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Abstract

Recently we have developed a new numerical approach for PDEs with constant coefficients on irregular domains and
Cartesian meshes. In this paper we extend it to a much more general case of PDEs with variable coefficients that have a lot of
applications; e.g., the modeling of functionally graded materials, the inhomogeneous materials obtained by 3-D printing and
many others. Here, we consider the 2-D wave and heat equations for isotropic and anisotropic inhomogeneous materials. The
idea of the extension to the case of PDEs with variable coefficients is based on the representation of the stencil coefficients
as functions of the mesh size. This leads to the increase in the size of the local system of algebraic equations solved for each
grid point of the new approach; however, this does not change the size of the global system of semidiscrete equations and
practically does not increase the computational costs of the proposed technique. Similar to our previous technique, the new 2-D
approach with compact 9-point stencils uses trivial Cartesian meshes for complex irregular domains and provides the fourth
order of accuracy for the wave and heat equations with variable coefficients. The calculation of the coefficients of the stencil
equations is based on the minimization of the local truncation error of the stencil equations and yields the optimal order of
accuracy of the new technique. At similar 9-point stencils, the accuracy of the new approach is much higher than that for the
linear finite elements. The numerical results for irregular domains show that at the same number of degrees of freedom, the
new approach is even much more accurate than the high-order (up to the third order) finite elements with much wider stencils.
The wave and heat equations are uniformly treated with the new approach.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Wave and heat equations with variable coefficients; Functionally graded materials; Irregular domains; Cartesian meshes; Optimal
accuracy

1. Introduction

The finite element method, the finite volume method, the isogeometric elements, the spectral elements and similar
techniques represent very powerful tools for the solution of partial differential equations (PDEs) for a complex
geometry. However, the generation of non-uniform meshes for a complex geometry is not simple and may lead
to the decrease in accuracy of these techniques if ‘bad’ elements (e.g., elements with small angles) appear in the
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mesh. Moreover, the conventional derivation of discrete equations for these techniques (e.g., based on the Galerkin
approaches) does not lead to the optimal accuracy. For example, in [1–28] it has been shown that at the same form
of the stencil equations of a discrete or semi-discrete system, the accuracy of the conventional finite elements and
the isogeometric elements used for wave propagation can be significantly improved on regular rectangular domains
with uniform meshes. This improvement is based on the analysis of the numerical dispersion error and is limited
to the wave equations with constant coefficients, zero loading term and rectangular domains.

There are a significant number of publications related to the numerical solution of different PDEs on irregular
domains with uniform embedded meshes. For example, we can mention the following fictitious domain numerical
methods that use uniform embedded meshes: the embedded finite difference method, the cut finite element method,
the finite cell method, the Cartesian grid method, the immersed interface method, the virtual boundary method,
the embedded domain method, etc.; e.g., see [29–59] and many others. However, the development of numerical
techniques for the solution of complex PDEs on irregular domains with optimal accuracy is still a challenging
problem (e.g., see [60]).

Recently in our papers [61–66] we have developed a new numerical technique for the solution of PDEs with
constant coefficients on regular and irregular domains with Cartesian meshes. We called this approach the optimal
local truncation error method (OLTEM); see [61,62]. At the same structure of the semidiscrete or discrete equations,
the new technique provides the optimal order of accuracy that exceeds the order of accuracy of many known
numerical approaches on regular and irregular domains. Here, we extend it to a much more general case of PDEs
with variable coefficients that have a lot of engineering applications; e.g., the modeling of functionally graded
materials, the inhomogeneous materials obtained by 3-D printing and many others. In this paper, we consider the
2-D isotropic and anisotropic wave and heat equations with variable coefficients on irregular domains and Cartesian
meshes.

Wave propagation in an anisotropic inhomogeneous medium is described by the following scalar wave equation
in domain Ω :

∂2u
∂t2 −

[
∂

∂x

(
c2

x (x, y)
∂u
∂x

)
+

∂

∂y

(
c2

y(x, y)
∂u
∂y

)]
= f . (1)

Similarly, the heat equation in domain Ω can be written as:

∂u
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−

[
∂

∂x

(
ax (x, y)

∂u
∂x

)
+

∂

∂y

(
ay(x, y)

∂u
∂y

)]
= f . (2)

In Eqs. (1)–(2), cx and cy are the wave velocity along the x- and y-axes (cx = cy for isotropic materials), ax and
ay are the thermal diffusivity along the x- and y-axes (ax = ay for isotropic materials), f (xxx, t) is the loading or
source term, u is the field variable. The Dirichlet boundary conditions u = g1 are applied along the boundary Γ .
The initial conditions are u(xxx, t = 0) = g2, v(xxx, t = 0) = g3 in Ω for the wave equation and u(xxx, t = 0) = g4

in Ω for the heat equation where gi (i = 1, 2, 3, 4) are the given functions. According to the new approach, the
semidiscrete system for the wave and heat equations after the space discretization with a Cartesian rectangular mesh
can be represented as a system of ordinary differential equations in time. The ordinary differential equation of this
system formed for each internal grid point is called the stencil equation and can be written down as follows:

M∑
i=1

[h2m̄i (h)
dnunum

i

dtn
+ k̄i (h)unum

i ] = f̃ , (3)

where unum
i and dnunum

i
dtn are the numerical solution for function u and its time derivative at the grid points, m̄i (h)

and k̄i (h) are the unknown coefficients to be determined, f̃ (t) is the discretized loading (source) term (see the next
sections), M is the number of the grid points included into the stencil equation, n = 2 for the wave equation and
n = 1 for the heat equation, h is the mesh size along the x-axis. In contrast to our approach presented in [61–63]
for the wave (heat) equation with constant coefficients, now we assume that the coefficients m̄i (h) and k̄i (h) depend
on h. Many numerical techniques such as the finite difference method, the finite element method, the finite volume
method, the isogeometric elements, the spectral elements, different meshless methods and others can be finally
reduced to Eq. (3) with some specific coefficients m̄i and k̄i for the wave and heat equations. In the derivations
below, we will assume 9-point stencils (M = 9) in the 2-D case that are similar to the 9-point stencils of the linear
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quadrilateral finite elements on Cartesian meshes. Generally, the stencils with any number of points M can be used
with the suggested approach.

Let us introduce the local truncation error used with the new approach. The replacement of the numerical values
of function unum

i and its time derivatives dnunum
i

dtn at the grid points in Eq. (3) by the exact solution ui and dnui
dtn to

the wave or heat equation, Eqs. (1) or (2), leads to the residual e of this equation called the local truncation error
of the semidiscrete equation, Eq. (3):

e =

M∑
i=1

[h2m̄i (h)
dnui

dtn
+ k̄i (h)ui ] − f̃ . (4)

Calculating the difference between Eqs. (4) and (3) we can get

e =

M∑
i=1

{h2m̄i (h)[
dnui

dtn
−

dnunum
i

dtn
] + k̄i (h)[ui − unum

i ]} =

M∑
i=1

[h2m̄i (h)ēv
i + k̄i (h)ēu

i ] , (5)

where ēu
i = ui − unum

i and ēv
i =

dnui
dtn −

dnunum
i

dtn are the errors of function u and its time derivatives at the grid points
i . As can be seen from Eq. (5), the local truncation error e is a linear combination of the errors of the function u
and its time derivatives at the grid points i which are included into the stencil equation.

In Section 2 a new numerical approach with 9-point uniform and nonuniform stencils is uniformly derived
for the 2-D wave and heat equations with variable coefficients and zero and non-zero loading (source) term. The
new 2-D approach with compact 9-point stencils provides the fourth order of accuracy for the wave and heat
equations with variable coefficients. The calculation of the coefficients of the stencil equations is based on the
minimization of the local truncation error of the stencil equations and yields the optimal order of accuracy of
the new technique. At similar 9-point stencils, the accuracy of the new approach is much higher than that for
the linear finite elements. Numerical examples on regular and irregular domains as well as the comparison with
FEM are presented in Section 3. The numerical results for irregular domains show that at the same number of
degrees of freedom, the new approach is even much more accurate than the high-order (up to the third order) finite
elements with much wider stencils. For the derivation of many analytical expressions presented below we use the
computational program “Mathematica” (see [67]).

2. A new numerical approach for the 2-D wave and heat equations with variable coefficients

2.1. Zero load (source) term f = 0 in Eqs. (1) and (2)

Here, we present 9-point uniform stencils that will be used for the internal grid points located far from the
boundary and 9-point non-uniform stencils that will be used for the grid points located close to the boundary. Let
us consider a 2-D bounded domain and a Cartesian rectangular mesh with a mesh size h where h is the size of the
mesh along the x-axis, byh is the size of the mesh along the y-axis (by is the aspect ratio of the mesh); see Figs. 1
and 2. The 9-point uniform stencil considered here is similar to that for the 2-D linear quadrilateral finite elements.
The spatial locations of the 8 degrees of freedom that are close to the internal degree of freedom u5 and contribute
to the 9-point uniform stencil for this degree of freedom are shown in Fig. 1 for the case when the boundary and
the Cartesian mesh are matched or when the degree of freedom u5 is located far from the boundary. In the case
of non-matched grids when the grid points do not coincide with the boundary and the 9-point uniform stencil for
an internal point u5 in Fig. 1 is not possible due to the location of some grid points of the Cartesian mesh outside
the physical domain, we use the following procedure for the formation of the 9-point nonuniform stencil. In order
to find the boundary points that are included into the 9-point non-uniform stencil for the degree of freedom u5 (see
Fig. 2) we join the central point u5 with the 8 closest grid points; i.e., we have eight straight lines along the x- and
y-axes and along the diagonal directions (the dashed lines) of the grid; see Fig. 2. If any of these lines intersect
the boundary of the domain then the corresponding regular grid points (designated as ◦ in Fig. 2) are moved to
the boundary (the location of these boundary points in Fig. 2 is designated as •). This means that for all internal
grid points located within the domain we use a 9-point uniform (see Fig. 1) or non-uniform (see Fig. 2) stencil
with 9 points totally (regular grid points and the boundary points). For convenience, the local numeration of the
grid points from 1 to 9 is used in Figs. 1 and 2 as well as in the derivations below for the 9-point uniform and
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Fig. 1. The spatial locations of the degrees of freedom u p (p = 1, 2, . . . , 9) contributing to the 9-point uniform stencil for the internal
degree of freedom u5 located far from the boundary.

Fig. 2. The spatial locations of the degrees of freedom u p (p = 1, 2, . . . , 9) that contribute to the 9-point nonuniform stencil for the internal
degree of freedom u5 located close to the boundary.

non-uniform stencils. To describe the coordinates of the boundary points for non-uniform stencils (see Fig. 2) we
introduce 9 coefficients 0 ≤ dp ≤ 1 (p = 1, 2, . . . , 9) as follows (see also Fig. 2):

x p = x5 + (i − 2)dph , yp = y5 + ( j − 2)dpbyh , (6)

where d5 = 0, p = 3( j − 1) + i with i, j = 1, 2, 3. Eq. (6) can be also used for the coordinates of the grid points
inside the domain with the corresponding coefficients dp equal to unity (dp = 1).
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Eq. (3) for the 9-point uniform (see Fig. 1) or nonuniform (see Fig. 2) stencil for the grid point u5 will be
assumed in the following form:

h2
9∑

p=1

(m0,p + m1,ph)
dnunum

p

dtn
+

9∑
p=1

(k0,p + k1,ph + k2,ph2
+ k3,ph3

+ k4,ph4)unum
p = f̄5 , (7)

where f̄5 = 0 in the case of zero load (source) f = 0 in Eqs. (1) and (2), the 63 unknown stencil coefficients mi,p,
k j,p(i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9) are to be determined from the minimization of the local truncation
error, the superscript n in the time derivative in Eq. (7) is n = 1 for the heat equation and n = 2 for the wave
equation. The stencil equation, Eq. (7), can be written in the form similar to that for the wave (heat) equation with
constant coefficients:

h2
9∑

p=1

m̄ p(h)
dnunum

p

dtn
+

9∑
p=1

k̄p(h)unum
p = f̄5 , (8)

with m̄ p(h) = m0,p + m1,ph and k̄p(h) = k0,p + k1,ph + k2,ph2
+ k3,ph3

+ k4,ph4 (p = 1, 2, . . . , 9) where the 18
coefficients m̄ p(h) and k̄p(h) are the polynomial functions of the mesh size h (for the wave and heat equations with
constant coefficients, the coefficients m̄(h)p and k̄(h)p are constant and independent of h; i.e., m̄ p(h) = m0,p and
k̄p(h) = k0,p). This polynomial representation of m̄ p(h) and k̄p(h) can be considered as a Taylor series of functions
m̄ p(h) and k̄p(h).

Remark 1. Only 62 out of the 63 coefficients mi,p, k j,p(i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9) in Eq. (7)
can be considered as unknown coefficients. This can be explained as follows. In the case of zero load f = 0 and
f̄5 = 0, Eq. (8) can be rescaled by the division of the left and right sides of Eq. (7) by any scalar a1; i.e., one
of the coefficients can be selected as unity and there will be only 62 unknown rescaled coefficients. The case of
nonzero load f̄5 ̸= 0 can be similarly treated because the term f̄5 is a linear function of the stencil coefficients; see
below. For convenience, we will scale the stencil coefficients in such a way that for any h the coefficient k̄5(h) is
k̄5(h) = 1.

The local truncation error e of the stencil equation, Eq. (8), at any time t can be written down by the replacement
of the numerical solution in Eq. (8) by the exact solution as follows:

e = h2
9∑

p=1

m̄ p(h)
∂nu p

∂tn
+

9∑
p=1

k̄p(h)u p − f̄5 , (9)

where function u(x, y, t) in Eq. (9) corresponds to the exact solution. In order to represent the local truncation error
e as a Taylor series, let us expand the exact solution and the time derivative of the exact solution in Eq. (9) into a
Taylor series at small h ≪ 1 as follows:

u p = u5 +
∂u5

∂x
[(i − 2)dph] +

∂u5

∂y
[( j − 2)dpbyh] +

∂2u5

∂x2

[(i − 2)dph]2

2!

+
∂2u5

∂y2

[( j − 2)dpbyh]2

2!
+ 2

∂2u5

∂x∂y
[(i − 2)dph][( j − 2)dpbyh]

2!
+ · · · , (10)

∂nu p

∂tn
=

∂2u5

∂tn
+

∂n+1u5

∂tn∂x
[(i − 2)dph] +

∂n+1u5

∂tn∂y
[( j − 2)dpbyh] +

∂n+2u5

∂tn∂x2

[(i − 2)dph]2

2!

+
∂n+2u5

∂tn∂y2

[( j − 2)dpbyh]2

2!
+ 2

∂n+2u5

∂tn∂x∂y
[(i − 2)dph][( j − 2)dpbyh]

2!
+ · · · , (11)

where p = 3( j − 1) + i with i, j = 1, 2, 3; see Fig. 2. The exact solution u5 to the wave and heat equations, Eqs.
(1) and (2), at x = x5 and y = y5 meets the following equations:

∂nu5

∂tn
−

[
∂

∂x

(
c̄x (x, y)

∂u
∂x

)
+

∂

∂y

(
c̄y(x, y)

∂u
∂y

)]
|x=x5 , y=y5

= f5 , (12)
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∂ (i+ j+n)u5

∂tn∂x i∂y j
−

[
∂ (i+ j+1)

∂x (i+1)∂y j

(
c̄x (x, y)

∂u
∂x

)
+

∂ (i+ j+1)

∂x i∂y( j+1)

(
c̄y(x, y)

∂u
∂y

)]
|x=x5 , y=y5

=
∂ (i+ j) f5

∂x i∂y j
, (13)

with c̄x = c2
x and c̄y = c2

y for the wave equation, c̄x = ax and c̄y = ay for the heat equation as well
as u5 = u(x = x5, y = y5, t) and i, j = 0, 1, 2, 3, 4, . . ., the derivatives of the functions u, c̄x and c̄y in
Eqs. (12) and (13) are calculated at the central grid point of the stencil with the coordinates x = x5 and y = y5.
Here, Eq. (13) is directly obtained by the differentiation of Eq. (12) with respect to x and y. Inserting Eqs. (10)–(11)
and Eqs. (12)–(13) and with zero loading term f = 0 into Eq. (9) we will get the following local truncation error
in space e:

e = c̄{b1u5 + h[b2
∂u5

∂x
+ b3

∂u5

∂y
+ b4u5] + h2[b5

∂2u5

∂x2 + b6
∂2u5

∂x∂y
+ b7

∂u5

∂x
+ b8

∂2u5

∂y2 + b9
∂u5

∂y
+ b10u5]

+h3[b11
∂3u5

∂x3 + · · · + b20u5] + h4[b21
∂4u5

∂x4 + · · · + b35u5] + h5[b36
∂5u5

∂x5 + · · · + b56u5]

+h6[b57
∂6u5

∂x6 + · · · + b84u5] + h7[b85
∂7u5

∂x7 + · · · + b120u5] + h8[b121
∂8u5

∂x8 + · · · + b165u5]}

+O(h9) , (14)

where the coefficients bp (p = 1, 2, . . .) are expressed in terms of the coefficients mi,p, k j,p (i = 0, 1, j =

0, 1, 2, 3, 4, p = 1, 2, . . . , 9); see Appendix A for the detailed expression of Eq. (14) and the coefficients bp. We
should mention that by the use of the wave (heat) equation, Eqs. (12)–(13), the time derivatives in Eq. (14) for the
local truncation error are excluded.

For the uniform stencil in Fig. 1 with dp = 1 (p = 1, 2, . . . , 9) the expressions for coefficients bp (p = 1, 2, . . .)
are simplified and some results can be analytically obtained. For example, equating to zero coefficients bp = 0
(p = 1, 2, . . . , 26, 28, . . . , 35, 37, . . . , 41, 43, 44, 45, 48, 49, 50, 54, 55, 60, 61, 64, 70, 71, 75, 76, 82, 93, 104, 110)
and using the scaling equations k0,5 = 1 and k1,5 = k2,5 = k3,5 = k4,5 = 0 we can get 63 algebraic equations with
the 63 unknown stencil coefficients mi,p, k j,p (i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9). Solving this system of
equations we can analytically find the 63 unknown stencil coefficients mi,p, k j,p; see Appendix B. Because some
of the coefficients bp for the fourth and fifth order terms in Eq. (14) are linear dependent, the analytical solution
given in Appendix B zeros the first 56 coefficients bp in Eq. (14); i.e., for uniform stencils we can get the sixth
order of the local truncation error in Eq. (14) (see Appendix B).

In order to improve the order of the local truncation error in Eq. (14) for non-uniform stencils at small h ≪ 1,
the following procedure can be suggested. First, we will zero the first 20 coefficients bp in Eq. (14) up to the third
order with respect to h; i.e.,

bp = 0 , p = 1, 2, . . . , 20 . (15)

Then, in order to have a sufficient number of equations for the calculation of the 63 stencil coefficients mi,p, k j,p
(i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9), we use the least square method for the minimization of coefficients
bp related to the fourth and higher orders of the local truncation error with the following residual R:

R =

35∑
p=21

b2
p + h1

56∑
p=36

b2
p + h2

84∑
p=57

b2
p + h3

120∑
p=85

b2
p + h4

165∑
p=121

b2
p , (16)

where hi (i = 1, 2, 3, 4) are the weighting factors to be selected (e.g., the numerical experiments show that hi = 0.1
(i = 1, 2, 3, 4) yields accurate results). In order to minimize the residual R with the constraints given by Eq. (15)
and the scaling equation k̄5(h) = k0,5 + k1,5h + k2,5h2

+ k3,5h3
+ k4,5h4

= 1, we can form a new residual R̄ with
the Lagrange multipliers λp:

R̄ =

20∑
l=1

λlbl + λ21(k̄5(h) − 1) +

35∑
p=21

b2
p + h1

56∑
p=36

b2
p + h2

84∑
p=57

b2
p + h3

120∑
p=85

b2
p + h4

165∑
p=121

b2
p . (17)

The residual R̄ is a quadratic function of coefficients mi,p, k j,p (i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9)
and a linear function of the Lagrange multipliers λl ; i.e., R̄ = R̄(mi,p, k j,p, λl). In order to minimize the residual
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R̄ = R̄(mi,p, k j,p, λl), the following equations based on the least square method for the residual R̄ can be written
down:

∂ R̄
∂mi,p

= 0 ,
∂ R̄

∂k j,p
= 0 ,

∂ R̄
∂λl

= 0 , (18)

i = 0, 1, 2 , j = 0, 1, 2, 3, 4 , p = 1, 2, . . . , 9 , l = 1, 2, . . . , 21 .

Eq. (18) forms a system of 84 linear algebraic equations with respect to 63 unknown coefficients mi,p, k j,p (i = 0, 1,
j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9) and 21 Lagrange multipliers λl (l = 1, 2, . . . , 21). Solving these linear algebraic
equations numerically, we can find the coefficients mi,p, k j,p (i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9) for the
9-point non-uniform stencils. Numerical experiments show that for small weighting coefficients hi (i = 1, 2, 3, 4),
the minimization of the residual R̄ in Eq. (17) leads to very small coefficients bp (p = 21, . . . , 35) of the leading
terms related to the fourth order of the local truncation error; i.e., the presented procedure provides the fifth order
of the local truncation error for the 9-point non-uniform stencils and the sixth order of the local truncation error
for the 9-point uniform stencils with the stencil coefficients given in Appendix B. This leads to the fourth order of
accuracy of global solutions; see the numerical examples below. Moreover, due to the minimization of the leading
fifth order terms of the local truncation error in Eq. (17) for nonuniform stencils, at the same numbers of degrees of
freedom the new approach on irregular domains yields more accurate results than those obtained by the high-order
finite elements (up to the third order) with much wider stencils; see the numerical examples below.

Remark 2. We do not include the equations for coefficients bp (p = 21, . . . , 35) as constraints bp = 0
(p = 21, . . . , 35) in Eq. (17) because as mentioned before, some of the coefficients bp (p = 21, . . . , 35) are
linear dependent.

Remark 3. We should also mention that the inclusion of more boundary points into the stencil equation, Eq. (3),
does not increase the width of the global system of equations (due to the imposition of the boundary conditions at
these points) but can lead to the accuracy improvement. This will be studied in the future.

Remark 4. To estimate the computation costs of the solution of 84 linear algebraic equations formed by Eq. (18) we
solved 106 such systems with a general MATLAB solver on a simple student laptop computer (Processor: Intel (R)
Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz). The computation ‘wall’ time was T = 7356 s for 106 systems
or the average time for one system was 0.007356 s. Because the coefficients mi,p, k j,p (i = 0, 1, j = 0, 1, 2, 3, 4,
p = 1, 2, . . . , 9) are independently calculated for different non-uniform stencils, the computation time of their
calculation for different grid points can be significantly reduced on modern parallel computers. This means that for
large global systems of equations, the computation time for the calculation of the coefficients mi,p, k j,p (i = 0, 1,
j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9) is very small compared to that for the solution of the global system of equations.
We should mention that the Lagrange multipliers λl in the local system of equations, Eq. (18), are only used for
the calculation of the 63 unknown coefficients mi,p, k j,p (i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9) and are not
used in the global system of equations.

Remark 5. The proposed technique yields accurate results for the non-uniform stencils even with very small
coefficients di ≪ 1. However, the new technique permits exclusion of very small coefficients di ≪ 1 from
calculations. For example, if di ≪ tol for some internal point where tol is a small tolerance (e.g., tol = 10−3), then
the non-uniform stencil for this internal point can be removed from the global system of equations and this point
can be moved to the boundary and treated as the boundary point for other stencils. In this case, the corresponding
coefficients di for this point in other stencils can be slightly greater than one. According to the derivations in
the previous section, all equations will be valid also for di > 1. The numerical experiments with a small tolerance
tol = 10−3 show that if the point with very small coefficients di ≪ 1 is moved to the boundary then the coefficients
di for this point in other stencils can be taken as di = 1 without introducing any significant errors.

The final semi-discrete system of equations includes the 9-point uniform and nonuniform stencil equations (see
Figs. 1 and 2) for all internal grid points that are located inside the domain. We should also mention that the
new approach with 9-point stencils for the wave and heat equations with variable coefficients on irregular domains
provides the same fourth order of accuracy as that for our approach for the wave and heat equations with constant
coefficients presented in [61–63].
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2.2. Nonzero load (source) term f ̸= 0 in Eqs. (1) and (2)

The inclusion of non-zero loading (source) term f in the partial differential equations, Eqs. (1) and (2), leads
to the non-zero term f̄5 in the stencil equation, Eq. (8) (similar to Eq. (3)). The expression for the term f̄5 can
be calculated from the procedure used for the derivation of the local truncation error in the case of zero loading
(source) term as follows. In the case of non-zero loading (source) term f (xxx, t) ̸= 0 and f5 ̸= 0, the insertion of
Eqs. (10)–(11) and Eqs. (12)–(13) into Eq. (9) yields the following local truncation error in space e f :

e f = e − [ f̄5 − {h2 f5(m0,1 + m0,2 + m0,3 + · · · ) + · · · }] , (19)

where e is the local truncation error in space given by Eq. (14) for zero loading (source) term, f5 designates function
f (x, y, t) calculated at x = x5 and y = y5. Equating to zero the expression in the square brackets on the right-hand
side of Eq. (19), we will get the expression for f̄5:

f̄5 = h2 f5(m0,1 + m0,2 + m0,3 + · · · ) + · · · , (20)

as well as we will get the same local truncation errors e f = e for zero and non-zero loading functions (see
Appendix C for the detailed expression of f̄5). This means that the coefficients mi,p, k j,p (i = 0, 1, j = 0, 1, 2, 3, 4,
p = 1, 2, . . . , 9) of the stencil equations are first calculated for zero loading (source) term f = 0 as described in
Section 2.1. Then, the nonzero loading (source) term f̄5 given by Eq. (20) is used in the stencil equation, Eq. (8).

3. Numerical examples

In this section the computational efficiency of the new approach developed in this paper will be demonstrated
and compared with the 2-D conventional linear (T 3 and Q4), quadratic (T 6 and Q9) and cubic (T 10 and Q16)
quadrilateral (Q4, Q9, Q16) and triangular (T 3, T 6, T 10) finite elements. As known (e.g., see [68]), finite elements
provide the (p + 1)th order of convergence where p is the order of finite elements. The commercial finite element
software ‘COMSOL’ (see [69]) is used for the finite element simulations. Similar to the finite element terminology,
a grid point of a Cartesian mesh will be called a node. In order to compare the accuracy of the new approach with
FEM, the following errors are considered below. The relative errors ei

u for the function u and ei
v for its first time

derivative at the i th node are defined as:

ei
u =

| unum
i − uexact

i |

uexact
max

and ei
v =

| vnum
i − vexact

i |

vexact
max

, i = 1, 2, . . . , N . (21)

The maximum relative errors emax
u for the function u and emax

v for its first time derivative are defined as:

emax
u = max

i
ei

u and emax
v = max

i
ei
v , i = 1, 2, . . . , N . (22)

In Eqs. (21)–(22) the superscripts ‘num’ and ‘exact’ correspond to the numerical and exact solutions; N is the total
number of nodes used in calculations; uexact

max and vexact
max are the maximum absolute value of the exact solution over

the entire domain for the function u and its first time derivative, respectively. The errors given by Eqs. (21)–(22) are
evaluated at the final observation time T . The errors ei

v and emax
v are used for the wave equation only. For the time

integration, the trapezoidal rule and the backward difference method are used for the wave and the heat equations,
respectively. A sufficiently small size of time increments is used in calculations. In this case the error in time can be
neglected and the numerical error corresponds to the error in space only. For convenience, the function u is called
‘displacement’ and ‘temperature’ for the wave and the heat equations, respectively.

For the test problems in the following sections, first a simple rectangular plate ABC D with the dimensions 1 × 2
is considered with square (by = 1) Cartesian meshes; see Fig. 3. Then, the new approach is applied to a complex
irregular domain presented by a trapezoidal plate O P Q R with circular and quadrilateral holes; see Fig. 5a. Fig. 5
also shows a Cartesian mesh used for the new approach as well as examples of typical quadrilateral and triangular
meshes generated by COMSOL for the conventional finite elements. For convenience, we generate the Cartesian
mesh for the new approach by keeping one horizontal grid line matched with the edge O P and one vertical grid line
matched with the edge O R; see Fig. 5. The circular and quadrilateral holes as well as the edge Q R are non-matched
with the mesh whereas the edge P Q can be matched or non-marched with the vertical grid line depending on the
mesh size h. For the test problems solved below the observation time is chosen to be T = 0.2. The initial conditions
over the entire domain at time t = 0, the Dirichlet boundary conditions along the entire boundary as well as the
non-zero loading (source) term f (x, y, t) are calculated according to the selected exact solutions.
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Fig. 3. A rectangular plate (a) as well as an example of a structured square (by = 1) mesh (b) used by the new approach and by the
conventional finite elements.

3.1. 2-D wave propagation in isotropic and anisotropic inhomogeneous materials

In this section two test problems for the 2-D wave equation with variable coefficients for isotropic and anisotropic
inhomogeneous materials (Eq. (1)) are solved by the new approach and by the conventional finite elements. The
method of manufactured solutions (e.g., see [70]) is used to construct the exact solutions for the test problems
considered below. The following exact solutions are used:

u(x, y, t) = sin[5π(x + y)]cos(3π t) (23)

with c2
x = c2

y = 6 + 4sin(3xy) for the isotropic material and

u(x, y, t) = cos(5πx)sin(4πy)cos(2π t) (24)

with c2
x = 8 + 5cos(3x + 2y) and c2

y = 6 + 4sin(3xy) for the anisotropic material.

3.1.1. A rectangular plate
First, we solve the test problems for the rectangular plate ABC D by the new approach and by the conventional

finite elements on structured square (by = 1) meshes; see Fig. 3. Fig. 4 shows the maximum relative errors in
displacement emax

u and in velocity emax
v as a function of the mesh size h in the logarithmic scale. It can be seen

from Fig. 4 that the order of accuracy for the new approach is close to 4 (the slope of the curves in Fig. 4 at small
h represents the order of accuracy). It is also apparent from Fig. 4 that at the same h the new approach yields much
more accurate results than those obtained by the conventional linear and quadratic finite elements.

Remark 6. The mesh size h for the high-order finite elements on uniform meshes is defined as the distance between
two consecutive nodes along x-axis. Therefore, at the same h the high-order finite elements have exactly same
number of degrees of freedom as the linear finite elements and the new approach.

3.1.2. A complex irregular domain
Here, the same test problems are solved by the new approach as well as by the conventional finite elements

for the trapezoidal plate with two holes (see Fig. 5a). Fig. 6 shows the distribution of the exact solutions for the
displacement and the velocity as well as the distribution of the relative errors in displacement and in velocity of
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Fig. 4. The maximum relative errors in displacement emax
u (a, c) and in velocity emax

v (b, d) at the final time T = 0.2 for the rectangular
plate (see Fig. 3) as a function of the mesh size h in the logarithmic scale. The numerical solutions of the 2-D wave equation for the
isotropic (a, b) and anisotropic (c, d) inhomogeneous materials are obtained by the new approach (curve 1) and by the conventional linear
and quadratic finite elements (curves 2 and 3) on structured square (by = 1) meshes. Symbols □, ⃝ and ▽ correspond to the results for
the different h used in calculations.

Fig. 5. A trapezoidal plate O P Q R (θ = 130◦) with a circular hole of radius 0.25 centered at S(0.6, 0.35) and a quadrilateral hole ABC D
(A(0.2, 0.95), B(0.8, 0.75), C(0.75, 1.05), D(0.35, 1.2)) (a) as well as a Cartesian mesh for the new approach (b). Examples of typical
quadrilateral (c) and triangular (d) finite element meshes generated by the commercial software COMSOL for the discretization of the plate
O P Q R.



A. Idesman and B. Dey / Computer Methods in Applied Mechanics and Engineering 370 (2020) 113249 11

Fig. 6. The distribution of the exact solutions for the displacement u(x, y) (a, e) and the velocity v(x, y) (c, g) as well as the relative errors
in displacement eu (x, y) (b, f) and in velocity ev(x, y) (d, h) of the numerical solutions at the final time T = 0.2. The isotropic (a–d)
and anisotropic (e–h) inhomogeneous materials are considered. The numerical solutions of the 2-D wave equation are obtained by the new
approach on the square (by = 1) Cartesian mesh of size h = 1/80.

the numerical solution obtained by the new approach on the square Cartesian mesh of size h = 1/80. As can be
seen from Fig. 6b, d, f, h the numerical results obtained by the new approach on this mesh are very accurate (the
errors are small).

In order to compare the accuracy of the numerical results obtained by the new approach and by finite elements,
Fig. 7 illustrates the errors emax

u and emax
v of the numerical techniques as a function of the number of degrees of

freedom N in the logarithmic scale. It can be seen from Fig. 7 that at the same number of degrees of freedom
the results obtained by the new approach are more accurate than those obtained by the conventional linear and
high-order (up to third order) finite elements; see the curves at the same N . We should mention that this increase
in accuracy is impressive considering the fact that the width of the stencils and the computational costs for the
high-order finite elements are much greater compared to those for the new approach (the width of the stencils for
the new approach is same as that for the linear quadrilateral finite elements). This improvement in accuracy also
means that at a given accuracy the new approach requires much less number of degrees of freedom compared to
that for the conventional (up to third order) finite elements.

For the new approach on irregular domains, the mesh size h is approximately proportional to 1/
√

N (this
statement is strictly valid for a rectangular plate with matched Cartesian meshes). Therefore, the slope of curves 1
in Fig. 7 at large

√
N approximately describes the order of accuracy of the new approach. As can be seen from
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Fig. 7. The maximum relative errors in displacement emax
u (a, c) and in velocity emax

v (b, d) at the final time T = 0.2 for the trapezoidal
plate (see Fig. 5a) as a function of

√
N in the logarithmic scale; N is the number of degrees of freedom. The numerical solutions of the 2-D

wave equation for the isotropic (a, b) and anisotropic (c, d) inhomogeneous materials are obtained by the new approach on square (by = 1)
Cartesian meshes (curve 1) and by the conventional triangular (curves 2–4) and quadrilateral (curves 5–7) finite elements. Curves (2, 5), (3,
6) and (4, 7) correspond to the linear, quadratic and cubic finite elements, respectively. Symbols +, ⃝, ∗, ×, □, ⋄ and ▽ correspond to
the results for the different N used in calculations.

Fig. 8. The maximum relative errors in displacement emax
u (a) and in velocity emax

v (b) at the final time T = 0.2 for the trapezoidal plate
(see Fig. 5a) as a function of the mesh size h in the logarithmic scale. The numerical solutions of the 2-D wave equation for the isotropic
(curve 1) and anisotropic (curve 2) inhomogeneous materials are obtained by the new approach on 1500 square (by = 1) Cartesian meshes.

Fig. 7, the order of accuracy of the new approach for the wave equation with variable coefficients is close to four
for isotropic and the anisotropic materials. This is in agreement with the theoretical results in Section 2.

In order to study the convergence of the numerical results obtained by the new approach in more detail, Fig. 8
presents curves 1 in Fig. 7 at small changes of the mesh size h (curves 1 and 2 in Fig. 8a correspond to curves
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Fig. 9. The maximum relative error in temperature emax
u at the final time T = 0.2 for the rectangular plate (see Fig. 3) as a function

of the mesh size h in the logarithmic scale. The numerical solutions of the 2-D heat equation for the isotropic (a) and anisotropic (b)
inhomogeneous materials are obtained by the new approach (curve 1) and by the conventional linear and quadratic finite elements (curves
2 and 3) on structured square (by = 1) meshes. Symbols □, ⃝ and ▽ correspond to the results for the different h used in calculations.

1 in Fig. 7a and c; curves 1 and 2 in Fig. 8b correspond to curves 1 in Fig. 7b and d). For this study, we solve
the test problems on 1500 Cartesian meshes with the mesh sizes hi = h1 +

(h2−h1)(i−1)
1499 where h1 = 1/8 = 0.125,

h2 = 1/100 = 0.01 and i = 1, 2, 3, . . . , 1500. As can be seen from Fig. 8 the new approach yields convergent and
stable results with small oscillations. This oscillatory behavior can be explained by (a) the complicated dependency
of the leading terms of the local truncation error on the coefficients di and (b) at small variations of the mesh size h,
there is a discontinuous change in the location of the grid points with respect to the irregular boundary (e.g., some
grid points that are the internal points for the previous mesh can move to the boundary or outside the boundary
for the next mesh); this leads to the discontinuous change of some stencils equations for the meshes with the small
difference in h. It is important to mention that small oscillations in the numerical convergence curves are typical
for many numerical techniques on irregular domains at small variations of h. For example, the change in the angles
of the finite elements at small variations of the element size h also leads to such oscillations in the convergence
curves for the finite element techniques.

It can be concluded that at the same number of degrees of freedom, the new numerical approach for the 2-D
wave equation with variable coefficients for isotropic and anisotropic materials yields much more accurate results
compared to those obtained by the linear and high-order (quadratic and cubic) finite elements. It is worth to mention
that the high-order finite elements have much wider stencils and require greater computational time compared to
those for the new approach.

3.2. 2-D heat transfer in isotropic and anisotropic inhomogeneous materials

In this section two test problems for the 2-D heat equation with variable coefficients for isotropic and anisotropic
inhomogeneous materials (Eq. (2)) are solved by the new approach and by the conventional finite elements. The
following exact solutions are used for the test problems:

u(x, y, t) = 100sin(5πx)cos(10πy)e−2π t (25)

with ax = ay = 7 + 3exy for the isotropic material and

u(x, y, t) = 500cos[π (7x + 5y)]e−3π t (26)

with ax = 7 + 3exy and ay = 4 + 0.5e2x+y−1 for the anisotropic material.

3.2.1. A rectangular plate
Similar to Section 3.1.1, first we solve the test problems for the rectangular plate ABC D by the new approach

and by the conventional finite elements on structured square (by = 1) meshes; see Fig. 3. Fig. 9 shows the maximum
relative error in temperature emax

u as a function of the mesh size h in the logarithmic scale. As can be seen from Fig. 9
the order of accuracy of the new approach is close to four (the slope of the curves in Fig. 9 at small h represents
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Fig. 10. The distribution of the exact solutions for the temperature u(x, y) (a, c) as well as the relative error in temperature eu (x, y) (b, d)
of the numerical solution at the final time T = 0.2. The isotropic (a, b) and anisotropic (c, d) inhomogeneous materials are considered. The
numerical solutions of the 2-D heat equation are obtained by the new approach on the square (by = 1) Cartesian mesh of size h = 1/80.

Fig. 11. The maximum relative errors in temperature emax
u at the final time T = 0.2 for the trapezoidal plate (see Fig. 5a) as a function of

√
N in the logarithmic scale; N is the number of degrees of freedom. The numerical solutions of the 2-D heat equation for the isotropic

(a) and anisotropic (b) inhomogeneous materials are obtained by the new approach on square (by = 1) Cartesian meshes (curve 1) and by
the conventional triangular (curves 2–4) and quadrilateral (curves 5–7) finite elements. Curves (2, 5), (3, 6) and (4, 7) correspond to the
linear, quadratic and cubic finite elements, respectively. Symbols +, ⃝, ∗, ×, □, ⋄ and ▽ correspond to the results for the different N
used in calculations.

the order of accuracy). It is also demonstrated in Fig. 9 that the new approach yields much more accurate results
than those obtained by the linear and quadratic finite elements at the same mesh size h.

3.2.2. A complex irregular domain
Here, the same test problems are solved by the new approach as well as by the conventional finite elements for

the trapezoidal plate (see Fig. 5a). Fig. 10 shows the distribution of the exact solutions for the temperature as well
as the distribution of the relative error in temperature of the numerical solution obtained by the new approach on
the square Cartesian mesh of size h = 1/80. As can be seen from Fig. 10 the numerical results obtained by the
new approach on this mesh are very accurate (the errors are small).

In order to compare the accuracy of the numerical results obtained by the new approach and by finite elements,
Fig. 11 illustrates the errors emax

u of the numerical techniques as a function of the number of degrees of freedom N
in the logarithmic scale. It can be seen from Fig. 11 that at the same number N of degrees of freedom, the results
obtained by the new approach are more accurate than those obtained by the conventional linear and high-order
(quadratic and cubic) finite elements. This increase in accuracy is impressive considering the fact that the width
of the stencils and the computational costs for the high-order finite elements are much greater compared to those
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Fig. 12. The maximum relative errors in temperature emax
u at the final time T = 0.2 for the trapezoidal plate (see Fig. 5a) as a function

of the mesh size h in the logarithmic scale. The numerical solutions of the 2-D heat equation for the isotropic (curve 1) and anisotropic
(curve 2) inhomogeneous materials are obtained by the new approach on 1500 square (by = 1) Cartesian meshes.

for the new approach. Similar to Fig. 7 for the 2-D wave equation, it can be seen from Fig. 11 that the order of
accuracy of the new approach on the complex irregular domains is close to four for the 2-D heat equation with
variable coefficients as well; see the slope of curves 1 in Fig. 11 at large N . This is in agreement with the theoretical
results in Section 2.

In order to study the convergence of the numerical solutions obtained by the new approach in more detail, we
solve the same test problems on 1500 Cartesian meshes with small variations of the grid size h and show the
convergence curves in Fig. 12 (see Section 3.1.2 for the selection of h). As can be seen, the new approach yields
convergent and stable numerical results for the heat equation with variable coefficients.

It can be concluded that at the same number of degrees of freedom, the new approach for the 2-D heat equation
with variable coefficients for isotropic and anisotropic materials yields much more accurate results compared to those
obtained by the linear and high-order (quadratic and cubic) finite elements. We should mention that the high-order
finite elements have much wider stencils and require greater computational time compared to those for the new
approach.

4. Concluding remarks

The new numerical approach developed in this paper is the extension of our approach for the wave and heat
equations with constant coefficients (see [61–63]) to a much more general case of variable coefficients. The main
idea that allows this extension is the representation of the stencil coefficients m̄i (h) and k̄i (h) as polynomial functions
of the mesh size h. Despite the use of 63 unknown coefficients mi,p, k j,p(i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9)
for each 9-point stencil, they are combined into 18 stencil coefficients m̄i (h) and k̄i (h) (i = 1, 2, . . . , 9) that
are used in the global matrix; i.e., the size of the global semidiscrete system is the same for the wave (heat)
equation with constant and variable coefficients. The increase in the computational costs for the calculation of 63
unknown coefficients from the local system of equations is insignificant compared to the computational costs for
the integration of the global semidiscrete equations. The numerical approach developed here for the wave (heat)
equation with variable coefficients provides the same fourth order of accuracy as that developed in [61–63] for the
wave (heat) equation with constant coefficients.

The main advantages of the suggested technique can be summarized as follows:

• Many difficulties of the existing numerical techniques for irregular domains (e.g., the finite elements, spectral
element, isogeometric elements, the finite volume method, and many other) are related to complicated mesh
generators and the accuracy of ‘bad’ elements (e.g., the elements with small angles). In contrast to these
techniques, the new approach is based on trivial Cartesian meshes with a trivial procedure for the formation
of the 9-point nonuniform stencils for the grid points located close to the boundary. Moreover, very small
distances between the grid points of a Cartesian mesh and the boundary (i.e., when some coefficients di of
the non-uniform stencil are close to zero while some other coefficients di of the same stencil equal unity; see
Fig. 2) does not decrease the accuracy of the new technique.
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• In contrast to the finite-difference techniques with the stencil coefficients calculated through the approximation
of separate partial derivatives, the entire partial differential equation is used for the calculation of the stencil
coefficients in the new approach. This leads to the optimal accuracy of the proposed technique. E.g., the 9-point
uniform and nonuniform stencils of the new approach provide the optimal accuracy that cannot be improved
without changing the width of stencil equations. In contrast to the 9-point stencils of the linear quadrilateral
finite elements, the new approach yields a much higher order of accuracy (the increase by two orders).

• The numerical results for irregular domains also show that at the same number of degrees of freedom, the
new approach is even much more accurate than the high-order (up to the third order) finite elements with
much wider stencils. This also means that at a given accuracy, the new approach significantly reduces the
computation time compared to that for the linear and high-order finite elements.

• The new approach does not require time consuming numerical integration for finding the coefficients of the
stencil equations; e.g., as for the high-order finite, spectral and isogeometric elements. For the new technique,
the coefficients of the uniform stencils for the grid points located far from the boundary are calculated
analytically. For the grid points located close to the boundary, the coefficients of the nonuniform stencils
are calculated numerically by the solution of small local systems of linear algebraic equations. Numerical
experiments show that the solution of these small local systems of algebraic equations is fast. Moreover, these
local systems are independent of each other and can be efficiently solved on a parallel computer.

• It has been shown that the wave and heat equations can be uniformly treated with the new approach. The
order of the time derivative in these equations does not affect the coefficients of the stencil equations of the
semi-discrete systems because in the presented derivations the space discretization is considered independent
of the time discretization without the interaction between the errors in space and time.

It is interesting to note that the final formulas for the calculation of the stencil coefficients do not include the
derivatives of the solution and the new approach can be also applied to the problems with reduced regularity
(smoothness). In our paper [62] the 1-D impact wave propagation problem with a propagating discontinuity has been
solved by the new approach on matched and non-matched meshes as well as by the conventional finite elements.
The numerical results in [62] show that even in this case the new approach yields more accurate results compared
to those obtained by the conventional finite elements. We observed similar effects for the isogeometric elements
applied to the same 1-D impact problem; i.e., the approximation of discontinuous solutions by smooth functions of
high-order isogeometric elements yields accurate results.

In the future we plan to consider the stencils with a larger number of grid points for a higher order of accuracy
(similar to the high-order finite elements or to the high-order finite-difference techniques), to consider a mesh
refinement with uniform Cartesian meshes using special stencils for the transition from a fine mesh to a coarse
mesh, to apply the proposed technique to other PDEs with variable coefficients.
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Appendix A. The detailed expression for the local truncation error e in Eq. (14) and the coefficients bp
used in Eq. (14)

e = c̄{b1u5 + h[b2
∂u5

∂x
+ b3

∂u5

∂y
+ b4u5] + h2[b5

∂2u5
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+b19
∂u5
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+h4[b21
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∂y2 + b55
∂u5

∂y
+ b56u5]

+h6[b57
∂6u5

∂x6 + b58
∂6u5

∂x5∂y
+ b59

∂5u5

∂x5 + b60
∂6u5

∂x4∂y2 + · · · + b83
∂u5

∂y
+ b84u5]

+h7[b85
∂7u5

∂x7 + b86
∂7u5

∂x6∂y
+ b87

∂6u5

∂x6 + b88
∂7u5

∂x5∂y2 + · · · + b119
∂u5

∂y
+ b120u5]

+h8[b121
∂8u5

∂x8 + b122
∂8u5

∂x7∂y
+ b123

∂7u5

∂x7 + b124
∂6u5

∂x6 + · · · + b164
∂u5

∂y
+ b165u5]} + O(h9) ,

The first ten coefficients bi (i = 1, 2, . . . , 10) are presented below. All coefficients bi (i = 1, 2, . . . , 165) used
in the paper are given in Appendix D.

b1 = k0,1 + k0,2 + k0,3 + k0,4 + k0,5 + k0,6 + k0,7 + k0,8 + k0,9

b2 = −d1k0,1 + d3k0,3 − d4k0,4 + d5k0,6 − d6k0,7 + d8k0,9

b3 = −d1k0,1 − d2k0,2 − d3k0,3 + d6k0,7 + d7k0,8 + d8k0,9

b4 = k1,1 + k1,2 + k1,3 + k1,4 + k1,5 + k1,6 + k1,7 + k1,8 + k1,9

b5 =
1
2

(2c̄x (x, y)(m0,1 + m0,2 + m0,3 + m0,4 + m0,5 + m0,6 + m0,7 + m0,8 + m0,9) + d2
1 k0,1

+ d2
3 k0,3 + d2

4 k0,4 + d2
5 k0,6 + d2

6 k0,7 + d2
8 k0,9)

b6 = d2
1 k0,1 − d2

3 k0,3 − d2
6 k0,7 + d2

8 k0,9

b7 = c̄(1,0)
x (x, y)(m0,1 + m0,2 + m0,3 + m0,4 + m0,5 + m0,6 + m0,7 + m0,8 + m0,9) − d1k1,1

+ d3k1,3 − d4k1,4 + d5k1,6 − d6k1,7 + d8k1,9

b8 =
1
2

(2c̄y(x, y)(m0,1 + m0,2 + m0,3 + m0,4 + m0,5 + m0,6 + m0,7 + m0,8 + m0,9) + d2
1 k0,1

+ d2
2 k0,2 + d2

3 k0,3 + d2
6 k0,7 + d2

7 k0,8 + d2
8 k0,9)

b9 = c̄(0,1)
y (x, y)(m0,1 + m0,2 + m0,3 + m0,4 + m0,5 + m0,6 + m0,7 + m0,8 + m0,9) − d1k1,1

− d2k1,2 − d3k1,3 + d6k1,7 + d7k1,8 + d8k1,9

b10 = k2,1 + k2,2 + k2,3 + k2,4 + k2,5 + k2,6 + k2,7 + k2,8 + k2,9

Appendix B. The coefficients mi, p, k j, p (i = 0, 1, j = 0, 1, 2, 3, 4, p = 1, 2, . . . , 9) for the 9-point uniform
stencil and the corresponding local truncation error

m0,1 =
1

240(c̄x (x, y) + c̄y (x, y))
, m1,2 =

1
24(c̄x (x, y) + c̄y (x, y))

, m0,3 =
1

240(c̄x (x, y) + c̄y (x, y))
, m0,4 =

1
24(c̄x (x, y) + c̄y (x, y))

,

m0,5 =
5

12(c̄x (x, y) + c̄y (x, y))
, m0,6 =

1
24(c̄x (x, y) + c̄y (x, y))

, m0,7 =
1

240(c̄x (x, y) + c̄y (x, y))
, m0,8 =

1
24(c̄x (x, y) + c̄y (x, y))

,

m0,9 =
1

240(c̄x (x, y) + c̄y (x, y))
, m1,1 =

c̄x (x, y)c̄(0,1)
y (x, y) + c̄y (x, y)c̄(1,0)

x (x, y)
480c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

, m1,2 =
c̄(0,1)

y (x, y)
48c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

m1,3 =
c̄x (x, y)c̄(0,1)

y (x, y) − c̄y (x, y)c̄(1,0)
x (x, y)

480c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
, m1,4 =

c̄(1,0)
x (x, y)

48c̄x (x, y)(c̄x (x, y) + c̄y (x, y))
, m1,5 = 0, m1,6 = −

c̄(1,0)
x (x, y)

48c̄x (x, y)(c̄x (x, y) + c̄y (x, y))
,

m1,7 =
c̄y (x, y)c̄(1,0)

x (x, y) − c̄x (x, y)c̄(0,1)
y (x, y)

480c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
, m1,8 = −

c̄(0,1)
y (x, y)

48c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
, m1,9 = −

c̄x (x, y)c̄(0,1)
y (x, y) + c̄y (x, y)c̄(1,0)

x (x, y)
480c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,
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k0,1 = −
1

20
, k0,2 =

c̄x (x, y) − 5c̄y (x, y)
10(c̄x (x, y) + c̄y (x, y))

, k0,3 = −
1
20

, k0,4 =
c̄y (x, y) − 5c̄x (x, y)

10(c̄x (x, y) + c̄y (x, y))
, k0,5 = 1,

k0,6 =
c̄y (x, y) − 5c̄x (x, y)

10(c̄x (x, y) + c̄y (x, y))
, k0,7 = −

1
20

, k0,8 =
c̄x (x, y) − 5c̄y (x, y)

10(c̄x (x, y) + c̄y (x, y))
, k0,9 = −

1
20

,

k1,1 = −
c̄(0,1)

y (x, y)c̄x (x, y)2
− c̄y (x, y)(2c̄(0,1)

x (x, y) + c̄(0,1)
y (x, y) + c̄(1,0)

x (x, y) + 2c̄(1,0)
y (x, y))c̄x (x, y) + c̄y (x, y)2 c̄(1,0)

x (x, y)
40c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k1,2 =
c̄x (x, y)c̄(0,1)

y (x, y) + c̄y (x, y)(5c̄(0,1)
y (x, y) − 2c̄(0,1)

x (x, y))
20c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k1,3 =
−c̄(0,1)

y (x, y)c̄x (x, y)2
+ c̄y (x, y)(2c̄(0,1)

x (x, y) + c̄(0,1)
y (x, y) − c̄(1,0)

x (x, y) − 2c̄(1,0)
y (x, y))c̄x (x, y) + c̄y (x, y)2 c̄(1,0)

x (x, y)
40c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k1,4 =
c̄y (x, y)c̄(1,0)

x (x, y) + c̄x (x, y)(5c̄(1,0)
x (x, y) − 2c̄(1,0)

y (x, y))
20c̄x (x, y)(c̄x (x, y) + c̄y (x, y))

,

k1,5 = 0, k1,6 = −
c̄y (x, y)c̄(1,0)

x (x, y) + c̄x (x, y)(5c̄(1,0)
x (x, y) − 2c̄(1,0)

y (x, y))
20c̄x (x, y)(c̄x (x, y) + c̄y (x, y))

,

k1,7 =
c̄(0,1)

y (x, y)c̄x (x, y)2
+ c̄y (x, y)(−2c̄(0,1)

x (x, y) − c̄(0,1)
y (x, y) + c̄(1,0)

x (x, y) + 2c̄(1,0)
y (x, y))c̄x (x, y) − c̄y (x, y)2 c̄(1,0)

x (x, y)
40c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k1,8 = −
c̄x (x, y)c̄(0,1)

y (x, y) + c̄y (x, y)(5c̄(0,1)
y (x, y) − 2c̄(0,1)

x (x, y))
20c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k1,9 =
c̄(0,1)

y (x, y)c̄x (x, y)2
− c̄y (x, y)(2c̄(0,1)

x (x, y) + c̄(0,1)
y (x, y) + c̄(1,0)

x (x, y) + 2c̄(1,0)
y (x, y))c̄x (x, y) + c̄y (x, y)2 c̄(1,0)

x (x, y)
40c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k2,1 =
1

80c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(c̄(0,1)
y (x, y) + 4c̄(1,0)

x (x, y) + 2c̄(1,0)
y (x, y)) + c̄x (x, y)(4c̄(0,1)

y (x, y)2
+ 2c̄(0,1)

x (x, y)c̄(0,1)
y (x, y)+

c̄(1,0)
x (x, y)c̄(0,1)

y (x, y) − 2c̄y (x, y)(c̄(0,2)
x (x, y) + 3c̄(0,2)

y (x, y) + c̄(1,1)
x (x, y) + c̄(1,1)

y (x, y) + 3c̄(2,0)
x (x, y) + c̄(2,0)

y (x, y)))],

k2,2 =
c̄x (x, y)(c̄y (x, y)(c̄(0,2)

x (x, y) + 3c̄(2,0)
x (x, y)) − c̄(0,1)

x (x, y)c̄(0,1)
y (x, y)) − 2c̄y (x, y)c̄(1,0)

x (x, y)2

20c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
,

k2,3 =
1

80c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(−c̄(0,1)
y (x, y) + 4c̄(1,0)

x (x, y) + 2c̄(1,0)
y (x, y)) + c̄x (x, y)(4c̄(0,1)

y (x, y)2
+ 2c̄(0,1)

x (x, y)c̄(0,1)
y (x, y)−

c̄(1,0)
x (x, y)c̄(0,1)

y (x, y) − 2c̄y (x, y)(c̄(0,2)
x (x, y) + 3c̄(0,2)

y (x, y) − c̄(1,1)
x (x, y) − c̄(1,1)

y (x, y) + 3c̄(2,0)
x (x, y) + c̄(2,0)

y (x, y)))],

k2,4 =
c̄x (x, y)(c̄y (x, y)(3c̄(0,2)

y (x, y) + c̄(2,0)
y (x, y)) − 2c̄(0,1)

y (x, y)2) − c̄y (x, y)c̄(1,0)
x (x, y)c̄(1,0)

y (x, y)
20c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k2,5 = 0, k2,6 =
c̄x (x, y)(c̄y (x, y)(3c̄(0,2)

y (x, y) + c̄(2,0)
y (x, y)) − 2c̄(0,1)

y (x, y)2) − c̄y (x, y)c̄(1,0)
x (x, y)c̄(1,0)

y (x, y)
20c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k2,7 =
1

80c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(−c̄(0,1)
y (x, y) + 4c̄(1,0)

x (x, y) + 2c̄(1,0)
y (x, y)) + c̄x (x, y)(4c̄(0,1)

y (x, y)2
+ 2c̄(0,1)

x (x, y)c̄(0,1)
y (x, y)−

c̄(1,0)
x (x, y)c̄(0,1)

y (x, y) − 2c̄y (x, y)(c̄(0,2)
x (x, y) + 3c̄(0,2)

y (x, y) − c̄(1,1)
x (x, y) − c̄(1,1)

y (x, y) + 3c̄(2,0)
x (x, y) + c̄(2,0)

y (x, y)))],

k2,8 =
c̄x (x, y)(c̄y (x, y)(c̄(0,2)

x (x, y) + 3c̄(2,0)
x (x, y)) − c̄(0,1)

x (x, y)c̄(0,1)
y (x, y)) − 2c̄y (x, y)c̄(1,0)

x (x, y)2

20c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
,

k2,9 =
1

80c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(c̄(0,1)
y (x, y) + 4c̄(1,0)

x (x, y) + 2c̄(1,0)
y (x, y)) + c̄x (x, y)(4c̄(0,1)

y (x, y)2
+ 2c̄(0,1)

x (x, y)c̄(0,1)
y (x, y)+

c̄(1,0)
x (x, y)c̄(0,1)

y (x, y) − 2c̄y (x, y)(c̄(0,2)
x (x, y) + 3c̄(0,2)

y (x, y) + c̄(1,1)
x (x, y) + c̄(1,1)

y (x, y) + 3c̄(2,0)
x (x, y) + c̄(2,0)

y (x, y)))],

k3,1 =
1

480c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄x (x, y)(c̄y (x, y)(4c̄(0,3)

x (x, y) + c̄(0,3)
y (x, y) + 6c̄(1,2)

x (x, y) + 6c̄(1,2)
y (x, y) + 6c̄(2,1)

x (x, y)+

6c̄(2,1)
y (x, y) + c̄(3,0)

x (x, y) + 4c̄(3,0)
y (x, y)) − c̄(0,1)

y (x, y)(6c̄(0,2)
x (x, y) + c̄(0,2)

y (x, y) + 6c̄(1,1)
x (x, y) + 4c̄(1,1)

y (x, y) + 3c̄(2,0)
x (x, y)))−

c̄y (x, y)c̄(1,0)
x (x, y)(3c̄(0,2)

y (x, y) + 4c̄(1,1)
x (x, y) + 6c̄(1,1)

y (x, y) + c̄(2,0)
x (x, y) + 6c̄(2,0)

y (x, y))],

k3,2 =
4c̄y (x, y)c̄(1,0)

x (x, y)c̄(1,1)
x (x, y) + c̄x (x, y)(c̄(0,1)

y (x, y)(6c̄(0,2)
x (x, y) − 5c̄(0,2)

y (x, y) + 3c̄(2,0)
x (x, y)) + c̄y (x, y)(−4c̄(0,3)

x (x, y) + 5c̄(0,3)
y (x, y) − 6c̄(2,1)

x (x, y)))
240c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k3,3 =
1

480c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(3c̄(0,2)
y (x, y) − 4c̄(1,1)

x (x, y) − 6c̄(1,1)
y (x, y) + c̄(2,0)

x (x, y) + 6c̄(2,0)
y (x, y))−

c̄x (x, y)(c̄(0,1)
y (x, y)(6c̄(0,2)

x (x, y) + c̄(0,2)
y (x, y) − 6c̄(1,1)

x (x, y) − 4c̄(1,1)
y (x, y) + 3c̄(2,0)

x (x, y)) + c̄y (x, y)(−4c̄(0,3)
x (x, y) − c̄(0,3)

y (x, y)+

6c̄(1,2)
x (x, y) + 6c̄(1,2)

y (x, y) − 6c̄(2,1)
x (x, y) − 6c̄(2,1)

y (x, y) + c̄(3,0)
x (x, y) + 4c̄(3,0)

y (x, y)))],

k3,4 =
4c̄x (x, y)c̄(0,1)

y (x, y)c̄(1,1)
y (x, y) + c̄y (x, y)(3c̄(0,2)

y (x, y)c̄(1,0)
x (x, y) + (6c̄(2,0)

y (x, y) − 5c̄(2,0)
x (x, y))c̄(1,0)

x (x, y) + c̄x (x, y)(−6c̄(1,2)
y (x, y) + 5c̄(3,0)

x (x, y) − 4c̄(3,0)
y (x, y)))

240c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
,

k3,5 = 0,

k3,6 =
c̄y (x, y)(−3c̄(0,2)

y (x, y)c̄(1,0)
x (x, y) + (5c̄(2,0)

x (x, y) − 6c̄(2,0)
y (x, y))c̄(1,0)

x (x, y) + c̄x (x, y)(6c̄(1,2)
y (x, y) − 5c̄(3,0)

x (x, y) + 4c̄(3,0)
y (x, y))) − 4c̄x (x, y)c̄(0,1)

y (x, y)c̄(1,1)
y (x, y)

240c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
,

k3,7 =
1

480c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄x (x, y)(c̄(0,1)

y (x, y)(6c̄(0,2)
x (x, y) + c̄(0,2)

y (x, y) − 6c̄(1,1)
x (x, y) − 4c̄(1,1)

y (x, y) + 3c̄(2,0)
x (x, y))+

c̄y (x, y)(−4c̄(0,3)
x (x, y) − c̄(0,3)

y (x, y) + 6c̄(1,2)
x (x, y) + 6c̄(1,2)

y (x, y) − 6c̄(2,1)
x (x, y) − 6c̄(2,1)

y (x, y) + c̄(3,0)
x (x, y) + 4c̄(3,0)

y (x, y)))−

c̄y (x, y)c̄(1,0)
x (x, y)(3c̄(0,2)

y (x, y) − 4c̄(1,1)
x (x, y) − 6c̄(1,1)

y (x, y) + c̄(2,0)
x (x, y) + 6c̄(2,0)

y (x, y))],

k3,8 =
c̄x (x, y)(c̄(0,1)

y (x, y)(−6c̄(0,2)
x (x, y) + 5c̄(0,2)

y (x, y) − 3c̄(2,0)
x (x, y)) + c̄y (x, y)(4c̄(0,3)

x (x, y) − 5c̄(0,3)
y (x, y) + 6c̄(2,1)

x (x, y))) − 4c̄y (x, y)c̄(1,0)
x (x, y)c̄(1,1)

x (x, y)
240c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k3,9 =
1

480c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(3c̄(0,2)
y (x, y) + 4c̄(1,1)

x (x, y) + 6c̄(1,1)
y (x, y) + c̄(2,0)

x (x, y) + 6c̄(2,0)
y (x, y))+

c̄x (x, y)(c̄(0,1)
y (x, y)(6c̄(0,2)

x (x, y) + c̄(0,2)
y (x, y) + 6c̄(1,1)

x (x, y) + 4c̄(1,1)
y (x, y) + 3c̄(2,0)

x (x, y)) − c̄y (x, y)(4c̄(0,3)
x (x, y) + c̄(0,3)

y (x, y)+
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6c̄(1,2)
x (x, y) + 6c̄(1,2)

y (x, y) + 6c̄(2,1)
x (x, y) + 6c̄(2,1)

y (x, y) + c̄(3,0)
x (x, y) + 4c̄(3,0)

y (x, y)))],

k4,1 =
1

960c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(c̄(0,3)
y (x, y) + 2(2c̄(1,2)

x (x, y) + 3c̄(1,2)
y (x, y) + c̄(2,1)

x (x, y) + 3c̄(2,1)
y (x, y)+

8c̄(3,0)
x (x, y) + 2c̄(3,0)

y (x, y))) + c̄x (x, y)(c̄(0,1)
y (x, y)(4c̄(0,3)

x (x, y) + 16c̄(0,3)
y (x, y) + 6c̄(1,2)

x (x, y) + 2c̄(1,2)
y (x, y) + 6c̄(2,1)

x (x, y)+

4c̄(2,1)
y (x, y) + c̄(3,0)

x (x, y)) − 2c̄y (x, y)(c̄(0,4)
x (x, y) + 5c̄(0,4)

y (x, y) + 2c̄(1,3)
x (x, y) + c̄(1,3)

y (x, y) + 3c̄(2,2)
x (x, y) + 3c̄(2,2)

y (x, y)+

c̄(3,1)
x (x, y) + 2c̄(3,1)

y (x, y) + 5c̄(4,0)
x (x, y) + c̄(4,0)

y (x, y)))],

k4,2 =
c̄x (x, y)(c̄y (x, y)(c̄(0,4)

x (x, y) + 3c̄(2,2)
x (x, y) + 5c̄(4,0)

x (x, y)) − c̄(0,1)
y (x, y)(2c̄(0,3)

x (x, y) + 3c̄(2,1)
x (x, y))) − 2c̄y (x, y)c̄(1,0)

x (x, y)(c̄(1,2)
x (x, y) + 4c̄(3,0)

x (x, y))
240c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k4,3 =
1

960c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(−c̄(0,3)
y (x, y) + 4c̄(1,2)

x (x, y) + 6c̄(1,2)
y (x, y) − 2c̄(2,1)

x (x, y) − 6c̄(2,1)
y (x, y)+

16c̄(3,0)
x (x, y) + 4c̄(3,0)

y (x, y)) + c̄x (x, y)(c̄(0,1)
y (x, y)(4c̄(0,3)

x (x, y) + 16c̄(0,3)
y (x, y) − 6c̄(1,2)

x (x, y) − 2c̄(1,2)
y (x, y) + 6c̄(2,1)

x (x, y)+

4c̄(2,1)
y (x, y) − c̄(3,0)

x (x, y)) − 2c̄y (x, y)(c̄(0,4)
x (x, y) + 5c̄(0,4)

y (x, y) − 2c̄(1,3)
x (x, y) − c̄(1,3)

y (x, y) + 3c̄(2,2)
x (x, y) + 3c̄(2,2)

y (x, y)−

c̄(3,1)
x (x, y) − 2c̄(3,1)

y (x, y) + 5c̄(4,0)
x (x, y) + c̄(4,0)

y (x, y)))],

k4,4 =
c̄x (x, y)(c̄y (x, y)(5c̄(0,4)

y (x, y) + 3c̄(2,2)
y (x, y) + c̄(4,0)

y (x, y)) − 2c̄(0,1)
y (x, y)(4c̄(0,3)

y (x, y) + c̄(2,1)
y (x, y))) − c̄y (x, y)c̄(1,0)

x (x, y)(3c̄(1,2)
y (x, y) + 2c̄(3,0)

y (x, y))
240c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k4,5 = 0, k4,6 =
c̄x (x, y)(c̄y (x, y)(5c̄(0,4)

y (x, y) + 3c̄(2,2)
y (x, y) + c̄(4,0)

y (x, y)) − 2c̄(0,1)
y (x, y)(4c̄(0,3)

y (x, y) + c̄(2,1)
y (x, y))) − c̄y (x, y)c̄(1,0)

x (x, y)(3c̄(1,2)
y (x, y) + 2c̄(3,0)

y (x, y))
240c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k4,7 =
1

960c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(−c̄(0,3)
y (x, y) + 4c̄(1,2)

x (x, y) + 6c̄(1,2)
y (x, y) − 2c̄(2,1)

x (x, y) − 6c̄(2,1)
y (x, y)+

16c̄(3,0)
x (x, y) + 4c̄(3,0)

y (x, y)) + c̄x (x, y)(c̄(0,1)
y (x, y)(4c̄(0,3)

x (x, y) + 16c̄(0,3)
y (x, y) − 6c̄(1,2)

x (x, y) − 2c̄(1,2)
y (x, y) + 6c̄(2,1)

x (x, y)+

4c̄(2,1)
y (x, y) − c̄(3,0)

x (x, y)) − 2c̄y (x, y)(c̄(0,4)
x (x, y) + 5c̄(0,4)

y (x, y) − 2c̄(1,3)
x (x, y) − c̄(1,3)

y (x, y) + 3c̄(2,2)
x (x, y) + 3c̄(2,2)

y (x, y)−

c̄(3,1)
x (x, y) − 2c̄(3,1)

y (x, y) + 5c̄(4,0)
x (x, y) + c̄(4,0)

y (x, y)))],

k4,8 =
c̄x (x, y)(c̄y (x, y)(c̄(0,4)

x (x, y) + 3c̄(2,2)
x (x, y) + 5c̄(4,0)

x (x, y)) − c̄(0,1)
y (x, y)(2c̄(0,3)

x (x, y) + 3c̄(2,1)
x (x, y))) − 2c̄y (x, y)c̄(1,0)

x (x, y)(c̄(1,2)
x (x, y) + 4c̄(3,0)

x (x, y))
240c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))

,

k4,9 =
1

960c̄x (x, y)c̄y (x, y)(c̄x (x, y) + c̄y (x, y))
[c̄y (x, y)c̄(1,0)

x (x, y)(c̄(0,3)
y (x, y) + 2(2c̄(1,2)

x (x, y) + 3c̄(1,2)
y (x, y) + c̄(2,1)

x (x, y) + 3c̄(2,1)
y (x, y)+

8c̄(3,0)
x (x, y) + 2c̄(3,0)

y (x, y))) + c̄x (x, y)(c̄(0,1)
y (x, y)(4c̄(0,3)

x (x, y) + 16c̄(0,3)
y (x, y) + 6c̄(1,2)

x (x, y) + 2c̄(1,2)
y (x, y) + 6c̄(2,1)

x (x, y)+

4c̄(2,1)
y (x, y) + c̄(3,0)

x (x, y)) − 2c̄y (x, y)(c̄(0,4)
x (x, y) + 5c̄(0,4)

y (x, y) + 2c̄(1,3)
x (x, y) + c̄(1,3)

y (x, y) + 3c̄(2,2)
x (x, y) + 3c̄(2,2)

y (x, y)+

c̄(3,1)
x (x, y) + 2c̄(3,1)

y (x, y) + 5c̄(4,0)
x (x, y) + c̄(4,0)

y (x, y)))]

These coefficients provide the following local truncation error in Eq. (14):

e =
h6

1200c̄x c̄y(c̄x + c̄y)
[c̄x (−c̄(0,1)

y (10c̄(1,3)
x u(1,0)

5 + 5c̄(1,1)
x u(3,0)

5 + 5c̄(3,1)
x u(1,0)

5 + 5c̄(1,0)
x u(3,1)

5 + 50c̄(0,2)
y u(0,3)

5

+ 5c̄(2,0)
y u(0,3)

5 + 10c̄(1,0)
y u(1,3)

5 + 5(2c̄(0,4)
y + c̄(2,2)

y )u(0,1)
5 − 9c̄yu(0,5)

5 ) + c̄y(5c̄(1,4)
x u(1,0)

5 − 75c̄(2,0)
x u(2,2)

5

+ 5c̄(1,2)
x u(3,0)

5 + 40c̄(3,0)
x u(3,0)

5 + 10c̄(1,1)
x u(3,1)

5 + 5c̄(3,2)
x u(1,0)

5 + 35c̄(2,0)
x u(4,0)

5 + 5c̄(5,0)
x u(1,0)

5 + 9c̄(1,0)
x u(5,0)

5

+ 40c̄(0,3)
y u(0,3)

5 + 5c̄(2,1)
y u(0,3)

5 + 5c̄(0,5)
y u(0,1)

5 + 10c̄(1,1)
y u(1,3)

5 + 5c̄(0,2)
y (7u(0,4)

5 − 15u(2,2)
5 ) + 5c̄(2,3)

y u(0,1)
5

+ 5c̄(4,1)
y u(0,1)

5 + 3c̄yu(0,6)
5 ) + (c̄(0,1)

y )2(50u(2,2)
5 − 30u(0,4)

5 )) − 5c̄(1,0)
x c̄y(c̄(2,2)

x u(1,0)
5 − 10c̄(1,0)

x u(2,2)
5

+ c̄(0,2)
x u(3,0)

5 + 10c̄(2,0)
x u(3,0)

5 + 2c̄(0,1)
x u(3,1)

5 + 2c̄(4,0)
x u(1,0)

5 + 6c̄(1,0)
x u(4,0)

5 + c̄(1,1)
y u(0,3)

5 + c̄(0,1)
y u(1,3)

5

+ (c̄(1,3)
y + 2c̄(3,1)

y )u(0,1)
5 ) + 3c̄2

x c̄yu(6,0)
5 ] + O(h7)

with u(i, j)
5 =

∂ i+ j u(x,y,t)
∂x i ∂y j

|x=x5 , y=y5
, c̄(i, j)

x =
∂ i+ j c̄x (x,y)

∂x i ∂y j
|x=x5 , y=y5

and c̄(i, j)
y =

∂ i+ j c̄y (x,y)
∂x i ∂y j

|x=x5 , y=y5
.

Appendix C. The explicit expression for the term f̄5 in Eq. (20) in the case of nonzero loading (source)
term f ̸= 0 in the wave (heat) equation

The expression for f̄5 up to the sixth order with respect to hhh:

f̄5 = h2 f5(m0,1 + m0,2 + m0,3 + m0,4 + m0,5 + m0,6 + m0,7 + m0,8 + m0,9)

+ h3( f5
(0,1)(−d1m0,1 − d2m0,2 − d3m0,3 + d6m0,7 + d7m0,8 + d8m0,9) + f5

(1,0)(−d1m0,1 + d3m0,3

− d4m0,4 + d5m0,6 − d6m0,7 + d8m0,9) + f5(m1,1 + m1,2 + m1,3 + m1,4 + m1,5 + m1,6 + m1,7

+ m1,8 + m1,9)) +
1
2

h4( f5
(0,2)(d2

1 m0,1 + d2
2 m0,2 + d2

3 m0,3 + d2
6 m0,7 + d2

7 m0,8 + d2
8 m0,9)

+ 2d2
1 m0,1 f5

(1,1)
+ d2

1 m0,1 f5
(2,0)

− 2 f5
(0,1)(d1m1,1 + d2m1,2 + d3m1,3 − d6m1,7 − d7m1,8 − d8m1,9)

− 2d1m1,1 f5
(1,0)

− 2d2
3 m0,3 f5

(1,1)
+ d2

3 m0,3 f5
(2,0)

+ 2d3m1,3 f5
(1,0)

+ d2
4 m0,4 f5

(2,0)
− 2d4m1,4 f5

(1,0)
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+ d2
5 m0,6 f5

(2,0)
+ 2d5m1,6 f5

(1,0)
− 2d2

6 m0,7 f5
(1,1)

+ d2
6 m0,7 f5

(2,0)
− 2d6m1,7 f5

(1,0)
+ 2d2

8 m0,9 f5
(1,1)

+ d2
8 m0,9 f5

(2,0)
+ 2d8m1,9 f5

(1,0)) +
1
6

h5( f5
(0,3)(d3

1 (−m0,1) − d3
2 m0,2 − d3

3 m0,3 + d3
6 m0,7

+ d3
7 m0,8 + d3

8 m0,9) − 3d3
1 m0,1 f5

(1,2)
− 3d3

1 m0,1 f5
(2,1)

− d3
1 m0,1 f5

(3,0)
+ 3 f5

(0,2)(d2
1 m1,1 + d2

2 m1,2

+ d2
3 m1,3 + d2

6 m1,7 + d2
7 m1,8 + d2

8 m1,9) + 6d2
1 m1,1 f5

(1,1)
+ 3d2

1 m1,1 f5
(2,0)

+ 3d3
3 m0,3 f5

(1,2)

− 3d3
3 m0,3 f5

(2,1)
+ d3

3 m0,3 f5
(3,0)

− 6d2
3 m1,3 f5

(1,1)
+ 3d2

3 m1,3 f5
(2,0)

− d3
4 m0,4 f5

(3,0)
+ 3d2

4 m1,4 f5
(2,0)

+ d3
5 m0,6 f5

(3,0)
+ 3d2

5 m1,6 f5
(2,0)

− 3d3
6 m0,7 f5

(1,2)
+ 3d3

6 m0,7 f5
(2,1)

− d3
6 m0,7 f5

(3,0)
− 6d2

6 m1,7 f5
(1,1)

+ 3d2
6 m1,7 f5

(2,0)
+ 3d3

8 m0,9 f5
(1,2)

+ 3d3
8 m0,9 f5

(2,1)
+ d3

8 m0,9 f5
(3,0)

+ 6d2
8 m1,9 f5

(1,1)
+ 3d2

8 m1,9 f5
(2,0))

+
1
24

h6( f5
(0,4)(d4

1 m0,1 + d4
2 m0,2 + d4

3 m0,3 + d4
6 m0,7 + d4

7 m0,8 + d4
8 m0,9) + 4d4

1 m0,1 f5
(1,3)

+ 6d4
1 m0,1 f5

(2,2)
+ 4d4

1 m0,1 f5
(3,1)

+ d4
1 m0,1 f5

(4,0)
− 4 f5

(0,3)(d3
1 m1,1 + d3

2 m1,2 + d3
3 m1,3 − d3

6 m1,7

− d3
7 m1,8 − d3

8 m1,9) − 12d3
1 m1,1 f5

(1,2)
− 12d3

1 m1,1 f5
(2,1)

− 4d3
1 m1,1 f5

(3,0)
− 4d4

3 m0,3 f5
(1,3)

+ 6d4
3 m0,3 f5

(2,2)
− 4d4

3 m0,3 f5
(3,1)

+ d4
3 m0,3 f5

(4,0)
+ 12d3

3 m1,3 f5
(1,2)

− 12d3
3 m1,3 f5

(2,1)
+ 4d3

3 m1,3 f5
(3,0)

+ d4
4 m0,4 f5

(4,0)
− 4d3

4 m1,4 f5
(3,0)

+ d4
5 m0,6 f5

(4,0)
+ 4d3

5 m1,6 f5
(3,0)

− 4d4
6 m0,7 f5

(1,3)
+ 6d4

6 m0,7 f5
(2,2)

− 4d4
6 m0,7 f5

(3,1)
+ d4

6 m0,7 f5
(4,0)

− 12d3
6 m1,7 f5

(1,2)
+ 12d3

6 m1,7 f5
(2,1)

− 4d3
6 m1,7 f5

(3,0)
+ 4d4

8 m0,9 f5
(1,3)

+ 6d4
8 m0,9 f5

(2,2)
+ 4d4

8 m0,9 f5
(3,1)

+ d4
8 m0,9 f5

(4,0)
+ 12d3

8 m1,9 f5
(1,2)

+ 12d3
8 m1,9 f5

(2,1)

+ 4d3
8 m1,9 f5

(3,0)) + O(h7)

with f (i, j)
5 =

∂ i+ j f (x,y,t)
∂x i ∂y j

|x=x5 , y=y5
.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2020.113249.
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