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Abstract—We propose a method that simultaneously identifies
a sparse transfer matrix and a disturbance signal for a multi-
zone building’s temperature dynamics from measurements of
inputs and outputs. The proposed method is based on solving a
convex optimization problem whose cost function involves an `1-
penalty to promote a sparse solution. The method ensures that
the transfer matrix is sparse, so that only dominant interactions
among zones are retained in the model. The disturbance, which
is mostly occupant-induced, is assumed to be a piecewise-
constant signal, which aids identification since the derivative
of a piecewise-constant signal is a sparse signal. We test our
method on data from a virtual building (a simulation model)
and a real building. Results from the virtual building show that
the proposed method can accurately identify a sparse network
model and a transformed disturbance. Results from the real
building data - that does not have a ground truth - show that
the method produces sensible results.

Index Terms—system identification, `1-penalty, sparsity, dis-
turbance, MIMO system

I. INTRODUCTION

The heating, ventilation, and air conditioning (HVAC)
system of a building is responsible for maintaining indoor
climate, which directly affects health and comfort of occu-
pants [1], [2]. HVAC systems are also a major consumer of
energy [3]. There is a growing and significant interest in im-
proving energy efficiency of HVAC systems through advanced
control methods. Occupant comfort and health serves as
important constraints to the control objective: comfort plays a
crucial role in determining productivity [4], [5]. More recently
there is interest in providing occupants of office buildings
personalized comfort through advanced control. Individuals
differ in their perceptions of thermal comfort [6], [7]. Ideally
the thermal and air quality measure of each occupant’s
space should be controlled to meet that particular individual’s
preference. Products such as comfyTM(www.comfy.app)
are examples of such efforts. In these applications, energy
use may serve as a constraint rather than being the objective.

Such control applications need a low-order model relating
the inputs to outputs. For a modern commercial building
equipped with variable air volume (VAV) systems, control
inputs may include rate of airflow and rate of cooling/heating.
Relevant outputs include temperature at a minimum, but can
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Fig. 1. An example of a building layout with multiple inputs and outputs.

also include humidity, concentration of pollutants etc. In this
paper we consider temperature as the output, and denote by
“zone” a space whose temperature has an impact on at least
one occupant’s comfort and health.

The complexity of the physical processes that determines
the input-output behavior makes control-oriented modeling
a challenging task. The modeling problem gets exacerbated
when one considers an open-plan office, or a building in
which there are considerable thermal interactions among the
zones, such as the one shown in Figure 1. Due to inter-
zone thermal interaction, each actuator (VAV box) may impact
several outputs (temperatures at several zones).

This paper is about identifying control-oriented models
of multi-zone buildings from measurements of inputs and
outputs. It is envisioned that the identified models will be
used for predictive control to provide higher energy efficiency
and/or personalized comfort, though the control design prob-
lem is outside the scope of this paper. A data-driven approach
is chosen over a physics-based approach for modeling because
of the complexity of the underlying physics.

A key bottleneck in data-driven identification of thermal
models of buildings is the presence of large exogenous dis-
turbances (various unknown heat gains). The thermal energy
expended by the HVAC system is mostly spent to reject these
disturbances; hence these disturbances cannot be assumed to
be small. Even without inter-zone interactions, presence of
unknown disturbances has been a bottleneck in identifying
dynamic models of single-zone building models. Even though
there is a long history of identifying building models from
data (see, e.g., [8], [9]), only recently has the effect of
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disturbances been addressed in a principled manner; see [10],
[11]. These papers are limited to single zones.

The problem we seek to address is that of simultaneously
identifying (1) a multiple-input multiple-output (MIMO)
transfer matrix - the plant - and (2) the exogenous dis-
turbances, from measurements of inputs and outputs. The
transfer matrix can be visualized as a bipartite graph, with
edges from the input nodes to output nodes; see Figure 2.
We seek to identify a sparse graph with a small number of
edges. It is hoped that a sparse model will retain information
of only the dominant interactions, and thereby help control
computations.

Allowing an arbitrary disturbance signal is likely to lead to
over-fitting: the disturbance absorbs all model mismatch and
thus is not useful for prediction. We assume that exogenous
disturbance is piecewise-constant, so that its derivative is a
sparse signal, i.e., mostly zero. The motivation behind this
assumption is as follows. The disturbance is mostly occupant-
induced: it is dominated by heat gain from occupants’ bodies
and from equipments such as computers, lights and printers.
And, occupancy in commercial buildings can be modeled as
a piecewise-constant signal: people come in at a particular
time and leave at the end of the workday, perhaps with
a temporarily absence during lunch [12]. Since occupancy
varies in an approximately piecewise-constant manner, so
should the disturbance induced by occupants.

The identification problem is posed as an `1-regularized
least squares problem; the `1-penalty promotes a sparse
solution. Recent years have seen advances in both theory
and applications of identifying sparse models through `1-
regularization; see [13]–[15] and references therein.

While there are a number of papers on the problem of
modeling multi-zone building dynamics (see [16]–[18] and
references therein), to the best of our knowledge the only
reference that simultaneously identifies a plant model and
disturbance for a multi-zone building is [19]. Ref. [19]
estimates the plant parameters and an output disturbance that
encapsulates the effect of an unknown input disturbance. The
method results in a complete interaction model connecting
each input-output pair. The method in [19] require solving
a non-convex problem. In contrast, the method proposed
here involves convex optimization and results in a sparse
interaction model. We also show that the proposed method
always produces a unique solution. A related reference on
multi-zone modeling is [20], which identifies a single-zone
equivalent model of a multi-zone building.

A recent body of work on network structure identification
is closely related to this paper, e.g., [14], [15], [21], [22].
Ref. [21] is concerned with the blind identification problem
in which input measurements are not available, only output
measurements are. Ref. [15] identifies the binary structure of
the network. Ref. [14] is concerned with experiment design to
aid identification of the network structure, and [22] provides
an identification method when a subset of nodes can be
actuated and measured.

A preliminary version of this work is presented in [23].
Compared to that paper this article makes two contribu-
tions. One, we provide results characterizing the optimization

problem’s solution that furthermore helps in choosing the
regularization parameter. Two, we provide evaluation of the
method on data from a real building.

The rest of the paper is organized as follows. Section II
formulates the problem precisely, Section III describes the
proposed algorithm, and Section IV describes evaluation re-
sults. The paper concludes with some comments in Section V.

II. PROBLEM FORMULATION

The output node set, denoted by Vy , is the set of temper-
ature measurements that are outputs of the model we wish
to identify. The output nodes can be visualized as locations
with temperature sensors. The number of output nodes is
denoted by ny (= |Vy|, | · | denotes cardinality). The input
node set Vu contains the set of controllable inputs (cooling
or heating rate) and the set of exogenous inputs (outside air
temperature and solar irradiance). The controllable inputs can
be physically visualized as VAV boxes; there is a one to one
mapping between them. In the building shown in Figure 1,
there are 5 inputs (3 VAV boxes, outside temperature and solar
irradiance) and 5 outputs. Figure 4 shows another example;
it has 6 input nodes (4 VAV boxes) and 10 output nodes (8
cubicles and 2 conference rooms).

Time is measured by a discrete counter k = 0, 1, 2, . . . .
At time k, let yi[k] ∈ R be the measured air tempera-
ture at output node i, uj [k] be the vector of three known
inputs : (1) the rate of heat gain due to the air sup-
ply, qhvac(kW), (2) the outside air temperature Toa (◦C),
(3) the solar irradiance ηsol(kW/m2), at input node j, and
wi[k] be the unknown disturbance (total heat gain due to
occupants, plug loads etc.), at output node i. We denote
y[k] = [y1[k], y2[k], . . . ,yny [k]]T , u[k] = [u1[k], u2[k], . . . ,
unu

[k]]T , and w[k] = [w1[k], w2[k], . . . , wny
[k]]T .

Our starting point is a MIMO (multiple-input-multiple
output) transfer matrix in Z-transform domain:

Y (z−1) = Gu(z−1)U(z) +Gw(z−1)W (z−1)

=
1

D(z−1)

(
Nu(z−1)U(z−1) +Nw(z−1)W (z−1)

)
=

1

D(z−1)

(
Nu(z−1)U(z−1) + W̄ (z−1)

)
, (1)

with Y, W̄ ∈ Cny , Gu, Nu ∈ CNy×Nu , D ∈ C, Gw, Nw ∈
CNy×Ny , where the second equality is obtained by making
D(z−1) the least common multiple of the denominators of
Gu(z−1) and Gw(z−1), and the third equality is obtained by
defining W̄ (z−1) := Nw(z−1)W (z−1). Here we assume Nw
is diagonal, meaning output yi is only affected by disturbance
wi. Denote ρ as the order of D(z−1), then,

D(z−1) = 1−
ρ∑
k=1

θkz
−k,

Nu(z−1) =


N

(1,1)
u (z−1) . . . N

(1,j)
u (z−1) . . .

...
...

...
...

N
(i,1)
u (z−1) . . . N

(i,j)
u (z−1) . . .

...
...

...
...

 ,
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W̄ (z−1) =
[
. . . , Nwi

(z−1)wi(z
−1), . . .

]T
,

for some plant parameters θk’s, in which

N (i,j)
u (z−1) =

ρ∑
k=0

θ(nu(i−1)+j)(ρ+1)+kz
−k.

The interactions captured by the transfer matrix model
described above can be visualized by a graph G = (V, E)
with node set V = Vu ∪ Vy and edge set E ⊂ Vu × Vy .
An edge e = (i, j) from j ∈ Vu to i ∈ Vy exists if and
only if the (i, j)th entry of the numerator matrix Nu satisfies
Nji(z) 6= 0 for every z. It is a bipartite graph without cycles:
an edge is possible between an input node and an output node
(sensor) but not between input pairs or output pairs [24]. In
the extreme case when every actuator affects every sensor,
the graph will look like what is shown in Figure 2. Note an
output node yi is also affected by disturbance wi. In practice
the graph will be far more sparse: only ambient temperature
and solar irradiance can affect many outputs, each of the other
inputs can only affect a small number of outputs.

Input nodes Output nodes
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wny

Fig. 2. The most general case of the network structure of a multi-zone HVAC
model: a complete directed bipartite graph without cycles, with an edge from
every input node to every output node.

Following assumptions are made to reduce the number
of free parameters. The first assumption means there is a
“building-level disturbance”; the disturbance at a zone is
a scaled version of it. The second assumption means the
dynamic responses from disturbances to temperatures are the
same for every zone.

Assumption 1: Define wbldg[k] :=
∑ny

i=1 wi[k]. We assume
∃ kw = [k1

w, . . . , k
ny
w ]T ∈ Rny ,

∑ny

i=1 k
i
w = 1, such that

wi = kiwwbldg, ∀ i = 1, . . . , ny .
Assumption 2:

∃ N bldg
w (z−1), s.t. N bldg

w (z−1) = Nwi
(z−1), ∀ i = 1, . . . , ny.

Then W̄ (z−1) can be rewritten as

W̄ (z−1) =
[
. . . , kiwN

bldg
w (z−1)wbldg(z

−1), . . .
]T
.

Performing an inverse Z-transformation on (1) and defining

w̄bldg(z
−1) := Z−1

(
N bldg
w (z−1)wbldg(z

−1)
)

(2)

as the transformed disturbance, yields a difference equation,
from which we obtain the linear regression form:

y[k] = Φ[k]θ, k = ρ+ 1, . . . , kmax (3)

where θ = [θTpd , θ
T
pn , w̄

T
bldg]

T , in which θpd = [θ1, . . . , θρ]
T

are plant parameters that appear in D(z−1), θpn =
[θρ+1, . . . , θnynu(ρ+1)+ρ]

T are plant parameters that appear
in Nu(z−1), and w̄bldg = [w̄bldg[ρ + 1], . . . , w̄bldg[kmax]]T

are the transformed disturbance defined in (2), where kmax
is the number of the time indices for which data are collected.
Eq. (3) can be further written as:

Φ :=


...
φi

...

 ∈ Rny(kmax−ρ)×
(
kmax+nynu(ρ+1)

)
, i = 1, . . . , ny,

where each block φi has the form:

φi =


yi[ρ+ 1] . . . yi[1] φiu1

. . . φiuj
. . . kiwe1

...
...

...
...

...
yi[k] . . . yi[k − ρ] φiu1

. . . φiuj
. . . kiwek−ρ

...
...

...
...

...


∈ R(kmax−ρ)×

(
kmax+nynu(ρ+1)

)
, j = 1, . . . , nu,

where ek is the k-th canonical basis vector of Rkmax−ρ in
which the 1 appears in the k-th place, and

φiuj
=
[
01×(ρ+1)(i−1) uj [k] . . . uj [k − ρ] 01×(ρ+1)(ny−i)

]
∈ R1×ny(ρ+1).

Our goal is to identify from measurements of inputs and
outputs, (1) a transfer matrix Gu(z−1) that is sparse, meaning
its graph has a small number of edges, and (2) the signal
{w̄bldg[k]}, so that the resulting model (transfer matrix and
transformed disturbance) predicts the output well.

Since the number of samples is typically large, Φ is a tall
matrix. And, due to the dependency of Φ on (noisy) measure-
ments of inputs and outputs and the presence of canonical
basis vectors on its rightmost block, it is straightforward to
verify that Φ is full column-rank except in case of degenerate
data. That is, Φ is full column-rank almost surely (a.s.).
Though a least squares solution to (3) can be obtained, it
is not likely to lead to a sparse solution. We therefore seek
an alternative to least squares.

III. PROPOSED ALGORITHM

We seek to obtain a sparse model capturing only dominant
interactions from input nodes to output nodes. Such a model
can be promoted by penalizing the `1-norm of θpn , the
vector of the coefficients that determines the numerator matrix
Nu(z−1). Note that the parameters that determine the denom-
inator D(z−1) need not to be sparse. As for the disturbance,
recall the discussion in Section I that the disturbance can
be assumed to be piecewise-constant. Since the transformed
disturbance w̄bldg[k] is a linear combination of time-shifted
value of the disturbance wbldg[k], the same should hold for
w̄bldg[k]. The derivative of such a signal with respect to time is
sparse, i.e., mostly zero. Hence we seek a piecewise-constant
w̄bldg by penalizing the `1-norm of the derivative of w̄bldg.
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The discrete time derivative is D1w̄bldg, where D1 is the first
difference matrix:

D1 :=


−1 1 0 . . . . . .
0 −1 1 0 . . .

. . . . . .
. . . . . . 0 −1 1

 ∈ R(kmax−ρ−1)×(kmax−ρ).

Let S ∈ R
(

(ρ+1)(nynu−1)+kmax

)
×
(

(ρ+1)nynu+kmax

)
be de-

fined as

S :=

[
0(

(ρ+1)(nynu−1)+kmax

)
×ρ

I(ρ+1)nynu
0

0 D1

]
,

so that

(Sθ)T = [θTpn , (D1w̄bldg)
T ]. (4)

We therefore pose the following optimization problem to es-
timate the plant transfer matrix and transformed disturbance:

θ̂ = arg min
θ

1

2
‖y − Φθ‖22 + λ‖Sθ‖1, (5)

where λ ≥ 0 is an user-defined weight. The `1 penalty is
used to encourage a solution θ̂ so that Sθ̂ is sparse, which
will make the network model have a small number of edges
and the disturbance signal piecewise-constant. Since Φ is full
column-rank a.s., the solution to (5) is unique a.s. due to strict
convexity of the objective function.

The problem (5) is closely connected to the so-called lasso
problem [13]:

χ̂ = arg min
χ

1

2
‖z −Ψχ‖22 + λ‖χ‖1. (6)

Our problem (5) falls into the category of generalized lasso
problem since the `1-norm penalty is not on the decision
variable θ but on Sθ [25].

A. Regularization Parameter Selection

The solution to (5) depends critically on the value of λ. In
this section we propose a method to select λ. This requires
first transforming (5) into form (6), then showing that there
is a λmax so that for all λ ≥ λmax, the unique solution to (5)
satisfies Sθ̂ = 0, and finally describing a heuristic to select
λ by searching in the range [0, λmax].

1) Determining λmax: In order to determine the value of
λmax, first we need to transform our problem (5) into form (6)
using the following theorem.

Theorem 1 ( [26]): For Φ ∈ Rn×p, S ∈ Rm×p, if matrix
H = [ΦT , ST ]T has full column rank and S has full row rank,
then the generalized lasso problem (5) can be transformed into
the lasso problem (6) with transformation:

χ = Sθ, Ψ = Q1Q
†
2,

z = [In −Q1(Ip −Q†2Q2)Q†1]y,

in which Q1 ∈ Rn×p, Q2 ∈ Rm×p are defined from the
unique QR decomposition:

H =

[
Φ
S

]
= QR =

[
Q1

Q2

]
R. �

Our problem (5) can be transformed into the lasso form (6)
as it satisfies conditions in Theorem 1: H = [ΦT , ST ]T has
full column rank a.s. since Φ has full column rank a.s., and
S has full row rank.

Proposition 1: If λ ≥ λmax := ‖ΨTz‖∞, then the unique
solution θ̂ to (5) produces a network with no edges (θ̂pn = 0)
and a constant disturbance ( ˆ̄wbldg = c1 for some c). �

Proof of Proposition 1: From optimality condition for (6),
we know

−ΨT (z −Ψχ) + λν = 0, (7)

where ν is the sub-gradient of χ,

νi ∈

 {+1}, χi > 0
{−1}, χi < 0, i = 1, ..., kmax − 2.

[−1, 1] , χi = 0
(8)

Substituting a λ that is larger than ‖ΨTz‖∞ and χ = 0

into (7) and solving for ν, we get ν = ΨT z
λ , which implies (8)

also holds: |νi| ≤ 1 ∀i since λ ≥ ‖ΨTz‖∞. Therefore χ = 0
is a solution to (6). Notice Ψ ∈ Rn×m, with n > m, has full
column rank due to

rank(Ψ) = rank(Q1Q
†
2)

≥ rank(Q1) + rank(Q†2)− p = m.

Therefore, our transformed lasso problem (6) - with χ = Sθ
- is strictly convex and thus has a unique solution. From the
analysis above, we know this unique solution will produce
χ̂ = 0 = Sθ̂. The conclusion now follows from (4). �

B. Heuristic for selecting λ

From the discussion above it follows that when λ ≥ λmax,
the unique solution satisfies Sθ̂ = 0. That is, the estimated
transfer matrix is 0 and the estimated transformed disturbance
is a constant signal. As λ decreases, a non-zero transfer matrix
will result. For λ = 0 we will get the least squares solution
to y = Φθ. This solution may overfit the data, resulting
in a noisy transformed disturbance and a highly connected
network model. Therefore, we expect that for a λ at some
value between 0 and λmax we will obtain a sparse θ̂pn
and a non-constant ˆ̄wbldg that will fit the data well without
overfitting it, and are useful for prediction. The remaining
problem is to pick a λ within the range [0, λmax].

Two common heuristics for choosing λ for the lasso prob-
lem (6) are cross-validation [13] and L-curve-based curvature
methods [27]. Cross validation divides datasets into multiple
folders and requires that parameters to be estimated are the
same in each folder. The parameters in our problem contain
transformed disturbances, which may differ from one day to
the next. The L-curve, which is a log-log plot of the norm of
the solution norm ‖χ‖1 vs. the corresponding residual norm
‖z−Ψχ‖2, can graphically display the trade-off between the
size of a regularized solution and how well it fits the data. An
optimal regularization parameter that minimize the trade-off
lies at the corner of such L-curve. For the L-curve method,
a solution path that changes monotonically with respect to
λ is essential, i.e., (ΨTΨ)−1 in (6) needs to be diagonally
dominant [26]. However, since Ψ depends on data, one can
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not show this is satisfied in our case. Thus, none of these
methods are suitable.

||
z
-Ψ
χ
||

2
2
(1

0
 -

6
)

||
χ
||

1

||z-Ψχ||2
2

||χ||1

λ1 λ20 λmax

50 5

Fig. 3. Illustration of regularization parameter selection

1) Heuristic for selecting λ: The proposed heuristic to
choose λ is inspired by the L-curve method. First, we plot
both the solution norm and residual norm individually against
λ by repeatedly solving Problem (5) for λ ∈ [0, λmax]. An
illustration of these two plots is shown in Figure 3. Second,
identify a value λ1 so that the solution norm is smaller than
a user-defined threshold for any λ > λ1, and then identify λ2

so that the residual norm is smaller than another user-defined
threshold for any λ < λ2. If λ2 > λ1, choose λ to be λ1. If
not, pick another threshold and continue until this condition
is met.

IV. EVALUATION

The proposed method is evaluated in two ways. In the first
case, data generated by a dynamic model of a multi-zone
building - a set of coupled ODEs - is used to test the method.
The simulation model used to generate data is referred as
a “virtual building” in the sequel. In the second case, the
proposed algorithm is applied to measurements collected from
a real building. In both cases, the building is limited to one
with 6 inputs (4 zone cooling powers, ambient temperature,
and solar irradiance). A 6th order model is the lowest order
that can have different time-constants for each input. Hence
we test the method with ρ = 6 for both cases.

All numerical results presented in this paper are obtained
by using the cvx package for solving convex problems in
MATLAB c© [28].

A. Case 1: Evaluation with Virtual Building Data

1) Virtual building description: The floor plan of the vir-
tual building is shown in Figure 4. A RC (resistor-capacitor)
network model is used as the virtual building as shown in
Figure 5. RC network model is a common modeling paradigm
for building thermal dynamics [29]. The parameters of the
model were chosen in the following manner. Reference [30]
provides an estimate of the RC network model parameters
of a single zone by calibration with data collected from a
zone in a building at the University of Florida campus (Pugh
Hall). This single zone model has two C’s and two R’s. We
use these parameters for each of the eight small zones in
the virtual building. For the two larger zones, the C’s are
chosen as three times these values and R’s as one thirds.
Other parameters, such as effective area for solar irradiance,
are chosen to be the same as those in [30]. The virtual building
is a set of coupled ODEs with 15 states (10 measurable

VAV1 VAV2

VAV3

O
u
ts

id
e

Sun

zone 1

VAV4

zone 5

zone 2

zone 6

zone 3 zone 4

zone 7 zone 8

zone 9 zone 10

Fig. 4. Floor plan of the virtual building used to generate data: VAV boxes 1
and 2 directly deliver air to each of the four nearby zones while VAV boxes
3 and 4 only deliver to zones 9 and 10, respectively.

temperatures, one for each output node, and 5 unmeasurable
temperatures at 5 inter-connection points of output nodes),
6 inputs (4 controllable heat gains from HVAC system,
ambient temperature, and solar irradiance) and 10 exogenous
disturbances, one for each zone. The input signals are chosen
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Fig. 5. A schematic of the “RC” network model that constitutes the virtual
building. qint’s are the “internal heat gain”, i.e., the disturbances. Ae is the
effective area.

as follows: the input qhvac is chosen by scaling the measured
cooling power from the same zone in Pugh Hall that was
used for the single zone model in [30]. This signal is shown
in Figure 6 on the top. Ambient temperature is taken from
weatherunderground.com, and solar irradiance data is taken
from NSRDB: https://nsrdb.nrel.gov/, both for Gainesville,
FL. These are shown in Figure 6 (bottom). Disturbances are
chosen somewhat arbitrarily, by scaling CO2 data from Pugh
Hall, and are shown in Figure 7. It is important to note that
disturbances do not satisfy Assumption 1.

2) Virtual building results:
a) Zone temperature prediction: The transfer matrix and

transformed disturbance identified using data from one week
(training dataset) are used to predict zone temperatures for the
next week (validation dataset). Table I shows the RMS values
of the prediction errors for each zone. The maximum RMS
value is 2.09◦C, which occurs in zone 1, and the minimum
RMS value is 0.599◦C from zone 8. Figure 8 shows the
measured and predicted temperature for these two zones.

b) Plant/network identification: Comparison of iden-
tified transfer matrix with the ground truth can be done

weatherunderground.com
https://nsrdb.nrel.gov/
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Fig. 6. Training data for algorithm evaluation: qhvac’s are for virtual building
evaluation; ambient temperature and solar irradiance are for both virtual
building and real building evaluations.
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Fig. 7. Virtual building: disturbance data for algorithm evaluation. Notice
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in a straightforward manner by comparing the frequency
responses. But this method is cumbersome due to the large
number of input-output pairs (a total of 60). In addition, it
does not help visualizing the sparsity of the identified model
Ĝu or the ground truth Gu. Another issue is that the entries
of the transfer matrix of neither the virtual building nor the
identified model will be strictly zero. There are no zero entries
in the matrix Gu due to the interaction among states of the
virtual building, which makes every entry of Gu non-zero.
As for the identified model Ĝu that is constructed from θ̂,
finite-precision numerical calculations cause the entries of θ̂
to be non-zero (albeit extremely small) even when they are

Mon Tue Wed Thur Fri Sat Sun

12

14

16

18

20

Measurement for zone1
Prediction for zone1
Measurement for zone8
Prediction for zone8

Fig. 8. Evaluation on virtual building: temperature measurements and
predictions for zones 4 and 6 (validation dataset).

TABLE I
EVALUATION ON VIRTUAL BUILDING: RMS VALUES OF THE ZONE
TEMPERATURE PREDICTION ERROR (◦C) (VALIDATION DATASET).

zone 1 zone 2 zone 3 zone 4 zone 5
2.09 1.31 1.48 0.934 1.67

zone 6 zone 7 zone 8 zone 9 zone 10
1.33 0.795 0.599 1.00 1.84

theoretically guaranteed to be 0 (cf. Proposition 1).
In view of the above, a transfer matrix is visualized through

the total energy of the impulse response of Gp`(z−1), which
is a measure of gain between input-output pair u` and yp.
Denoting by gp`[k] the impulse response, we define

EGp`
:=

∞∑
0

|gp`[k]|2 =
1

2π

∫ 2π

0

|Gpl(ejΩ)|2dΩ

where the equality follows from Perseval’s relation [31] and
Ω is the angular frequency in radians per sample. When
the integral is computed from the identified transfer matrix
elements, it is denoted as EĜp`

. The interaction strengths in
the various input-output pairs can be visualized by examining
the values of the matrix EG := [EGp`

] (or its counterpart EĜ).
Figure 9 shows the heat maps of EG and EĜ. Markers with

darker color represent higher energy. The ground-truth on
input-output interactions are consistent with what we expect
from the building layout shown Figure 4. For instance, VAV
box 1 supplies air to zones 1,2,5,6, so u1 should have a strong
impact on y1, y2, y5, y6, while its effect on the other outputs
are expected to be weak. Similar trends are also expected
for the other inputs from VAV boxes. Zones 4 and 8 are
perimeter zones while the rest are interior zones, hence Ta
should affect zones 4 and 8 much more than other zones.
Zones 9,10 should be strongly impacted by ηsol since they
have windows directly exposed to the sun. These trends are
observed in Figure 9 (ground truth).

Comparing the estimates with the ground truth we see
that the proposed algorithm identifies dominant network in-
teractions quite accurately. The estimated transfer functions
from exogenous inputs u5 (Ta) and u6 (ηsol) seem to be
less accurate than from the controllable inputs. We believe
it is because of lack of adequate excitation in the exogenous
inputs: both ambient temperature and solar irradiance is
dominated by a single periodic component with a 24-hour
period. Among these two, the estimate of transfer functions
from input Ta is less accurate than that from input ηsol

because signal Ta is more correlated to qhvac and disturbance
than ηsol; see Figure 6.

c) Disturbance: There is no ground truth w̄bldg[k] that
can be compared to the estimated ˆ̄wbldg since Assumptions 1
and 2 are not satisfied in the virtual building. We there-
fore compare the estimated transformed disturbance, ˆ̄wbldg,
with the “total building disturbance” defined as wbldg[k] :=∑i=ny

i=1 wi[k]. Figure 10 shows a comparison between wbldg
and ˆ̄wbldg, which shows that the signals are highly correlated.
In fact, the covariance between these two time series is 0.821.
This is quite high since ˆ̄wbldg is an estimate of a linear
transformation of the disturbance, not of the disturbance itself.
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B. Case 2: Evaluation with Real Building Data

1) Building description: We now apply the algorithm from
data collected from Pugh Hall, a building in the University
of Florida campus that houses offices, classrooms and con-
ference rooms. Evaluation of the method with data from a
real building is challenging since there is no ground truth to
compare with. However, if the zones are widely separated
in space, it is reasonable to believe that the control input
(cooling power) to one zone should not have any effect on the
output (zone temperature) at the other zones. That is, for any
two distinct zones i and j, we expect Gij(z) = 0. Checking
for such a sparse structure of the estimated transfer matrix
provides a sanity check.

We collect input-output data from 4 zones that are widely
separated, and in fact are located on two different floors
of the building. They are shown in Figure 11. Other input
components, ambient temperature and solar irradiance, are
the same as in virtual building case described previously.

2) Real building results:
a) Transfer matrix: The heat map of EĜ is shown in

Figure 12. We see from the figure that the graph EĜ is
approximately diagonal for i, j = 1, . . . , 4. This indicates the
algorithm correctly identifies the lack of thermal interaction
among these four zones. Note that u6(ηsol) appears to have a

First Floor

zone 3

zone 1

zone 4

zone 2

Second Floor

N

Fig. 11. Floor plan of Pugh Hall. The four zones that are chosen to form
the ”multi-zone building”, on which the method is tested, are shown as red
circles.
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Fig. 12. Evaluation on real building: comparison of the heat map between
the EGij

and EĜij
. Left from the solid lines are controllable inputs (qhvac)

and right from the solid line are exogenous inputs u5 (Ta) and u6 (ηsol).

strong effect on the temperature of these zones except for zone
3. This is reasonable because all four zones have windows,
but zone 3 is the only zone that has a window facing north
which is shadowed by trees. The estimates for input Ta is
less accurate, likely because this signal is correlated to qhvac.

b) Disturbance: Since the disturbances are unknown,
we compare the estimated transformed disturbance ˆ̄wbldg
to measurements of CO2. If the unmeasured disturbance is
indeed mostly due to occupants, and since CO2 concentration
is affected strongly by occupancy, we expect the disturbance
in a zone to be highly correlated to CO2 concentration in that
zone. For the purpose of comparison with the building-level
disturbance, we define the “building-level CO2 concentration”
as the sum of CO2 level measurements from the four zones of
the building: CO2 :=

∑4
i=1 CO

i
2. The correlation between

the true building-level disturbance (which is the sum of
the zone-level disturbances) and building-level CO2 will be
arguably lower than those for each zone.

Figure 13 shows the estimated transformed disturbance
ˆ̄wbldg, along with the building-level CO2 concentration CO2.
The covariance between the two is cov(CO2, ˆ̄wbldg) = 0.45.
Although this is not large enough to claim victory, it nonethe-
less provides a positive sanity check.

c) Zone temperature fit: Figure 14 shows the tempera-
ture in zone 2 and the fit from the identified transfer matrix
and disturbance. Zone 2 has the worst fit: the RMS values of
the prediction errors for zones 1 through 4 are 0.305, 0.616,
0.445, 0.372 ◦F.
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Fig. 14. Evaluation on real building: temperature measurement and predic-
tion for zone 2.

V. CONCLUSION

We proposed an algorithm to simultaneously identify a
MIMO transfer matrix of a multi-zone building, and a trans-
formed version of the building-wide exogenous disturbance,
by solving a convex optimization problem. Application of the
method to data from a simulation model and data collected
from a real building shows promising results.

A limitation of the proposed method is that it only identifies
a transformed disturbance, which is related to the disturbance
by a non-invertible linear transformation. Additionally, it
is assumed that the disturbance at every zone is related
to the total building-level disturbance by a constant factor.
Extending the method to remove these limitations is a topic
of future work. Another avenue for future work is to utilize
known information on the network topology.
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