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A new approach for the increase in the order of accuracy of high order elements used 
for the time dependent heat equation and for the time independent Poisson equation has 
been suggested on uniform square and rectangular meshes. It is based on the optimization 
of the coefficients of the corresponding discrete stencil equation with respect to the local 
truncation error. By a simple modification of the coefficients of 25-point stencils, the new 
approach exceeds the accuracy of the quadratic isogeometric elements by four orders for 
the heat equation and by twelve orders for the Poisson equation. Despite the significant 
increase in accuracy, the computational costs of the new technique are the same as those 
for the conventional quadratic isogeometric elements on a given mesh. The numerical 
examples are in a good agreement with the theoretical results for the new approach 
and also show that the new approach is much more accurate than the conventional 
isogeometric elements at the same number of degrees of freedom. Hybrid methods that 
combine the new stencils with the conventional isogeometric and finite elements and can 
be applied to irregular domains are also presented.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we will show that the accuracy of high-order numerical techniques for the heat and Poisson equations 
used in many applications (computational physics, computational mechanics and others; e.g. see [1–4] and many others) 
can be significantly improved compared to the known numerical approaches. For many problems, high-order finite element 
techniques have advantages compared to the linear finite elements due to a higher order of accuracy of these techniques; 
e.g., see [5–7] and others. However, the conventional derivation of the discrete equations for finite element techniques (e.g., 
based on the Galerkin approaches) does not lead to the optimal accuracy of the discrete equations. This is known for many 
years for the linear finite elements applied to the wave equation for which different techniques have been developed for the 
increase in accuracy of the discrete equations; e.g., see [8–15] and many others. Their extension to high-order elements is 
not straightforward. For example, the dispersion reduction technique for the high-order finite elements have been suggested 
in [16] for acoustic waves. This technique is based on the calculation of the mass matrix M in Eq. (3) as a weighted average 
of the consistent and lumped mass matrices for the high-order finite elements. It was also shown in [16] that the same 
results can be obtained with the modified integration rule for the mass matrix. With this technique, the dispersion error 
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is improved from the order 2p to the order 2p + 2 (p is the order of polynomial approximations). However, even for the 
quadratic elements, the modified stencil equation derived in [16] in the 1-D case is based on the replacement of the mid-
side degree of freedom by the degrees of freedom related to the nodes located at the ends of the element (it seems that 
such a replacement is impossible in the 2-D or 3-D cases due to the belonging of the same mid-side degree of freedom to 
different elements).

The modification of the non-diagonal mass matrix in [17,18] for the high-order isogeometric elements allows the increase 
in the order of the dispersion error from the order 2p to the order 2p + 2 in the 1-D case and for one specific direction of 
harmonic waves in the 2-D case (however, this technique does not improve the order of the dispersion error in the general 
2-D case). The issues with the application of such a technique to a general multidimensional case has been resolved in the 
latest papers [19–22].

Recently, we have improved the accuracy of high-order isogeometric elements from the order 2p to the order 4p for the 
scalar wave equation in the general multidimensional case; see [23,24]. This increase in the order of accuracy is much higher 
than that in the above-mentioned papers [16–20]. In contrast to the high-order finite and spectral elements, the stencil 
equation for the isogeometric elements on uniform meshes is the same for all internal degrees of freedom (for the high-
order finite and spectral elements there are several stencil equations with different structures depending on the location 
of nodes). This simplifies the analysis of the numerical dispersion error for the isogeometric elements. The improvement 
of accuracy in [23,24] is based on the optimization of the order of the numerical dispersion error and on the existence 
of the exact harmonic solutions to the wave equation with zero loading function for an infinite domain. This approach 
cannot be applied to the heat equation due to the absence of exact harmonic solutions to the heat equation even with zero 
heat source. However, using the local truncation error, we are able to significantly increase the accuracy of the high-order 
isogeometric elements from the order 2p to the order 4p for the time dependent heat equation and even to a much higher 
order of accuracy for the isogeometric elements applied to the time-independent Poisson equation.

In our recent papers [25,26] we have shown that the local truncation error can be used for the increase in accuracy 
of the linear finite elements for the heat and Poisson equation as well as of the high-order isogeometric elements for the 
wave and heat equations. In contrast to the new linear elements in [25], the new stencils developed in this paper yield a 
much higher order of accuracy (much greater than the difference in the orders of accuracy between the conventional linear 
and quadratic finite elements). The improvement of accuracy of the global system of the semidiscrete equations for the 
high-order elements applied to the time-dependent heat and wave equations with zero right-hand side has been shortly 
considered in our paper [26] with the help of the local truncation error. The determination of the elemental matrices for 
the isogeometric elements has not been considered in [26]. In this paper we show how to calculate the elemental matrices 
for the new technique as well as we extend the new approach to the heat equation with non-zero heat source (i.e., to 
a new class of problems). Moreover, in contrast to [26], we have also developed new stencils for the time independent 
Poisson equation with zero and non-zero heat source. We should mention that for the Poisson equation, the accuracy of the 
quadratic isogeometric elements is improved by twelve orders (from the sixth order for the conventional elements to the 
eighteenth order for the new stencils). The accuracy of the new 25-point stencils are also twelve orders higher compared 
to the 9-point stencils of the new linear finite elements developed in [25]. We have never seen such a huge increase in the 
order of accuracy without additional computational costs.

Heat transfer in an isotropic homogeneous medium is described by the heat equation in domain �:

∂u

∂t
− a∇2u = f (1)

for transient problems and by the Poisson equation:

∇2u = f (2)

for steady-state problems with the boundary conditions n · �u = g1 on �t and u = g2 on �u , and the initial conditions 
u(x, t = 0) = g3 in � (the initial conditions are given for the transient problems only). Here, u is the temperature, f is 
a given heat source that may depend on the space coordinates and time for the transient problems and on the space 
coordinates for the Poisson equation, ∇2 is the Laplace operator (∇2u = ∂2u

∂x2
+ ∂2u

∂ y2
in the 2-D case), a is the thermal 

diffusivity (e.g., for homogeneous isotropic materials a = k/(cρ), where k is the conductivity coefficient, ρ is the density 
and c is the capacitance), t is the time, �t and �u denote the natural and essential boundaries, gi (i = 1, 2, 3) are the 
given functions, n is the outward unit normal on �t . Other boundary conditions (e.g., convective heat exchange or radiation 
heat exchange and others) can be also formulated. The application of the continuous Galerkin approach and the space 
discretization (e.g., the finite elements, spectral elements, isogeometric elements; see [6,27,28] and others) to Eqs. (1) and 
(2) leads to a system of ordinary differential equations in time for transient problems:

M U̇ + a K U = R (3)

and to a system of algebraic equations for steady-state problems:

K U = R (4)
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with

M =
∑
e

Me , K =
∑
e

K e , (5)

where U (t) is the vector of the nodal temperatures, R is the right-hand side vector, the global M and K matrices have a 
banded structure and are obtained by the summation of the corresponding local (element �e ) matrices Me and K e:

Me =
∫
�e

N T Nd�e , K e =
∫
�e

BT Bd�e . (6)

Here, N and B = ∂N
∂x are the shape matrix and its derivative with respect to the physical coordinate x; see [6,7,29].

In Section 2.1 we consider the improvement of the order of the local truncation error by the optimization of the coeffi-
cients of the 25-point stencil equation for the quadratic isogeometric elements applied to the time dependent heat equation 
with zero heat source in the 2-D case. In Section 2.2 we extend these results to the 2-D time independent Poisson equa-
tion. The numerical examples showing the accuracy and the convergence rate of the conventional quadratic isogeometric 
elements and the new 25-point stencils are presented in Section 3. Currently, the new high-order technique has been de-
veloped for uniform square and rectangular meshes. However, in Section 3.3 we show that this technique can be easily 
combined with the conventional isogeometric or finite elements and form a hybrid method. The hybrid method can be eas-
ily applied to irregular domains. In Appendix B we extend the results to non-zero heat source. The computational program 
“Mathematica” has been used for the derivation of many analytical expressions. Some long formulas from the paper (see 
Eqs. (21), (40), (46), (B.4) and (B.5) below) are also given as a Mathematica file in Appendix H.

2. Local truncation error in space for discretized equations

In the analysis of the local truncation error considered below, the stencil equation of the discretized global system of 
equations, Eq. (3), for transient problems can be written as

h2miu̇
num
i + ak ju

num
j − f̄ = 0 . (7)

Here, unum
j and u̇num

i are the nodal values of function u and its first time derivative in the numerical solution, f̄ is calculated 
with the help of the heat source (e.g., see Appendix B), coefficients mi and k j for the conventional isogeometric elements 
are calculated with the help of Eqs. (3) - (6), h is the element size (e.g., along the x-axis); the summation over the repeated 
indexes is assumed in Eq. (7). The examples of the coefficients mi and k j can be found below in the following sections. The 
substitution of the exact solution of the heat equation, Eq. (1), for function u j and its first time derivative u̇i at nodes into 
Eq. (7) will lead to the residual of this equation called the local truncation error e of the semidiscrete equation (7):

e = h2miu̇i + ak ju j − f̄ . (8)

Calculating the difference between Eqs. (8) and (7) we can get

e = h2mi[u̇i − u̇num
i ] + ak j[u j − unum

j ] = h2miē
v
i + ak jē j , (9)

where ē j = u j − unum
j and ēvi = u̇i − u̇num

i are the errors of function u and its first time derivative at nodes j and i. As can 
be seen from Eq. (9), the local truncation error e is a linear combination of the errors in the function u and its first time 
derivative at nodes i which are included into the stencil equation. The local truncation error e for Eq. (4) can be obtained 
from Eqs. (7)-(9) with mi = 0 and a = 1. The derivations in Section 2 are based on zero heat source f (x, t) = f̄ = 0. The 
extension to non-zero heat source is considered in Appendix B.

2.1. Transient problems with zero heat source ( f (x, t) = f̄ = 0)

The calculation of the conventional Me and K e matrices of the isogeometric elements is based on the univariate B-spline 
basis functions; see [27,30]. In the 1-D case they are defined recursively starting with p = 0

Ni,p(ξ) =
{
1, if ξi ≤ ξ < ξi+1.

0, otherwise.
(10)

For p ≥ 1:

Ni,p(ξ) = ξ − ξi

ξ − ξ
Ni,p−1(ξ) + ξi+p+1 − ξ

ξ − ξ
Ni+1,p−1(ξ) , (11)
i+p i i+p+1 i+1



4 A. Idesman, B. Dey / Journal of Computational Physics 418 (2020) 109640
where a knot vector {ξ1 = 0, ..., ξi, ..., ξn+p+1 = 1} is a set of non-decreasing real numbers representing coordinates in the 
parametric space of the curve, p is the order of the B-spline, n is the number of the basis functions, i = 1, 2, ..., n + p + 1. 
In the 2-D case the basis functions can be constructed with the help of the tensor product as follows:

Mpq
ij (ξ,η) = Ni,p(ξ)N j,q(η) , (12)

where Ni,p(ξ) and N j,q(η) are the basis functions of order p and q given by Eq. (11). Below the 2-D basis functions of the 
same order in the ξ and η directions (p = q) are used.

The Me and K e matrices of a typical interior rectangular quadratic isogeometric element in Eq. (6) are (see also [17]):

Me = byh2

14400

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

36 78 6 78 169 13 6 13 1
78 324 78 169 702 169 13 54 13
6 78 36 13 169 78 1 13 6
78 169 13 324 702 54 78 169 13
169 702 169 702 2916 702 169 702 169
13 169 78 54 702 324 13 169 78
6 13 1 78 169 13 36 78 6
13 54 13 169 702 169 78 324 78
1 13 6 13 169 78 6 78 36

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

K e = 1

720by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12
(
b2y + 1

)
26− 6b2y 2− 6b2y 26b2y − 6 −13

(
b2y + 1

) −13b2y − 1 2
(
b2y − 3

) −b2y − 13 −b2y − 1

26− 6b2y 12
(
b2y + 9

)
26 − 6b2y −13

(
b2y + 1

)
26b2y − 54 −13

(
b2y + 1

) −b2y − 13 2
(
b2y − 27

) −b2y − 13

2− 6b2y 26− 6b2y 12
(
b2y + 1

) −13b2y − 1 −13
(
b2y + 1

)
26b2y − 6 −b2y − 1 −b2y − 13 2

(
b2y − 3

)
26b2y − 6 −13

(
b2y + 1

) −13b2y − 1 12
(
9b2y + 1

)
26− 54b2y 2− 54b2y 26b2y − 6 −13

(
b2y + 1

) −13b2y − 1

−13
(
b2y + 1

)
26b2y − 54 −13

(
b2y + 1

)
26− 54b2y 108

(
b2y + 1

)
26− 54b2y −13

(
b2y + 1

)
26b2y − 54 −13

(
b2y + 1

)
−13b2y − 1 −13

(
b2y + 1

)
26b2y − 6 2− 54b2y 26− 54b2y 12

(
9b2y + 1

) −13b2y − 1 −13
(
b2y + 1

)
26b2y − 6

2
(
b2y − 3

) −b2y − 13 −b2y − 1 26b2y − 6 −13
(
b2y + 1

) −13b2y − 1 12
(
b2y + 1

)
26− 6b2y 2− 6b2y

−b2y − 13 2
(
b2y − 27

) −b2y − 13 −13
(
b2y + 1

)
26b2y − 54 −13

(
b2y + 1

)
26 − 6b2y 12

(
b2y + 9

)
26− 6b2y

−b2y − 1 −b2y − 13 2
(
b2y − 3

) −13b2y − 1 −13
(
b2y + 1

)
26b2y − 6 2− 6b2y 26− 6b2y 12

(
b2y + 1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(14)

where the sequence of uniformly spaced control points in the x and y directions with xA = hA and yB = byhB is used.
Considering the discretized heat equation (Eq. (3)) on an infinite plane with the sequence of uniformly spaced control 

points in the x and y directions, the 25-point stencil equation for the degree of freedom uA,B can be calculated with 
the help of Eqs. (3), (5), (13) and (14) for 3 × 3 = 9 neighboring elements. It includes 25 degrees of freedom ui, j (i =
A −2, A −1, A, A +1, A +2 and j = B −2, B −1, B, B +1, B +2) which are close to the degree of freedom uA,B (see Fig. 11
in the Appendix A) and has the following form:

h2{m1u̇
num
A,B +m2[u̇num

(A−1),(B+1) + u̇num
(A+1),(B−1) + u̇num

(A+1),(B+1) + u̇num
(A−1),(B−1)]

+m3[u̇num
A,(B+1) + u̇num

A,(B−1)] +m4[u̇num
(A−2),(B−2) + u̇num

(A+2),(B+2) + u̇num
(A−2),(B+2) + u̇num

(A+2),(B−2)]
+m5[u̇num

(A+2),(B−1) + u̇num
(A−2),(B+1) + u̇num

(A−2),(B−1) + u̇num
(A+2),(B+1)] +m6[u̇num

A,(B+2) + u̇num
A,(B−2)]

+m7[u̇num
(A−1),B + u̇num

(A+1),B ] +m8[u̇num
(A−1),(B−2) + u̇num

(A+1),(B+2) + u̇num
(A−1),(B+2) + u̇num

(A+1),(B−2)]
+m9[u̇num

(A−2),B + u̇num
(A+2),B ]}

+a{k1unum
A,B + k2[unum

(A−1),(B+1) + unum
(A+1),(B−1) + unum

(A+1),(B+1) + unum
(A−1),(B−1)]

+k3[unum
A,(B+1) + unum

A,(B−1)] + k4[unum
(A−2),(B−2) + unum

(A+2),(B+2) + unum
(A−2),(B+2) + unum

(A+2),(B−2)]
+k5[unum

(A+2),(B−1) + unum
(A−2),(B+1) + unum

(A−2),(B−1) + unum
(A+2),(B+1)] + k6[unum

A,(B+2) + unum
A,(B−2)]

+k7[unum
(A−1),B + unum

(A+1),B ] + k8[unum
(A−1),(B−2) + unum

(A+1),(B+2) + unum
(A−1),(B+2) + unum

(A+1),(B−2)]
+k9[unum

(A−2),B + unum
(A+2),B ]} = 0 , (15)

where the coefficients mj and k j ( j = 1, 2, 3, ..., 9) for the conventional quadratic isogeometric elements are given in Table 1.
For the derivation of the new technique with improved accuracy let us assume that similar to the conventional elements 

the 25-point stencil equation for the degree of freedom uA,B can be also represented by Eq. (15) with unknown coefficients 
mj and k j ( j = 1, 2, 3, ..., 9) before each degree of freedom. Similar to the conventional isogeometric elements, the symmetry 
for coefficients mj and k j in the stencil equation (15) is assumed for the degrees of freedom u j,l ( j = A − 2, A − 1, A, A +
1, A + 2 and l = B − 2, B − 1, B, B + 1, B + 2) symmetrically located with respect to the degree of freedom uA,B ; see Fig. 11
in the Appendix A.



A. Idesman, B. Dey / Journal of Computational Physics 418 (2020) 109640 5
Table 1
The coefficients of the stencil equation for the conventional Q 9_IGE
quadratic isogeometric elements used for the heat equation and for the 
Poisson equation in the 2-D case.

For the derivation of the stencil equation of the new approach we do not use the basis functions. We just assume that 
similar to the conventional isogeometric elements, the 25-point stencil equation for the new approach, Eq. (15), is a linear 
combination of degrees of freedom unum

i, j . Therefore, we can also treat these degrees of freedom as the values of function u
at the nodes (similar to the conventional finite elements).

Remark. If for some approaches the stencil equations are given in terms of other variables that are not the values of 
function u at the nodes, then a linear transformation of these variables to the values of function u at the nodes of a grid 
can be used for the modification of the stencil equation.

For the calculation of the local truncation error, let us expand the exact solution u j,l and u̇ j,l ( j = A − 2, A − 1, A, A +
1, A + 2 and l = B − 2, B − 1, B, B + 1, B+2) to the heat equation into a Taylor series at small h � 1 as follows:

uA±i,B± j = uA,B + ∂uA,B

∂x
(±ih) + ∂uA,B

∂ y
(± jbyh) + ∂2uA,B

∂x2
(±ih)2

2! + ∂2uA,B

∂x∂ y

(±ih)(± jbyh)

2!
+ ∂2uA,B

∂ y2
(± jbyh)2

2! + ... (16)

u̇ A±i,B± j = u̇ A,B + ∂ u̇ A,B

∂x
(±ih) + ∂ u̇ A,B

∂ y
(± jbyh) + ∂2u̇ A,B

∂x2
(±ih)2

2! + ∂2u̇ A,B

∂x∂ y

(±ih)(± jbyh)

2!
+ ∂2u̇ A,B

∂ y2
(± jbyh)2

2! + ... (17)

with i, j = 0, 1, 2. The exact solution uA,B to Eq. (1) at x = xA and y = yB meets the following equations:

∂uA,B

∂t
− a∇2uA,B = 0 , (18)

∂(2i+2 j+1)uA,B

∂x2i∂ y2 j∂t
− a

∂(2i+2 j)∇2uA,B

∂x2i∂ y2 j
= 0 (19)

with i, j = 0, 1, 2, 3, 4, .... Here, Eq. (19) is directly obtained by the differentiation of Eq. (18) with respect to x and y. Similar 
to Eq. (8), inserting Eqs. (16) - (19) with the exact solution to the heat equation, Eq. (1), into the stencil equation (15) we 
will get the following local truncation error in space e:

e = a{b1uA,B + h2[b2 ∂2uA,B
2

+ b3
∂2uA,B

2
] + h4 [b4 ∂4uA,B

4
+ b5

∂4uA,B
4

+ b6
∂4uA,B

2 2
]

∂x ∂ y 12 ∂x ∂ y ∂x ∂ y
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+ h6

360
[b7 ∂6uA,B

∂x6
+ b8

∂6uA,B

∂ y6
+ b9

∂6uA,B

∂x4∂ y2
+ b10

∂6uA,B

∂x2∂ y4
]

+ h8

20160
[b11 ∂8uA,B

∂x8
+ b12

∂8uA,B

∂ y8
+ b13

∂8uA,B

∂x6∂ y2
+ b14

∂8uA,B

∂x4∂ y4
+ b15

∂8uA,B

∂x2∂ y6
]

+ h10

1814400
[b16 ∂10uA,B

∂x10
+ b17

∂10uA,B

∂ y10
+ b18

∂10uA,B

∂x8∂ y2

+b19
∂10uA,B

∂x6∂ y4
+ b20

∂10uA,B

∂x4∂ y6
+ b21

∂10uA,B

∂x2∂ y8
]} + O (h12) (20)

with the coefficients bp(p = 1, 2, 3, ..., 21) given in Appendix C; see Eq. (C.1).
The use of Eqs. (18) and (19) are partly based on the ideas of the Lax-Wendroff method related to the replacement of the 

time derivative by the spatial derivative according to the governing partial differential equation, Eq. (1). Therefore, Eq. (20)
does not include the time derivatives. In order to improve the order of the local truncation error in Eq. (20) at small h � 1, 
we can equate to zero the coefficients bp in Eq. (20) that are expressed in terms of the 18 unknown coefficients mi and ki
(i = 1, 2, ..., 9); see Eq. (C.1). For example, for the 10-th order or 12-th order of the local truncation error, the first 15 or 
21 coefficients bp in Eq. (20) should be zero, respectively. As can be seen, for the 12-th order of the local truncation error 
the 18 unknown coefficients mi and ki (i = 1, 2, ..., 9) are insufficient for meeting the 21 equations bp = 0 (i = 1, 2, ..., 21). 
Therefore, the maximum possible order of the local truncation error for the stencil equation, Eq. (15), with the 18 unknown 
coefficients mi and ki (i = 1, 2, ..., 9) is 10; i.e., the maximum possible order of the local truncation error is defined by 
the number of the unknown coefficients mi and ki in the stencil equation. Equating to zero the first 15 coefficients bp in 
Eq. (20), we get the corresponding system of linear algebraic equations bp = 0 (i = 1, 2, ..., 15) with respect to the unknown 
coefficients mi and ki (i = 1, 2, ..., 9). Solving these equations bp = 0 (p = 1, 2, ..., 15), we can find the coefficients mi and ki
(i = 1, 2, ..., 9) for the new approach Q 9_O P T in terms of three arbitrary coefficients a1, a2 and a3:

m1 = b4y(2220a1 − 4677a2 + 4016a3) + 5b2y(−2334a1 + 3537a2 − 596a3) + 2850a1
5x1

,

m2 = b4y(8880a1 − 3567a2 − 424a3) + b2y(19227a2 − 8(5835a1 + 257a3)) + 11400a1
45x1

,

m3 = b4y(−2960a1 − 2397a2 + 5416a3) + b2y(15560a1 + 3537a2 − 1736a3) − 3800a1
10x1

,

m4 = b4y(2220a1 + 69a2 − 832a3) + b2y(−11670a1 + 1011a2 + 92a3) + 2850a1
180x1

,

m5 = b4y(−8880a1 − 1311a2 + 2488a3) + 5b2y(9336a1 + 543a2 − 184a3) − 11400a1
180x1

,

m6 = a1 ,

m7 = b4y(−2960a1 − 2397a2 + 5416a3) + b2y(15560a1 + 3537a2 − 1736a3) − 3800a1
10x1

,

m8 = b4y(−8880a1 − 1311a2 + 2488a3) + 5b2y(9336a1 + 543a2 − 184a3) − 11400a1
180x1

,

m9 = a1 ,

k1 = −6(b2y + 1)(3a2(583b2y − 2358) + a3(1097− 1222b2y))

5x1
,

k2 = 8(b2y + 1)(a2(73b2y + 187) + 8a3(8 − 43b2y))

5x1
,

k3 = 2(3a2(773b4y − 3855b2y + 142) − 8a3(109b4y − 520b2y + 91))

5x1
,

k4 = (b2y + 1)(a2(46b2y − 341) + a3(62b2y + 23))

10x1
,

k5 = a2(−23b4y + 845b2y − 1922) − 216a3(b4y − 1)
,

5x1
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k6 = 609a2(b4y − 1) + a3(−1922b4y + 845b2y − 23)

5x1
,

k7 = 128a3(43b4y − 25b2y + 22) − 18a2(106b4y − 305b2y + 1179)

5x1
,

k8 = a2 , k9 = a3 , (21)

where x1 = 74b4y − 389b2y + 95. Inserting the coefficients mj and k j ( j = 1, 2, 3, ..., 9) for the new stencils with improved 
accuracy and for the conventional elements into Eq. (20), we will get the local truncation errors in space e for the new 
approach and the conventional elements. They are

equadimpr = ab2yh
10

25200(b2y − 5)(74b2y − 19)
{−316(3(b2y − 3)a2 − 4b2ya3 + 2a3)(

∂10uA,B

∂x10
+ b8y

∂10uA,B

∂ y10
)

+b2y[7(37b4y(69a2 − 392a3 + 1200a1) + b2y(10611a2 + 2392a3 − 233400a1)

+57000a1)(
∂10uA,B

∂ y4∂x6
+ ∂10uA,B

∂ y6∂x4
) − ((3657b2y − 36549)a2

+8(1333b2y + 184)a3)(
∂10uA,B

∂ y2∂x8
+ b4y

∂10uA,B

∂ y8∂x2
)]} + O (h12) (22)

for the new 25-point stencils with improved accuracy and

equadconv = −byah6

720

(
b4y

∂6uA,B

∂ y6
+ ∂6uA,B

∂x6

)
+ O (h8) (23)

for the conventional quadratic isogeometric elements; i.e., the new approach improves the local truncation error in space 
by four orders compared to that for the quadratic isogeometric elements (similar to the improvement of the order of the 
numerical dispersion error for the quadratic isogeometric elements with reduced dispersion that are used for the scalar 
wave equation; see [23,24]).

Remark. Three arbitrary coefficients a1, a2 and a3 are used for the calculations of the coefficients mi and ki (i = 1, 2, ..., 9) 
for the new stencils. These coefficients ai (i = 1, 2, 3) do not affect the order of the local truncation error but contribute 
to the leading terms of the local truncation error in Eq. (22) that include the mixed tenth order derivatives of the exact 
solution; see Eq. (22). We can use two of coefficients ai (i = 1, 2, 3) to simplify the leading terms of the local truncation 
error in Eq. (22). For example, equating to zero two coefficients b17 and b18 (along with the first 15 coefficients bp (p =
1, 2, ..., 15)) in Eq. (20), we can express the coefficients a2 and a3 in terms of just one coefficient a1 as follows:

a2 = −40
(
1333b2y + 184

)
a1

9039b2y
, a3 =

(
265

131
− 465

23b2y

)
a1 . (24)

In this case the error in Eq. (22) is simplified as follows:

equadimpr = 23889600aa1h10

3013

(
∂10uA,B

∂x10
+ b8y

∂10uA,B

∂ y10

)
+ O (h12) . (25)

Below we show that the new approach can be also implemented similar to the isogeometric elements with the elemental 
Me and K e matrices. Let us find the elemental Me and K e matrices that yield the stencil equation (15) with the coefficients 
mj and k j ( j = 1, 2, ..., 9) for the new approach Q 9_O P T given by Eq. (21) (it is assumed that the stencil equation for the 
new elements is calculated similar to the conventional isogeometric elements according to Eq. (5). The new elemental 
Me and K e matrices are assumed to have the same form as that for the conventional elemental matrices with unknown 
coefficients d j and f j ( j = 1, 2, 3, ..., 17):

Me = h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1 d5 d2 d8 d9 d6 d4 d7 d3
d5 d10 d5 d11 d13 d11 d7 d12 d7
d2 d5 d1 d6 d9 d8 d3 d7 d4
d8 d11 d6 d14 d16 d15 d8 d11 d6
d9 d13 d9 d16 d17 d16 d9 d13 d9
d6 d11 d8 d15 d16 d14 d6 d11 d8
d4 d7 d3 d8 d9 d6 d1 d5 d2
d7 d12 d7 d11 d13 d11 d5 d10 d5
d d d d d d d d d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (26)
3 7 4 6 9 8 2 5 1
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K e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1 f5 f2 f8 f9 f6 f4 f7 f3
f5 f10 f5 f11 f13 f11 f7 f12 f7
f2 f5 f1 f6 f9 f8 f3 f7 f4
f8 f11 f6 f14 f16 f15 f8 f11 f6
f9 f13 f9 f16 f17 f16 f9 f13 f9
f6 f11 f8 f15 f16 f14 f6 f11 f8
f4 f7 f3 f8 f9 f6 f1 f5 f2
f7 f12 f7 f11 f13 f11 f5 f10 f5
f3 f7 f4 f6 f9 f8 f2 f5 f1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

where the symmetry of the coefficients of the Me and K e matrices for the degrees of freedom contributing to these matrices 
is used; see Appendix A. In this case the matrices Me and K e depend on the 34 unknown terms d j and f j ( j = 1, 2, ..., 17). 
Considering 3 × 3 = 9 elements that contribute to the stencil equation for the degree of freedom uA,B according to Eq. (5), 
the coefficients of the stencil equation (15) can be expressed in terms of the coefficients of the matrices Me and K e as 
follows:

m1 = 4d1 + 2d10 + 2d14 + d17 , m2 = 2(d11 + d9) , m3 = 2(d16 + 2d5) , m4 = d3 ,

m5 = 2d7 , m6 = d15 + 2d2 , m7 = 2(d13 + 2d8) , m8 = 2d6 , m9 = d12 + 2d4 , (28)

k1 = 4 f1 + 2 f10 + 2 f14 + f17 , k2 = 2( f11 + f9) , k3 = 2( f16 + 2 f5) , k4 = f3 ,

k5 = 2 f7 , k6 = f15 + 2 f2 , k7 = 2( f13 + 2 f8) , k8 = 2 f6 , k9 = f12 + 2 f4 . (29)

Solving simultaneously a system of linear algebraic equations (28), (29) with the coefficients mj and k j ( j = 1, 2, ..., 9) for 
the new approach given by Eq. (21), the coefficients d j and f j ( j = 1, 2, ..., 17) of the Me and K e matrices in Eqs. (26)
and (27) for the 2-D quadratic isogeometric elements with improved accuracy can be found; see Eqs. (D.1) and (D.2) in 
Appendix D. In Eqs. (D.1) and (D.2) a j ( j = 1, 2, ..., 16) are sixteen arbitrary coefficients that do not affect the stencil 
equation (15) (the first three coefficients a j ( j = 1, 2, 3) are the same as those used in Eq. (21) for mj and k j ( j = 1, 2, ..., 9) 
of the new approach). For example, these coefficients can be used for the minimization of the error in the case of the 
combination of the different order elements (this will be studied in the future). The order of the local truncation error is 
independent of the values of these coefficients. At the derivation of Eqs. (D.1) and (D.2) the following additional algebraic 
equations (see Eqs. (30) and (31) below) have been also used. Because the M and K matrices for the wave equation and 
the heat equation are the same then let us use some terminology related to the wave equation in order to normalize the 
elemental Me and K e matrices. Let us assume that the velocity v(x, t) = u̇(x, t) = v0 is the same for the entire domain. 
In this case the kinetic energy for one rectangular element can be calculated with the help of the mass matrix and by the 
analytical formula for the considered rectangular element. Equating these two expressions we get

V T
0 M

eV 0 = v20byh
2 , (30)

where V 0 = (v0 , v0 , v0 , v0 , v0 , v0 , v0 , v0 , v0)T is the vector with nine equal components. Next, let us assume that the 
field function u(x, t) = u0 is the same for the entire domain. In this case the internal forces are zero. These forces for one 
element can be calculated with the help of the stiffness matrix:

K eU 0 = 0 , (31)

where U 0 = (u0 , u0 , u0 , u0 , u0 , u0 , u0 , u0 , u0)
T is the vector with nine equal components.

Let us consider the lumped matrix M with zero coefficients mj = 0 ( j = 2, 3, ..., 9) except m1. In this case Eq. (20)
can be also used for the calculation of the local truncation error of the conventional elements (using the coefficients k j

for the conventional isogeometric elements in Table 1) as well as of the new approach with the coefficients m1 and k j

obtained by the minimization of the order of the local truncation error. For example, equating to zero the first 6 coefficients 
bp (p = 1, 2, ..., 6), we will get the corresponding system of linear algebraic equations. Solving these equations bp = 0
(p = 1, 2, ..., 6) in the case of the lumped matrix M (mj = 0, j = 2, 3, ..., 9), we can find the following coefficients m1 and 
ki (i = 1, 2, 3, ..., 9):

m1 = a1 , m2 = m3 = ... = m9 = 0 ,

k1 = 5a1
2

− 2(a3 + a4) , k2 = − 2a1
3b2y

− a2 − a4
2

,

k3 = 1

12
(16(

1

b2
− 1)a1 + 18a2 + 16a3 + 13a4) , k4 = b2y(−6a2 + 4a3 + a4) + a1

24b2
,

y y
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k5 = 1

24
(6a2 − 16a3 − a4) , k6 = (b2y − 1)a1 − b2y(18a2 + 4a3 + a4)

12b2y
,

k7 = a4 , k8 = a2 , k9 = a3 (32)

for the new approach (a1, a2, a3 and a4 are four arbitrary coefficients). Inserting the coefficients m1 and k j from Eq. (32)
obtained by the minimization of the order of the local truncation error and the coefficients k j for the conventional quadratic 
isogeometric elements (see Table 1) into Eq. (20), we will get the local truncation errors in space e for the two approaches 
with the lumped matrix M . They are:

equad−lump
impr = ah6

360
[4b4ya1

∂6uA,B

∂ y6
+ 15b2y

∂6uA,B

∂ y4∂x2

(
3b2y(a4 − 6a2) + 4a1

)

+60
∂6uA,B

∂ y2∂x4

(
b2y(4a3 + a4) + a1

)
+ 4a1

∂6uA,B

∂x6
] + O (h8) (33)

for the new approach with the coefficients given by Eq. (32) and

equad−lump
conv = a(m1 − by)h

2(
∂2uA,B

∂x2
+ ∂2uA,B

∂ y2
) − abyh4

4
[∂

4uA,B

∂x4
+ b2y

∂4uA,B

∂ y4
+ (1+ b2y)

∂4uA,B

∂ y2∂x2
] + O (h6) (34)

for the conventional elements with the lumped matrix M ; i.e., for the lumped matrix M , the new approach improves 
the local truncation error by two orders compared to that for the conventional isogeometric elements. It is interesting to 
mention that Eq. (34) for the local truncation error of the conventional isogeometric elements allows to find the optimal 
value of the diagonal terms of the lumped matrix M . It follows from Eq. (34) that m1 = by minimizes the order of the local 
truncation error.

2.2. Steady-state problems (Poisson equation with zero heat source f (x) = f̄ = 0)

In the case of the time independent Poisson equation (Eq. (2)), the 25-point stencil equation for the degree of freedom 
unum
A,B for a structured rectangular mesh with the quadratic isogeometric elements can be represented as follows (it can be 

also obtained from Eq. (15) with a = 1 and mj = 0 for j = 1, 2, 3, ..., 9):

k1u
num
A,B + k2[unum

(A−1),(B+1) + unum
(A+1),(B−1) + unum

(A+1),(B+1) + unum
(A−1),(B−1)]

+k3[unum
A,(B+1) + unum

A,(B−1)] + k4[unum
(A−2),(B−2) + unum

(A+2),(B+2) + unum
(A−2),(B+2) + unum

(A+2),(B−2)]
+k5[unum

(A+2),(B−1) + unum
(A−2),(B+1) + unum

(A−2),(B−1) + unum
(A+2),(B+1)] + k6[unum

A,(B+2) + unum
A,(B−2)]

+k7[unum
(A−1),B + unum

(A+1),B ] + k8[unum
(A−1),(B−2) + unum

(A+1),(B+2) + unum
(A−1),(B+2) + unum

(A+1),(B−2)]
+k9[unum

(A−2),B + unum
(A+2),B ] = 0 , (35)

where the coefficients k j ( j = 1, 2, 3, ..., 9) can be expressed in terms of the elemental K e matrices for the conventional 
quadratic isogeometric elements and are the same as those for the 2-D heat equation; see Table 1. For the new approach, 
the same structure of the 25-point stencil equation as that for the conventional elements is assumed and the optimal 
coefficients k j are calculated by the minimization of the order of the local truncation error (these coefficients can be used for 
the modification of the elemental K e matrices); see below. The 25-point stencil equation (35) also includes the symmetry 
of coefficients k j for the degrees of freedom unum

j,l ( j = A − 2, A − 1, A, A + 1, A + 2 and l = B − 2, B − 1, B, B + 1, B + 2) 
symmetrically located with respect to the degree of freedom unum

A,B . The exact solution uA,B to the Poisson equation, Eq. (2), 
at x = xA and y = yB meets the following equations:

∂2uA,B

∂x2
= −∂2uA,B

∂ y2
, (36)

∂(i+2 j)uA,B

∂ yi∂x2 j
= (−1) j

∂(i+2 j)uA,B

∂ y(i+2 j)
, (37)

∂(i+2 j−1)uA,B

∂ yi∂x(2 j−1)
= (−1) j

∂(i+2 j−1)uA,B

∂ y(i+2 j−2)∂x
(38)

with i = 0, 1, 2, 3, ... and j = 1, 2, 3, .... The right-hand sides of Eqs. (37) and (38) are obtained by the replacement of the 
second x-derivative in the left-hand sides of Eqs. (37) and (38) by the second y-derivative using Eq. (36). For the calculation 
of the local truncation error, we also use Eq. (16). Inserting Eqs. (16), (36) - (38) into the stencil equation (35) we will get 
the following local truncation error in space e:
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e = b1uA,B + h2b2
∂2uA,B

∂ y2
+ h4b3

12

∂4uA,B

∂ y4
+ h6b4

360

∂6uA,B

∂ y6
+ h8b5

20160

∂8uA,B

∂ y8
+ h10b6

1814400

∂10uA,B

∂ y10

+ h12b7
239500800

∂10uA,B

∂ y12
+ h14b8

43589145600

∂14uA,B

∂ y14
+ h16b9

10461394944000

∂16uA,B

∂ y16

+ h18b10
3201186852864000

∂18uA,B

∂ y18
+ h20b11

1216451004088320000

∂20uA,B

∂ y20
+ O (h22) (39)

with the coefficients bp(p = 1, 2, ..., 11) given in Appendix E; see Eq. (E.1). Due to the use of the Poisson equation, Eqs. (36)
- (38), the local truncation error, Eq. (39), doe not include the partial derivatives with respect to x.

To improve the order of the local truncation error in Eq. (39) at small h � 1, we equate to zero the first 8 coefficients 
bp (p = 1, 2, 3, ..., 8). This allows us to find the 9 unknown coefficients ki (i = 1, 2, ..., 9) of the stencil equation, Eq. (35)
(equating to zero the first 9 coefficients bp (p = 1, 2, 3, ..., 9) leads to the solution ki = 0 (i = 1, 2, 3, ..., 9) that is inappro-
priate; i.e., equating to zero the first 8 coefficients bp yields the maximum possible order of the local truncation error in 
Eq. (39)). Solving these equations bp = 0 (p = 1, 2, 3, ..., 8), we can find the coefficients ki (i = 1, 2, 3, ..., 9) for the new 
approach Q 9_O P T _1 in terms of one arbitrary coefficient a1:

k1 = a1 ,

k2 = 16a1(b2y + 4)(4b2y + 1)

9y1
[598096b12y − 6291208b10y + 26094929b8y − 47431534b6y

+26094929b4y − 6291208b2y + 598096] ,

k3 = −8a1(b2y + 1)(b2y + 4)

3y1
[14572244b12y − 105226995b10y + 247191783b8y − 129893985b6y

+30238377b4y − 4502520b2y + 598096] ,

k4 = a1(b2y + 1)2(b2y + 4)

36y1
[176656b10y − 892136b8y + 1284013b6y − 556778b4y

−57419b2y + 44164] ,

k5 = −4a1(b2y + 1)(b2y + 4)

9y1
[44164b12y − 1132795b10y + 5767943b8y − 12208585b6y + 12056297b4y

−4480120b2y + 598096] ,
k6 = a1

6y1
[58288976b16y − 481727600b14y + 1456399991b12y − 1756955850b10y + 1159844496b8y

−441576750b6y + 83309881b4y − 4919800b2y + 176656] ,

k7 = −8a1(b2y + 1)

3y1
[2392384b14y − 17411984b12y + 116450988b10y − 489337563b8y + 858873147b6y

−173716197b4y − 46938019b2y + 14572244] ,

k8 = −4a1(b2y + 1)

9y1
[2392384b14y − 17322384b12y + 43745068b10y − 36778043b8y + 10863187b6y

+1236763b4y − 956139b2y + 44164] ,
k9 = a1

6y1
[176656b16y − 4919800b14y + 83309881b12y − 441576750b10y + 1159844496b8y

−1756955850b6y + 1456399991b4y − 481727600b2y + 58288976] , (40)

with

y1 = 58288976b16y − 12041600b14y − 1112834229b12y + 805729100b10y + 7325265506b8y

+805729100b6y − 1112834229b4y − 12041600b2y + 58288976 . (41)

Inserting the coefficients k j for the new approach and for conventional isogeometric elements into Eq. (39), we will get 
the local truncation errors in space e for the new stencils with improved accuracy and for the conventional isogeometric 
elements. They are:
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eimpr = a1 y2h16

169827840y1

∂16uA,B

∂ y16
+ O (h18) (42)

with

y2 = b4y(b
2
y + 1)2(791104b20y − 6526608b18y + 7168588b16y + 81226757b14y − 288383192b12y

+409496702b10y − 288383192b8y + 81226757b6y + 7168588b4y − 6526608b2y + 791104)

and

eimpr(by = 1) = − a1h16

148132333440

∂16uA,B

∂ y16
+ O (h18) (43)

for the new Q 9_O P T _1 stencils with improved accuracy on rectangular (Eq. (42)) and square (Eq. (43)) meshes and

econv = −by(b4y − 1)h6

720

∂6uA,B

∂ y6
− by(b4y + 1)(b4y − 8b2y + 1)h8

20160

∂8uA,B

∂ y8
+ O (h10) (44)

and

econv(by = 1) = h8

1680

∂8uA,B

∂ y8
+ O (h10) (45)

for the conventional quadratic rectangular (Eq. (44)) and square (Eq. (45)) isogeometric elements; i.e., the new approach 
Q 9_O P T _1 improves the local truncation error in space by ten orders for rectangular elements and by eight orders for 
square elements. These different improvements in accuracy are explained by the fact (see Eqs. (42)-(45)) that the orders of 
accuracy are the same for the new Q 9_O P T _1 stencils on rectangular and square meshes but they are different for the 
conventional rectangular and square isogeometric elements (the conventional square elements are more accurate compared 
to the conventional rectangular elements). It is interesting to note that it is possible to develop more accurate 25-point 
stencils on square meshes. In order to improve the order of the local truncation error in Eq. (39) on square meshes at 
small h � 1, we equate to zero the first 7 coefficients bp = 0 (p = 1, 2, 3, ..., 7) and the coefficient b9 = 0. In this case for 
square meshes (by = 1), the coefficient b8 will be also zero after the solution of the corresponding system of equations for 
the coefficients ki (i = 1, 2, 3, ..., 9); see below. The solution of the 8 linear algebraic equations bp = 0 (p = 1, 2, 3, ..., 7, 9) 
provides the following coefficients ki (i = 1, 2, 3, ..., 9) for the new approach Q 9_O P T _2 on square meshes (in terms of one 
arbitrary coefficient a1):

k1 = a1 ,

k2 = 32a1(b2y + 4)(4b2y + 1)

9y3
[6835568b16y − 98357880b14y + 569516043b12y − 1642477120

b10y + 2351066778b8y − 1642477120b6y + 569516043b4y − 98357880b2y + 6835568] ,

k3 = −8a1(b2y + 1)(b2y + 4)

3y3
[380494644b16y − 3950564583b14y + 15033132452b12y

−24170522596b10y + 17293159050b8y − 5959344309b6y + 1165078718b4y

−158704512b2y + 13671136] ,

k4 = a1(b2y + 1)2(b2y + 4)

36y3
[3115216b14y − 26043688b12y + 75055561b10y − 95771520b8y

+52708230b6y − 6382196b4y − 3590407b2y + 778804] ,

k5 = −4a1(b2y + 1)(b2y + 4)

9y3
[778804b16y − 24576363b14y + 190632612b12y − 654628796b10y

+1186108650b8y − 1172018969b6y + 602568798b4y − 146695872b2y + 13671136] ,
k6 = a1

6y3
[1521978576b20y − 17351608272b18y + 76872755327b16y − 164715787152b14y

+193939316847b12y − 137578948912b10y + 60627164237b8y − 15793920632b6y

+2089789797b4y − 107855032b2y + 3115216] ,

k7 = −8a1(b2y + 1) [54684544b18y − 621146912b16y + 4501610360b14y
3y3
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−22672298518b12y + 63213291891b10y − 79388931334b8y + 35962007212b6y − 769125880b4y

−2428586007b2y + 380494644] ,

k8 = −4a1(b2y + 1)

9y3
[54684544b18y − 573112352b16y + 2263579320b14y − 4085507078b12y

+3572415631b10y − 1432406534b8y + 107901652b6y + 92327160b4y − 21461147b2y + 778804] ,
k9 = a1

6y3
[3115216b20y − 107855032b18y + 2089789797b16y − 15793920632b14y + 60627164237b12y

−137578948912b10y + 193939316847b8y − 164715787152b6y

+76872755327b4y − 17351608272b2y + 1521978576] (46)

with

y3 = 1521978576b20y − 5139284512b18y − 28549593453b16y + 109395021498b14y

+127446304877b12y − 454742253972b10y + 127446304877b8y + 109395021498b6y

−28549593453b4y − 5139284512b2y + 1521978576 . (47)

Inserting the coefficients k j ( j = 1, 2, 3, ..., 9) for the new approach (Eq. (46)) into Eq. (39), we will get the following 
local truncation error in space e for the new Q 9_O P T _2 stencils with improved accuracy:

eimpr = a1(by − 1)y4h14

505440y3

∂14uA,B

∂ y14
+ a1(by − 1)y5h18

952734182400y3

∂18uA,B

∂ y18
+ a1 y6h20

760281877555200y3

∂20uA,B

∂ y20
+ O (h18) (48)

with

y4 = −b4y(by + 1)(b2y + 1)2(b2y + 4)(4b2y + 1)(98888(2b2y − 25)b14y + 12101221b12y

−28651300b10y + 37571006b8y − 28651300b6y + 12101221b4y − 2472200b2y + 197776) ,

y5 = b4y(by + 1)(b2y + 1)2(b2y + 4)(4b2y + 1)(625634704b20y − 11413084680b18y + 83518306213b16y

−313824069580b14y + 668108180083b12y − 853151497480b10y + 668108180083b8y − 313824069580b6y

+83518306213b4y − 11413084680b2y + 625634704) ,

y6 = b4y(b
2
y + 1)2(73997862272b28y − 1339004858400b26y + 8192438210104b24y − 11647076272678b22y

−82420844080219b20y + 446001505501362b18y − 1015267660872157b16y + 1312698369019432b14y

−1015267660872157b12y + 446001505501362b10y − 82420844080219b8y − 11647076272678b6y

+8192438210104b4y − 1339004858400b2y + 73997862272)

for the new Q 9_O P T _2 stencils on rectangular meshes and

eimpr(by = 1) = a1h20

75077835408576

∂20uA,B

∂ y20
+ O (h22) , (49)

for the new Q 9_O P T _2 stencils on square meshes. As can be seen, the new Q 9_O P T _2 stencils are less accurate compared 
to the new Q 9_O P T _1 stencils in the case of rectangular meshes and are more accurate compared to the new Q 9_O P T _1
stencils in the case of square meshes. The new Q 9_O P T _2 stencils on square meshes improve the local truncation error in 
space by twelve orders compared to that for the conventional square isogeometric elements and yield the maximum order 
of accuracy among all 25-point stencils (independent of the method used for their derivation).

Let us find the elemental K e matrix (see Eq. (27)) that yields the stencil equation (35) with the coefficients k j ( j =
1, 2, ..., 9) given by Eqs. (40) and (46) for the new Q 9_O P T _1 and Q 9_O P T _2 stencils. Similar to the previous section, 
solving simultaneously a system of linear algebraic equations (29) with the coefficients k j ( j = 1, 2, ..., 9) for the new 
Q 9_O P T _1 and Q 9_O P T _2 stencils, the coefficients f j ( j = 1, 2, ..., 17) of the K e matrix in Eq. (27) can be found. They 
are shown in Appendix F and Appendix G, respectively; see Eqs. (F.2) and (G.1).

In Eqs. (F.2) and (G.1) a j ( j = 1, 2, ..., 6) are six arbitrary coefficients (the first coefficient a1 is the same as that used in 
Eqs. (40) and (46) for k j ( j = 1, 2, ..., 9) of the new approach). The order of the local truncation error is independent of the 
values of these coefficients. At the derivation of Eqs. (F.2) and (G.1) the additional algebraic equations (31) have been also 
used.
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Fig. 1. A plate used for the heat equation and for the Poisson equation in the 2-D case.

3. Numerical examples

In this section the computational efficiency of the 2-D numerical techniques based on the conventional Q 9_IGE
quadratic isogeometric elements with 25-point stencils, the Q 4_MIR linear finite elements with 9-point stencils based on 
the MIR technique (e.g., see [12]), the new Q 9_O P T , Q 9_O P T _1 and Q 9_O P T _2 25-point stencils with the optimal order 
of accuracy will be compared. The test problems with the following analytical solutions u to the heat equation (Eq. (1)):

u(x, y, t) = eα2 y−a(α2
1−α2

2)t sin(α1x) (50)

without heat source,

u(x, y, t) = eα2 y+α3t sin(α1x) with f (x, y, t) = (α3 − a(α2
2 − α2

1))e
α2 y+α3t sin(α1x) (51)

with the heat source, the following analytical solutions u to the Poisson equation (Eq. (2)):

u(x, y) = eαysin(αx) (52)

without heat source and

u(x, y) = eα2 ysin(α1x) with f (x, y) = (α2
2 − α2

1)e
α2 ysin(α1x) (53)

with the heat source will be solved in the 2-D case. α, α1, α2 and α3 in Eqs. (50) - (53) are arbitrary constants which will 
be defined later and the heat sources f in Eqs. (51) and (53) are obtained by the substitution of the analytical solutions in 
the corresponding partial differential equations.

In the numerical examples solved below on meshes with uniformly spaced control points along the x- and y-axes, the 
element size h is defined as the distance between two consecutive control points along the largest side of 2-D rectan-
gular elements. This means that at the same element aspect ratios, the same sizes h of the linear finite elements and the 
quadratic isogeometric elements correspond to the same number of degrees of freedom. The high-order boundary conditions 
developed in [26] are used.

The backward difference method is used for the time integration of the heat equation. A sufficiently small size of time 
increments is used in calculations. In this case the error in time can be neglected and the numerical error is related to the 
spatial error.

3.1. 2-D heat equation

Let us consider a square plate ABCD of length 1 × 1; see Fig. 1. The problem without heat source and the exact solution 
given by Eq. (50) with a = 100, α1 = 11π

2 and α2 = 4 as well as the problem with heat source and the exact solution given 
by Eq. (51) with a = 100, α1 = 5π , α2 = 4 and α3 = π are considered. The time intervals are 0 = to ≤ t ≤ t f = 0.0001 and 
0 = to ≤ t ≤ t f = 1 for the heat equation without and with heat sources, where to and t f are the initial and final times. 
For these problems, the initial conditions at the corresponding initial times and the boundary conditions in terms of the 
function u at the boundary are calculated using the exact solutions Eqs. (50) and (51).

Figs. 2 and 3 represent the numerical results obtained by the different techniques on square and rectangular (by =
dy/dx = 0.5) uniform meshes for the heat equation without heat source. The distribution of u at the final time t f along 
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Fig. 2. The distribution of u at the final time t f along lines E F (a) and GH (b) for the heat equation without heat source; see Fig. 1 for the locations of lines 
E F and GH . A uniform square mesh with 9 × 9 = 81 degrees of freedom is used. Curve 2 corresponds to the exact solution. Curves 1 and 3 correspond to 
the numerical results obtained by the new Q 9_O P T stencils and by the conventional Q 9_IGE quadratic isogeometric elements, respectively.

lines E F and GH (see Fig. 1 for the locations of the lines E F and GH) obtained by the different techniques on a square 
mesh with 9 × 9 = 81 degrees of freedom is shown in Fig. 2. As can be seen from Fig. 2, the new Q 9_O P T stencils yield 
much more accurate results than those obtained by the conventional Q 9_IGE quadratic isogeometric elements; compare 
curves 1 and 3 with the exact solution, curve 2 in Fig. 2.

In order to compare the accuracy of the different techniques at mesh refinement, Fig. 3 shows the maximum error emax , 
the error eP at point P and the error eQ at point Q (see Fig. 1 for the locations of the points P and Q ) as a function of 
the element size h in the logarithmic scale on square and rectangular uniform meshes. These errors are defined as follows:

eP =| unum
P − uexact

P | ; eQ =| unum
Q − uexact

Q | ; emax = max
i

| unum
i − uexact

i | , i = 1,2, ...,N, (54)

where unum
P (Q )

and uexact
P (Q )

are the numerical and exact solutions at point P (Q ), unum
i and uexact

i are the numerical and exact 
solutions at the ith control point, and N is the total number of control points. It can be seen from Fig. 3 that the numerical 
results obtained by the new Q 9_O P T stencils are much more accurate than those obtained by the Q 4_MIR linear finite 
elements and by the conventional Q 9_IGE quadratic isogeometric elements on square or rectangular uniform meshes with 
the same element size h; compare curves 1, 2 and 3 in Fig. 3 at the same h. It can be also seen from Fig. 3 that the 
conventional Q 9_IGE quadratic elements yield slightly more accurate results than those obtained by the Q 4_MIR linear 
elements on square or rectangular uniform meshes with the same element size h.

The orders of accuracy for the techniques considered here are determined by the slope of the curves at small h in Fig. 3. 
As can be seen from Fig. 3, the Q 9_IGE and Q 4_MIR elements show the 4th order of accuracy on square and rectangular 
uniform meshes; see the slope of the curves 2 and 3 in Fig. 3 at small h. On the other hand, the new Q 9_O P T stencils 
show the 8th order of accuracy on square and rectangular uniform meshes as predicted in section 2.1; see curve 1 in Fig. 3. 
It is interesting to mention that a uniform refinement in one direction (i.e., the transformation of square elements into 
smaller rectangular elements) does not improve the accuracy for any numerical technique considered here. For example, a 
uniform refinement in one direction with the new Q 9_O P T stencils leads to slightly less accurate results; compare curves 
1 and 4 in Fig. 3d-f at the same h. However, at the same h the rectangular meshes in Fig. 3 include twice as many degrees 
of freedom as those for the square meshes. Therefore, it can be concluded that at the same number of degrees of freedom, 
all the elements considered here yield more accurate results on uniform square meshes compared with those on uniform 
rectangular meshes.

In order to study the convergence of the new Q 9_O P T stencils in more detail, Fig. 4 analyzes the convergence of the 
new approach (curves 1 in Fig. 3a, d) at the gradual decrease of the mesh size h = 1/(Nx − 1) of the Cartesian grids where 
Nx = 9, 10, ..., 33 is the number of the grid points along the x-axis (curve 1 and 2 in Fig. 4 correspond to curve 1 in Fig. 3a 
and 3d). As can be seen, the results obtained by the new Q 9_O P T stencils show monotone convergence with the gradual 
decrease in the mesh size. We should also mention that the detailed study of convergence of the new technique (similar 
to that in Fig. 4) was also applied to all numerical examples considered in this paper and showed that the new technique 
yields stable and convergent results.

Similar to the heat equation without heat source, the new Q 9_O P T stencils for the heat equation with heat source 
show the 8th order of accuracy on square and rectangular uniform meshes and yield much more accurate results than 
those obtained by the Q 4_MIR linear finite elements and by the conventional Q 9_IGE quadratic isogeometric elements 
on the same uniform meshes; see curves 1, 2 and 3 in Fig. 5. It can be also seen from Fig. 5 that a uniform refinement in 
one direction does not improve the accuracy of the numerical results obtained by any numerical technique considered here; 
compare curves 2 and 3 in Figs. 5a-c and 5d-f as well as curves 1 and 4 in Fig. 5d-f at the same h.

It can be concluded that at the same number of degrees of freedom, the new Q 9_O P T stencils are the most accurate 
among all the numerical techniques considered and show the 8th order of accuracy on square and rectangular uniform 
meshes for the 2-D heat equation.
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Fig. 3. The maximum error emax (a, d), the error eP at point P (b, e) and the error eQ at point Q (c, f) as a function of the element size h in the logarithmic 
scale for the heat equation without heat source; see Fig. 1 for the locations of the points P and Q and Eq. (54) for the definitions of these errors. Curves 1, 
2 and 3 correspond to the numerical results on square (a, b, c) and rectangular (d, e, f) uniform meshes with the new Q 9_O P T stencils, the conventional 
Q 9_IGE quadratic isogeometric elements and the Q 4_MIR linear finite elements, respectively. Rectangular meshes with the aspect ratio by = 0.5 are used 
in (d, e, f). Curve 4 in (d, e, f) corresponds to curve 1 in (a, b, c) for the numerical results obtained by the new Q 9_O P T stencils on uniform square 
meshes. Symbols �, ©, 	 and � correspond to the results on the uniform meshes used in calculations.

3.2. 2-D Poisson equation

The same 2-D plate from Section 3.1 is considered; see Fig. 1. The problem without heat source and the exact solution 
given by Eq. (52) with α = 5π as well as the problem with heat source and the exact solution given by Eq. (53) with 
α1 = 17

2 π and α2 = 6π are numerically solved. The boundary conditions are calculated in terms of u using the exact 
solutions, Eqs. (52) and (53).

Figs. 6-8 represent the numerical results obtained by the different techniques on uniform square and rectangular 
(by = dy/dx = 0.5) meshes for the Poisson equation without heat source. Fig. 6 shows the distribution of u along lines 
E F (Fig. 6a, b) and GH (Fig. 6c, d) obtained by the new Q 9_O P T _2 stencils and the conventional Q 9_IGE quadratic isoge-
ometric elements on a uniform square mesh with 5 ×5 = 25 degrees of freedom; see Fig. 1 for the locations of the line lines 
E F and GH . As can be seen from Fig. 6 the results obtained by the conventional Q 9_IGE isogeometric elements are very 
inaccurate; compare curves 2 and 3 in Fig. 6a, c. On the other hand, the new Q 9_O P T _2 stencils yield accurate results. In 
order to show the difference between the results obtained by the new Q 9_O P T _2 stencils and the exact solution, Fig. 6b, d 
does not include the results obtained by the conventional Q 9_IGE isogeometric elements. It can be seen that even for this 
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Fig. 4. The maximum error emax in the logarithmic scale at the final time T = 0.0001 as a function of the number Nx of the grid points along the x-axis 
(Nx = 9, 10, ..., 33). The numerical solutions of the 2-D heat equation with zero heat source are obtained by the new Q 9_O P T stencils on uniform square 
(curve 1) and rectangular (curve 2) Cartesian meshes. Symbols © and � correspond to the results on the uniform meshes used in calculations.

coarse mesh, the results obtained by the new Q 9_O P T _2 stencils are close to the exact solution; compare curves 1 and 2 
in Fig. 6b, d.

Similar to the Section 3.1, the maximum error emax , the error eP at point P and the error eQ at point Q (see Fig. 1 for 
the locations of the points P and Q and Eq. (54) for the definitions of these errors) are shown in Fig. 7. The slope of the 
curves in Figs. 7 and 8 at small h is related to the order accuracy of the corresponding numerical techniques. It can be seen 
that the order of accuracy is six for the Q 4_MIR linear finite elements and the Q 9_IGE quadratic isogeometric elements 
on uniform square meshes and it is four for these elements on uniform rectangular meshes; see the slope of the curves 3 
and 4 at small h in Fig. 7. As can be seen from Fig. 7 the new Q 9_O P T _1 stencils show the 14th order of accuracy on 
square and rectangular uniform meshes. On the other hand, the new Q 9_O P T _2 stencils show the 18th order of accuracy 
on uniform square meshes. The accuracy reduces to the 12th order on uniform rectangular meshes for the new Q 9_O P T _2
stencils; see the slope of the curve 2 at small h in Fig. 7. These observations are in agreement with the theoretical results 
obtained in Section 2.2.

The results obtained by the Q 4_MIR linear finite elements are slightly more accurate than those obtained by the 
Q 9_IGE quadratic isogeometric elements on uniform square meshes; see curves 3 and 4 in Fig. 7a-c as well as curves 
1 and 2 in Fig. 8b. On uniform square meshes the results obtained by the new Q 9_O P T _1 stencils are less accurate than 
those obtained by the new Q 9_O P T _2 stencils, however, they are much more accurate than those obtained by the Q 4_MIR
linear finite elements and by the conventional Q 9_IGE quadratic elements; compare curves 1-4 in Fig. 7a-c at the same h. 
From the above observation it can be concluded that the new Q 9_O P T _2 stencils yield the most accurate results among all 
the numerical techniques considered on uniform square meshes. A uniform refinement in one direction does not improve 
the accuracy of the results for any numerical technique considered here. For example, the results obtained by the new 
Q 9_O P T _1 stencils on square and rectangular uniform meshes are practically same at mesh refinement; compare curves 1 
and 3 at small h in Fig. 8a. However, at the same element size h, the rectangular meshes include twice as many degrees 
of freedom as those for the square meshes. Therefore, it can be concluded that at the same number of degrees of freedom, 
uniform square meshes yield more accurate results than those on uniform rectangular meshes for any numerical technique 
considered here. It is interesting to note that the results obtained by the conventional Q 9_IGE quadratic isogeometric ele-
ments are slightly more accurate than those obtained by the Q 4_MIR linear finite elements on uniform rectangular meshes; 
see curves 3 and 4 in Fig. 7d-f as well as curves 3 and 4 in Fig. 8b. In contrast to the results on the uniform square meshes, 
the results obtained by the new Q 9_O P T _2 stencils on the uniform rectangular meshes with the aspect ratio by = 0.5
are less accurate than those obtained by the new Q 9_O P T _1 stencils; compare curves 1 and 2 in Fig. 7d-f at the same 
h. However, these results are much more accurate than those obtained by the Q 4_MIR linear finite elements and by the 
conventional Q 9_IGE quadratic isogeometric elements; compare curves 2-4 in Fig. 7d-f at the same h.

Similar numerical results have been obtained for the Poisson equation with heat source; see Fig. 9. At any element size h, 
the new Q 9_O P T _2 stencils yield the most accurate results on uniform square meshes while the new Q 9_O P T _1 stencils 
can yield the most accurate results on uniform rectangular meshes with the selected aspect ratio by = 0.5 among all the 
numerical techniques considered; compare curves 1, 2 and 3 in Fig. 9. It can be also seen from Fig. 9 that the orders of 
accuracy for the considered techniques are same for zero and non-zero heat source; see the slope of the curves at small h
in Figs. 7 and 9.

It can be concluded that among all the numerical techniques considered the new Q 9_O P T _2 stencils are the most 
accurate on uniform square meshes and yield the 18th order of accuracy. However, the order of accuracy of these elements 
is significantly lower on rectangular meshes and is twelve (it is still much higher than that for the conventional Q 9_IGE
quadratic isogeometric elements on the square meshes). The new Q 9_O P T _1 stencils show the 14th order of accuracy on 
square and rectangular uniform meshes. It is interesting to mention that if the aspect ratio differs significantly from unity, 
then the new Q 9_O P T _1 stencils may yield more accurate results than those obtained by the new Q 9_O P T _2 stencils on 
the same rectangular meshes. However, at the same number of degrees of freedom, the new Q 9_O P T _2 stencils on uniform 



A. Idesman, B. Dey / Journal of Computational Physics 418 (2020) 109640 17
Fig. 5. The maximum error emax (a, d), the error eP at point P (b, e) and the error eQ at point Q (c, f) as a function of the element size h in the logarithmic 
scale for the heat equation with heat source; see Fig. 1 for the locations of the points P and Q and Eq. (54) for the definitions of these errors. Curves 1, 
2 and 3 correspond to the numerical results on square (a, b, c) and rectangular (d, e, f) uniform meshes with the new Q 9_O P T stencils, the conventional 
Q 9_IGE quadratic isogeometric elements and the Q 4_MIR linear finite elements, respectively. Rectangular meshes with the aspect ratio by = 0.5 are used 
in (d, e, f). Curve 4 in (d, e, f) corresponds to curve 1 in (a, b, c) for the numerical results obtained by the new Q 9_O P T stencils on uniform square 
meshes. Symbols �, ©, 	 and � correspond to the results on the uniform meshes used in calculations.

square meshes yield more accurate results than those obtained by the new Q 9_O P T _1 stencils on square or rectangular 
uniform meshes.

3.3. A hybrid method: the combination of the conventional quadratic isogeometric or finite elements with the new 25-point stencils

In this section we will show that the new 25-point stencils developed in the paper can be easily combined with the 
conventional quadratic isogeometric or finite elements and form a hybrid method. The hybrid method can be applied to 
irregular domains using special meshes. For example, an irregular domain can be partly discretized by Cartesian meshes 
located far from the boundary of the irregular domain and by the conventional irregular isogeometric or finite element 
meshes located close to the boundary. Because our Matlab code does not have mesh generators for irregular domains, we 
will show the application of the hybrid method on a regular domain. Its application on irregular domains with the special 
meshes is trivial as described above.

Let us consider a square plate 1 × 1 shown in Fig. 10. Here, we solve the heat equation with the exact solution given by 
Eq. (50) and the Poisson equation with the exact solution given by Eq. (52). These problems are solved by the conventional 
quadratic isogeometric and finite elements and by two hybrid methods on square Cartesian meshes. The hybrid method 
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Fig. 6. The distribution of u along lines E F (a, b) and GH (c, d) for the Poisson equation without heat source; see Fig. 1 for the locations of lines E F and 
GH . A uniform square mesh with 5 × 5 = 25 degrees of freedom is used. Curve 2 corresponds to the exact solution. Curves 1 and 3 correspond to the 
numerical results obtained by the new Q 9_O P T _2 stencils and the conventional Q 9_IGE quadratic isogeometric elements, respectively. (b, d) zoom (a, c) 
along the y-axis and do not include curve 3.

Table 2
The comparison of the maximum errors emax obtained by the conventional quadratic isogeometric and finite elements and by the hybrid methods for 
the heat equation.

Table 3
The comparison of the maximum errors emax obtained by the conventional quadratic isogeometric and finite elements and by the hybrid methods for 
the Poisson equation.

I combines the new 25-point stencils with the conventional quadratic isogeometric elements while the hybrid method II 
combines the new 25-point stencils with the conventional quadratic finite elements. The hybrid methods can be easily 
constructed as follows. First we form the semidiscrete (Eq. (3) for the heat equation) or discrete (Eq. (4) for the Poisson 
equation) global equations for the conventional isogeometric or finite elements. Then, we replace the stencils equations of 
the conventional elements for the grid points in the upper half of the plate (0.5 < y ≤ 1) by the new 25-point stencils; see 
Fig. 10b, d. The new Q 9_O P T _2 stencils are used in the hybrid methods for the Poisson equation because they have the 
optimal 18th order of accuracy on square Cartesian meshes.

The accuracy of the results obtained by the conventional quadratic isogeometric and finite elements as well as by the 
hybrid methods I and II are reported in Table 2 for the heat equation and in Table 3 for the Poisson equation. As can be seen, 
the use of the hybrid methods for the heat equation reduces the maximum error emax by a factor of 5 and more compared 
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Fig. 7. The maximum error emax (a, d), the error eP at point P (b, e) and the error eQ at point Q (c, f) as a function of the element size h in the logarithmic 
scale for the Poisson equation without heat source; see Fig. 1 for the locations of the points P and Q and Eq. (54) for the definitions of these errors. Curves 
1, 2, 3 and 4 correspond to the numerical results on square (a, b, c) and rectangular (d, e, f) uniform meshes with the new Q 9_O P T _1 and Q 9_O P T _2
stencils and the conventional Q 9_IGE quadratic isogeometric elements and the Q 4_MIR linear finite elements, respectively. Rectangular meshes with the 
aspect ratio by = 0.5 are used in (d, e, f). Symbols �, ©, 	 and � correspond to the results on the uniform meshes used in calculations.

to that for the conventional isogeometric or finite elements for all considered meshes; see the accuracy improvement in 
Table 2. In the case of the Poisson equation, the reduction of the maximum error emax obtained by the hybrid methods is 
more than 1000 times; see Table 3. This means that the hybrid methods with the new 25-point stencils can significantly 
improve the accuracy of numerical solutions. For the considered problems, the maximum error for the solutions obtained 
by the conventional quadratic isogeometric elements or by the conventional quadratic finite elements occurs in the upper 
part of the domain. Therefore, the use of the hybrid method with highly accurate stencils in the upper part of the domain 
is partly similar to the improvement in accuracy due to p-refinement.

4. Concluding remarks

The new findings of the paper can be summarized as follows:

• A new approach for the increase in the order of accuracy of the 25-point stencils used for the time dependent heat 
equation and for the time independent Poisson equation has been suggested. It is based on the optimization of the 
coefficients of the corresponding discrete stencil equation with respect to the local truncation error. The accuracy of the 
conventional quadratic isogeometric elements is improved by four orders for the heat equation and by twelve orders for 
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Fig. 8. The comparison of the maximum error emax on square and rectangular uniform meshes using the curves from Fig. 7a, d. Curves (1, 2) and (3,4) 
correspond to the numerical results on the square and rectangular (by = 0.5) uniform meshes. Curves (1, 3) and (2, 4) in (a) correspond to the new 
Q 9_O P T _1 and Q 9_O P T _2 stencils, respectively. Curves (1, 3) and (2, 4) in (b) correspond to the Q 4_MIR linear finite elements and the conventional 
Q 9_IGE quadratic isogeometric elements, respectively.

Fig. 9. The maximum error emax as a function of the element size h in the logarithmic scale for the Poisson equation with heat source; see Eq. (54) for 
the definition of emax . Curves 2 and 3 correspond to the numerical results on the square (a) and rectangular (b) uniform meshes with the conventional 
Q 9_IGE quadratic isogeometric elements and the Q 4_MIR linear finite elements, respectively. Curves 1 in (a) and 4 in (b) are the same and correspond 
to the numerical results on uniform square meshes with the new Q 9_O P T _2 stencils. Curve 1 in (b) corresponds to the numerical results on uniform 
rectangular meshes with the new Q 9_O P T _1 stencils. Rectangular meshes with the aspect ratio by = 0.5 are used in (b). Symbols �, ©, 	 and �
correspond to the results on the uniform meshes used in calculations.

Fig. 10. The conventional and hybrid methods applied to the solution of the heat and Poisson equations for a plate. (a) the conventional quadratic isogeo-
metric elements, (b) the hybrid method I, (c) the conventional quadratic finite elements, (d) the hybrid method II.

the Poisson equation. This increase in the order of accuracy of the 25-point stencils is optimal. The new approach yields 
the maximum possible order of accuracy among all numerical techniques with the same 25-point stencil equations 
independent of the method used for the derivation of discrete or semidiscrete equations. This optimal order of accuracy 
cannot be improved without changing the widths of stencil equations.

• Despite the significant increase in accuracy, the computational costs of the new technique are the same as those for the 
conventional quadratic isogeometric elements on a given mesh. Because the new approach only changes the values of 
the coefficients of the stencils equations without changing their widths then all known direct and iterative solvers can 
be used for the solution of the discrete or semidiscrete equations of the proposed technique.

• It is necessary to mention that for the time dependent heat equation the increase in the order of accuracy of the 
quadratic isogeometric elements is the same as the increase in the order of the numerical dispersion error for the wave 
equation with the new technique suggested in our recent papers [23,24]. However, the approach suggested in this paper 
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and based on the optimization of the local truncation error for high-order stencils is more general and can be used for 
any order of the time derivative in the heat equation; i.e., it can be directly applied to the wave equation as well. In 
contrast to our papers [23,24], the results of this paper are also extended to rectangular meshes as well as to a new 
class of the partial differential equations with non-zero right hand-side function (heat sources).

• For the time independent Poisson equation, the new approach yields a huge increase in the order of accuracy compared 
with that for the conventional quadratic isogeometric elements. The maximum increase in accuracy by twelve orders can 
be achieved by the new approach on uniform square meshes. On uniform rectangular meshes the maximum increase in 
accuracy by ten orders is also very large. This huge increase in accuracy does not require additional computational costs 
compared with those for the conventional quadratic isogeometric elements. We should mention that for the Poisson 
equation, the accuracy of the conventional quadratic isogeometric elements on square meshes is also greater (by two 
orders) than that on rectangular meshes.

• A mesh refinement of square meshes in one direction (i.e., transforming square elements into smaller rectangular ele-
ments) for the Poisson equation leads to the decrease in the order of accuracy of the new Q 9_O P T _2 technique and 
this should be taken into account at the selection of a refinement strategy.

• Despite a higher accuracy of the conventional quadratic isogeometric elements, the new 25-point stencils with improved 
accuracy yield much more accurate results compared with those obtained by the conventional quadratic isogeometric 
elements at the same number of degrees of freedom. Even at a sufficient coarse mesh, the temperature calculated by the 
new approach is close to the exact solution. Therefore, we hope that the new elements with relatively coarse meshes 
may be efficient for the numerical analysis of thick and thin structures.

• The 2-D numerical examples are in a good agreement with the theoretical results for the new approach.
• The hybrid methods based on the new 25-point stencils can significantly improve the accuracy of numerical solutions.

Currently, the new technique has been developed for uniform square and rectangular meshes that can be used for rect-
angular domains. One option to use it for complex geometries is to form a hybrid method with unstructured meshes close 
to curvilinear boundaries and structured meshes inside the domain; e.g., similar to [31,32] with the finite elements for un-
structured meshes and the finite difference method for structured meshes. It was shown in the paper that the new approach 
can be easily combined with the conventional isogeometric and finite elements in order to form a hybrid method. Similarly, 
it can be directly used with the overlapping elements (see [33,34]), with the known hybrid schemes (e.g., see [35,36] and 
many others) or the fictitious domain methods (e.g., see [37–46] and many others) where Cartesian meshes can be used 
inside irregular domains. However, we plan to extend the new approach for PDEs to complex irregular geometries similar to 
our technique with simple stencils (that correspond to the linear finite elements) where Cartesian meshes and non-uniform 
stencils for the grid points close to irregular boundaries are used; see our recent papers [47–49]. The techniques in [47–49]
are also based on the minimization of the local truncation error.

The idea of the application of the local truncation error for the analysis and increase in accuracy of the numerical 
technique used in the paper is general. Its possible application to other cases (other partial differential equations, other 
numerical techniques, general non-uniform meshes, etc.) will be considered in the future.
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Appendix A. The structure of the elemental Me and Ke matrices for the quadratic isogeometric elements on uniform 
meshes

Here, uniform meshes with uniform spacing in the x and y directions are considered. Fig. 11 shows the spatial locations 
of 25 degrees of freedom (or more precisely, the basis functions related to the corresponding control variables) for 3 ×3 = 9
neighboring elements contributing to the formation of the 25-point stencil equation for the degree of freedom uA,B with the 
conventional quadratic isogeometric elements. For the new 25-point stencils, the form of the stencil equation is the same 
as that for the conventional quadratic isogeometric elements in [27,30]. To simplify the representation of the elemental Me

or K e matrices, let us use the following order of the degrees of freedom in the local vector of the control variables for 
any element: U = {uA−1,B−1 , uA−1,B+1 , uA+1,B+1 , uA+1,B−1 , uA−1,B , uA,B+1 , uA+1,B , uA,B−1 , uA,B}T (here, the degrees of 
freedom for the central element in Fig. 11 are used). In this case the elemental Me or K e matrix can be expressed in terms 
of 17 coefficients ai as shown below in Eq. (A.1):
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Fig. 11. The spatial locations of the degrees of freedom ui, j (i = A − 2, A − 1, A, A + 1, A + 2 and j = B − 2, B − 1, B, B + 1, B + 2) contributing to the 
stencil equation for the degree of freedom uA,B of the new and conventional quadratic isogeometric elements. The nine elements shown are used for the 
calculation of the stencil equation for the degree of freedom uA,B according to Eq. (5).

Me(or K e) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 a5 a6 a7 a8 a9
a2 a1 a4 a3 a5 a8 a7 a6 a9
a3 a4 a1 a2 a7 a8 a5 a6 a9
a4 a3 a2 a1 a7 a6 a5 a8 a9
a5 a5 a7 a7 a10 a11 a12 a11 a13
a6 a8 a8 a6 a11 a14 a11 a15 a16
a7 a7 a5 a5 a12 a11 a10 a11 a13
a8 a6 a6 a8 a11 a15 a11 a14 a16
a9 a9 a9 a9 a13 a16 a13 a16 a17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.1)

Here, the symmetry of matrices Me and K e as well as the symmetry of the location of the first and second four degrees of 
freedom in vector U have been taken into account (therefore the first and second four rows in Eq. (A.1) include the same 
coefficients). For the implementation of the matrices Me and K e into computer codes, the following order of degrees of 
freedom in the local vector of the control variables is often used: U = {uA−1,B−1 , uA−1,B , uA−1,B+1 , uA,B−1 , uA,B , uA,B+1 ,

uA+1,B−1 , uA+1,B , uA+1,B+1}T . In this case the Me or K e matrices can be obtained from Eq. (A.1) by the corresponding 
relocations of coefficients a j in Eq. (A.1); see Eqs. (26) and (27).

Appendix B. Non-zero heat source

The inclusion of non-zero heat source f in the partial differential equations, Eqs. (1) and (2), leads to the additional 
non-zero term f̄ in the stencil equations (15) and (35) (similar to Eq. (7)). The expression for the term f̄ can be calculated 
from the procedure used for the derivation of the local truncation error in the case of zero heat source. We will show this in 
more detail for 2-D transient problem and will present the final expressions f̄ for the Poisson equation. In case of non-zero 
heat source ( f (x, t) 
= 0), Eqs. (18) and (19) for the exact solution at x = xA and y = yB can be modified as follows:

∂uA,B

∂t
− a∇2uA,B = f (xA, yB , t) , (B.1)

∂(2i+2 j+1)uA,B

∂x2i∂ y2 j∂t
− a

∂(2i+2 j)∇2uA,B

∂x2i∂ y2 j
= ∂(2i+2 j) f (xA, yB , t)

∂x2i∂ y2 j
. (B.2)

Then, inserting Eqs. (16), (17), (B.1) and (B.2) with the exact solution to the heat equation, Eq. (1), into the stencil equation, 
Eq. (15), with non-zero f̄ we will get the following local truncation error in space e f :

e f = e − { f̄ − [h2 f A,B(m1 + 2(2m2 +m3 + 2m4 + 2m5 +m6 +m7 + 2m8 +m9)) + h4(b2y
∂2 f A,B

∂ y2
(2m2

+8m4 + 8m5 +m7 + 2m8 + 4m9) + ∂2 f A,B

∂x2
(2m2 +m3 + 8m4 + 2m5 + 4m6 + 8m8)) + ...]} , (B.3)

where e is the local truncation error in space given by Eq. (20) for zero heat source, f A,B in Eq. (B.3) designates function 
f (x, y, t) and its derivatives calculated at x = xA and y = yB . Equating to zero the expression in the curly brackets in the 
right-hand side of Eq. (B.3), we will get the expression for f̄ :
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f̄ = h2 f A,B(m1 + 2(2m2 +m3 + 2m4 + 2m5 +m6 +m7 + 2m8 +m9))

h4[b2y
∂2 f A,B

∂ y2
(2m2 + 8m4 + 8m5 +m7 + 2m8 + 4m9) + ∂2 f A,B

∂x2
(2m2 +m3 + 8m4 + 2m5 + 4m6 + 8m8)]

+h6

12
[b4y

∂4 f A,B

∂ y4
(2m2 + 32m4 + 32m5 +m7 + 2m8 + 16m9) + 12b2y

∂4 f A,B

∂x2∂ y2
(m2 + 4(4m4 +m5 +m8))

+∂4 f A,B

∂x4
(2m2 +m3 + 32m4 + 2m5 + 16m6 + 32m8)]

+ h8

360
[b6y

∂6 f A,B

∂ y6
(2m2 + 128m4 + 128m5 +m7 + 2m8 + 64m9) + 30b4y

∂6 f A,B

∂x2∂ y4
(m2 + 64m4 + 16m5 + 4m8)

+30b2y
∂6 f A,B

∂x4∂ y2
(m2 + 64m4 + 4m5 + 16m8) + ∂6 f A,B

∂x6
(2m2 +m3 + 2(64m4 +m5 + 32m6 + 64m8))]

+ h10

20160
[b8y

∂8 f A,B

∂ y8
(2m2 + 512m4 + 512m5 +m7 + 2m8 + 256m9) + 56b6y

∂8 f A,B

∂x2∂ y6
(m2 + 256m4

+64m5 + 4m8) + 140b4y
∂8 f A,B

∂x4∂ y4
(m2 + 16(16m4 +m5 +m8)) + 56b2y

∂8 f A,B

∂x6∂ y2
(m2 + 256m4

+4m5 + 64m8) + ∂8 f A,B

∂x8
(2m2 +m3 + 512m4 + 2m5 + 256m6 + 512m8)] + ... (B.4)

as well as we will get the same local truncation errors e f = e for zero and non-zero heat source. Similar to the 2-D transient 
problems, the term f̄ can be calculated for the 2-D Poisson equation:

f̄ = h2(2k2 + k3 + 8k4 + 2k5 + 4k6 + 8k8) f A,B

+h4

12
[∂

2 f A,B

∂ y2
(b2y(192k4 + 48k5 + 48k8) + 2(6b2y − 1)k2 − k3 − 32k4 − 2k5 − 16k6 − 32k8)

+∂2 f A,B

∂x2
(2k2 + k3 + 32k4 + 2k5 + 16k6 + 32k8)]

+ h6

360
[∂

4 f A,B

∂ y4
((30b4y − 30b2y + 2)k2 + k3 + 2(b4y(240k5 + 60k8) + b2y(−60k5

−240k8) + 64(15b4y − 15b2y + 1)k4 + k5 + 32k6 + 64k8))

+ ∂4 f A,B

∂x2∂ y2
((30b2y − 2)k2 − k3 + 2(b2y(960k4 + 60k5 + 240k8) − 64k4 − k5 − 32k6 − 64k8))

+∂4 f A,B

∂x4
(2k2 + k3 + 2(64k4 + k5 + 32k6 + 64k8))]

+ h8

20160
[∂

6 f A,B

∂ y6
(b6y(14336k4 + 3584k5 + 224k8) + b4y(−35840k4

−2240k5 − 2240k8) + b2y(14336k4 + 224k5 + 3584k8)

+2(28b6y − 70b4y + 28b2y − 1)k2 − k3 − 512k4 − 2k5 − 256k6 − 512k8)

+ ∂6 f A,B

∂x2∂ y4
(2(70b4y − 28b2y + 1)k2 + k3

+2(256(70b4y − 28b2y + 1)k4 + (1120b4y − 112b2y + 1)k5 + 32(4k6 + (35b4y − 56b2y + 8)k8)))

+ ∂6 f A,B

∂x4∂ y2
(b2y(56k2 + 14336k4

+224k5 + 3584k8) − 2k2 − k3 − 512k4 − 2k5 − 256k6 − 512k8)

+∂6 f A,B

∂x6
(2k2 + k3 + 512k4 + 2k5 + 256k6 + 512k8)]

+ h10

1814400
[∂

8 f A,B

∂ y8
(((90b8y − 420b6y + 420b4y − 90b2y + 2)k2 + k3 + 2(1024(45b8y − 210b6y + 210b4y

−45b2y + 1)k4 + (11520b8y − 13440b6y + 3360b4y − 180b2y + 1)k5 + 4(128k6 + (45b8y − 840b6y
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+3360b4y − 2880b2y + 256)k8))) + ∂8 f A,B

∂x2∂ y6
(b6y(430080k4 + 26880k5 + 6720k8) + b4y(−430080k4

−6720k5 − 26880k8) + b2y(92160k4 + 360k5 + 23040k8) + (420b6y − 420b4y + 90b2y − 2)k2

−k3 − 2048k4 − 2k5 − 1024k6 − 2048k8) + ∂8 f A,B

∂x4∂ y4
(b4y(420k2 + 430080k4 + 6720k5

+26880k8) + b2y(−90k2 − 92160k4 − 360k5 − 23040k8) + 2k2 + k3 + 2048k4 + 2k5 + 1024k6

+2048k8) + ∂8 f A,B

∂x6∂ y2
(b2y(90k2 + 92160k4 + 360k5 + 23040k8) − 2k2 − k3

−2048k4 − 2k5 − 1024k6 − 2048k8) + ∂8 f A,B

∂x8
(2k2 + k3 + 2048k4 + 2k5 + 1024k6 + 2048k8)]

+ h12

239500800
[∂

10 f A,B

∂ y10
(2(66b10y − 495b8y + 924b6y − 495b4y + 66b2y − 1)k2 − k3 + 2(4096(66b10y

−495b8y + 924b6y − 495b4y + 66b2y − 1)k4 + (67584b10y − 126720b8y + 59136b6y − 7920b4y

+264b2y − 1)k5 + 8((33b10y − 990b8y + 7392b6y − 15840b4y + 8448b2y − 512)k8 − 256k6)))

+∂10 f A,B

∂x2∂ y8
(2(495b8y − 924b6y + 495b4y − 66b2y + 1)k2 + k3 + 2(4096(495b8y − 924b6y + 495b4y

−66b2y + 1)k4 + (126720b8y − 59136b6y + 7920b4y − 264b2y + 1)k5 + 16(128k6 + (495b8y − 3696b6y

+7920b4y − 4224b2y + 256)k8))) + ∂10 f A,B

∂x4∂ y6
(b6y(1848k2 + 7569408k4 + 118272k5 + 118272k8)

+b4y(−990k2 − 4055040k4 − 15840k5 − 253440k8) + b2y(132k2 + 540672k4 + 528k5

+135168k8) − 2k2 − k3 − 8192k4 − 2k5 − 4096k6 − 8192k8) + ∂10 f A,B

∂x6∂ y4
(b4y(990k2 + 4055040k4

+15840k5 + 253440k8) + b2y(−132k2 − 540672k4 − 528k5 − 135168k8) + 2k2 + k3 + 8192k4

+2k5 + 4096k6 + 8192k8) + ∂10 f A,B

∂x8∂ y2
(b2y(132k2 + 540672k4 + 528k5 + 135168k8) − 2k2

−k3 − 8192k4 − 2k5 − 4096k6 − 8192k8) + ∂10 f A,B

∂x10
(2k2 + k3 + 8192k4 + 2k5 + 4096k6 + 8192k8)]

+ h14

43589145600
[∂

12 f A,B

∂ y12
(2(91b12y − 1001b10y + 3003b8y − 3003b6y + 1001b4y − 91b2y + 1)k2 + k3

+2(16384(91b12y − 1001b10y + 3003b8y − 3003b6y + 1001b4y − 91b2y + 1)k4 + (372736b12y

−1025024b10y + 768768b8y − 192192b6y + 16016b4y − 364b2y + 1)k5 + 4(2048k6 + (91b12y

−4004b10y + 48048b8y − 192192b6y + 256256b4y − 93184b2y + 4096)k8))) + ∂12 f A,B

∂x2∂ y10
(2(1001b10y

−3003(b8y − b6y) − 1001b4y + 91b2y − 1)k2 − k3 + 2(16384(1001b10y − 3003b8y + 3003b6y − 1001b4y

+91b2y − 1)k4 + (1025024b10y − 768768b8y + 192192b6y − 16016b4y + 364b2y − 1)k5 + 16((1001b10y

−12012b8y + 48048b6y − 64064b4y + 23296b2y − 1024)k8 − 512k6))) + ∂12 f A,B

∂x4∂ y8
(b8y(6006k2

+98402304k4 + 1537536k5 + 384384k8) + b6y(−6006k2 − 98402304k4 − 384384k5 − 1537536k8)

+b4y(2002k2 + 32800768k4 + 32032k5 + 2050048k8) + b2y(−182k2 − 2981888k4 − 728k5

−745472k8) + 2k2 + k3 + 32768k4 + 2k5 + 16384k6 + 32768k8) + ∂12 f A,B

∂x6∂ y6
(b6y(6006k2

+98402304k4 + 384384k5 + 1537536k8) + b4y(−2002k2 − 32800768k4 − 32032k5 − 2050048k8)

+b2y(182k2 + 2981888k4 + 728k5 + 745472k8) − k3 − 32768k4 − 2k5 − 16384k6 − 32768k8)
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+∂12 f A,B

∂x8∂ y4
(b4y(2002k2 + 32800768k4 + 32032k5 + 2050048k8) + b2y(−182k2 − 2981888k4

−728k5 − 745472k8) − 2k2 + 2k2 + k3 + 32768k4 + 2k5 + 16384k6 + 32768k8)

+ ∂12 f A,B

∂x10∂ y2
(b2y(182k2 + 2981888k4 + 728k5 + 745472k8) − 2k2 − k3 − 32768k4 − 2k5

−16384k6 − 32768k8) + ∂12 f A,B

∂x12
(2k2 + k3 + 32768k4 + 2k5 + 16384k6 + 32768k8)]

+ h16

10461394944000
[∂

14 f A,B

∂ y14
(2(120b14y − 1820(b12y + b4y) + 8008(b10y + b6y)

−12870b8y + 120b2y − 1)k2 − k3 + 2(65536(120b14y − 1820b12y + 8008(b10y b6y) + −12870b8y

−1820b4y + 120b2y − 1)k4 + (1966080b14y − 7454720b12y + 8200192b10y − 3294720b8y

+512512b6y − 29120b4y + 480b2y − 1)k5 + 32((15b14y − 910b12y + 16016b10y − 102960b8y

+256256b6y − 232960b4y + 61440b2y − 2048)k8 − 1024k6))) + ∂14 f A,B

∂x2∂ y12
(2(1820b12y − 8008b10y

+12870b8y − 8008b6y + 1820b4y − 120b2y + 1)k2 + k3 + 2(65536(1820b12y − 8008b10y

+12870b8y − 8008b6y + 1820b4y − 120b2y + 1)k4 + (7454720b12y − 8200192b10y + 3294720b8y

−512512b6y + 29120b4y − 480b2y + 1)k5 + 64(512k6 + (455b12y − 8008b10y + 51480b8y

−128128b6y + 116480b4y − 30720b2y + 1024)k8))) + ∂14 f A,B

∂x4∂ y10
(b10y (16016k2 + 1049624576k4

+16400384k5 + 1025024k8) + b8y(−25740k2 − 1686896640k4 − 6589440k5 − 6589440k8)

+b6y(16016k2 + 1049624576k4 + 1025024k5 + 16400384k8) + b4y(−3640k2 − 238551040k4

−58240k5 − 14909440k8) + b2y(240k2 + 15728640k4 + 960k5 + 3932160k8) − 2k2 − k3

−131072k4 − 2k5 − 65536k6 − 131072k8) + ∂14 f A,B

∂x6∂ y8
(b8y(25740k2 + 1686896640k4 + 6589440k5

+6589440k8) + b6y(−16016k2 − 1049624576k4 − 1025024k5 − 16400384k8) + b4y(3640k2

+238551040k4 + 58240k5 + 14909440k8) + b2y(−240k2 − 15728640k4 − 960k5 − 3932160k8)

+2k2 + k3 + 131072k4 + 2k5 + 65536k6 + 131072k8) + ∂14 f A,B

∂x8∂ y6
(b6y(16016k2 + 1049624576k4

+1025024k5 + 16400384k8) + b4y(−3640k2 − 238551040k4 − 58240k5 − 14909440k8)

+b2y(240k2 + 15728640k4 + 960k5 + 3932160k8) − 2k2 − k3 − 131072k4 − 2k5

−65536k6 − 131072k8) + ∂14 f A,B

∂x10∂ y4
(b4y(3640k2 + 238551040k4 + 58240k5 + 14909440k8)

+b2y(−240k2 − 15728640k4 − 960k5 − 3932160k8) + 2k2 + k3 + 131072k4 + 2k5

+65536k6 + 131072k8) + ∂14 f A,B

∂x12∂ y2
(b4y(240k2 + 15728640k4 + 960k5 + 3932160k8) − 2k2

−k3 − 131072k4 − 2k5 − 65536k6 − 131072k8)

+∂14 f A,B

∂x14
(2k2 + k3 + 131072k4 + 2k5 + 65536k6 + 131072k8)]

+ h18

3201186852864000
[∂

16 f A,B

∂ y16
((306b16y − 6120b14y + 37128b12y − 87516b10y + 87516b8y − 37128b6y

+6120b4y − 306b2y + 2)k2 + k3 + 2(262144(153b16y − 3060b14y + 18564b12y − 43758b10y

+43758b8y − 18564b6y + 3060b4y − 153b2y + 1)k4 + (10027008b16y − 50135040b14y

+76038144b12y − 44808192b10y + 11202048b8y − 1188096b6y + 48960b4y − 612b2y + 1)k5

+4(32768k6 + (153b16y − 12240b14y + 297024b12y − 2800512b10y + 11202048b8y
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−19009536b6y + 12533760b4y − 2506752b2y + 65536)k8))) + ∂16 f A,B

∂x2∂ y14
((6120b14y − 37128b12y

+87516b10y − 87516b8y + 37128b6y − 6120b4y + 306b2y − 2)k2 − k3 + 2(262144(3060b14y

−18564b12y + 43758b10y − 43758b8y + 18564b6y − 3060b4y + 153b2y − 1)k4 + (50135040b14y

−76038144b12y + 44808192b10y − 11202048b8y + 1188096b6y − 48960b4y + 612b2y − 1)k5

+64((765b14y − 18564b12y + 175032b10y − 700128b8y + 1188096b6y − 783360b4y

+156672b2y − 4096)k8 − 2048k6))) + ∂16 f A,B

∂x4∂ y12
(b12y (37128k2 + 9732882432k4 + 152076288k5

+2376192k8) + b10y (−87516k2 − 22941794304k4 − 89616384k5 − 22404096k8)

+b8y(87516k2 + 22941794304k4 + 22404096k5 + 89616384k8) + b6y(−37128k2

−9732882432k4 − 2376192k5 − 152076288k8) + b4y(6120k2 + 1604321280k4 + 97920k5

+100270080k8) + b4y(−306k2 − 80216064k4 − 1224k5 − 20054016k8) + 2k2 + k3

+524288k4 + 2k5 + 262144k6 + 524288k8) + ∂16 f A,B

∂x6∂ y10
(b10y (87516k2 + 22941794304k4

+89616384k5 + 22404096k8) + b8y(−87516k2 − 22941794304k4 − 22404096k5

−89616384k8) + b6y(37128k2 + 9732882432k4 + 2376192k5 + 152076288k8)

+b4y(−6120k2 − 1604321280k4 − 97920k5 − 100270080k8) + b2y(306k2

+80216064k4 + 1224k5 + 20054016k8) − 2k2 − k3 − 524288k4 − 2k5

−262144k6 − 524288k8) + ∂16 f A,B

∂x8∂ y8
(b8y(87516k2 + 22941794304k4 + 22404096k5 + 89616384k8)

+b6y(−37128k2 − 9732882432k4 − 2376192k5 − 152076288k8) + b4y(6120k2

+1604321280k4 + 97920k5 + 100270080k8) + b2y(−306k2 − 80216064k4 − 1224k5

−20054016k8) + 2k2 + k3 + 524288k4 + 2k5 + 262144k6 + 524288k8)

+ ∂16 f A,B

∂x10∂ y6
(b6y(37128k2 + 9732882432k4 + 2376192k5 + 152076288k8) + b4y(−6120k2

−1604321280k4 − 97920k5 − 100270080k8) + b4y(306k2 + 80216064k4 + 1224k5

+20054016k8) − 2k2 − k3 − 524288k4 − 2k5 − 262144k6 − 524288k8)

+ ∂16 f A,B

∂x12∂ y4
(b4y(6120k2 + 1604321280k4 + 97920k5 + 100270080k8) + b2y(−306k2

−80216064k4 − 1224k5 − 20054016k8) + 2k2 + k3 + 524288k4 + 2k5 + 262144k6

+524288k8) + ∂16 f A,B

∂x14∂ y2
(b2y(306k2 + 80216064k4 + 1224k5 + 20054016k8) − 2k2 − k3

−524288k4 − 2k5 − 262144k6 − 524288k8) + ∂16 f A,B

∂x16
(2(k2 + k5) + k3 + 524288(k4 + k8) + 262144k6)]

+ h20

1216451004088320000
[∂

18 f A,B

∂ y18
((380b18y − 9690b16y + 77520b14y − 251940b12y + 369512b10y

−251940b8y + 77520b6y − 9690b4y + 380b2y − 2)k2 − k3 + 2(1048576(190b18y − 4845b16y

+38760b14y − 125970b12y + 184756b10y − 125970b8y + 38760b6y − 4845b4y + 190b2y − 1)k4

+(49807360b18y − 317521920b16y + 635043840b14y − 515973120b12y + 189190144b10y

−32248320b8y + 2480640b6y − 77520b4y + 760b2y − 1)k5 + 8((95b18y − 9690b16y + 310080b14y

−4031040b12y + 23648768b10y − 64496640b8y + 79380480b6y − 39690240b4y + 6225920b2y − 131072)k8

−65536k6))) + ∂18 f A,B
2 16

((9690b16y − 77520b14y + 251940b12y − 369512b10y + 251940b8y
∂x ∂ y
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−77520b6y + 9690b4y − 380b2y + 2)k2 + k3 + 2(1048576(4845b16y − 38760b14y + 125970b12y

−184756b10y + 125970b8y − 38760b6y + 4845b4y − 190b2y + 1)k4 + (317521920b16y − 635043840b14y

+515973120b12y − 189190144b10y + 32248320b8y − 2480640b6y + 77520b4y − 760b2y + 1)k5

+16(32768k6 + (4845b16y − 155040b14y + 2015520b12y − 11824384b10y + 32248320b8y − 39690240b6y

+19845120b4y − 3112960b2y + 65536)k8))) + ∂18 f A,B

∂x4∂ y14
(b14y (77520k2 + 81285611520k4

+1270087680k5 + 4961280k8) + b12y (−251940k2 − 264178237440k4 − 1031946240k5 − 64496640k8)

+b10y (369512k2 + 387461414912k4 + 378380288k5 + 378380288k8) + b8y(−251940k2

−264178237440k4 − 64496640k5 − 1031946240k8) + b6y(77520k2 + 81285611520k4 + 4961280k5

+1270087680k8) + b4y(−9690k2 − 10160701440k4 − 155040k5 − 635043840k8) + b2y(380k2

+398458880k4 + 1520k5 + 99614720k8) − 2k2 − k3 − 2097152k4 − 2k5 − 1048576k6

−2097152k8) + ∂18 f A,B

∂x6∂ y12
(b12y (251940k2 + 264178237440k4 + 1031946240k5 + 64496640k8)

+b10y (−369512k2 − 387461414912k4 − 378380288k5 − 378380288k8) + b8y(251940k2

+264178237440k4 + 64496640k5 + 1031946240k8) + b6y(−77520k2 − 81285611520k4

−4961280k5 − 1270087680k8) + b4y(9690k2 + 10160701440k4 + 155040k5 + 635043840k8)

+b2y(−380k2 − 398458880k4 − 1520k5 − 99614720k8) + 2k2 + k3 + 2097152k4

+2k5 + 1048576k6 + 2097152k8) + ∂18 f A,B

∂x8∂ y10
(b10y (369512k2 + 387461414912k4 + 378380288k5

+378380288k8) + b8y(−251940k2 − 264178237440k4 − 64496640k5 − 1031946240k8)

+b6y(77520k2 + 81285611520k4 + 4961280k5 + 1270087680k8) + b4y(−9690k2

−10160701440k4 − 155040k5 − 635043840k8) + b2y(380k2 + 398458880k4 + 1520k5

+99614720k8) − 2k2 − k3 − 2097152k4 − 2k5 − 1048576k6 − 2097152k8)

+ ∂18 f A,B

∂x10∂ y8
(b8y(251940k2 + 264178237440k4 + 64496640k5 + 1031946240k8) + b6y(−77520k2

−81285611520k4 − 4961280k5 − 1270087680k8) + b4y(9690k2 + 10160701440k4

+155040k5 + 635043840k8) + b2y(−380k2 − 398458880k4 − 1520k5 − 99614720k8)

+2k2 + k3 + 2097152k4 + 2k5 + 1048576k6 + 2097152k8) + ∂18 f A,B

∂x12∂ y6
(b6y(77520k2

+81285611520k4 + 4961280k5 + 1270087680k8) + b4y(−9690k2 − 10160701440k4

−155040k5 − 635043840k8) + b2y(380k2 + 398458880k4 + 1520k5 + 99614720k8)

−2k2 − k3 − 2097152k4 − 2k5 − 1048576k6 − 2097152k8) + ∂18 f A,B

∂x14∂ y4
(b4y(9690k2

+10160701440k4 + 155040k5 + 635043840k8) + b2y(−380k2 − 398458880k4 − 1520k5

−99614720k8) + 2k2 + k3 + 2097152k4 + 2k5 + 1048576k6 + 2097152k8)

+ ∂18 f A,B

∂x16∂ y2
(b2y(380k2 + 398458880k4 + 1520k5 + 99614720k8) − 2k2 − k3 − 2097152k4 − 2k5

−1048576k6 − 2097152k8) + ∂18 f A,B

∂x18
(2k2 + k3 + 2097152k4 + 2k5

+1048576k6 + 2097152k8)] + ... . (B.5)

The coefficients mi and ki (i = 1, 2, 3, ..., 9) in Eqs. (B.4)-(B.5) are given by Eqs. (21), (40) and Eq. (46) (see also Table 1
for the conventional elements) for the corresponding techniques with zero heat source.

We should mention that in the calculation of f̄ with the help of Eqs. (B.4)-(B.5) we need to include the terms with the 
maximum power of h equal to 4, 6, 8, 12, 14 and 18 for the 4th, 6th, 8th, 12th, 14th and 18th orders of the local truncation 
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error, respectively (according to the order of accuracy of the corresponding technique with zero heat source). As can be also 
seen, f̄ is directly calculated in terms of the heat source f at the points with the coordinates xA and yA with the help of 
Eqs. (B.4)-(B.5) (similar to the introduction of the concentrated forces in the FEM).

Appendix C. The coefficients bp in Eq. (20)

b1 = (k1 + 2(2k2 + k3 + 2k4 + 2k5 + k6 + k7 + 2k8 + k9)) ,

b2 = 12(2k2 + k3 + 8k4 + 2k5 + 4k6 + 8k8 +m1 + 4m2 + 2m3

+4m4 + 4m5 + 2m6 + 2m7 + 4m8 + 2m9) ,

b3 = 12(b2y(2k2 + 8k4 + 8k5 + k7 + 2k8 + 4k9) +m1

+2(2m2 +m3 + 2m4 + 2m5 +m6 +m7 + 2m8 +m9)) ,

b4 = (2k2 + k3 + 2(16k4 + k5 + 8k6 + 16k8 + 12m2

+6m3 + 48m4 + 12m5 + 24m6 + 48m8)) ,

b5 = b2y(b
2
y(2k2 + 32k4 + 32k5 + k7 + 2k8 + 16k9)

+12(2m2 + 8m4 + 8m5 +m7 + 2m8 + 4m9)) ,

b6 = 12(2m2 +m3 + 8m4 + 2m5 + 4m6 + 8m8 + b2y(k2 + 16k4 + 4k5

+4k8 + 2m2 + 8m4 + 8m5 +m7 + 2m8 + 4m9)) ,

b7 = (2k2 + k3 + 2(64k4 + k5 + 32k6 + 64k8 + 30m2 + 15m3

+480m4 + 30m5 + 240m6 + 480m8)) ,

b8 = b4y(b
2
y(2k2 + 128k4 + 128k5 + k7 + 2k8 + 64k9)

+30(2m2 + 32m4 + 32m5 +m7 + 2m8 + 16m9)) ,

b9 = 30(2m2 +m3 + 32m4 + 2m5 + 16m6 + 32m8

+b2y(k2 + 4(16k4 + k5 + 4k8 + 3m2 + 48m4 + 12m5 + 12m8))) ,

b10 = 30b2y(12(m2 + 4(4m4 +m5 +m8)) + b2y(k2 + 64k4 + 16k5 + 4k8

+2m2 + 32m4 + 32m5 +m7 + 2m8 + 16m9)) ,

b11 = (2k2 + k3 + 2(256k4 + k5 + 4(32k6 + 64k8

+7(2m2 +m3 + 2(64m4 +m5 + 32m6 + 64m8))))) ,

b12 = b6y(b
2
y(2k2 + 512k4 + 512k5 + k7 + 2k8 + 256k9)

+56(2m2 + 128m4 + 128m5 +m7 + 2m8 + 64m9)) ,

b13 = 56(2m2 +m3 + 128m4 + 2m5 + 64m6 + 128m8

+b2y(k2 + 256k4 + 4k5 + 64k8 + 30m2 + 1920m4 + 120m5 + 480m8)) ,

b14 = 140b2y(12(m2 + 4(16m4 +m5 + 4m8)) + b2y(k2 + 4(64k4

+4k5 + 4k8 + 3m2 + 192m4 + 48m5 + 12m8))) ,

b15 = 56(b4y)(30(m2 + 4(16m4 + 4m5 +m8))

+b2y(k2 + 256k4 + 64k5 + 4k8 + 2m2 + 128m4 + 128m5 +m7 + 2m8 + 64m9)) ,

b16 = (2k2 + k3 + 2(1024k4 + k5 + 512k6 + 1024k8 + 90m2 + 45m3

+23040m4 + 90m5 + 11520m6 + 23040m8)) ,

b17 = b8y(b
2
y(2k2 + 2048k4 + 2048k5 + k7 + 2k8 + 1024k9)

+90(2m2 + 512m4 + 512m5 +m7 + 2m8 + 256m9)) ,

b18 = 90(2m2 +m3 + 512m4 + 2m5 + 256m6 + 512m8

+b2y(k2 + 4(256k4 + k5 + 64k8 + 14m2 + 3584m4 + 56m5 + 896m8))) ,

b19 = 420(b2y)(b
2
y(k2 + 1024k4 + 16k5 + 64k8 + 30m2 + 7680m4 + 480m5 + 480m8)
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+12(m2 + 4(64m4 +m5 + 16m8))) ,

b20 = 420b4y(30(m2 + 16(16m4 +m5 +m8))

+b2y(k2 + 4(256k4 + 16k5 + 4k8 + 3m2 + 768m4 + 192m5 + 12m8))) ,

b21 = 90(b6y)(56(m2 + 4(64m4 + 16m5 +m8))

+b2y(k2 + 1024k4 + 256k5 + 4k8 + 2m2 + 512m4 + 512m5 +m7 + 2m8 + 256m9)) . (C.1)

Appendix D. The coefficients d j and f j in Eqs. (26) and (27) for the new Q 9_O PT stencils

d1 = 1

4
(

1

5x1
[b4y(2220a1 − 4677a2 + 4016a3) − 5b2y(2334a1 − 3537a2 + 596a3) + 2850a1] − a11

−2a4 − 2a8) , d2 = 1

2
[a1 − a9] ,

d3 = 1

180x1
[b4y(2220a1 + 69a2 − 832a3) + b2y(−11670a1 + 1011a2 + 92a3) + 2850a1] ,

d4 = 1

2
[a1 − a6] ,

d5 = 1

4
(

1

10x1
[b4y(−2960a1 − 2397a2 + 5416a3) + b2y(15560a1 + 3537a2 − 1736a3) − 3800a1] − 2a10) ,

d6 = 1

360x1
[b4y(−8880a1 − 1311a2 + 2488a3) + 5b2y(9336a1 + 543a2 − 184a3) − 11400a1] ,

d7 = 1

360x1
[b4y(−8880a1 − 1311a2 + 2488a3) + 5b2y(9336a1 + 543a2 − 184a3) − 11400a1] ,

d8 = 1

4
(

1

10x1
[b4y(−2960a1 − 2397a2 + 5416a3) + b2y(15560a1 + 3537a2 − 1736a3) − 3800a1] − 2a7) ,

d9 = 1

90x1
[120x1a1 − b2y(87(41b

2
y − 221)a2 + 8(53b2y + 257)a3)] − a5 ,

d10 = a4 , d11 = a5 , d12 = a6 , d13 = a7 ,

d14 = a8 , d15 = a9 , d16 = a10 , d17 = a11 . (D.1)

f1 = 1

10x1
[b4y(−370a16 − 2367a2 − 174a3) + b2y(1945a16 + 7335a2 + 2295a3) + 5x1(a14 + 2a15)

−475a16 + 21222a2 − 3291a3] ,
f2 = 1

10x1
[b4y(370(a14 + a16) + 2321a2 − 258a3) + b2y(−1945(a14 + a16) − 9920a2 + 3405a3)

+5x1(a12 + 4a13) + 475(a14 + a16) − 12241a2 + 873a3] ,
f3 = (b2y + 1)((46b2y − 341)a2 + (62b2y + 23)a3)

10x1
, f4 = a3 − a14

2
,

f5 = − 1

10x1
[b4y(370(a14 + a15) − 23a2 − 216a3) + b2y(−1945(a14 + a15) + 845a2) + 5x1(a12 + 2a13)

+475(a14 + a15) − 1922a2 + 216a3] ,
f6 = a2

2
, f7 = 1

10x1
[a2(−23b4y + 845b2y − 1922) − 216a3(b

4
y − 1)] ,

f8 = 1

20x1
[128(43b4y − 25b2y + 22)a3 − 18(106b4y − 305b2y + 1179)a2] − a15

2
,

f9 = 1

5x1
[4(b2y + 1)((73b2y + 187)a2 + 8(8− 43b2y)a3)] − a13 ,

f10 = a12 , f11 = a13 , f12 = a14 , f13 = a15 , f14 = a16 ,

f15 = − 1

5x1
[b4y(370(a14 + a16) + 1712a2 + 1664a3) + b2y(−1945(a14 + a16) − 9920a2 + 2560a3)

+5x1(a12 + 4a13) + 475(a14 + a16) − 11632a2 + 896a3] ,
f16 = 1 [b4y(370(a14 + a15) + 2296a2 − 1088a3) + b2y(−1945(a14 + a15) − 10720a2 + 4160a3)
5x1
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+5x1(a12 + 2a13) + 475(a14 + a15) − 1496a2 − 512a3] ,
f17 = − 1

x1
[2(x1a12 + x1a14 + 2(96(−4a3b

2
y + 3(b2y − 3)a2 + 2a3)b

2
y + x1a15))] . (D.2)

In Eqs. (D.1) and (D.2) a j ( j = 1, 2, ..., 16) are sixteen arbitrary coefficients and x1 = 74b4y − 389b2y + 95.

Appendix E. The coefficients bp in Eqs. (39)

b1 = (k1 + 2(2k2 + k3 + 2k4 + 2k5 + k6 + k7 + 2k8 + k9)) ,

b2 = (2(−1 + b2y)k2 − k3 − 8k4 + 8b2yk4 − 2k5 + 8b2yk5 − 4k6 + b2yk7 − 8k8 + 2b2yk8 + 4b2yk9) ,

b3 = (2(1 − 6b2y + b4y)k2 + k3 + 32k4 − 192b2yk4 + 32b4yk4 + 2k5 − 48b2yk5 + 32b4yk5 + 16k6 + b4yk7

+32k8 − 48b2yk8 + 2b4yk8 + 16b4yk9) ,

b4 = (2(−1 + 15b2y − 15b4y + b6y)k2 − k3 − 128k4 + 1920b2yk4 − 1920b4yk4 + 128b6yk4 − 2k5 + 120b2yk5

−480b4yk5 + 128b6yk5 − 64k6 + b6yk7 − 128k8 + 480b2yk8 − 120b4yk8 + 2b6yk8 + 64b6yk9) ,

b5 = (2(1− 28b2y + 70b4y − 28b6y + b8y)k2 + k3 + 512k4 − 14336b2yk4 + 35840b4yk4 − 14336b6yk4

+512b8yk4 + 2k5 − 224b2yk5 + 2240b4yk5 − 3584b6yk5 + 512b8yk5 + 256k6 + b8yk7

+512k8 − 3584b2yk8 + 2240b4yk8 − 224b6yk8 + 2b8yk8 + 256b8yk9) ,

b6 = (2(−1+ 45b2y − 210b4y + 210b6y − 45b8y + b10y )k2 − k3 − 2048k4 + 92160b2yk4 − 430080b4yk4

+430080b6yk4 − 92160b8yk4 + 2048b10y k4 − 2k5 + 360b2yk5 − 6720b4yk5 + 26880b6yk5 − 23040b8yk5

+2048b10y k5 − 1024k6 + b10y k7 − 2048k8 + 23040b2yk8 − 26880b4yk8 + 6720b6yk8

−360b8yk8 + 2b10y k8 + 1024b10y k9) ,

b7 = (2(1− 66b2y + 495b4y − 924b6y + 495b8y − 66b10y + b12y )k2 + k3 + 8192k4 − 540672b2yk4

+4055040b4yk4 − 7569408b6yk4 + 4055040b8yk4 − 540672b10y k4 + 8192b12y k4 + 2k5

−528b2yk5 + 15840b4yk5 − 118272b6yk5 + 253440b8yk5 − 135168b10y k5 + 8192b12y k5 + 4096k6

+b12y k7 + 8192k8 − 135168b2yk8 + 253440b4yk8 − 118272b6yk8

+15840b8yk8 − 528b10y k8 + 2b12y k8 + 4096b12y k9) ,

b8 = (2(−1 + 91b2y − 1001b4y + 3003b6y − 3003b8y + 1001b10y − 91b12y + b14y )k2 − k3 − 32768k4

+2981888b2yk4 − 32800768b4yk4 + 98402304b6yk4 − 98402304b8yk4 + 32800768b10y k4 − 2981888b12y k4

+32768b14y k4 − 2k5 + 728b2yk5 − 32032b4yk5 + 384384b6yk5 − 1537536b8yk5 + 2050048b10y k5

−745472b12y k5 + 32768b14y k5 − 16384k6 + b14y k7 − 32768k8 + 745472b2yk8

−2050048b4yk8 + 1537536b6yk8 − 384384b8yk8 + 32032b10y k8 − 728b12y k8

+2b14y k8 + 16384b14y k9) ,

b9 = (2(1 − 120b2y + 1820b4y − 8008b6y + 12870b8y − 8008b10y + 1820b12y − 120b14y

+b16y )k2 + k3 + 131072k4 − 15728640b2yk4 + 238551040b4yk4 − 1049624576b6yk4

+1686896640b8yk4 − 1049624576b10y k4 + 238551040b12y k4 − 15728640b14y k4 + 131072b16y k4 + 2k5

−960b2yk5 + 58240b4yk5 − 1025024b6yk5 + 6589440b8yk5 − 16400384b10y k5 + 14909440b12y k5

−3932160b14y k5 + 131072b16y k5 + 65536k6 + b16y k7 + 131072k8 − 3932160b2yk8 + 14909440b4yk8

−16400384b6yk8 + 6589440b8yk8 − 1025024b10y k8 + 58240b12y k8 − 960b14y k8

+2b16y k8 + 65536b16y k9) ,

b10 = (2(−1 + 153b2y − 3060b4y + 18564b6y − 43758b8y + 43758b10y − 18564b12y + 3060b14y

−153b16y + b18y )k2 − k3 − 524288k4 + 80216064b2yk4 − 1604321280b4yk4 + 9732882432b6yk4

−22941794304b8yk4 + 22941794304b10y k4 − 9732882432b12y k4 + 1604321280b14y k4 − 80216064b16y k4

+524288b18y k4 − 2k5 + 1224b2yk5 − 97920b4yk5 + 2376192b6yk5 − 22404096b8yk5 + 89616384b10y k5
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−152076288b12y k5 + 100270080b14y k5 − 20054016b16y k5 + 524288b18y k5 − 262144k6 + b18y k7

−524288k8 + 20054016b2yk8 − 100270080b4yk8 + 152076288b6yk8 − 89616384b8yk8 + 22404096b10y k8

−2376192b12y k8 + 97920b14y k8 − 1224b16y k8 + 2b18y k8 + 262144b18y k9) ,

b11 = (2(1 − 190b2y + 4845b4y − 38760b6y + 125970b8y − 184756b10y + 125970b12y − 38760b14y

+4845b16y − 190b18y + b20y )k2 + k3 + 2097152k4 − 398458880b2yk4 + 10160701440b4yk4

−81285611520b6yk4 + 264178237440b8yk4 − 387461414912b10y k4 + 264178237440b12y k4

−81285611520b14y k4 + 10160701440b16y k4 − 398458880b18y k4 + 2097152b20y k4 + 2k5 − 1520b2yk5

+155040b4yk5 − 4961280b6yk5 + 64496640b8yk5 − 378380288b10y k5 + 1031946240b12y k5

−1270087680b14y k5 + 635043840b16y k5 − 99614720b18y k5 + 2097152b20y k5 + 1048576k6

+b20y k7 + 2097152k8 − 99614720b2yk8 + 635043840b4yk8 − 1270087680b6yk8 + 1031946240b8yk8

−378380288b10y k8 + 64496640b12y k8 − 4961280b14y k8 + 155040b16y k8 − 1520b18y k8

+2b20y k8 + 1048576b20y k9) . (E.1)

Appendix F. The coefficients f j in Eqs. (27) for the new Q 9_O PT _1 stencils

f1 = 1

36y1
[7(13993904b16y + 165087200b14y − 1044338491b12y − 56494700b10y + 6943474174b8y

−56494700b6y − 1044338491b4y + 165087200b2y + 13993904)a1 + 9y1(8a2 + 2(a3 + a4) − a6)] ,
f2 = 1

12y1
[(58288976b16y − 481727600b14y + 1456399991b12y − 1756955850b10y

+1159844496b8y − 441576750b6y + 83309881b4y − 4919800b2y + 176656)a1 − 6a4 y1] ,

f3 = (b2y + 1)2(b2y + 4)(4b2y + 1)a1
36y1

[44164b8y − 234075b6y + 379522b4y − 234075b2y + 44164] ,

f4 = 1

12y1
[(176656b16y − 4919800b14y + 83309881b12y − 441576750b10y + 1159844496b8y

−1756955850b6y + 1456399991b4y − 481727600b2y + 58288976)a1 − 6a3 y1] ,

f5 = −2(b2y + 1)(b2y + 4)a1
3y1

[14572244b12y − 105226995b10y + 247191783b8y − 129893985b6y

+30238377b4y − 4502520b2y + 598096] − a5
2

,

f6 = −2(b2y + 1)(4b2y + 1)a1
9y1

[598096b12y − 4480120b10y + 12056297b8y

−12208585b6y + 5767943b4y − 1132795b2y + 44164] ,

f7 = −2(b2y + 1)(b2y + 4)a1
9y1

[44164b12y − 1132795b10y + 5767943b8y − 12208585b6y

+12056297b4y − 4480120b2y + 598096] ,

f8 = 8(4b2y + 1)

36y1
[598096b14y − 3882024b12y − 73487183b10y + 526759552b8y − 1006418222b6y

−33540332b4y + 173697309b2y − 34147196)a1 − 9y1(4a2 − 2a5 − a6)] ,
(F.1)

f9 = 8(b2y + 4)(4b2y + 1)a1
9y1

[598096b12y − 6291208b10y + 26094929b8y − 47431534b6y

+26094929b4y − 6291208b2y + 598096] − a2 ,

f10 = 32(b2y + 4) [13332608b14y − 92829957b12y + 205720886b10y − 77268019b8y − 17831596b6y
18y1
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+22126034b4y − 7797648b2y + 1196192)a1 − 9y1(8a2 + 2a3 − 4a5 − a6)] ,
f11 = a2 , f12 = a3 ,

f13 = 1

18y1
[9y1(4a2 − 2a5 − a6) − 32(b2y + 4)(4b2y + 1)(598096b12y − 6291208b10y

+26094929b8y − 47431534b6y + 26094929b4y − 6291208b2y + 598096)a1] ,
f14 = 1

2y1
[1120(4b2y + 1)(64336b10y − 418184b8y + 793633b6y + 30298b4y

−138719b2y + 27136)a1 − y1(2a4 + 4a5 + a6] ,
f15 = a4 , f16 = a5 , f17 = a6 (F.2)

with y1 defined by Eq. (41). a j ( j = 1, 2, ..., 6) are six arbitrary coefficients.

Appendix G. The coefficients f j in Eqs. (27) for the new Q 9_O PT _2 stencils

f1 = 1

36y3
[7(401399984b20y + 2972658592b18y − 41060434627b16y + 84142306982b14y + 175854264643b12y

−478641391148b10y + 175854264643b8y + 84142306982b6y − 41060434627b4y

+2972658592b2y + 401399984)a1 + 9y3(8a2 + 2(a3 + a4) − a6)] ,
f2 = 1

12
(
1

y3
[(1521978576b20y − 17351608272b18y + 76872755327b16y − 164715787152b14y

+193939316847b12y − 137578948912b10y + 60627164237b8y − 15793920632b6y

+2089789797b4y − 107855032b2y + 3115216)a1] − 6a4) ,

f3 = 1

36y3
[(b2y + 1)2(b2y + 4)(4b2y + 1)(778804b12y − 6705623b10y + 20440296b8y

−29052954b6y + 20440296b4y − 6705623b2y + 778804)a1] ,
f4 = 1

12
(
1

y3
[(3115216b20y − 107855032b18y + 2089789797b16y − 15793920632b14y + 60627164237b12y

−137578948912b10y + 193939316847b8y − 164715787152b6y + 76872755327b4y

−17351608272b2y + 1521978576)a1] − 6a3) ,

f5 = − 1

3y3
[2(b2y + 1)(b2y + 4)(380494644b16y − 3950564583b14y + 15033132452b12y − 24170522596b10y

+17293159050b8y − 5959344309b6y + 1165078718b4y − 158704512b2y + 13671136)a1] − a5
2

,

f6 = −2(b2y + 1)(4b2y + 1)

9y3
a1[13671136b16y − 146695872b14y + 602568798b12y − 1172018969b10y

+1186108650b8y − 654628796b6y + 190632612b4y − 24576363b2y + 778804] ,

f7 = −2(b2y + 1)(b2y + 4)

9y3
a1[778804b16y − 24576363b14y + 190632612b12y − 654628796b10y

+1186108650b8y − 1172018969b6y + 602568798b4y − 146695872b2y + 13671136] ,
f8 = 1

36y3
[8(4b2y + 1)(13671136b18y − 133024736b16y − 1610446434b14y + 19467493189b12y

−67752177839b10y + 82726410574b8y − 20590969064b6y − 15810053271b4y

+7617442201b2y − 922745756)a1 − 9y3(4a2 − 2a5 − a6)] ,
f9 = 1

9y3
[16(b2y + 4)(4b2y + 1)(6835568b16y − 98357880b14y + 569516043b12y − 1642477120b10y

+2351066778b8y − 1642477120b6y + 569516043b4y − 98357880b2y + 6835568)a1] − a2 ,
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f10 = 1

18y3
[128(b2y + 4)(85062557b18y − 864173437b16y + 3178213137b14y − 4742456632b12y

+2624606822b10y + 16550018b8y − 616721908b6y + 305229483b4y − 71015608b2y

+6835568)a1 − 9y3(8a2 + 2a3 − 4a5 − a6)] ,
f11 = a2 , f12 = a3 ,

f13 = 1

18y3
[9y3(4a2 − 2a5 − a6) − 64(b2y + 4)(4b2y + 1)(6835568b16y − 98357880b14y

+569516043b12y − 1642477120b10y + 2351066778b8y − 1642477120b6y

+569516043b4y − 98357880b2y + 6835568)a1] ,
f14 = 1

2y3
[4480(4b2y + 1)(409984b14y − 3975584b12y + 13445688b10y − 16308518b8y + 3993447b6y

+3169863b4y − 1516119b2y + 183239)a1 − y3(2a4 + 4a5 + a6)] ,
f15 = a4 , f16 = a5 , f17 = a6 (G.1)

with y3 defined by Eq. (47). a j ( j = 1, 2, ..., 6) are six arbitrary coefficients.

Appendix H. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2020 .109640.
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