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1. Introduction

In this paper we will show that the accuracy of high-order numerical techniques for the heat and Poisson equations
used in many applications (computational physics, computational mechanics and others; e.g. see [1-4] and many others)
can be significantly improved compared to the known numerical approaches. For many problems, high-order finite element
techniques have advantages compared to the linear finite elements due to a higher order of accuracy of these techniques;
e.g., see [5-7] and others. However, the conventional derivation of the discrete equations for finite element techniques (e.g.,
based on the Galerkin approaches) does not lead to the optimal accuracy of the discrete equations. This is known for many
years for the linear finite elements applied to the wave equation for which different techniques have been developed for the
increase in accuracy of the discrete equations; e.g., see [8-15] and many others. Their extension to high-order elements is
not straightforward. For example, the dispersion reduction technique for the high-order finite elements have been suggested
in [16] for acoustic waves. This technique is based on the calculation of the mass matrix M in Eq. (3) as a weighted average
of the consistent and lumped mass matrices for the high-order finite elements. It was also shown in [16] that the same
results can be obtained with the modified integration rule for the mass matrix. With this technique, the dispersion error
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is improved from the order 2p to the order 2p + 2 (p is the order of polynomial approximations). However, even for the
quadratic elements, the modified stencil equation derived in [16] in the 1-D case is based on the replacement of the mid-
side degree of freedom by the degrees of freedom related to the nodes located at the ends of the element (it seems that
such a replacement is impossible in the 2-D or 3-D cases due to the belonging of the same mid-side degree of freedom to
different elements).

The modification of the non-diagonal mass matrix in [17,18] for the high-order isogeometric elements allows the increase
in the order of the dispersion error from the order 2p to the order 2p + 2 in the 1-D case and for one specific direction of
harmonic waves in the 2-D case (however, this technique does not improve the order of the dispersion error in the general
2-D case). The issues with the application of such a technique to a general multidimensional case has been resolved in the
latest papers [19-22].

Recently, we have improved the accuracy of high-order isogeometric elements from the order 2p to the order 4p for the
scalar wave equation in the general multidimensional case; see [23,24]. This increase in the order of accuracy is much higher
than that in the above-mentioned papers [16-20]. In contrast to the high-order finite and spectral elements, the stencil
equation for the isogeometric elements on uniform meshes is the same for all internal degrees of freedom (for the high-
order finite and spectral elements there are several stencil equations with different structures depending on the location
of nodes). This simplifies the analysis of the numerical dispersion error for the isogeometric elements. The improvement
of accuracy in [23,24] is based on the optimization of the order of the numerical dispersion error and on the existence
of the exact harmonic solutions to the wave equation with zero loading function for an infinite domain. This approach
cannot be applied to the heat equation due to the absence of exact harmonic solutions to the heat equation even with zero
heat source. However, using the local truncation error, we are able to significantly increase the accuracy of the high-order
isogeometric elements from the order 2p to the order 4p for the time dependent heat equation and even to a much higher
order of accuracy for the isogeometric elements applied to the time-independent Poisson equation.

In our recent papers [25,26] we have shown that the local truncation error can be used for the increase in accuracy
of the linear finite elements for the heat and Poisson equation as well as of the high-order isogeometric elements for the
wave and heat equations. In contrast to the new linear elements in [25], the new stencils developed in this paper yield a
much higher order of accuracy (much greater than the difference in the orders of accuracy between the conventional linear
and quadratic finite elements). The improvement of accuracy of the global system of the semidiscrete equations for the
high-order elements applied to the time-dependent heat and wave equations with zero right-hand side has been shortly
considered in our paper [26] with the help of the local truncation error. The determination of the elemental matrices for
the isogeometric elements has not been considered in [26]. In this paper we show how to calculate the elemental matrices
for the new technique as well as we extend the new approach to the heat equation with non-zero heat source (i.e., to
a new class of problems). Moreover, in contrast to [26], we have also developed new stencils for the time independent
Poisson equation with zero and non-zero heat source. We should mention that for the Poisson equation, the accuracy of the
quadratic isogeometric elements is improved by twelve orders (from the sixth order for the conventional elements to the
eighteenth order for the new stencils). The accuracy of the new 25-point stencils are also twelve orders higher compared
to the 9-point stencils of the new linear finite elements developed in [25]. We have never seen such a huge increase in the
order of accuracy without additional computational costs.

Heat transfer in an isotropic homogeneous medium is described by the heat equation in domain Q:

ou
&uﬂV%:f (1)

for transient problems and by the Poisson equation:

Viu=f (2)

for steady-state problems with the boundary conditions n - yu =g; on I'" and u =g, on I'¥, and the initial conditions
u(x,t =0) = g3 in Q (the initial conditions are given for the transient problems only). Here, u is the temperature, f is
a given heat source that may depend on the space coordinates and time for the transient problems and on the space
coordinates for the Poisson equation, V2 is the Laplace operator (VZu = 3275’ + 327‘5 in the 2-D case), a is the thermal
diffusivity (e.g., for homogeneous isotropic materials a = k/(cp), where k is the conductivity coefficient, p is the density
and c is the capacitance), t is the time, I'* and T'* denote the natural and essential boundaries, g; (i = 1,2,3) are the
given functions, n is the outward unit normal on I't. Other boundary conditions (e.g., convective heat exchange or radiation
heat exchange and others) can be also formulated. The application of the continuous Galerkin approach and the space
discretization (e.g., the finite elements, spectral elements, isogeometric elements; see [6,27,28] and others) to Egs. (1) and
(2) leads to a system of ordinary differential equations in time for transient problems:

MU +aKU =R (3)
and to a system of algebraic equations for steady-state problems:

KU =R (4)
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with
M:ZME, K:ZK"’, (5)
e e

where U (t) is the vector of the nodal temperatures, R is the right-hand side vector, the global M and K matrices have a
banded structure and are obtained by the summation of the corresponding local (element ©¢) matrices M¢ and K°®:

M = /NTNdSZE, K¢ = /BTBdQe. (6)
Qe Qe
Here, N and B = % are the shape matrix and its derivative with respect to the physical coordinate x; see [6,7,29].

In Section 2.1 we consider the improvement of the order of the local truncation error by the optimization of the coeffi-
cients of the 25-point stencil equation for the quadratic isogeometric elements applied to the time dependent heat equation
with zero heat source in the 2-D case. In Section 2.2 we extend these results to the 2-D time independent Poisson equa-
tion. The numerical examples showing the accuracy and the convergence rate of the conventional quadratic isogeometric
elements and the new 25-point stencils are presented in Section 3. Currently, the new high-order technique has been de-
veloped for uniform square and rectangular meshes. However, in Section 3.3 we show that this technique can be easily
combined with the conventional isogeometric or finite elements and form a hybrid method. The hybrid method can be eas-
ily applied to irregular domains. In Appendix B we extend the results to non-zero heat source. The computational program
“Mathematica” has been used for the derivation of many analytical expressions. Some long formulas from the paper (see
Egs. (21), (40), (46), (B.4) and (B.5) below) are also given as a Mathematica file in Appendix H.

2. Local truncation error in space for discretized equations

In the analysis of the local truncation error considered below, the stencil equation of the discretized global system of
equations, Eq. (3), for transient problems can be written as

h2mim +akui'™ — f = 0. (7)

Here, u*™ and "™ are the nodal values of function u and its first time derivative in the numerical solution, f is calculated
with the help of the heat source (e.g., see Appendix B), coefficients m; and k; for the conventional isogeometric elements
are calculated with the help of Egs. (3) - (6), h is the element size (e.g., along the x-axis); the summation over the repeated
indexes is assumed in Eq. (7). The examples of the coefficients m; and k; can be found below in the following sections. The
substitution of the exact solution of the heat equation, Eq. (1), for function u; and its first time derivative i; at nodes into
Eq. (7) will lead to the residual of this equation called the local truncation error e of the semidiscrete equation (7):

e = hzm,-il,-—i—akjuj—f. (8)
Calculating the difference between Egs. (8) and (7) we can get

e = h®m[i; — "™ + akj[uj — u""™"] = h*m;e} +ak;e; , 9)

where € =uj —uj"™ and ] = u; — u"™ are the errors of function u and its first time derivative at nodes j and i. As can
be seen from Eq. (9), the local truncation error e is a linear combination of the errors in the function u and its first time
derivative at nodes i which are included into the stencil equation. The local truncation error e for Eq. (4) can be obtained
from Eqgs. (7)-(9) with m; =0 and a = 1. The derivations in Section 2 are based on zero heat source f(x,t) = f =0. The
extension to non-zero heat source is considered in Appendix B.

2.1. Transient problems with zero heat source (f (x,t) = f =0)

The calculation of the conventional M® and K® matrices of the isogeometric elements is based on the univariate B-spline
basis functions; see [27,30]. In the 1-D case they are defined recursively starting with p =0

' 1 ifE <& <&
Nip(®) = {O, otherwise. (10)
For p > 1:
Nip®) = =5 Ny @) + P TE N e, (11)

§i+p =&

Sivpr1 —&it1
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where a knot vector {& =0, ..., &, ..., &n4p+1 = 1} is a set of non-decreasing real numbers representing coordinates in the
parametric space of the curve, p is the order of the B-spline, n is the number of the basis functions, i =1,2,....,n+p + 1.
In the 2-D case the basis functions can be constructed with the help of the tensor product as follows:

MEIE ) = Nip(E)Njq(n) , )

where Nj () and N;j4(n) are the basis functions of order p and q given by Eq. (11). Below the 2-D basis functions of the
same order in the & and 5 directions (p = q) are used.
The M® and K° matrices of a typical interior rectangular quadratic isogeometric element in Eq. (6) are (see also [17]):

3% 78 6 78 169 13 6 13 1
78 324 78 169 702 169 13 54 13
6 78 36 13 169 78 1 13 6
pop2 | 78 169 13 324 702 54 78 169 13
= 169 702 169 702 2916 702 169 702 169 | . (13)

14400 | 13 169 78 54 702 324 13 169 78
6 13 1 78 169 13 36 78 6
13 54 13 169 702 169 78 324 78
1 13 6 13 169 78 6 78 36

12(b3+1)  26—6b3 2-6b2 26b3 —6  —13(b3+1) —13b3 -1  2(b}-3)  —b3 13 —b2 -1
26—-6b2  12(b2+9)  26-6bj —13(b3+1) 26b5-54 —13(bj+1) —b3-13  2(b3-27) —bi-13
2-6b2 26—6b2  12(b3+1) —13b3 -1 —13(b3+1) 26b3 -6 —b3 -1 -b2-13  2(b2-3)
1 26b2 -6  —13(b2+1) —13b3—1 12(%3+1) 26—54b2  2-—54b2 26b3 -6 —13(b3+1) —13b} -1

= —13(b3+1) 26b3—54 —13(b2+1) 26—54b2 108(b3+1) 26-—54b3 —13(b2+1) 26b2—54 —13(b2+1)
720by —-13p3 -1 —13(b+1) 26b5 -6 2-54b3  26-54b3  12(9b3 +1) —13b3 -1 —13(bj+1) 26b3—6

2(b2-3) -b2-13 —b2 -1 26b5 -6  —13(b3+1) —13b3 -1 12(bj+1)  26—6b3 2-6b2

-b3-13  2(bj-27) b3 —13 -13(b3+1) 26b3-54 —13(b5+1) 26-—6b3  12(b3+9)  26—6b}

-b2 -1 —-b2-13  2(b3-3) -13b2-1 -—13(b2+1) 26b3 -6 2-6b2 26—-6b7  12(b3 +1)
(14)

where the sequence of uniformly spaced control points in the x and y directions with x4 =hA and yg =bhB is used.

Considering the discretized heat equation (Eq. (3)) on an infinite plane with the sequence of uniformly spaced control
points in the x and y directions, the 25-point stencil equation for the degree of freedom u4 g can be calculated with
the help of Egs. (3), (5), (13) and (14) for 3 x 3 =9 neighboring elements. It includes 25 degrees of freedom u; ; (i =
A-2,A—1,A,A+1,A+2and j=B—-2,B—1,B,B+1, B+2) which are close to the degree of freedom u, p (see Fig. 11
in the Appendix A) and has the following form:

2 . B . . .
h*{mytg g +malia™ ) gory +Uat, s—1) T WAty 1) T U(A1), (B—1)]
AM3[UR" (g 4 1) + WA g1y ] +Mal(a") 52) + U(RT2) B12) T U{A 2) (B12) T U(at2). 82
+ms Ul (5—1) T U(AT2) (B+1) T U(AZ2), (B—1) T U(At2) B+1)] T M6[UR (51 + UR (B )]
+mali(a"y) g+ W) g1+ msli(a") 5 2) + UG B12) T U(A 1) B42) T Uat1). 2]
+m9[u?zrfz),3 + u?XTZ)B]}
+afkiuy’g +kalu(a"y) g1y T UL, B—1) T UlAL), B+1) T U(AT), (B—1)]
k3 (U 1) + R o1y ]+ kalufa™y) (o) +U(AT2) (Bi2) T UlAra) (B+2) T UlAt2).(B—2)]
+ks[utally) g1y + U(a2) B11) T U(A ), B-1) T U(AT2). B+1)] +K6[UR (B 1) + URB2)]
+k7 (U™ p +u(ay ]+ ks[uia™) g2y + U(aT1) B42) T UG 1).B1+2) T U(AT1).(B-2)]

+ko[u("y) p +U(alz) p1} = 0, (15)

where the coefficients m; and k; (j=1,2, 3, ...,9) for the conventional quadratic isogeometric elements are given in Table 1.

For the derivation of the new technique with improved accuracy let us assume that similar to the conventional elements
the 25-point stencil equation for the degree of freedom u4 g can be also represented by Eq. (15) with unknown coefficients
mjand kj (j=1,2,3,...,9) before each degree of freedom. Similar to the conventional isogeometric elements, the symmetry
for coefficients m; and k; in the stencil equation (15) is assumed for the degrees of freedom uj, (j=A—-2,A—-1,A,A+
1,A+2and =B —-2,B—1,B,B+1,B+2) symmetrically located with respect to the degree of freedom u4 p; see Fig. 11
in the Appendix A.
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Table 1

The coefficients of the stencil equation for the conventional Q9_IGE
quadratic isogeometric elements used for the heat equation and for the
Poisson equation in the 2-D case.

Coefficients Q9_IGE Coefficients Q9_IGE
m 121b, I, 11(1+b)
400 20b,
m, 169b, ko _13(1+b))
3600 180b,
ms 143b, k3 13— 11b;
1200 60b,,
m, b, ky 1+ b2
14400 720b,
ms 13by k5 _ 13 + b)Z/
7200 360b,
mg 11b, ke 1—11b}
2400 120b,
m, 143b, k, —11+13b}
1200 60b,
Mg 13b, kg _1+13b3
7200 360b,
mo 11by ko —11 + b2
2400 120b,

For the derivation of the stencil equation of the new approach we do not use the basis functions. We just assume that
similar to the conventional isogeometric elements, the 25-point stencil equation for the new approach, Eq. (15), is a linear
combination of degrees of freedom u'fL]‘m Therefore, we can also treat these degrees of freedom as the values of function u
at the nodes (similar to the conventional finite elements).

Remark. If for some approaches the stencil equations are given in terms of other variables that are not the values of
function u at the nodes, then a linear transformation of these variables to the values of function u at the nodes of a grid
can be used for the modification of the stencil equation.

For the calculation of the local truncation error, let us expand the exact solution uj; and iu1j; (j=A—-2,A—-1,A, A+
1,A+2and =B —2,B—1,B,B+1, B+2) to the heat equation into a Taylor series at small h < 1 as follows:

duap ... Ouap, . d%ug g (£ih)?  9%uap (Eih)(E£jbyh)
Uptipti=1U — (+ih — (+jbyh : :
Aki.Bej =B+ SR+ E by e T T T Ty 2!
9%u +jb,h)?
A8 (£jbyh) (16)
ay? 2!
. . dlAB . dUAB . 3204 g (£ih)? 8204 g (ih)(£jbyh)
Uptiprji=1U — (+ih — (£jbyh : -
A%iBxj =UAB+ — (£ih) + 3y (£jbyh) + I TR oxdy 20
8214 g (£jbyh)?
A8 (£jbyh) (17)
ay? 2!
with i, j =0, 1, 2. The exact solution ug g to Eq. (1) at x=x4 and y = yp meets the following equations:
au
AB _ av2uup=0, (18)
at ’
§Qi+2j+1)y, 5Qi+2j) 2y
AB AB (19)

- - a - .
Ix2igy2iagt Ix2igy2i
with i, j=0,1,2, 3,4, .... Here, Eq. (19) is directly obtained by the differentiation of Eq. (18) with respect to x and y. Similar

to Eq. (8), inserting Eqs. (16) - (19) with the exact solution to the heat equation, Eq. (1), into the stencil equation (15) we
will get the following local truncation error in space e:

azuA,B h4 3411,473

a uAB

b 84”A,B 8411,4’3
0x2 dy? +5

x4 oyt 6ox2 oy?

e=a{biuap + h*[by
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+%[b7863i2’3 +b886;;’§3 + b gifg‘yi + wsif—;;]
+ZOhlS6O [b11 8381;2,3 +b12888uy/;3 +bl3§igafx; Thug syt 15§><83—;j/i]
+18?::100[ 1681;:12'3 +b”8180;1%3 * 18(’;;‘;1;/;5

gyt O 0 ) 06

with the coefficients b, (p =1, 2,3, ..., 21) given in Appendix C; see Eq. (C.1).

The use of Egs. (18) and (19) are partly based on the ideas of the Lax-Wendroff method related to the replacement of the
time derivative by the spatial derivative according to the governing partial differential equation, Eq. (1). Therefore, Eq. (20)
does not include the time derivatives. In order to improve the order of the local truncation error in Eq. (20) at small h « 1,
we can equate to zero the coefficients b, in Eq. (20) that are expressed in terms of the 18 unknown coefficients m; and k;
(i=1,2,...,9); see Eq. (C.1). For example, for the 10-th order or 12-th order of the local truncation error, the first 15 or
21 coefficients by, in Eq. (20) should be zero, respectively. As can be seen, for the 12-th order of the local truncation error
the 18 unknown coefficients m; and k; (i =1, 2, ...,9) are insufficient for meeting the 21 equations b, =0 (i=1, 2, ..., 21).
Therefore, the maximum possible order of the local truncation error for the stencil equation, Eq. (15), with the 18 unknown
coefficients m; and k; (i=1,2,...,9) is 10; i.e., the maximum possible order of the local truncation error is defined by
the number of the unknown coefficients m; and k; in the stencil equation. Equating to zero the first 15 coefficients b, in
Eq. (20), we get the corresponding system of linear algebraic equations by, =0 (i =1, 2, ..., 15) with respect to the unknown
coefficients m; and k; (i=1,2, ...,9). Solving these equations b, =0 (p =1, 2, ...,15), we can find the coefficients m; and k;
(i=1,2,...,9) for the new approach Q9_OPT in terms of three arbitrary coefficients a1, a; and as:

b%(2220a; — 4677a; + 4016a3) + 5b%(—2334a; + 3537a; — 596a3) + 2850a;

mq 5x1 s
b}, (8880a1 — 3567a; — 424a3) + b2 (19227a; — 8(5835a; + 257a3)) + 11400a;
"= 45%, ’
b}, (—2960a; — 2397az + 5416a3) + b2 (15560a; + 3537a; — 1736a3) — 3800a;
= 10x; ’
b’(2220a; + 69a; — 832a3) + b3 (—11670a; + 1011a; + 92a3) + 2850a;
= 180x; ’
b}, (—8880a; — 1311az + 2488a3) + 5b7%(9336a; + 543a; — 184a3) — 11400a;
= 180x, ’
Mme =4ar,
b}, (—2960a; — 2397az + 5416a3) + b (15560a; + 3537a; — 1736a3) — 3800a;
"= 10%, ’
b} (—8880a; — 1311a; + 2488a3) + 5b5 (933641 + 543a; — 184a3) — 114004,
e = 180x; ’
my = ar,
I 6(b% + 1)(3a2(583b3 — 2358) + a3 (1097 — 1222b3))
(1 =— 5x1 s
8(b3 + 1)(a2(73b% + 187) + 8a3(8 — 43b2))
ko = 5x; :
) 2(3ay(773b} — 3855b% + 142) — 8a3(109b}, — 520b% 4 91))
3= 5%, s
k (b3 + 1)(a2(46b3 — 341) 4 a3 (62b3 + 23))
‘T 10x; ’

az(—23b‘y‘ + 845b§ —1922) — 216as3 (b‘; -1
o 5X1 ’

5
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609az (b3 — 1) + a3 (—1922b% + 845b% — 23)
ke =

)

5x1
128a3(43b}, — 25b% + 22) — 18a,(106b7 — 305b3 + 1179)
o 5)(1

k7 ,

ks =ay, kg = a3z, (21)

where x1 = 74b‘;, — 389bf, + 95. Inserting the coefficients m; and k; (j=1,2,3,...,9) for the new stencils with improved
accuracy and for the conventional elements into Eq. (20), we will get the local truncation errors in space e for the new
approach and the conventional elements. They are
2110

quad _ abyh
MPT25200(b3 — 5)(74b3 — 19)
+bf,[7(37b§1,(69a2 —392a3 + 1200a4) + bf,(10611a2 + 2392a3 — 233400a1)
810

10 10
ua B g0 UAB

3
{—316(3(b3 — 3)az — 4ba3 + 2a3)( 210 +b} 7510 )

1
uag  9usp

57000a — ((3657b% — 36549)a
+ l)(ay“ax"‘ ayﬁax“) « y )az
18(1333b2 + 184)a )(310”"’3 +b? 810”’**3)]} +0(h') (22)
y 3 ay23x8 y ay83x2
for the new 25-point stencils with improved accuracy and
6 6 6
quad byah 43 UA,B d UAB 8
€conv = — 720 b}, 35 + x5 + 0(h%) (23)

for the conventional quadratic isogeometric elements; i.e., the new approach improves the local truncation error in space
by four orders compared to that for the quadratic isogeometric elements (similar to the improvement of the order of the
numerical dispersion error for the quadratic isogeometric elements with reduced dispersion that are used for the scalar
wave equation; see [23,24]).

Remark. Three arbitrary coefficients a;, a, and as are used for the calculations of the coefficients m; and k; (i=1,2,...,9)
for the new stencils. These coefficients a; (i =1, 2, 3) do not affect the order of the local truncation error but contribute
to the leading terms of the local truncation error in Eq. (22) that include the mixed tenth order derivatives of the exact
solution; see Eq. (22). We can use two of coefficients a; (i =1, 2, 3) to simplify the leading terms of the local truncation
error in Eq. (22). For example, equating to zero two coefficients by7 and big (along with the first 15 coefficients b, (p =
1,2,...,15)) in Eq. (20), we can express the coefficients a; and asz in terms of just one coefficient a; as follows:

40 (1333b3 + 184) a; 265 465
a =— 5 s az = 37 T a2 ai. (24)
9039by, 131 23by,
In this case the error in Eq. (22) is simplified as follows:
23889600aa;h'® /910 810y
ot = T (Tt b ) + oart, @
3013 ax ay

Below we show that the new approach can be also implemented similar to the isogeometric elements with the elemental
M¢€ and K¢ matrices. Let us find the elemental M® and K¢ matrices that yield the stencil equation (15) with the coefficients
mj and k; (j=1,2,...,9) for the new approach Q9_OPT given by Eq. (21) (it is assumed that the stencil equation for the
new elements is calculated similar to the conventional isogeometric elements according to Eq. (5). The new elemental
M€ and K¢ matrices are assumed to have the same form as that for the conventional elemental matrices with unknown
coefficients dj and f; (j=1,2,3,...,17):

di ds dy dg d9g dg d4 d7 ds
ds dip ds dy1 diz3 dpn d7 dip dy
dy ds di dg¢ d9g dg ds d; da
, dg dy1 ds dig dig dis dg dip dg
M®=h“]|dy di3 dg dig di7 dig do diz do |, (26)
dg diy1 dg dis dig diga dg dip dg
dg d; d3 dg dg9 dg di ds dy
d7 dip d7 din di3 din ds dig ds
d3 d7 d4 dg¢ d9g dg dy ds dy
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fi fs fa fs fo fe fa f1 f3
f5 fio fs fuu fis fu fr fiz fq
fo fs f1 fo fo fs f3 f1 fa
fs fuu fe fia fie fis5 fs fu fe
K¢=| fo fi3 fo fie fiz fie fo fiz fo |, (27)
fe fu1 fs fis fie fia fso fu1 fs
fa f1 f3 fs fo foe f1 f5 fa
f7 fiz [ fm fis fu fs fio fs
fs f1 fa fo fo fs f2 fs fi

where the symmetry of the coefficients of the M® and K° matrices for the degrees of freedom contributing to these matrices
is used; see Appendix A. In this case the matrices M® and K¢ depend on the 34 unknown terms d; and f; (j=1,2,...,17).
Considering 3 x 3 =9 elements that contribute to the stencil equation for the degree of freedom u4 p according to Eq. (5),
the coefficients of the stencil equation (15) can be expressed in terms of the coefficients of the matrices M¢ and K€ as
follows:

my =4dq + 2d1o + 2d14 +d17, my =2(dy1 +do), m3 = 2(dyg + 2ds), my =ds,

ms =2d7, me =dis + 2dz, m7 = 2(dy3 + 2ds) , mg = 2dg , mg =di + 2d4, (28)
ki=4f1+2fi0+2f1a+ f17, ky =2(f11+ fo), ks =2(f16 +2f5), ks = f3,
ks =2f7, ke = f15+2f2, k7 =2(f13+2fs), ks=2fc, ko= fr2+2fs. (29)

Solving simultaneously a system of linear algebraic equations (28), (29) with the coefficients m; and k; (j=1,2,...,9) for
the new approach given by Eq. (21), the coefficients d; and f; (j=1,2,...,17) of the M® and K°® matrices in Egs. (26)
and (27) for the 2-D quadratic isogeometric elements with improved accuracy can be found; see Egs. (D.1) and (D.2) in
Appendix D. In Egs. (D.1) and (D.2) aj (j =1,2,...,16) are sixteen arbitrary coefficients that do not affect the stencil
equation (15) (the first three coefficients a; (j =1, 2, 3) are the same as those used in Eq. (21) for mj and k; (j=1,2,...,9)
of the new approach). For example, these coefficients can be used for the minimization of the error in the case of the
combination of the different order elements (this will be studied in the future). The order of the local truncation error is
independent of the values of these coefficients. At the derivation of Egs. (D.1) and (D.2) the following additional algebraic
equations (see Egs. (30) and (31) below) have been also used. Because the M and K matrices for the wave equation and
the heat equation are the same then let us use some terminology related to the wave equation in order to normalize the
elemental M¢ and K® matrices. Let us assume that the velocity v(x,t) = @i(x,t) = vq is the same for the entire domain.
In this case the kinetic energy for one rectangular element can be calculated with the help of the mass matrix and by the
analytical formula for the considered rectangular element. Equating these two expressions we get

Vimev, = v3byh?, (30)

where Vo = (vo, Vo, Vo, Vo, Vo, Vo, Vo, Vo, vo)! is the vector with nine equal components. Next, let us assume that the
field function u(x, t) = ug is the same for the entire domain. In this case the internal forces are zero. These forces for one
element can be calculated with the help of the stiffness matrix:

K¢Uy, =0, (31)

where Uy = (ug, ug, Ug, Ug, Ug, Ug, Ug, Ug , ug)T is the vector with nine equal components.

Let us consider the lumped matrix M with zero coefficients m; =0 (j =2,3,...,9) except m1. In this case Eq. (20)
can be also used for the calculation of the local truncation error of the conventional elements (using the coefficients k;
for the conventional isogeometric elements in Table 1) as well as of the new approach with the coefficients m; and k;
obtained by the minimization of the order of the local truncation error. For example, equating to zero the first 6 coefficients
by, (p=1,2,...,6), we will get the corresponding system of linear algebraic equations. Solving these equations b, =0
(p=1,2,...,6) in the case of the lumped matrix M (m; =0, j=2,3,...,9), we can find the following coefficients m; and
ki (i=1,2,3,...,9):

m =a, my =m3 =..=mg =0,
k _ o 2(asz + ayg) ky = 2a1 a 4
1= 2 3 4) 2= 3b§, 2 s
bf,(—Gaz +4a3z +aq) + a4

’

1 1
k3=—(16(—= —1 18 16 13a4), k
3 12( (bi )ai + 18az + 16a3 + 13a4) 4 24})%}
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(b} — Day — bj(18az + 4a3 + as)
12b3
k7=a4, kg=az, ko=a3 (32)

’

1
ks = ﬂ(Saz —16as —ay), ke =

for the new approach (ay, a2, a3 and a4 are four arbitrary coefficients). Inserting the coefficients m; and k; from Eq. (32)
obtained by the minimization of the order of the local truncation error and the coefficients k; for the conventional quadratic
isogeometric elements (see Table 1) into Eq. (20), we will get the local truncation errors in space e for the two approaches
with the lumped matrix M. They are:

6
quad—Iump 4 0 Ua,B 2 2
Cimpr _360[ 4bya; 376 + 5bya 48 > (3b (aq — 602)+4(11)
3uap /.5 9%ua.p 8
+60W (by(4a3 + a4) +al) + 4a] —axs ] + O(h ) (33)

for the new approach with the coefficients given by Eq. (32) and

82uA B azuA B abyh4 84uA B 2 3 UA B
220y - 2 4
9x2 dy? 4 x4 Yooyt

for the conventional elements with the lumped matrix M; i.e. for the lumped matrix M, the new approach improves
the local truncation error by two orders compared to that for the conventional isogeometric elements. It is interesting to
mention that Eq. (34) for the local truncation error of the conventional isogeometric elements allows to find the optimal
value of the diagonal terms of the lumped matrix M. It follows from Eq. (34) that m; = by, minimizes the order of the local
truncation error.

+(1+b?) +0(h%  (34)

uad—lum, 2
edony " =a(my — by)h*( y ﬁ]

2.2. Steady-state problems (Poisson equation with zero heat source f(x) = f =0)

In the case of the time independent Poisson equation (Eq. (2)), the 25-point stencil equation for the degree of freedom
u'}‘“? for a structured rectangular mesh with the quadratic isogeometric elements can be represented as follows (it can be
also obtained from Eq. (15) witha=1and mj =0 for j=1,2,3,...,9):
num

kau'g + ka[u@a™y) (1) + U(aT1),B-1) + UAb1).B+1) T YA 1), B-1)]

num num
tkslug 41y + uA,(Bfl)] +kalu(a"s) 52y T U(AY2), (12) T UM 2) (B+2) T U(AT2), (B—2)]
num num num num num num
tksluials) 5—1) T U(a"2),B+1) T Uia—2),(B—1) T U(at2),B+1)] T K6[UA (B12) T Ua (B—2)]
num num num num num num
FhalugaZy, p +Ugain,pl +kslUaZe) g—2) + Uatny,+2) T Uca—1),B+2) T Uiarn), (B-2))
+k9[ur(lzT2)’B + HT(IXT—Z),B] =0, (35)
where the coefficients k; (j=1,2,3,...,9) can be expressed in terms of the elemental K°® matrices for the conventional
quadratic isogeometric elements and are the same as those for the 2-D heat equation; see Table 1. For the new approach,
the same structure of the 25-point stencil equation as that for the conventional elements is assumed and the optimal
coefficients k; are calculated by the minimization of the order of the local truncation error (these coefficients can be used for
the modification of the elemental K¢ matrices); see below. The 25-point stencil equation (35) also includes the symmetry
of coefficients k; for the degrees of freedom u’]““” (j=A-2,A-1,A,A+1,A+2and=B—-2,B—1,B,B+1,B+2)

symmetrically located with respect to the degree of freedom u”“m The exact solution ux g to the Poisson equation, Eq. (2),
at x=x4 and y = yp meets the following equations:

BZUA'B _ 82uA,B 36
2 = ey (36)
(i+2)) (i+2))

9t ]UA,B=(_1)ja’ JUA,B (37)
ayiax2j 3y(i+2j) >

92Dy, & jB(H'Zj_”UA B

Sy = V' Ty G38)

withi=0,1,2,3,... and j=1,2,3,.... The right-hand sides of Eqs. (37) and (38) are obtained by the replacement of the
second x-derivative in the left-hand sides of Eqgs. (37) and (38) by the second y-derivative using Eq. (36). For the calculation
of the local truncation error, we also use Eq. (16). Inserting Eqs. (16), (36) - (38) into the stencil equation (35) we will get
the following local truncation error in space e:
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3211/4,3 h4b3 34UA,B h6b4 3611/4,3 h8b5 BSUA,B hlobg 310UA,B
dy? 12 9y* 360 9yS 20160 9y3 1814400 9y10
h2b, Bqu,B h4bg 31411/4,3 h16hg 316UA,B
+239500800 dy12 + 43589145600 9y14 + 10461394944000 9y16
h18b10 alSuAB h20b1] aZOUA,B
3201186852864000 oy18 1216451004088320000 9y20
with the coefficients by (p =1, 2, ..., 11) given in Appendix E; see Eq. (E.1). Due to the use of the Poisson equation, Egs. (36)
- (38), the local truncation error, Eq. (39), doe not include the partial derivatives with respect to x.
To improve the order of the local truncation error in Eq. (39) at small h <« 1, we equate to zero the first 8 coefficients
by, (p=1,2,3,...,8). This allows us to find the 9 unknown coefficients k; (i =1, 2, ...,9) of the stencil equation, Eq. (35)
(equating to zero the first 9 coefficients b, (p=1,2,3,...,9) leads to the solution k; =0 (i=1, 2,3, ...,9) that is inappro-
priate; i.e., equating to zero the first 8 coefficients b, yields the maximum possible order of the local truncation error in
Eq. (39)). Solving these equations b, =0 (p=1,2,3,...,8), we can find the coefficients k; (i=1,2,3,...,9) for the new
approach Q9_OPT_1 in terms of one arbitrary coefficient a;:

e =b]UA,B +h2b2

+

+ 0(h*) (39)

ki =aq,
16a; (b2 + 4)(4b3 + 1)
- 9y1

k2 [598096b, — 6291208b)° -+ 26094929b% — 47431534bS

-+26094929b — 62912087 + 598096] ,
8a1 (b3 + 1) (b3 + 4)
3y

ks = [14572244b)? — 105226995b,” + 247191783, — 129893985b,

+30238377b§*, — 4502520bf, + 598096],
@b + D)2} +4)
- 361

ka [176656b,° — 892136b7, + 1284013b — 556778b},

—57419b% + 44164],

4a; (b2 + 1)(b% +4)
ks = —— Y 5y y [44164b,> — 1132795b,° + 5767943b% — 12208585b), + 12056297b,
1

—4480120b7 + 598096 ,

ke = 6‘171[5828897%},6 — 481727600b,* + 1456399991b,* — 1756955850b,° + 1159844496b°,
1

—441576750D5 + 83309881b’, — 4919800b?, + 176656],

8ai (b + 1)
Y1

7= [2392384b,* — 17411984b > + 116450988b,° — 489337563b, + 858873147hS
—173716197b’, — 46938019b2 + 14572244],
4a, (bf, +1

Y1

8= [2392384b,* — 17322384b,” + 43745068b,° — 36778043b5 + 10863187bS,
+1236763b, — 9561397 + 44164],
ko = 6%[17665619}6 —4919800b* + 83309881b,> — 441576750b,° + 1159844496b
—1756955850b + 1456399991b} — 481727600b3 + 58288976], (40)
with
y1 = 58288976b % — 12041600b* — 1112834229b,2 + 805729100b}° + 7325265506b%
+805729100b5 — 1112834229b3 — 120416002 + 58288976 (41)

Inserting the coefficients k; for the new approach and for conventional isogeometric elements into Eq. (39), we will get
the local truncation errors in space e for the new stencils with improved accuracy and for the conventional isogeometric
elements. They are:
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a1y2h'®  31uy, g
169827840y, 0y

+0(h'®) (42)

Cimpr =
with

y2 =bj (b5 +1)*(791104b3° — 6526608b,° + 7168588b,° + 81226757h,* — 288383192b

+409496702b,° — 288383192b% + 812267575 + 7168588b} — 6526608b% + 791104)

and

a1h15 816UA,B
148132333440 9y16

for the new Q9_0 PT_1 stencils with improved accuracy on rectangular (Eq. (42)) and square (Eq. (43)) meshes and

by (b — DS 0unp _ by(b + (b —8b + Dh® a%us

eimpr(by =1) = + O(hls) (43)

S 0(h' 44
Econy 720 3y 20160 oy " (44)
and
h8 3811,4 B
econv(by =1) = 1630 8y8¥ + O(hm) (45)

for the conventional quadratic rectangular (Eq. (44)) and square (Eq. (45)) isogeometric elements; i.e., the new approach
Q9_OPT_1 improves the local truncation error in space by ten orders for rectangular elements and by eight orders for
square elements. These different improvements in accuracy are explained by the fact (see Eqs. (42)-(45)) that the orders of
accuracy are the same for the new Q9_OPT_1 stencils on rectangular and square meshes but they are different for the
conventional rectangular and square isogeometric elements (the conventional square elements are more accurate compared
to the conventional rectangular elements). It is interesting to note that it is possible to develop more accurate 25-point
stencils on square meshes. In order to improve the order of the local truncation error in Eq. (39) on square meshes at
small h « 1, we equate to zero the first 7 coefficients b, =0 (p=1,2,3,...,7) and the coefficient bg = 0. In this case for
square meshes (by = 1), the coefficient bg will be also zero after the solution of the corresponding system of equations for
the coefficients k; (i =1,2,3,...,9); see below. The solution of the 8 linear algebraic equations b, =0 (p=1,2,3,...,7,9)
provides the following coefficients k; (i =1, 2, 3, ..., 9) for the new approach Q9_0OPT_2 on square meshes (in terms of one
arbitrary coefficient a;):

ki =ay,
k= 32a1 (b3 +4)(4b3 + 1)
9y3
by +2351066778b5 — 1642477120b5 + 569516043b;, — 98357880b7 + 6835568] ,
2 2
8ay (b2 + 1) (b2 +4)
3y3

—24170522596b,° + 17293159050b% — 5959344309b5 + 1165078718b’

—158704512b3 + 13671136] ,

[6835568b,° — 98357880b,,* + 569516043b,” — 1642477120

ks = — [380494644b,° — 3950564583 * + 15033132452b,>

ar(b3 + 1)%(b2 + 4)
K4 =
! 36y3

[3115216b " — 26043688b,” + 75055561b,” — 957715200,

+52708230b5 — 6382196b; — 3590407b3 + 778804],
4a1 (b2 4 1) (b3 +4)

9y3
+1186108650b§, - 117201896917?, + 602568798b?, — 14669587217?, + 13671136],

ks = [7788041:}6 - 24576363b},4 + 19063261217}2 - 654628796b},°

ke = 6f171[1521978576b§° — 17351608272b,} + 76872755327b,° — 164715787152b*
3

+193939316847h,* — 137578948912b,° + 60627164237h, — 15793920632b5
+2089789797b’, — 107855032b7 + 3115216],
8a (b3 + 1)

[54684544b % — 621146912b,° + 4501610360b,,*
3y3

k7 =
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—22672298518b,” + 63213291891b 0 — 79388931334b] + 35962007212b} — 769125880b,

—2428586007b7, + 380494644],

4ar (b +1)
93

+3572415631b 0 — 1432406534b5 + 107901652b + 92327160b; — 21461147b% + 778804],

ks = [54684544b,® — 573112352, + 2263579320b,* — 4085507078b,?

ko = 6‘171[3115216@0 — 107855032b,% + 2089789797b)° — 15793920632b* + 60627164237h,>
3

—l37578948912b},0 + 193939316847b§, — 164715787152b?,
+76872755327b§ — l7351608272b§, +1521978576] (46)

with

y3 = 1521978576b3" — 5139284512b,° — 28549593453 ° 4 109395021498b "
+127446304877b)? — 454742253972b,° + 127446304877b’, + 109395021498b5
—28549593453b] — 5139284512b% + 1521978576 (47)

Inserting the coefficients k; (j =1,2,3,...,9) for the new approach (Eq. (46)) into Eq. (39), we will get the following
local truncation error in space e for the new Q9_0 PT_2 stencils with improved accuracy:

aj(by — Dysh™ 3Mus g ay(by — 1)ysh'® 318u, g aryeh? 3%0uy g

o(h'® 48
505440y;  9yl® | 952734182400y; 9y' | 760281877555200y; gy o) (48)

Cimpr =
with

ya=—by(by + 1)(b5 + 1> (b} +4)(4b5 + 1)(98888(2b — 25)b}* + 12101221b)
—28651300b,° + 37571006bS, — 28651300b5, + 12101221b5 — 2472200b3 + 197776) ,
ys =bj(by + 1)(b3 + 1)*(b2 + 4)(4b3 + 1)(625634704b3° — 11413084680b,° + 83518306213b,°
—313824069580b," + 668108180083b}* — 853151497480b,° + 668108180083b% — 313824069580b
+83518306213b’, — 11413084680b? + 625634704)
Y6 = by (b3 + 1)*(73997862272b2° — 1339004858400b3° + 8192438210104b%* — 11647076272678b>>
—82420844080219b2° + 446001505501362b° — 1015267660872157b)° + 1312698369019432b *
—1015267660872157b}* + 446001505501362b° — 82420844080219b% — 11647076272678b5
+8192438210104b — 1339004858400b% + 73997862272)

for the new Q9_0 PT_2 stencils on rectangular meshes and

a1h20 920U 4 5

) 0, 49
7507835408576 ay20 O ") (49)

eimpr(by =1)

for the new Q9_0 PT_2 stencils on square meshes. As can be seen, the new Q 9_0 PT_2 stencils are less accurate compared
to the new Q9_0OPT_1 stencils in the case of rectangular meshes and are more accurate compared to the new Q9_OPT_1
stencils in the case of square meshes. The new Q9_0 PT_2 stencils on square meshes improve the local truncation error in
space by twelve orders compared to that for the conventional square isogeometric elements and yield the maximum order
of accuracy among all 25-point stencils (independent of the method used for their derivation).

Let us find the elemental K® matrix (see Eq. (27)) that yields the stencil equation (35) with the coefficients k; (j =
1,2,...,9) given by Eqgs. (40) and (46) for the new Q9_OPT_1 and Q9_OPT_2 stencils. Similar to the previous section,
solving simultaneously a system of linear algebraic equations (29) with the coefficients k; (j =1,2,...,9) for the new
Q9_0PT_1 and Q9_OPT_2 stencils, the coefficients f; (j=1,2,...,17) of the K® matrix in Eq. (27) can be found. They
are shown in Appendix F and Appendix G, respectively; see Eqgs. (F.2) and (G.1).

In Egs. (F2) and (G.1) aj (j=1,2,...,6) are six arbitrary coefficients (the first coefficient a; is the same as that used in
Egs. (40) and (46) for k; (j=1,2,...,9) of the new approach). The order of the local truncation error is independent of the
values of these coefficients. At the derivation of Eqs. (F.2) and (G.1) the additional algebraic equations (31) have been also
used.
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Fig. 1. A plate used for the heat equation and for the Poisson equation in the 2-D case.
3. Numerical examples

In this section the computational efficiency of the 2-D numerical techniques based on the conventional Q9_IGE
quadratic isogeometric elements with 25-point stencils, the Q4_MIR linear finite elements with 9-point stencils based on
the MIR technique (e.g., see [12]), the new Q9_OPT, Q9_OPT_1 and Q9_0PT_2 25-point stencils with the optimal order
of accuracy will be compared. The test problems with the following analytical solutions u to the heat equation (Eq. (1)):

22\ .
u(x, y, t) = e®2¥=4@=®)tgin g x) (50)
without heat source,

ux, y,t) =e®V %in(ax)  with  f(x,y,t) = (a3 — a(as — ad))e®V T sin(a x) (51)

with the heat source, the following analytical solutions u to the Poisson equation (Eq. (2)):

ux, y) =e*sin(ax) (52)

without heat source and

u(x, y) =e*’sin(enx)  with  f(x,y) = (o3 — af)e*’sin(a1x) (53)

with the heat source will be solved in the 2-D case. «, o1, o and a3 in Eqs. (50) - (53) are arbitrary constants which will
be defined later and the heat sources f in Eqgs. (51) and (53) are obtained by the substitution of the analytical solutions in
the corresponding partial differential equations.

In the numerical examples solved below on meshes with uniformly spaced control points along the x- and y-axes, the
element size h is defined as the distance between two consecutive control points along the largest side of 2-D rectan-
gular elements. This means that at the same element aspect ratios, the same sizes h of the linear finite elements and the
quadratic isogeometric elements correspond to the same number of degrees of freedom. The high-order boundary conditions
developed in [26] are used.

The backward difference method is used for the time integration of the heat equation. A sufficiently small size of time
increments is used in calculations. In this case the error in time can be neglected and the numerical error is related to the
spatial error.

3.1. 2-D heat equation

Let us consider a square plate ABCD of length 1 x 1; see Fig. 1. The problem without heat source and the exact solution
given by Eq. (50) with a =100, o1 = “T” and oz =4 as well as the problem with heat source and the exact solution given
by Eq. (51) with a =100, 1 =57, a» =4 and a3 =7 are considered. The time intervals are 0 =t, <t <ty =0.0001 and
0=t, <t <ty =1 for the heat equation without and with heat sources, where t, and t; are the initial and final times.
For these problems, the initial conditions at the corresponding initial times and the boundary conditions in terms of the
function u at the boundary are calculated using the exact solutions Egs. (50) and (51).

Figs. 2 and 3 represent the numerical results obtained by the different techniques on square and rectangular (b, =

dy/dx = 0.5) uniform meshes for the heat equation without heat source. The distribution of u at the final time tf along
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Fig. 2. The distribution of u at the final time tf along lines EF (a) and GH (b) for the heat equation without heat source; see Fig. 1 for the locations of lines
EF and GH. A uniform square mesh with 9 x 9 =81 degrees of freedom is used. Curve 2 corresponds to the exact solution. Curves 1 and 3 correspond to
the numerical results obtained by the new Q9_OPT stencils and by the conventional Q9_IGE quadratic isogeometric elements, respectively.

lines EF and GH (see Fig. 1 for the locations of the lines EF and GH) obtained by the different techniques on a square
mesh with 9 x 9 =81 degrees of freedom is shown in Fig. 2. As can be seen from Fig. 2, the new Q9_OPT stencils yield
much more accurate results than those obtained by the conventional Q9_IGE quadratic isogeometric elements; compare
curves 1 and 3 with the exact solution, curve 2 in Fig. 2.

In order to compare the accuracy of the different techniques at mesh refinement, Fig. 3 shows the maximum error emqy,
the error ep at point P and the error eq at point Q (see Fig. 1 for the locations of the points P and Q) as a function of
the element size h in the logarithmic scale on square and rectangular uniform meshes. These errors are defined as follows:
m gt | eq = ufp™ —uG |; emax = Max | um — &t || i=1,2,...,N, (54)

1

ep=|u i i

where url'}érg) and u?,"(aét) are the numerical and exact solutions at point P(Q), uf*™ and uf"a“ are the numerical and exact
solutions at the ith control point, and N is the total number of control points. It can be seen from Fig. 3 that the numerical
results obtained by the new Q9_OPT stencils are much more accurate than those obtained by the Q4_MIR linear finite
elements and by the conventional Q 9_IGE quadratic isogeometric elements on square or rectangular uniform meshes with
the same element size h; compare curves 1, 2 and 3 in Fig. 3 at the same h. It can be also seen from Fig. 3 that the
conventional Q9_IGE quadratic elements yield slightly more accurate results than those obtained by the Q4_MIR linear
elements on square or rectangular uniform meshes with the same element size h.

The orders of accuracy for the techniques considered here are determined by the slope of the curves at small h in Fig. 3.
As can be seen from Fig. 3, the Q9_IGE and Q4_MIR elements show the 4th order of accuracy on square and rectangular
uniform meshes; see the slope of the curves 2 and 3 in Fig. 3 at small h. On the other hand, the new Q9_OPT stencils
show the 8th order of accuracy on square and rectangular uniform meshes as predicted in section 2.1; see curve 1 in Fig. 3.
It is interesting to mention that a uniform refinement in one direction (i.e., the transformation of square elements into
smaller rectangular elements) does not improve the accuracy for any numerical technique considered here. For example, a
uniform refinement in one direction with the new Q9_OPT stencils leads to slightly less accurate results; compare curves
1 and 4 in Fig. 3d-f at the same h. However, at the same h the rectangular meshes in Fig. 3 include twice as many degrees
of freedom as those for the square meshes. Therefore, it can be concluded that at the same number of degrees of freedom,
all the elements considered here yield more accurate results on uniform square meshes compared with those on uniform
rectangular meshes.

In order to study the convergence of the new Q9_OPT stencils in more detail, Fig. 4 analyzes the convergence of the
new approach (curves 1 in Fig. 3a, d) at the gradual decrease of the mesh size h =1/(Nx — 1) of the Cartesian grids where
Ny =9,10,...,33 is the number of the grid points along the x-axis (curve 1 and 2 in Fig. 4 correspond to curve 1 in Fig. 3a
and 3d). As can be seen, the results obtained by the new Q9_OPT stencils show monotone convergence with the gradual
decrease in the mesh size. We should also mention that the detailed study of convergence of the new technique (similar
to that in Fig. 4) was also applied to all numerical examples considered in this paper and showed that the new technique
yields stable and convergent results.

Similar to the heat equation without heat source, the new Q9_OPT stencils for the heat equation with heat source
show the 8th order of accuracy on square and rectangular uniform meshes and yield much more accurate results than
those obtained by the Q4_MIR linear finite elements and by the conventional Q9_IGE quadratic isogeometric elements
on the same uniform meshes; see curves 1, 2 and 3 in Fig. 5. It can be also seen from Fig. 5 that a uniform refinement in
one direction does not improve the accuracy of the numerical results obtained by any numerical technique considered here;
compare curves 2 and 3 in Figs. 5a-c and 5d-f as well as curves 1 and 4 in Fig. 5d-f at the same h.

It can be concluded that at the same number of degrees of freedom, the new Q9_OPT stencils are the most accurate
among all the numerical techniques considered and show the 8th order of accuracy on square and rectangular uniform
meshes for the 2-D heat equation.
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Fig. 3. The maximum error emqy (a, d), the error ep at point P (b, e) and the error eq at point Q (c, f) as a function of the element size h in the logarithmic
scale for the heat equation without heat source; see Fig. 1 for the locations of the points P and Q and Eq. (54) for the definitions of these errors. Curves 1,
2 and 3 correspond to the numerical results on square (a, b, ¢) and rectangular (d, e, f) uniform meshes with the new Q9_OPT stencils, the conventional
Q9_IGE quadratic isogeometric elements and the Q4_MIR linear finite elements, respectively. Rectangular meshes with the aspect ratio by, = 0.5 are used
n (d, e, f). Curve 4 in (d, e, f) corresponds to curve 1 in (a, b, ¢) for the numerical results obtained by the new Q9_OPT stencils on uniform square
meshes. Symbols v, O, ¢ and [ correspond to the results on the uniform meshes used in calculations.

3.2. 2-D Poisson equation

The same 2-D plate from Section 3.1 is considered; see Fig. 1. The problem without heat source and the exact solution
given by Eq. (52) with o =57 as well as the problem with heat source and the exact solution given by Eq. (53) with
= 12771 and oy = 61 are numerically solved. The boundary conditions are calculated in terms of u using the exact
solutions, Eqs. (52) and (53).

Figs. 6-8 represent the numerical results obtained by the different techniques on uniform square and rectangular
(by =dy/dx = 0.5) meshes for the Poisson equation without heat source. Fig. 6 shows the distribution of u along lines
EF (Fig. 6a, b) and GH (Fig. 6¢, d) obtained by the new Q 9_0 PT_2 stencils and the conventional Q 9_IGE quadratic isoge-
ometric elements on a uniform square mesh with 5 x 5 =25 degrees of freedom; see Fig. 1 for the locations of the line lines
EF and GH. As can be seen from Fig. 6 the results obtained by the conventional Q9_IGE isogeometric elements are very
inaccurate; compare curves 2 and 3 in Fig. 6a, c. On the other hand, the new Q9_0PT_2 stencils yield accurate results. In
order to show the difference between the results obtained by the new Q9_0PT_2 stencils and the exact solution, Fig. 6b, d
does not include the results obtained by the conventional Q 9_IGE isogeometric elements. It can be seen that even for this
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Fig. 4. The maximum error enqy in the logarithmic scale at the final time T = 0.0001 as a function of the number Ny of the grid points along the x-axis
(Nx=9,10,...,33). The numerical solutions of the 2-D heat equation with zero heat source are obtained by the new Q9_OPT stencils on uniform square
(curve 1) and rectangular (curve 2) Cartesian meshes. Symbols O and [J correspond to the results on the uniform meshes used in calculations.

coarse mesh, the results obtained by the new Q9_OPT_2 stencils are close to the exact solution; compare curves 1 and 2
in Fig. 6b, d.

Similar to the Section 3.1, the maximum error epq, the error ep at point P and the error e at point Q (see Fig. 1 for
the locations of the points P and Q and Eq. (54) for the definitions of these errors) are shown in Fig. 7. The slope of the
curves in Figs. 7 and 8 at small h is related to the order accuracy of the corresponding numerical techniques. It can be seen
that the order of accuracy is six for the Q4_MIR linear finite elements and the Q 9_IGE quadratic isogeometric elements
on uniform square meshes and it is four for these elements on uniform rectangular meshes; see the slope of the curves 3
and 4 at small h in Fig. 7. As can be seen from Fig. 7 the new Q9_OPT_1 stencils show the 14th order of accuracy on
square and rectangular uniform meshes. On the other hand, the new Q 9_0 PT_2 stencils show the 18th order of accuracy
on uniform square meshes. The accuracy reduces to the 12th order on uniform rectangular meshes for the new Q9_OPT_2
stencils; see the slope of the curve 2 at small h in Fig. 7. These observations are in agreement with the theoretical results
obtained in Section 2.2.

The results obtained by the Q4_MIR linear finite elements are slightly more accurate than those obtained by the
Q9_IGE quadratic isogeometric elements on uniform square meshes; see curves 3 and 4 in Fig. 7a-c as well as curves
1 and 2 in Fig. 8b. On uniform square meshes the results obtained by the new Q9_OPT_1 stencils are less accurate than
those obtained by the new Q 9_0 PT_2 stencils, however, they are much more accurate than those obtained by the Q 4_MIR
linear finite elements and by the conventional Q 9_IGE quadratic elements; compare curves 1-4 in Fig. 7a-c at the same h.
From the above observation it can be concluded that the new Q 9_0 PT_2 stencils yield the most accurate results among all
the numerical techniques considered on uniform square meshes. A uniform refinement in one direction does not improve
the accuracy of the results for any numerical technique considered here. For example, the results obtained by the new
Q9_0PT_1 stencils on square and rectangular uniform meshes are practically same at mesh refinement; compare curves 1
and 3 at small h in Fig. 8a. However, at the same element size h, the rectangular meshes include twice as many degrees
of freedom as those for the square meshes. Therefore, it can be concluded that at the same number of degrees of freedom,
uniform square meshes yield more accurate results than those on uniform rectangular meshes for any numerical technique
considered here. It is interesting to note that the results obtained by the conventional Q 9_IGE quadratic isogeometric ele-
ments are slightly more accurate than those obtained by the Q 4_MIR linear finite elements on uniform rectangular meshes;
see curves 3 and 4 in Fig. 7d-f as well as curves 3 and 4 in Fig. 8b. In contrast to the results on the uniform square meshes,
the results obtained by the new Q9_OPT_2 stencils on the uniform rectangular meshes with the aspect ratio by = 0.5
are less accurate than those obtained by the new Q9_OPT_1 stencils; compare curves 1 and 2 in Fig. 7d-f at the same
h. However, these results are much more accurate than those obtained by the Q4_MIR linear finite elements and by the
conventional Q9_IGE quadratic isogeometric elements; compare curves 2-4 in Fig. 7d-f at the same h.

Similar numerical results have been obtained for the Poisson equation with heat source; see Fig. 9. At any element size h,
the new Q9_0 PT_2 stencils yield the most accurate results on uniform square meshes while the new Q9_OPT_1 stencils
can yield the most accurate results on uniform rectangular meshes with the selected aspect ratio by, = 0.5 among all the
numerical techniques considered; compare curves 1, 2 and 3 in Fig. 9. It can be also seen from Fig. 9 that the orders of
accuracy for the considered techniques are same for zero and non-zero heat source; see the slope of the curves at small h
in Figs. 7 and 9.

It can be concluded that among all the numerical techniques considered the new Q9_OPT_2 stencils are the most
accurate on uniform square meshes and yield the 18th order of accuracy. However, the order of accuracy of these elements
is significantly lower on rectangular meshes and is twelve (it is still much higher than that for the conventional Q 9_IGE
quadratic isogeometric elements on the square meshes). The new Q9_OPT_1 stencils show the 14th order of accuracy on
square and rectangular uniform meshes. It is interesting to mention that if the aspect ratio differs significantly from unity,
then the new Q9_0 PT_1 stencils may yield more accurate results than those obtained by the new Q9_0OPT_2 stencils on
the same rectangular meshes. However, at the same number of degrees of freedom, the new Q 9_0 PT_2 stencils on uniform
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Fig. 5. The maximum error ey (a, d), the error ep at point P (b, e) and the error eq at point Q (c, f) as a function of the element size h in the logarithmic
scale for the heat equation with heat source; see Fig. 1 for the locations of the points P and Q and Eq. (54) for the definitions of these errors. Curves 1,
2 and 3 correspond to the numerical results on square (a, b, ¢) and rectangular (d, e, f) uniform meshes with the new Q9_OPT stencils, the conventional
Q9_IGE quadratic isogeometric elements and the Q4_MIR linear finite elements, respectively. Rectangular meshes with the aspect ratio by, = 0.5 are used
in (d, e, f). Curve 4 in (d, e, f) corresponds to curve 1 in (a, b, ¢) for the numerical results obtained by the new Q9_OPT stencils on uniform square
meshes. Symbols v, O, ¢ and [ correspond to the results on the uniform meshes used in calculations.

square meshes yield more accurate results than those obtained by the new Q9_OPT_1 stencils on square or rectangular
uniform meshes.

3.3. A hybrid method: the combination of the conventional quadratic isogeometric or finite elements with the new 25-point stencils

In this section we will show that the new 25-point stencils developed in the paper can be easily combined with the
conventional quadratic isogeometric or finite elements and form a hybrid method. The hybrid method can be applied to
irregular domains using special meshes. For example, an irregular domain can be partly discretized by Cartesian meshes
located far from the boundary of the irregular domain and by the conventional irregular isogeometric or finite element
meshes located close to the boundary. Because our Matlab code does not have mesh generators for irregular domains, we
will show the application of the hybrid method on a regular domain. Its application on irregular domains with the special
meshes is trivial as described above.

Let us consider a square plate 1 x 1 shown in Fig. 10. Here, we solve the heat equation with the exact solution given by
Eq. (50) and the Poisson equation with the exact solution given by Eq. (52). These problems are solved by the conventional
quadratic isogeometric and finite elements and by two hybrid methods on square Cartesian meshes. The hybrid method
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Table 2

The comparison of the maximum errors e;qy obtained by the conventional quadratic isogeometric and finite elements and by the hybrid methods for

the heat equation.

€max Accuracy €max Accuracy
h increase by a increase by a
Quadratic IGE Hybrid method I factor of Quadratic FE Hybrid method IT factor of
1/8 0.3292 0.0661 4.98 3.2062 0.4217 7.59
1/16 0.0123 0.0018 6.83 0.1259 0.0183 6.88
1/32 6.7867¢-04 1.0213e-04 6.65 0.0099 0.0015 6.6
Table 3

The comparison of the maximum errors e;qy obtained by the conventional quadratic isogeometric and finite elements and by the hybrid methods for
the Poisson equation.

€max Accuracy €max Accuracy
h i b . b
Quadratic IGE Hybrid method I 1ncﬁr1i::(s; o%] 2 Quadratic FE Hybrid method 1T 1n<ge(:::(s; 0%] ?
1/8 9.2532e+04 35.2808 2622 1.6496e+06 654.1970 2521
1/16 1.1367e+03 0.4703 2417 6.5433e+04 30.7845 2125
1/32 12.1263 0.0066 1837 3.9793e+03 2.5227 1577

I combines the new 25-point stencils with the conventional quadratic isogeometric elements while the hybrid method II
combines the new 25-point stencils with the conventional quadratic finite elements. The hybrid methods can be easily
constructed as follows. First we form the semidiscrete (Eq. (3) for the heat equation) or discrete (Eq. (4) for the Poisson
equation) global equations for the conventional isogeometric or finite elements. Then, we replace the stencils equations of
the conventional elements for the grid points in the upper half of the plate (0.5 < y < 1) by the new 25-point stencils; see
Fig. 10b, d. The new Q9_0OPT_2 stencils are used in the hybrid methods for the Poisson equation because they have the
optimal 18th order of accuracy on square Cartesian meshes.

The accuracy of the results obtained by the conventional quadratic isogeometric and finite elements as well as by the
hybrid methods I and II are reported in Table 2 for the heat equation and in Table 3 for the Poisson equation. As can be seen,
the use of the hybrid methods for the heat equation reduces the maximum error e;q by a factor of 5 and more compared
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Fig. 7. The maximum error ey (a, d), the error ep at point P (b, e) and the error eq at point Q (c, f) as a function of the element size h in the logarithmic
scale for the Poisson equation without heat source; see Fig. 1 for the locations of the points P and Q and Eq. (54) for the definitions of these errors. Curves
1, 2, 3 and 4 correspond to the numerical results on square (a, b, ¢) and rectangular (d, e, f) uniform meshes with the new Q9_OPT_1 and Q9_OPT_2
stencils and the conventional Q9_IGE quadratic isogeometric elements and the Q4_MIR linear finite elements, respectively. Rectangular meshes with the
aspect ratio by, = 0.5 are used in (d, e, f). Symbols v, O, ¢ and [J correspond to the results on the uniform meshes used in calculations.

to that for the conventional isogeometric or finite elements for all considered meshes; see the accuracy improvement in
Table 2. In the case of the Poisson equation, the reduction of the maximum error enqx obtained by the hybrid methods is
more than 1000 times; see Table 3. This means that the hybrid methods with the new 25-point stencils can significantly
improve the accuracy of numerical solutions. For the considered problems, the maximum error for the solutions obtained
by the conventional quadratic isogeometric elements or by the conventional quadratic finite elements occurs in the upper
part of the domain. Therefore, the use of the hybrid method with highly accurate stencils in the upper part of the domain
is partly similar to the improvement in accuracy due to p-refinement.

4. Concluding remarks
The new findings of the paper can be summarized as follows:
e A new approach for the increase in the order of accuracy of the 25-point stencils used for the time dependent heat
equation and for the time independent Poisson equation has been suggested. It is based on the optimization of the

coefficients of the corresponding discrete stencil equation with respect to the local truncation error. The accuracy of the
conventional quadratic isogeometric elements is improved by four orders for the heat equation and by twelve orders for
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Fig. 10. The conventional and hybrid methods applied to the solution of the heat and Poisson equations for a plate. (a) the conventional quadratic isogeo-
metric elements, (b) the hybrid method I, (c) the conventional quadratic finite elements, (d) the hybrid method II

the Poisson equation. This increase in the order of accuracy of the 25-point stencils is optimal. The new approach yields
the maximum possible order of accuracy among all numerical techniques with the same 25-point stencil equations
independent of the method used for the derivation of discrete or semidiscrete equations. This optimal order of accuracy
cannot be improved without changing the widths of stencil equations.
e Despite the significant increase in accuracy, the computational costs of the new technique are the same as those for the
conventional quadratic isogeometric elements on a given mesh. Because the new approach only changes the values of
the coefficients of the stencils equations without changing their widths then all known direct and iterative solvers can
be used for the solution of the discrete or semidiscrete equations of the proposed technique.
It is necessary to mention that for the time dependent heat equation the increase in the order of accuracy of the
quadratic isogeometric elements is the same as the increase in the order of the numerical dispersion error for the wave
equation with the new technique suggested in our recent papers [23,24]. However, the approach suggested in this paper
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and based on the optimization of the local truncation error for high-order stencils is more general and can be used for
any order of the time derivative in the heat equation; i.e., it can be directly applied to the wave equation as well. In
contrast to our papers [23,24], the results of this paper are also extended to rectangular meshes as well as to a new
class of the partial differential equations with non-zero right hand-side function (heat sources).

e For the time independent Poisson equation, the new approach yields a huge increase in the order of accuracy compared
with that for the conventional quadratic isogeometric elements. The maximum increase in accuracy by twelve orders can
be achieved by the new approach on uniform square meshes. On uniform rectangular meshes the maximum increase in
accuracy by ten orders is also very large. This huge increase in accuracy does not require additional computational costs
compared with those for the conventional quadratic isogeometric elements. We should mention that for the Poisson
equation, the accuracy of the conventional quadratic isogeometric elements on square meshes is also greater (by two
orders) than that on rectangular meshes.

e A mesh refinement of square meshes in one direction (i.e., transforming square elements into smaller rectangular ele-
ments) for the Poisson equation leads to the decrease in the order of accuracy of the new Q9_OPT_2 technique and
this should be taken into account at the selection of a refinement strategy.

e Despite a higher accuracy of the conventional quadratic isogeometric elements, the new 25-point stencils with improved
accuracy yield much more accurate results compared with those obtained by the conventional quadratic isogeometric
elements at the same number of degrees of freedom. Even at a sufficient coarse mesh, the temperature calculated by the
new approach is close to the exact solution. Therefore, we hope that the new elements with relatively coarse meshes
may be efficient for the numerical analysis of thick and thin structures.

e The 2-D numerical examples are in a good agreement with the theoretical results for the new approach.

e The hybrid methods based on the new 25-point stencils can significantly improve the accuracy of numerical solutions.

Currently, the new technique has been developed for uniform square and rectangular meshes that can be used for rect-
angular domains. One option to use it for complex geometries is to form a hybrid method with unstructured meshes close
to curvilinear boundaries and structured meshes inside the domain; e.g., similar to [31,32] with the finite elements for un-
structured meshes and the finite difference method for structured meshes. It was shown in the paper that the new approach
can be easily combined with the conventional isogeometric and finite elements in order to form a hybrid method. Similarly,
it can be directly used with the overlapping elements (see [33,34]), with the known hybrid schemes (e.g., see [35,36] and
many others) or the fictitious domain methods (e.g., see [37-46] and many others) where Cartesian meshes can be used
inside irregular domains. However, we plan to extend the new approach for PDEs to complex irregular geometries similar to
our technique with simple stencils (that correspond to the linear finite elements) where Cartesian meshes and non-uniform
stencils for the grid points close to irregular boundaries are used; see our recent papers [47-49]. The techniques in [47-49]
are also based on the minimization of the local truncation error.

The idea of the application of the local truncation error for the analysis and increase in accuracy of the numerical
technique used in the paper is general. Its possible application to other cases (other partial differential equations, other
numerical techniques, general non-uniform meshes, etc.) will be considered in the future.
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Appendix A. The structure of the elemental M¢ and K¢ matrices for the quadratic isogeometric elements on uniform
meshes

Here, uniform meshes with uniform spacing in the x and y directions are considered. Fig. 11 shows the spatial locations
of 25 degrees of freedom (or more precisely, the basis functions related to the corresponding control variables) for 3 x 3 =9
neighboring elements contributing to the formation of the 25-point stencil equation for the degree of freedom u4 g with the
conventional quadratic isogeometric elements. For the new 25-point stencils, the form of the stencil equation is the same
as that for the conventional quadratic isogeometric elements in [27,30]. To simplify the representation of the elemental M®
or K¢ matrices, let us use the following order of the degrees of freedom in the local vector of the control variables for
any element: U = {Up—1,8-1,UA—1,8+1 UA+1,B+1+ UA+1,B—1UA—1,B UA,B+1.UA+1,B.UAB—1,UA )}  (here, the degrees of
freedom for the central element in Fig. 11 are used). In this case the elemental M€ or K¢ matrix can be expressed in terms
of 17 coefficients a; as shown below in Eq. (A.1):
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Y
Control variables
dx = h —|
1 | Ug_1p+2 1 UaB+2 | Ug+1,B+2 1 u
s ’ . A+2,B+2
——————== o ----- @--=-=-=-- > ----- 9-+
Up—2,8+2 1 1 1 1 1
1 T T 1 4/i/Element
1
__.#______..__..__.‘______‘.__ ""+‘UA+2,B+1
Ua-28+1 Up-1,B+1 Upp+1 Ua+1,B+1 1
1 1 1 1 1
——-?——————‘-——-—— -] —@- == == ®-Uy25
Up—2,B . Uy_1p , Uap !uA+1,B :
} t
1 1 1 1 | Up+2,B-1
-_——_——-----0--4--@¢--}---0--1 __-.-_T—
Ug—2,8-1 1 Uy_1p-1 Uyp_1 Uyi1,8-1 !
1 ' T T 1 dy = byh
1 1
N S S O
Ug_np_
A-2,B-2 1 Up_15-2 ‘Upp—2 Uyi1,8-2 Ug+2,B-2

Fig. 11. The spatial locations of the degrees of freedom u;; (i=A—-2,A—1,A,A+1,A+2and j=B —2,B—1,B,B+ 1, B+ 2) contributing to the
stencil equation for the degree of freedom u, g of the new and conventional quadratic isogeometric elements. The nine elements shown are used for the
calculation of the stencil equation for the degree of freedom u4 g according to Eq. (5).

a d d4as dag dGas dg ay as dg
a ap a4 as das as ay dg dg
as a4 a1 az ay as ds de ag
ag as az ap ay ae ds as ag
MéorK®) =|as as a7 a; ajp apn apz app a; |. (A1)
g ag dag 4s ai1 dig 41 dis die
az ay as as aiz dpn 4o 4dnn dis
ag ds d4g ag a1 ais di1 dig die
g a9 dag dag aiz aig 13 dig a7

Here, the symmetry of matrices M® and K€ as well as the symmetry of the location of the first and second four degrees of
freedom in vector U have been taken into account (therefore the first and second four rows in Eq. (A.1) include the same
coefficients). For the implementation of the matrices M® and K¢ into computer codes, the following order of degrees of
freedom in the local vector of the control variables is often used: U = {uag_1,5—1,UA—1,B,UA—1,B+1,UA B—1,UAB,UAB+1,
UA+1,B—1-UA+1,B» uA+1,B+1}T. In this case the M® or K€ matrices can be obtained from Eq. (A.1) by the corresponding
relocations of coefficients a; in Eq. (A.1); see Egs. (26) and (27).

Appendix B. Non-zero heat source

The inclusion of non-zero heat source f in the partial differential equations, Egs. (1) and (2), leads to the additional
non-zero term f in the stencil equations (15) and (35) (similar to Eq. (7)). The expression for the term f can be calculated
from the procedure used for the derivation of the local truncation error in the case of zero heat source. We will show this in
more detail for 2-D transient problem and will present the final expressions f for the Poisson equation. In case of non-zero
heat source ( f(x,t) # 0), Egs. (18) and (19) for the exact solution at x=x4 and y = yp can be modified as follows:

oua,B
T—aV2UA,B=f(XA’J/B,t), (B1)
9Qi+2j+ 1y, o a@i+t2Dy2y, p a(2i+2j)f(xA vg,t)
—————— —q = —— - B.2
ax219y2iat ax2igy2i Ix2igy2i (82)

Then, inserting Egs. (16), (17), (B.1) and (B.2) with the exact solution to the heat equation, Eq. (1), into the stencil equation,
Eq. (15), with non-zero f we will get the following local truncation error in space ey:

_ 82
ef=e—{f— [hzf,q’B(m] +2(2my +m3 + 2my + 2ms + me + m7 + 2mg +mg)) + h4(b§, aj;AZ'B (2my
32
8ima -+ 8ims + my + 2ms + 4me) + AL my 1 ms -+ 8img + 2ms + dmg + 8mg)) + .1}, (B.3)

0x2
where e is the local truncation error in space given by Eq. (20) for zero heat source, fa g in Eq. (B.3) designates function

f(x,y,t) and its derivatives calculated at x = x4 and y = yp. Equating to zero the expression in the curly brackets in the
right-hand side of Eq. (B.3), we will get the expression for f:
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f=h%fap(mi +22my +m3 + 2my + 2ms + me + my + 2mg +mg))
20%fas 3% fa.s

h4[by 3y? (2my + 8my4 4 8ms + my7 4 2mg + 4mg) + ——— 92 (2my + m3 4 8my + 2ms 4 4mg + 8mg)]
h® 94
+13 10 afﬁB(Zmz +32m4 +32ms + my + 2m + 16mg) + 1207 =55 zfg”;(mz +4(4my + ms + mg))
9 fap
+ 3)(4’ (2my 4+ m3 4 32my + 2ms + 16mg + 32mg)]
+£[ 69° fAB(2m2+128m4+128m5 +my + 2mg + 64mg) + 30b* 9° /. (M2 + 64my + 16ms + 4mg)
360 y ays Y ax29y4 x29y4
2 0%fa 3°fa.n
+30by3 Toy 2(m2+64m4+4m5+16mg)+ G (2my + m3 + 2(64my4 + ms 4 32me + 64mg))]
h10 SaszB fAB
2m 512m 512m m 2m 256m 56h° m 256m
20160[y 278 (2m; + 4+ 5 +my7 +2mg + 9) + Y 3x20y g (m2 + 4
fAB fAB
+64ms +4m8)+140bya a5 ( 2+ 16(16my4 + ms ~|—mg))+56bya 53 (m2+256m4

88
+4ms + 64mg) + % (2my +m3 + 512my + 2ms + 256me + 512mg)] + ...

23

(B.4)

as well as we will get the same local truncation errors ey = e for zero and non-zero heat source. Similar to the 2-D transient

problems, the term f can be calculated for the 2-D Poisson equation:

f =h%Qky + ks + 8kq + 2ks + 4ke + 8ks) fa 5

h4[32fAB

(b3 (192ky4 + 48ks + 48Kkg) + 2(6b3 — 1)ky — k3 — 32k — 2ks — 16ks — 32kg)

52
n fAB

(2ky + k3 + 32k4 + 2ks + 16kg + 32kg)]

hé 9%
L fas
360 9y

((30b5 — 30D + 2)k + k3 + 2(by (240ks + 60kg) + b’ (—60ks

—240kg) + 64(15b7 — 15b% + 1)kq + ks + 32k + 64ks))

*fap

+8282

((?:Ob2 2)ky — k3 + 2(b§,(960k4 + 60ks + 240kg) — 64k4 — ks — 32ks — 64kg))

*fas
34

+

K8
n [ 3°fa.n
20160 9yS
—2240ks — 2240kg) + b’ (14336k4 + 224ks + 3584ks)
+2(28b5 — 70b7 + 28b% — 1)ky — k3 — 512ky — 2ks — 256ke — 512kg)
3°fas
X2y
+2(256(70by — 28b5 + 1)ks + (1120b} — 112b, + 1)ks + 32(4ks + (35b}, — 56b7, + 8)ks)))
3°fa.B
ax1oy?
+224ks + 3584kg) — 2k — k3 — 512k4 — 2ks — 256kg — 512kg)

6fAB

(2kz + k3 + 2(64ks + ks + 32ke + 64ks))]

(b6 (14336k4 + 3584ks + 224ks) + b} (—35840k4

+ (2(70b — 28b% + 1)ky + k3

+ (b3 (56k; + 14336ky

+ (2kz + k3 + 512k4 + 2ks + 256ke + 512k3)]

PR
Lo s fa.B
1814400 9y8

—45b% + 1)kq + (115205 — 1344005 + 3360b}, — 180b3 + 1)ks + 4(128ke + (45b° — 840b5

(((90b§ — 4200 + 420b, — 90b§ + 2)ky + k3 + 2(1024(45b5 — 210b + 210b),
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3 fap
ax 28 6
—6720ks — 26880ks) + b (92160k4 + 360ks + 23040ks) -+ (42005 — 420b% +90b2 — 2)k

38 fap
0 43 4
+26880kg) + bf,(—90k2 — 92160k4 — 360ks — 23040kg) + 2ky + k3 + 2048k4 + 2ks + 1024kg

3 fa
9x69y2

8fAB
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3 fap
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9x 23 14
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—77520b5, + 9690b7 — 380b%, + 2)k; + k3 + 2(1048576(4845b,° — 38760b,* + 125970b
—184756b,° + 125970b%, — 38760b + 4845b5 — 190b3 + 1)ks + (317521920b,° — 635043840 *
+515973120b, — 189190144b)° + 32248320b% — 2480640b5, + 77520b, — 760b% + 1)ks
+16(32768ks + (4845b,° — 155040b}* + 2015520b > — 11824384b )" + 32248320b5 — 39690240b

fAB
8x4

+1270087680ks + 4961280kg) + b},z(—251940k2 — 264178237440k4 — 1031946240ks — 64496640kg)
+b},0(369512k2 + 387461414912k, + 378380288ks5 + 378380288kg) + b?,(—251940kz
—264178237440k4 — 64496640ks — 1031946240kg) + b‘;(77520k2 + 81285611520k, + 4961280ks5
+1270087680kg) + b;‘,(—9690k2 —10160701440k4 — 155040ks — 635043840ksg) + b?,(380k2
+398458880k4 + 1520ks + 99614720kg) — 2k — k3 — 2097152k4 — 2ks — 1048576kg

B fap

XBay12
+b},0(—369512k2 — 387461414912k, — 378380288ks — 378380288kg) + b?,(251940kz
4264178237440k, + 64496640ks + 1031946240ks) + b?,(—77520k2 — 81285611520k,
—4961280ks — 1270087680kg) + b;‘, (9690k; + 10160701440k4 + 155040ks + 635043840ks)
+b§, (—380k, — 398458880k4 — 1520ks — 99614720kg) + 2k + k3 + 2097152k4

fA B

(b]4(77520k2 + 81285611520k

+19845120b% — 3112960b2 + 65536)ks))) +

—2097152kg) + (b12(251940k2 -+ 264178237440k4 + 1031946240ks 4 64496640ks)

+2ks + 1048576ks + 2097152kg) + (b10(369512k2 + 387461414912k, + 378380288ks

+378380288ks) + bf,(—251940k2 — 264178237440k4 — 64496640ks — 1031946240kg)
+bf,(77520k2 + 81285611520k, + 4961280ks + 1270087680kg) + b;‘,(—9690k2
—10160701440k4 — 155040ks — 635043840kg) + b?, (380k3 + 398458880k4 + 1520ks
+99614720kg) — 2ky — k3 — 2097152k4 — 2ks — 1048576k — 2097152kg)

318 fap

+ 3X103y8

(b?, (251940k3 + 264178237440k, + 64496640ks + 1031946240kg) + b?, (—77520k;

—81285611520k4 — 4961280ks — 1270087680ks) + bj‘, (9690k, + 10160701440k4
+155040ks + 635043840kg) + bf,(—380k2 — 398458880ks — 1520ks — 99614720kg)

18fA B

+2ky + k3 +2097152k4 + 2ks + 1048576ks + 2097152kg) + (b6 (77520k;

+81285611520k4 + 4961280ks + 1270087680kg) + b;‘,(—9690k2 — 10160701440](4
—155040ks — 635043840ks) + b?, (380k; + 398458880/(4 + 1520ks + 99614720kg)

Bfan

X 143 4
+10160701440k4 + 155040ks + 635043840ksg) + bf,(—380k2 — 398458880k4 — 1520ks5
—99614720kg) + 2k + k3 + 2097152k4 + 2ks 4 1048576kg -+ 2097152ks)

—2ky — k3 — 2097152k4 — 2ks — 1048576ks — 2097152kg) + (b4 (9690k;

318 fa 5

ox169y2 (b2 (380ky + 398458880k4 + 1520ks + 99614720kg) — 2ky — k3 — 2097152k4 — 2ks

18fAB

+

—1048576ke — 2097152kg) + (2ka + k3 4+ 2097152k4 + 2ks

+1048576k6 +2097152kg)] + ....

27

(B.5)

The coefficients m; and k; (i=1,2,3,...,9) in Egs. (B.4)-(B.5) are given by Eqgs. (21), (40) and Eq. (46) (see also Table 1

for the conventional elements) for the corresponding techniques with zero heat source.

We should mention that in the calculation of f with the help of Egs. (B.4)-(B.5) we need to include the terms with the
maximum power of h equal to 4, 6, 8, 12, 14 and 18 for the 4th, 6th, 8th, 12th, 14th and 18th orders of the local truncation
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error, respectively (according to the order of accuracy of the corresponding technique with zero heat source). As can be also
seen, f is directly calculated in terms of the heat source f at the points with the coordinates x4 and y4 with the help of
Eqs. (B.4)-(B.5) (similar to the introduction of the concentrated forces in the FEM).

Appendix C. The coefficients b, in Eq. (20)

b1 = (k1 4+ 2(2ky + k3 + 2kg + 2ks + kg + k7 + 2kg + ko)) ,
by, = 12(2ky + k3 + 8k + 2ks + 4ke + 8kg + my + 4my + 2m3
+4my + 4ms + 2me + 2my + 4mg + 2mg) ,
bs = 12(b}(2ka + 8k4 + 8ks + k7 + 2ks + 4ko) +my
+2(2my + m3 + 2my + 2ms + me + m7 + 2mg +mg)),
by = (2ky + k3 + 2(16k4 + k5 + 8ks + 16kg + 12m;
+6m3 + 48my + 12ms + 24mg + 48mg)) ,
bs = b2 (b3 (2ky + 32ks + 32ks + k7 + 2k + 16ko)
+12(2my + 8my + 8ms 4+ my + 2mg + 4mog)) ,
be = 12(2my + m3 + 8mg + 2ms + 4m + 8mg + b’ (ky + 16ky + 4ks
+4kg + 2my + 8mgy + 8ms + my + 2mg + 4mg)) ,
b7 = (2kz + k3 + 2(64ks + ks + 32ke + 64ks + 30m; + 15m3
+480my + 30ms + 240mg + 480msg)) ,
bg = by (b3 (2ky + 128ky + 128ks + k7 + 2ks + 64kg)
+30(2my + 32my4 + 32ms + my 4+ 2mg + 16mg)) ,
bg = 30(2my + m3 + 32mgy + 2ms + 16mg + 32mg
+b§,(k2 + 4(16k4 + k5 + 4kg + 3my + 48my4 + 12ms + 12mg))) ,
bio = 30b3,(12(m3 + 4(4my + ms + mg)) + b, (kz + 64ks + 16ks + 4ks
+2my + 32my + 32ms + my + 2mg + 16mo)) ,
bi1 = (2ky + k3 + 2(256kg + ks + 4(32ke + 64k
+7(2my +ms3 + 2(64my + ms + 32mg + 64mg))))),
b1z = b (b3 (2ky + 512k + 512ks + k7 + 2kg + 256ko)
+56(2my + 128my4 + 128ms + m7 4+ 2mg + 64mg)) ,
b13 = 56(2my + m3 + 128my4 + 2ms + 64mg + 128mg
+b2 (ky + 256k4 + 4ks + 64ks + 30m; + 1920m4 + 120ms + 480ms)) ,
bia = 140b3 (12(m; + 4(16my + ms + 4mg)) + b3 (ky + 4(64ks
+4ks + 4kg + 3my + 192my4 + 48ms + 12mg)))
bis = 56(by)(30(m2 + 4(16my + 4ms +mg))
+b§,(k2 + 256k4 + 64ks + 4kg + 2my + 128my4 + 128ms + m7 + 2mg + 64mg)) ,
big = (2ka + k3 + 2(1024k4 + ks + 512ke + 1024ks + 90m; + 45m3
+23040m4 + 90ms + 11520mg + 23040mg))
b17 = b (b (2kz + 2048k4 + 2048ks + k7 + 2ks + 1024ko)
+90(2my + 512my4 + 512ms + my7 + 2mg + 256myg)) ,
big = 90(2my + m3 + 512mg4 + 2ms + 256mg + 512mg
+b§, (ko + 4(256k4 + ks + 64kg + 14m;y + 3584my + 56ms + 896mg))) ,
big = 420(b3) (b (kz + 1024ky + 16ks + 64ks -+ 30m; + 7680my + 480ms + 480mg)
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+12(my + 4(64my + ms + 16mg))) ,
bao = 42035 (30(m; + 16(16my + ms + mg))
+bf,(k2 + 4(256k4 + 16ks + 4kg + 3my + 768mg4 + 192ms + 12mg))),
by = 90(b§3,)(56(m2 + 4(64mg4 + 16ms + mg))
+b§ (ko + 1024k4 + 256ks + 4kg + 2my + 512my4 + 512ms + m7 + 2mg + 256mg)) . (C1)

Appendix D. The coefficients dj and f; in Eqs. (26) and (27) for the new Q 9_0 PT stencils

1 1
di = ‘—l(g [b;l, (2220a1 — 4677a; + 4016a3) — 5b§, (2334a1 — 3537a; + 596a3) + 2850a1] — aiq
1
1
—2a4 — 2ag), dy = 7[01 —ag],

1
d3 = W[b“ (2220a; + 69a; — 832a3) + b%(~11670a; + 1011az + 92a3) + 2850a1],

1
dg = —[a1 —ag],

7(—[b4( 2960a1 — 2397a; + 5416a3) + b2(15560a1 +3537a; — 1736a3) — 3800a1] — 2aqp) ,

4 °10xq
1
dg = W[b“( 8880a; — 1311a; + 2488a3) + 5b%(9336a; + 543a; — 184az) — 11400a;],
1
d7 = W[b‘l( 8880a; — 1311ay + 2488a3) + 5b2 (9336a1 + 543a; — 184as) — 11400a4],
= Z(F[b‘l( 2960a1 — 2397a;, + 5416a3) + b2(1556001 + 3537a; — 1736a3) — 3800a1] — 2a7),
1
do = g [120%101 = b3, (87(41b3, — 221)az + 8(53b + 257)a3)] —as,
dio=ay, di; =as, di2 =as, di3=ay,
dig=ag, dis=ay, dig=aw, diz=a. (D.1)

1
f1= W[b‘y‘(—370a16 — 2367a; — 174as) + b3 (1945a16 + 73350z + 2295a3) + 5%1 (a14 + 2015)
1
—475a16 + 21222a; — 3291a3],
1
fo= Tox [bj‘,(370(a14 + aig) + 2321a; — 258a3) + bf,(—]945(a14 + ag) — 9920ay + 3405a3)
1

+5x1 (a2 +4a13) +475(a14 + a16) — 12241a, + 873a3],

(b2 4 1)((46b3 — 341)az + (622 + 23)a3) ; a3 — aya
) 4= ——"

3=

10x; 2

fs= —%[b“ (370(a14 + a15) — 23ay — 216a3) + b3 (—1945(ar4 + a15) + 845a2) + 5x1 (a12 + 2a13)
+475(a14 + ay5) — 1922a, + 216as],

fe = %2 . fr= F[az( 23D, + 845b% — 1922) — 216a3(b; — 1)].

fs= 2Ol—xl[lzg(43b‘yl — 25b% +22)a3 — 18(106b} — 305b% + 1179)az] — ; ,
for= o B3+ 17303+ 187)0 + 85 — 430 )05)] -~ as,

fio=ai2, fin=a3, fiz=a14, fis=ais, fla=uass,

fis= —;T][b‘y*(370(a14 +a16) + 171203 + 1664a3) + b3 (—1945(a14 + a16) — 9920a; + 2560a3)
+5x1(a12 +4a13) +475(a14 + aie) — 11632a; + 896as],

1
fi6= g[bf,(370(a14 +ays5) + 2296a; — 1088a3) + bi (—1945(a14 + a15) — 10720a; + 4160a3)
1
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+5x1(a12 + 2a13) +475(a14 + a15) — 1496a; — 512a3],
1
fir= —E[Z(Xﬂhz + X1014 + 2(96(—4azb’, + 3(b5 — 3)az + 2a3)b + x1a15))].

In Egs. (D.1) and (D.2) aj (j=1,2, ..., 16) are sixteen arbitrary coefficients and x; = 74b§‘, - 389bf, + 95.

Appendix E. The coefficients b, in Egs. (39)

b1 = (k1 4+ 2(2ky + k3 + 2k4 + 2ks + ke + k7 + 2kg + ko)) ,
by = (2(=1+ b3 )k — k3 — 8ka + 8b%ka — 2ks + 8b% ks — 4ke + b k7 — 8kg + 2b% kg + 4bko)

bs = (2(1 — 6b} + b}k + k3 + 32ks — 192b7ky + 32b5 ks + 2ks — 48b7ks + 32bks + 16ks + b}k

+32ks — 48bJks + 2bks + 16b3ko)
bs = (2(—1+ 15b3 — 15b5 + bS)ky — k3 — 128ks + 1920b ks — 1920b ks + 128b5ks — 2ks + 120b%ks
—480b7 ks + 128b5ks — 64ke + b ks — 128k + 480b3 kg — 120b3ks + 2b5ks + 64bSko) ,
bs = (2(1 — 28b% + 70b; — 28b5 + b3 )ky + k3 + 512k — 14336b% kg + 35840b75ks — 14336b5ks
+512b%ky + 2ks — 224b2ks + 2240b5ks — 3584bSks + 512b5ks + 256k + b5 ks

+512ks — 3584b3 kg + 2240b ks — 224b5ks + 2b5 kg + 256b%ko) .
be = (2(—1+ 45b3 — 210b, + 21005 — 45b5 + b))k — k3 — 2048k, + 92160b3 ks — 430080b75 ks
+430080b ks — 92160b} ks + 2048b, ks — 2ks + 360b7ks — 6720bks + 26880b7 ks — 23040b3 ks
+2048b ks — 1024ks + b}, °k; — 2048Kkg + 23040b%ks — 26880b kg + 6720bks

—360b5 ks + 2b, kg + 1024b%kg) .
b7 = (2(1 — 66b3 + 495b, — 924b5 + 495b% — 66b,° + b}?)kz + k3 + 8192k — 540672b% ks
+4055040b} kg — 7569408b5 ks -+ 405504005 ks — 540672b ks + 8192b ks + 2ks
—528b2ks + 15840b73ks — 118272bSks + 253440b5 ks — 135168b) ks + 8192b ks + 4096ks
+b}?k7 + 8192ks — 135168b2kg + 253440bks — 118272bSks

+15840b3 kg — 528b, kg + 2b ks + 4096b ko) ,
bs = (2(—1+91b} — 1001b + 3003b — 3003b% + 1001b,° — 91b,% + b} ks — ks — 32768k,
+2981888b2 k4 — 32800768b ks + 98402304b5ks — 98402304b5ks + 32800768b %k, — 2981888b ks
+32768b ks — 2ks + 728b%ks — 32032b7ks + 384384b5ks — 1537536b] ks + 2050048b, ks
—745472b ks + 32768 ks — 16384ks + b ,*k; — 32768k + 745472b% kg
—2050048byks -+ 1537536bSks — 384384b5 kg + 32032b kg — 728b kg

+2b} kg + 16384b}*kg),
bg = (2(1 — 120} + 1820, — 8008b}, + 12870b}, — 8008b,” + 1820b,* — 120b*
+b}°)kz + k3 + 131072ks — 15728640b% kg + 238551040b7 ks — 10496245765 ks
+1686896640b5 ks — 1049624576b ks + 238551040b ks — 15728640b*kq + 131072b,%k4 + 2ks
—960b%ks + 58240b7 ks — 1025024bSks + 6589440b% ks — 16400384b ks + 14909440b ks
—3932160b*ks + 131072b,%ks + 65536k + b’k + 131072ks — 3932160b% ks + 14909440b kg
—16400384b5 kg + 6589440b5 ks — 1025024b kg + 58240b ks — 960D ks

+2b, ks + 65536 °kg) ,
bio = (2(~1+153b3 — 3060b] + 18564b$ — 43758b% + 43758b0 — 18564b)? + 3060b,*
—153b}° + b}®)ky — k3 — 524288ks + 80216064b> ks — 1604321280b7ky + 9732882432b5ks
—22941794304b5 k4 + 22941794304b kg — 9732882432b k4 + 1604321280b ) *k4 — 80216064b,°ks
+524288b %k — 2ks + 1224b7 ks — 97920byks + 2376192b5 ks — 22404096b ks + 89616384b, ks
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—152076288b,ks + 100270080b ks — 20054016 °ks + 524288b,%ks — 262144ks + b} k7
—524288ks + 20054016b%ks — 100270080b% ks + 152076288b5 ks — 89616384b5 ks + 22404096b | kg
—2376192b,ks + 97920b ks — 1224b °kg + 2b ks + 262144b Fko) ,

b11 = (2(1 — 190b? + 4845b’, — 38760b5 + 1259705 — 184756b,° + 125970b* — 38760b *
+4845b,° — 190b,8 + b3%)k; + k3 + 2097152k, — 398458880b7 k4 + 10160701440b 5 ks
—81285611520b5ky + 2641782374405 ks — 387461414912b ks + 264178237440 %ky
—81285611520b,*k4 + 10160701440b | °k, — 398458880b k4 + 2097152b2°ks + 2ks — 1520b%ks
+155040b7 ks — 4961280b5 ks + 64496640b5 ks — 378380288b, ks + 1031946240b ks
—1270087680b *ks + 635043840b°ks — 99614720b ) ks + 2097152b3°ks + 1048576k
+b3%k7 + 2097152ks — 99614720b%ks + 635043840 kg — 1270087680b5 ks + 1031946240b5 ks
—378380288b, ks + 64496640b,°ks — 4961280b) ks + 155040 ,°kg — 1520b%kg

+2b2ks + 1048576b3 k) . (E1)

Appendix F. The coefficients f; in Egs. (27) for the new Q 9_0 PT_1 stencils

1
f1= WU(BQ%QO%}G +165087200b* — 1044338491b, — 56494700b,° -+ 6943474174b}
1

—56494700b% — 1044338491b% + 165087200b2 + 13993904)a; + 9y1(8az + 2(a3 + as) — as)],

1
fo = ——[(58288976b1° — 481727600b1* + 1456399991b'? — 1756955850b10
12}/1 y y y y

+1159844496b% — 441576750b5 -+ 83309881b, — 4919800b + 176656)a; — 6a4y1],
fe (b2 + 1)2(b3 + 4)(4b3 + Day
36y1

[44164b% — 2340755 + 379522b, — 234075b3 + 44164],

1
fa=-——[(176656b'° — 4919800b'* + 8330988112 — 441576750b1° + 1159844496h°
12y1 y y y y y

~1756955850b5 -+ 1456399991b% — 481727600b? + 58288976)a; — 6azy1].
2(b5 + Db} + D

f5= [14572244b)? — 1052269950 4 247191783b§ — 129893985b
3

+30238377b} — 4502520b7 + 598096] — %5 ,

2(b% 4 1)(4b2 + Da
M
—12208585b + 5767943b7, — 1132795b7, + 44164,

6= [598096b > — 4480120b,° + 12056297b},

2 2
_Z(by + Dby +dHa

7= [44164b,> — 1132795b,° + 5767943b, — 12208585,

91
+12056297b% — 44801202 + 5980961,
8(4b32/ +D 14 12 10 8 6
fg = ———=——[598096b," — 3882024b,” — 73487183b," + 526759552b, — 1006418222b
36y1 y y y y y

—33540332b% + 173697309b% — 34147196)a; — 9y1(4az — 2a5 — ag)],

8(b3 +4)(4b3 + 1a
B 91

fo [598096b,> — 6291208b,° -+ 26094929b% — 47431534bS

+26094929b7 — 6291208b% + 598096] — aj ,
32(b3 +4)

[13332608b14 — 92829957h12 + 205720886b10 — 7726801968 — 17831596h°
18y1 y y y y y

fio=



32 A. Idesman, B. Dey / Journal of Computational Physics 418 (2020) 109640

+22126034b7 — 7797648b7 + 1196192)a; — 9y1(8az + 2a3 — 4as — ag)] .
fu=a, fr=as,

fiz= 1817[9;/1 (4a; — 2as — ag) — 32(b3 + 4)(4b3 + 1)(598096b > — 6291208b°
+26094929b% — 47431534b5 + 26094929b’, — 6291208b + 598096)a; ],

1
f1a = —[1120(4b? + 1)(64336b'° — 418184b% + 793633b° + 30298b%
2)1 y y y y y

—138719b2 + 27136)a1 — y1(2a4 + 4as + ag] .
fis=as,  fie=as, frr=a6 (F2)
with y; defined by Eq. (41). aj (j=1,2,...,6) are six arbitrary coefficients.

Appendix G. The coefficients f; in Egs. (27) for the new Q 9_0 PT_2 stencils

1
fi= ﬁ[7(4013999841;§° +2972658592b,° — 41060434627b,° + 84142306982b* + 175854264643b,>
3

—478641391148b}° + 175854264643b’, + 841423069825 — 41060434627b’,
+2972658592b2 + 401399984)a; + 9y3(8az + 2(a3 + a4) — ag)] .

1 1
f2 = —(—[(1521978576b%° — 17351608272b 18 + 76872755327h1® — 164715787152b 4
12 y y y y y

3

+193939316847b}2 - 137578948912b},0 + 60627164237b§ - 15793920632)5?
+2089789797b — 107855032b3 + 3115216)a;] — 6ay) .

f3= T[(bz +1)° (b} +4)(4b?, + 1)(778804b,*> — 6705623b,° + 20440296b

—29052954b5 + 20440296b5 — 6705623b3 + 778804)a1 ],
11

fa= E(y—[(3115216b§,0 — 107855032b® + 2089789797b ° — 15793920632b)" + 60627164237b >
3

—137578948912b,° + 193939316847b%, — 164715787152b, + 76872755327b]
—17351608272b3 + 1521978576)a;] — 6a3),

1
=3, [2(b5 + 1)(b} + 4)(380494644b ° — 3950564583b " + 15033132452b* — 24170522596,
3

+17293159050b% — 595934430955 + 1165078718b% — 158704512b% + 13671136)a;] — %5 :

2(b2 +1)(4b% + 1)
fo=——Y 3y y a1[13671136b,° — 146695872b " -+ 602568798b > — 1172018969b
3

+1186108650b5 — 654628796b5 + 190632612b% — 24576363b2 + 778804],

202+ 1)(b% +4
fr= —Mm [778804b16 — 24576363b'* + 190632612b12 — 654628796h10
9y y y y y

+1186108650b8 — 1172018969b?, + 602568798b§1, — l46695872b§, +13671136],

fs = —[8(4b2+1)(13671136b18 133024736b1° — 1610446434b1* + 19467493189b12
36 y y y

—67752177839b,° + 82726410574b% — 20590969064b% — 15810053271b),
+7617442201b3 — 922745756)a1 — 9y3(4az — 2as — as)],

1
fo=——T[16(b? + 4)(4b? + 1)(6835568b}° — 98357880b " + 569516043b}? — 1642477120b}°
93

+2351066778b§, - 1642477120b§3, + 569516043b?, - 98357880b§, 4 6835568)a1] —ay,
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1

0= + - + -
f [128(b? + 4)(85062557b18 — 864173437b16 + 31782131374 — 4742456632b12
18y3 y y y y y

+2624606822b},0 + 165500181)?, - 6‘16721908[)?, + 3052294831);1, - 7‘10‘15608[)5
+6835568)a; — 9y3(8az + 2a3 — 4as — ag)],
fu=a,  fiz=as,

1
f13 = 1,7 10y3(4a2 205 — ag) - 64(b3, + 4)(4b} + 1)(6835568b,° — 98357880b*

+569516043b)> — 1642477120b,° + 2351066778b5 — 1642477120b}
+569516043b’), — 98357880b2 + 6835568)a1 ],

1
fla= g[4480(4b§, +1)(409984b* — 3975584b? + 134456880 — 16308518b% + 3993447hS,
3

+3169863b;‘, — 1516119[)?, + 183239)a; — y3(2a4 + 4as + ag)],
fis=aa, fie =as, f17=as (G.1)

with y3 defined by Eq. (47). a; (j=1,2,...,6) are six arbitrary coefficients.
Appendix H. Supplementary material
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jcp.2020.109640.
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