 0.1. Symbols □ and ⃝ correspond to the results for the different coefficients ξ used in the calculations.

Fig. 13. The maximum relative error in temperature emax
u as a function of 3√N in the logarithmic scale at mesh refinement. N is the number

of degrees of freedom. The numerical solutions of the 3-D Poisson equation with zero (a) and non-zero (b) sources for the prism with the
spherical hole (see Fig. 5a) are obtained by the new approach on cubic (by = bz = 1) Cartesian meshes (curve 1) and by the tetrahedral
linear (curve 2), quadratic (curve 3), cubic (curve 4) and quartic (curve 5) finite elements. Symbols □, ⃝, ▽, ⋄ and × correspond to the
results for the different N used in the calculations.

Fig. 12 shows the logarithm of the maximum relative error in temperature emax
u as a function of ξ at the selected

mesh sizes h = 1/10 and h = 1/20. As can be seen from Fig. 12, the error emax
u is practically constant at very small

ξ (10−9
≤ ξ ≤ 10−3) and slightly varies at small ξ (10−3

≤ ξ ≤ 0.3). Moreover, at these small ξ (10−9
≤ ξ ≤ 0.3),

the error emax
u is smaller than that at ξ = 1 corresponding to the matched meshes. This means that the large

differences in distances between the points included into the non-uniform stencil do not worsen the accuracy of the
new approach.

4.3.2. A prism with a spherical hole (with the exact solutions given by Eqs. (40) and (41))
Next, let us analyze the application of the new approach to the 3-D Poisson equation with zero and non-zero

sources on a more complex irregular domain represented by the prism ABC DO P Q R with the spherical hole;
see Fig. 5a. Two problems for the 3-D Poisson equation with zero and non-zero sources are solved by the new
approach on the irregular domain. The Neumann boundary conditions are imposed on the upper face RO P Q and
on the spherical surface of the hole whereas the Dirichlet boundary conditions are imposed on all other faces; see
Fig. 5a. An example of a cubic (by = bz = 1) Cartesian mesh used with the new approach is shown in Fig. 5b.

Fig. 13 presents the error emax
u as a function of the number of degrees of freedom N in the logarithmic scale

obtained by the new approach (curves 1) and by the conventional finite elements (curves 2–5) at mesh refinement.
As stated earlier the slopes of curves 1 at large N in Fig. 13 approximately describe the order of accuracy of the
new approach because 3√N is approximately proportional to the mesh size h. It can be seen from Fig. 13 that the
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Fig. 14. The relative error in temperature eS
u at point S(0.2, 0.2, 0.4) as a function of 3√N in the logarithmic scale at mesh refinement. N is

the number of degrees of freedom. The numerical solutions of the 3-D Poisson equation for the prism with the spherical hole (see Fig. 5a)
are obtained by the new approach on cubic (by = bz = 1) Cartesian meshes (curve 1) and by the tetrahedral linear (curve 2), quadratic
(curve 3), cubic (curve 4) and quartic (curve 5) finite elements. Symbols □, ⃝, ▽, ⋄ and × correspond to the results for the different N
used in the calculations.

order of accuracy of the new approach exceeds three for the temperature. This is in agreement with the theoretical
results in Section 3.

Curves 2–5 in Fig. 13 present the error emax
u for the tetrahedral linear and high-order finite elements (see Fig. 6

for an example of a tetrahedral finite element mesh for the prism with the spherical hole). It can be seen from
Fig. 13 that at the same N the new approach yields more accurate results than those obtained by the conventional
linear and high-order (up to the fourth order) finite elements. It is important to mention that the high-order finite
elements have much wider stencils and require much more computation time compared to that for the new approach
at the same N .

4.3.3. A prism with a spherical hole (with a reference solution)
Here, we solve a test problem for the prism with the spherical hole (see Fig. 5a) with the Neumann and Dirichlet

boundary conditions described by different functions. The boundary conditions and the source term for the 3-D
Poisson equation are given as follows: the Neumann boundary conditions g1(x, y, z) = x2 y3e10(z−1) on the face
O P Q R and g2(x, y, z) = sin(7x − 5y + 2z) on the spherical hole; the Dirichlet boundary conditions g3(y, z) =

cos(3π (4z−3y)) on the face ADO P , g4(x, z) = cos(2π (5x +6z)) on the face AB Q P , g5(x, y) = cos(π(10x −9y))
on the face ABC D, g6(x, z) = − cos(2π (5x + 6z)) on the face C DO R, g7(y, z) = cos(3π(4z − 3y))) on the face
BC RQ; and the non-zero source f (x, y, z) = 50(x2

+ y2
+ z2). For this problem the exact solution is unknown.

Therefore, the numerical solution obtained on a fine mesh with the 7th order finite elements and with 1, 352, 444
degrees of freedom is selected as the reference solution for the calculation of the errors.

Similar to Section 4.1.3, in order to estimate the order of convergence of the new approach and to compare the
accuracy of the numerical solutions obtained by different techniques we select a point S inside the domain with the
coordinates (0.2, 0.2, 0.4) and plot the error in temperature eS

u at this point S; see Fig. 14 with the errors plotted in
the logarithmic scale at mesh refinement. Fig. 14 shows that at the same number N of degrees of freedom the results
obtained by the new approach are more accurate than those obtained by the conventional linear and high-order (up
to the fourth order) finite elements (similar results can be obtained at other points). It can be also seen from Fig. 9
that the order of convergence of the new approach exceeds three.

It can be concluded that for the 3-D Poisson equation with the Neumann and Dirichlet boundary conditions on
irregular domains, the new approach with the 27-point stencils (similar to those for the linear quadrilateral finite
elements) yields much more accurate numerical results than those obtained by the linear and high-order (up to
the fourth order) finite elements at the same number of degrees of freedom. Moreover, higher order finite elements
require much more computation time due to much wider stencil equations compared to those for the new approach.

5. Concluding remarks

A new 3-D numerical approach has been developed and applied to a number of partial differential equations on
irregular domains with the Neumann and Dirichlet boundary conditions. It is based on the 27-point uniform and
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non-uniform stencils that are similar to those for the linear quadrilateral finite elements. The main advantages of
the suggested technique can be summarized as follows:

• Many difficulties of the existing numerical techniques for irregular domains (e.g., the finite elements, spectral
element, isogeometric elements, the finite volume method, and many other) especially in the 3-D case are
related to complicated mesh generators and the accuracy of ‘bad’ elements (e.g., the elements with small
angles). In contrast to these techniques, the new approach is based on trivial Cartesian meshes with a simple
procedure for the formation of the 27-point nonuniform stencils for the grid points located close to the
boundary. Moreover, very small distances (0.1h − 10−9h where h is the grid size) between the grid points of
a Cartesian mesh and the boundary ( i.e., some coefficients di of the non-uniform stencil are close to zero
while some other coefficients di of the same stencil equal unity; see Fig. 2) do not worsen the accuracy of
the new technique.

• In contrast to the finite-difference techniques with the stencil coefficients calculated through the approximation
of separate partial derivatives, the entire partial differential equation is used for the calculation of the stencil
coefficients in the new approach. This leads to the optimal accuracy of the proposed technique. E.g., the
27-point uniform and nonuniform stencils of the new approach provide the optimal accuracy that cannot be
improved without changing the width of stencil equations. In contrast to the 27-point stencils of the linear
quadrilateral finite elements, the new approach yields a much higher order of accuracy.

• One of the important features of the new approach with the Neumann boundary conditions is the formation of
the final semi-discrete system of equations without including the unknowns at the boundary; i.e., all unknowns
are introduced at the internal grid points and the Neumann boundary conditions are used as the known right-
hand side for the final system of equations. This feature is promising for the application of the new approach
to the problems with moving boundaries (e.g., crack propagation) because there is no need to redefine meshes
for moving boundaries as in many existing approaches (e.g., FEM). The application of the new approach to
such problems will be considered in the future.

• The numerical results for irregular domains also show that at the same number of degrees of freedom, the new
approach is even much more accurate than the high-order (up to the fourth order) tetrahedral finite elements
with much wider stencils. This also means that at a given accuracy, the new approach significantly reduces
the computation time compared to the linear and high-order finite elements.

• The new approach does not require time consuming numerical integration for finding the coefficients of the
stencil equations; e.g., as for the high-order finite, spectral and isogeometric elements. For the new technique,
the coefficients of the uniform stencils for the grid points located far from the boundary are calculated
analytically. For the grid points located close to the boundary, the coefficients of the nonuniform stencils
are calculated numerically by the solution of small local systems of linear algebraic equations. Numerical
experiments show that the solution of these small local systems of algebraic equations is fast. Moreover, these
local systems are independent of each other and can be efficiently solved on a parallel computer.

• It has been shown that the wave and heat equations can be uniformly treated with the new approach. The
order of the time derivative in these equations does not affect the coefficients of the stencil equations of the
semi-discrete systems because in the presented derivations the space discretization is considered independent
of the time discretization without the interaction between the errors in space and time.

It is interesting to note that the final formulas for the calculation of the stencil coefficients do not include the
derivatives of the solution and the new approach can be also applied to the problems with reduced regularity
(smoothness). In our paper [30] the 1-D impact wave propagation problem with a propagating discontinuity has been
solved by the new approach on matched and non-matched meshes as well as by the conventional finite elements.
The numerical results in [30] show that even in this case the new approach yields more accurate results compared
to those obtained by the conventional finite elements. We observed similar effects for the isogeometric elements
applied to the same 1-D impact problem; i.e., the approximation of discontinuous solutions by smooth functions of
high-order isogeometric elements yields accurate results.

In the future we plan to consider the stencils with a larger number of grid points for a higher order of accuracy
(similar to the high-order finite elements or to the high-order finite-difference techniques), to consider a mesh
refinement with uniform Cartesian meshes using special stencils for the transition from a fine mesh to a coarse
mesh,

to apply the proposed technique to the wave and heat equations with variable and piecewise-constant coefficients
as well as to other partial differential equations, to solve real-world problems with the new approach.
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Appendix A. The coefficients bp used in Eq. (15)

The first five coefficients bi (i = 1, 2, . . . , 5) are presented below. All coefficients bi (i = 1, 2, . . . , 165) used in
the paper are given in the attached file ‘b-coeff-wave.pdf’

b1 = k1 + k10 + k11 + k12 + k13 + k14 + k15 + k16 + k17 + k18 + k19 + k2 + k20 + k21 + k22 + k23 + k24 + k25 +

k26 + k27 + k3 + k4 + k5 + k6 + k7 + k8 + k9

b2 = −d1k1 − d10k10 + d12k12 − d13k13 + d15k15 − d16k16 + d18k18 − d19k19 + d21k21 − d22k22 + d24k24 − d25k25 +

d27k27 + d3k3 − d4k4 + d6k6 − d7k7 + d9k9 + k̄1n1,1 + k̄10n1,10 + k̄11n1,11 + k̄12n1,12 + k̄13n1,13 + k̄14 + k̄15n1,15 +

k̄16n1,16 + k̄17n1,17 + k̄18n1,18 + k̄19n1,19 + k̄2n1,2 + k̄20n1,20 + k̄21n1,21 + k̄22n1,22 + k̄23n1,23 + k̄24n1,24 + k̄25n1,25 +

k̄26n1,26 + k̄27n1,27 + k̄3n1,3 + k̄4n1,4 + k̄5n1,5 + k̄6n1,6 + k̄7n1,7 + k̄8n1,8 + k̄9n1,9

b3 = by(−d1k1 − d10k10 − d11k11 − d12k12 + d16k16 + d17k17 + d18k18 − d19k19 − d2k2 − d20k20 − d21k21 + d25k25 +

d26k26 + d27k27 − d3k3 + d7k7 + d8k8 + d9k9) + k̄1n2,1 + k̄10n2,10 + k̄11n2,11 + k̄12n2,12 + k̄13n2,13 + k̄14 + k̄15n2,15 +

k̄16n2,16 + k̄17n2,17 + k̄18n2,18 + k̄19n2,19 + k̄2n2,2 + k̄20n2,20 + k̄21n2,21 + k̄22n2,22 + k̄23n2,23 + k̄24n2,24 + k̄25n2,25 +

k̄26n2,26 + k̄27n2,27 + k̄3n2,3 + k̄4n2,4 + k̄5n2,5 + k̄6n2,6 + k̄7n2,7 + k̄8n2,8 + k̄9n2,9

b4 = bz(−d1k1 + d19k19 − d2k2 + d20k20 + d21k21 + d22k22 + d23k23 + d24k24 + d25k25 + d26k26 + d27k27 − d3k3 −

d4k4 − d5k5 − d6k6 − d7k7 − d8k8 − d9k9) + k̄1n3,1 + k̄10n3,10 + k̄11n3,11 + k̄12n3,12 + k̄13n3,13 + k̄14 + k̄15n3,15 +

k̄16n3,16 + k̄17n3,17 + k̄18n3,18 + k̄19n3,19 + k̄2n3,2 + k̄20n3,20 + k̄21n3,21 + k̄22n3,22 + k̄23n3,23 + k̄24n3,24 + k̄25n3,25 +

k̄26n3,26 + k̄27n3,27 + k̄3n3,3 + k̄4n3,4 + k̄5n3,5 + k̄6n3,6 + k̄7n3,7 + k̄8n3,8 + k̄9n3,9

b5 =
1
2 (2m1 +2m10 +2m11 +2m12 +2m13 +2m14 +2m15 +2m16 +2m17 +2m18 +2m19 +2m2 +2m20 +2m21 +

2m22 + 2m23 + 2m24 + 2m25 + 2m26 + 2m27 + 2m3 + 2m4 + 2m5 + 2m6 + 2m7 + 2m8 + 2m9 + d2
1 k1 − 2d1k̄1n1,1 +

d2
10k10 −2d10k̄10n1,10 +d2

12k12 +2d12k̄12n1,12 +d2
13k13 −2d13k̄13n1,13 +d2

15k15 +2d15k̄15n1,15 +d2
16k16 −2d16k̄16n1,16 +

d2
18k18 +2d18k̄18n1,18 +d2

19k19 −2d19k̄19n1,19 +d2
21k21 +2d21k̄21n1,21 +d2

22k22 −2d22k̄22n1,22 +d2
24k24 +2d24k̄24n1,24 +

d2
25k25 − 2d25k̄25n1,25 + d2

27k27 + 2d27k̄27n1,27 + d2
3 k3 + 2d3k̄3n1,3 + d2

4 k4 − 2d4k̄4n1,4 + d2
6 k6 + 2d6k̄6n1,6 + d2

7 k7 −

2d7k̄7n1,7 + d2
9 k9 + 2d9k̄9n1,9)

Appendix B. The explicit expression for the term f̄14 in Eq. (24) in the case of nonzero load (source) f ̸= 0
in the wave (heat) equation

The expression for f̄14 including the first two orders with respect to hhh is presented below. The expression for
f̄14 up to the eight order with respect to hhh is given in the attached file ‘RHS-wave.pdf’

f̄14 = h2(m1 + m10 + m11 + m12 + m13 + m14 + m15 + m16 + m17 + m18 + m19 + m2 + m20 + m21 + m22 + m23 +

m24 + m25 + m26 + m27 + m3 + m4 + m5 + m6 + m7 + m8 + m9) f14

+h3((bz(−d1m1+d19m19−d2m2+d20m20+d21m21+d22m22+d23m23+d24m24+d25m25+d26m26+d27m27−d3m3−

d4m4 −d5m5 −d6m6 −d7m7 −d8m8 −d9m9)+m̄14 +m̄1n3,1 +m̄10n3,10 +m̄11n3,11 +m̄12n3,12 +m̄13n3,13 +m̄15n3,15 +

m̄16n3,16+m̄17n3,17+m̄18n3,18+m̄19n3,19+m̄2n3,2+m̄20n3,20+m̄21n3,21+m̄22n3,22+m̄23n3,23+m̄24n3,24+m̄25n3,25+

m̄26n3,26 + m̄27n3,27 + m̄3n3,3 + m̄4n3,4 + m̄5n3,5 + m̄6n3,6 + m̄7n3,7 + m̄8n3,8 + m̄9n3,9) f14
(0,0,1)

+ (by(−d1m1 −

d10m10 − d11m11 − d12m12 + d16m16 + d17m17 + d18m18 − d19m19 − d2m2 − d20m20 − d21m21 + d25m25 + d26m26 +

d27m27 − d3m3 + d7m7 + d8m8 + d9m9) + m̄14 + m̄1n2,1 + m̄10n2,10 + m̄11n2,11 + m̄12n2,12 + m̄13n2,13 + m̄15n2,15 +

m̄16n2,16+m̄17n2,17+m̄18n2,18+m̄19n2,19+m̄2n2,2+m̄20n2,20+m̄21n2,21+m̄22n2,22+m̄23n2,23+m̄24n2,24+m̄25n2,25+

m̄26n2,26 + m̄27n2,27 + m̄3n2,3 + m̄4n2,4 + m̄5n2,5 + m̄6n2,6 + m̄7n2,7 + m̄8n2,8 + m̄9n2,9) f14
(0,1,0)

+ (−d1m1 −d10m10 +

d12m12 − d13m13 + d15m15 − d16m16 + d18m18 − d19m19 + d21m21 − d22m22 + d24m24 − d25m25 + d27m27 + d3m3 −

d4m4 + d6m6 − d7m7 + d9m9 + m̄14 + m̄1n1,1 + m̄10n1,10 + m̄11n1,11 + m̄12n1,12 + m̄13n1,13 + m̄15n1,15 + m̄16n1,16 +

m̄17n1,17 + m̄18n1,18 + m̄19n1,19 + m̄2n1,2 + m̄20n1,20 + m̄21n1,21 + m̄22n1,22 + m̄23n1,23 + m̄24n1,24 + m̄25n1,25 +

m̄26n1,26 + m̄27n1,27 + m̄3n1,3 + m̄4n1,4 + m̄5n1,5 + m̄6n1,6 + m̄7n1,7 + m̄8n1,8 + m̄9n1,9) f14
(1,0,0)) + · · ·

with f (i, j,k)
14 =

∂ i+ j+k f14
∂x i ∂y j ∂zk .
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Appendix C. The coefficients bp used in Eq. (28)

The first five coefficients bi (i = 1, 2, . . . , 5) are presented below. All coefficients bi (i = 1, 2, . . . , 36) used in
the paper are given in the attached file ‘b-coeff-Pois.pdf’

b1 = k1 + k10 + k11 + k12 + k13 + k14 + k15 + k16 + k17 + k18 + k19 + k2 + k20 + k21 + k22 + k23 + k24 + k25 +

k26 + k27 + k3 + k4 + k5 + k6 + k7 + k8 + k9
b2 = bz(−d1k1 + d19k19 − d2k2 + d20k20 + d21k21 + d22k22 + d23k23 + d24k24 + d25k25 + d26k26 + d27k27 − d3k3 −

d4k4 − d5k5 − d6k6 − d7k7 − d8k8 − d9k9) + k̄1n3,1 + k̄10n3,10 + k̄11n3,11 + k̄12n3,12 + k̄13n3,13 + k̄14 + k̄15n3,15 +

k̄16n3,16 + k̄17n3,17 + k̄18n3,18 + k̄19n3,19 + k̄2n3,2 + k̄20n3,20 + k̄21n3,21 + k̄22n3,22 + k̄23n3,23 + k̄24n3,24 + k̄25n3,25 +

k̄26n3,26 + k̄27n3,27 + k̄3n3,3 + k̄4n3,4 + k̄5n3,5 + k̄6n3,6 + k̄7n3,7 + k̄8n3,8 + k̄9n3,9
b3 = by(−d1k1 − d10k10 − d11k11 − d12k12 + d16k16 + d17k17 + d18k18 − d19k19 − d2k2 − d20k20 − d21k21 + d25k25 +

d26k26 + d27k27 − d3k3 + d7k7 + d8k8 + d9k9) + k̄1n2,1 + k̄10n2,10 + k̄11n2,11 + k̄12n2,12 + k̄13n2,13 + k̄14 + k̄15n2,15 +

k̄16n2,16 + k̄17n2,17 + k̄18n2,18 + k̄19n2,19 + k̄2n2,2 + k̄20n2,20 + k̄21n2,21 + k̄22n2,22 + k̄23n2,23 + k̄24n2,24 + k̄25n2,25 +

k̄26n2,26 + k̄27n2,27 + k̄3n2,3 + k̄4n2,4 + k̄5n2,5 + k̄6n2,6 + k̄7n2,7 + k̄8n2,8 + k̄9n2,9
b4 = −d1k1 − d10k10 + d12k12 − d13k13 + d15k15 − d16k16 + d18k18 − d19k19 + d21k21 − d22k22 + d24k24 − d25k25 +

d27k27 + d3k3 − d4k4 + d6k6 − d7k7 + d9k9 + k̄1n1,1 + k̄10n1,10 + k̄11n1,11 + k̄12n1,12 + k̄13n1,13 + k̄14 + k̄15n1,15 +

k̄16n1,16 + k̄17n1,17 + k̄18n1,18 + k̄19n1,19 + k̄2n1,2 + k̄20n1,20 + k̄21n1,21 + k̄22n1,22 + k̄23n1,23 + k̄24n1,24 + k̄25n1,25 +

k̄26n1,26 + k̄27n1,27 + k̄3n1,3 + k̄4n1,4 + k̄5n1,5 + k̄6n1,6 + k̄7n1,7 + k̄8n1,8 + k̄9n1,9
b5 =

1
2 ((bz

2
−1)d2

1 k1+bz
2d2

19k19+bz
2d2

2 k2+bz
2d2

20k20+bz
2d2

21k21+bz
2d2

22k22+bz
2d2

23k23+bz
2d2

24k24+bz
2d2

25k25+

bz
2d2

26k26 +bz
2d2

27k27 +bz
2d2

3 k3 +bz
2d2

4 k4 +bz
2d2

5 k5 +bz
2d2

6 k6 +bz
2d2

7 k7 +bz
2d2

8 k8 +bz
2d2

9 k9 +2d1k̄1(n1,1 −bzn3,1)+
2bzd19k̄19n3,19 − 2bzd2k̄2n3,2 + 2bzd20k̄20n3,20 + 2bzd21k̄21n3,21 + 2bzd22k̄22n3,22 + 2bzd23k̄23n3,23 + 2bzd24k̄24n3,24 +

2bzd25k̄25n3,25+2bzd26k̄26n3,26+2bzd27k̄27n3,27−2bzd3k̄3n3,3−2bzd4k̄4n3,4−2bzd5k̄5n3,5−2bzd6k̄6n3,6−2bzd7k̄7n3,7−

2bzd8k̄8n3,8−2bzd9k̄9n3,9−d2
10k10+2d10k̄10n1,10−d2

12k12−2d12k̄12n1,12−d2
13k13+2d13k̄13n1,13−d2

15k15−2d15k̄15n1,15
−d2

16k16 +2d16k̄16n1,16 −d2
18k18 −2d18k̄18n1,18 −d2

19k19 +2d19k̄19n1,19 −d2
21k21 −2d21k̄21n1,21 −d2

22k22 +2d22k̄22n1,22 −

d2
24k24 − 2d24k̄24n1,24 − d2

25k25 + 2d25k̄25n1,25 − d2
27k27 − 2d27k̄27n1,27 − d2

3 k3 − 2d3k̄3n1,3 − d2
4 k4 + 2d4k̄4n1,4 − d2

6 k6 −

2d6k̄6n1,6 − d2
7 k7 + 2d7k̄7n1,7 − d2

9 k9 − 2d9k̄9n1,9)

Appendix D. The explicit expression for the term f̄14 in Eq. (25) in the case of nonzero source f ̸= 0 in the
Poisson equation

The expression for f̄14 including the first two orders with respect to hhh is presented below. The expression for
f̄14 up to the eight order with respect to hhh is given in the attached file ‘RHS-Pois.pdf’

f̄14 =
h2

2 (k1d2
1 −2k̄1n1,1d1 +d2

10k10 +d2
12k12 +d2

13k13 +d2
15k15 +d2

16k16 +d2
18k18 +d2

19k19 +d2
21k21 +d2

22k22 +d2
24k24 +

d2
25k25 + d2

27k27 + d2
3 k3 + d2

4 k4 + d2
6 k6 + d2

7 k7 + d2
9 k9 − 2d10k̄10n1,10 + 2d12k̄12n1,12 − 2d13k̄13n1,13 + 2d15k̄15n1,15 −

2d16k̄16n1,16 +2d18k̄18n1,18 −2d19k̄19n1,19 +2d21k̄21n1,21 −2d22k̄22n1,22 +2d24k̄24n1,24 −2d25k̄25n1,25 +2d27k̄27n1,27 +

2d3k̄3n1,3 − 2d4k̄4n1,4 + 2d6k̄6n1,6 − 2d7k̄7n1,7 + 2d9k̄9n1,9) f14

+
h3

6 (3(k̄1n3,1d2
1 +bz(−k1d3

1 +2k̄1n1,1d2
1 +d3

19k19+d3
21k21+d3

22k22+d3
24k24+d3

25k25+d3
27k27−d3

3 k3−d3
4 k4−d3

6 k6−d3
7 k7−

d3
9 k9−2d2

19k̄19n1,19+2d2
21k̄21n1,21−2d2

22k̄22n1,22+2d2
24k̄24n1,24−2d2

25k̄25n1,25+2d2
27k̄27n1,27−2d2

3 k̄3n1,3+2d2
4 k̄4n1,4−

2d2
6 k̄6n1,6 +2d2

7 k̄7n1,7 −2d2
9 k̄9n1,9)+d2

10k̄10n3,10 +d2
12k̄12n3,12 +d2

13k̄13n3,13 +d2
15k̄15n3,15 +d2

16k̄16n3,16 +d2
18k̄18n3,18 +

d2
19k̄19n3,19 + d2

21k̄21n3,21 + d2
22k̄22n3,22 + d2

24k̄24n3,24 + d2
25k̄25n3,25 + d2

27k̄27n3,27 + d2
3 k̄3n3,3 + d2

4 k̄4n3,4 + d2
6 k̄6n3,6 +

d2
7 k̄7n3,7 + d2

9 k̄9n3,9) f14
(0,0,1)

+ 3(k̄1n2,1d2
1 + by(−k1d3

1 + 2k̄1n1,1d2
1 − d3

10k10 − d3
12k12 + d3

16k16 + d3
18k18 − d3

19k19 −

d3
21k21+d3

25k25+d3
27k27−d3

3 k3+d3
7 k7+d3

9 k9+2d2
10k̄10n1,10−2d2

12k̄12n1,12−2d2
16k̄16n1,16+2d2

18k̄18n1,18+2d2
19k̄19n1,19−

2d2
21k̄21n1,21−2d2

25k̄25n1,25+2d2
27k̄27n1,27−2d2

3 k̄3n1,3−2d2
7 k̄7n1,7+2d2

9 k̄9n1,9)+d2
10k̄10n2,10+d2

12k̄12n2,12+d2
13k̄13n2,13+

d2
15k̄15n2,15+d2

16k̄16n2,16+d2
18k̄18n2,18+d2

19k̄19n2,19+d2
21k̄21n2,21+d2

22k̄22n2,22+d2
24k̄24n2,24+d2

25k̄25n2,25+d2
27k̄27n2,27+

d2
3 k̄3n2,3+d2

4 k̄4n2,4+d2
6 k̄6n2,6+d2

7 k̄7n2,7+d2
9 k̄9n2,9) f14

(0,1,0)
+(−k1d3

1 +3k̄1n1,1d2
1 −d3

10k10+d3
12k12−d3

13k13+d3
15k15−

d3
16k16 +d3

18k18 −d3
19k19 +d3

21k21 −d3
22k22 +d3

24k24 −d3
25k25 +d3

27k27 +d3
3 k3 −d3

4 k4 +d3
6 k6 −d3

7 k7 +d3
9 k9 +3d2

10k̄10n1,10 +

3d2
12k̄12n1,12 +3d2

13k̄13n1,13 +3d2
15k̄15n1,15 +3d2

16k̄16n1,16 +3d2
18k̄18n1,18 +3d2

19k̄19n1,19 +3d2
21k̄21n1,21 +3d2

22k̄22n1,22 +

3d2
24k̄24n1,24 +3d2

25k̄25n1,25 +3d2
27k̄27n1,27 +3d2

3 k̄3n1,3 +3d2
4 k̄4n1,4 +3d2

6 k̄6n1,6 +3d2
7 k̄7n1,7 +3d2

9 k̄9n1,9) f14
(1,0,0))+· · ·

with f (i, j,k)
14 =

∂ i+ j+k f14
∂x i ∂y j ∂zk .

Appendix E. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2020.112985.
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