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Abstract
We propose a versatile scheme for multiphoton frequency up/down conversion in flux
superconducting qubit circuits, driven by a pair of microwaves tuned near and far off the qubit
resonance. Flux qubits can be engineered with strong anharmonicity such that the two lowest
eigenstates are energetically well separated from the higher ones. We demonstrate the high
order non-linear transitions between the two lowest levels in the three-photon regime, by
coupling the qubit to bichromatic microwave fields with the same Rabi frequencies. Both up
and down conversions are presented and accurately interpreted with many-mode Floquet
formalism. An intuitive graph theoretic approach elucidates the physics of multiphoton
pumping and population trapping. The analytical solutions also illustrate how controllability is
achievable for desired single- or multiphoton pumping processes in a wide range of
frequencies. The proposed design and theoretical approach are applicable in maintaining the
inter-connectivity of future superconducting quantum machines.
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(Some figures may appear in colour only in the online journal)

Superconducting (SC) qubits are leading contenders for
demonstration of the so-called quantum supermacy [1].
Achieving this task requires scaling up the number of qubits.
Since in many SC qubits circuits, microwaves couple the
qubits and shuttle information [2], efficient frequency conver-
sion (FC) is important for interconnection among the qubits
and for hybrid quantum systems composed of SC qubits as
components [3–7]. Variety of schemes have been proposed for
FC at microwave frequencies. Microwave down-conversion
has been demonstrated for three-levelΛ qubits [8] and studied
theoretically when a superconducting Cooper-pair box qubit
is located inside a transmission line resonator [9]. Microwave

5 Authors to whom any correspondence should be addressed.

up-conversion has been reported for a two-photon driven
flux qubit [10]. These conversions have been achieved
in circuit quantum electrodynamics systems, in the strong
light–matter coupling regime [11]; and each scheme has
been specifically proposed for either up- or down-conversion
mechanism.

Motivated by the rapidly growing interest in Floquet engi-
neering [4, 12] and the ubiquitous use of microwave drives
in quantum information processing [13], we propose a read-
ily attainable scheme of generating broadband bi-directional
FC of microwave photons with the use of a single SC
flux qubit embedded in a superconducting microwave cav-
ity and driven by bichromatic classical microwaves. The flux
qubit consists of a superconducting loop interrupted by one
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[14] or three [15] Josephson junctions. We show that both up-
and down-conversions can be achieved by multiphoton exci-
tations between a pair of microwave fields that drive the flux
SC qubit circuit in three-photon transition regime. Multipho-
ton processes have recently attractedmuch attention in the field
of superconducting qubits, due to the new possibilities that
such nonlinear effects can provideflexible qubit control aswell
as being of fundamental physical interest [16–18]. In the case
of frequency up-conversion being able to use lower frequen-
cies may also substantially simplify microwave engineering
and qubit circuit integration [19, 20].

The implemented theoretical formalism is developedwithin
the two-mode Floquet framework. The Floquet quasienergy
diagram is equivalent to the fully quantized dressed-atom pic-
ture [21]. Dressed superconducting qubits [22], have been the-
oretically studied [23, 24] and experimentally demonstrated
[25–28]. Based on this method, we propose an effective
Hamiltonian approach which provides an accurate and lucid
representation of various underlying multiphoton dynamics
for the distinct quantum interference patterns observed in the
three-photon absorption spectrum.

The superconducting flux qubit is a compound Josephson
junction (CJJ) rf superconductingquantum interference device
(SQUID) [29]. It consists of a main loop and a CJJ loop sub-
jected to external flux biases Φx and ΦCJJ

x , respectively. The
CJJ loop is interrupted by two nominally identical Josephson
tunnel junctions connected in parallel with total capacitance
C and critical current Ic. The CJJ and main loops have induc-
tances LCJJ and L, respectively. For LCJJ � L, the Hamiltonian
of the CJJ rf SQUID can be approximated by that of a simple
rf SQUID as,

Ĥ =
Q2

2C
+ U(Φ), (1)

where Φ is the total flux threading the main loop and Q is the
charge stored in the capacitance. The potential energy of the rf
SQUID is,

U(Φ) =
(Φ− Φx)2

2L
− EJ cos

(
πΦCJJ

x

Φ0

)
cos

(
2πΦ
Φ0

)
, (2)

where EJ = Φ0Ic/2π and Φ0 ≡ h/2e is the flux quantum. For
βL(Φ

CJJ
x ) ≡ (2πLIc/Φx) cos(πΦ

CJJ
x /Φ0) � 1,U(Φ) is a double-

well potential and thus this device can be operated as a
qubit for −Φ0/2 � ΦCJJ

x � Φ0/2 and Φx ≈ Φ0/2. This has
been verified by microwave spectroscopy studies [14] that
the flux qubit can be engineered such that the two lowest
eigenstates are energetically well separated from the higher
ones [30].

Denoting the counterclockwise as the positive direction of
the persistent current Ip in the loop, the two logic states of
the qubit, |g〉 and |e〉, correspond to Ip < 0 and Ip > 0 and
thus the flux particle in the left- and right-hand wells, respec-
tively. The state-dependent persistent current is given by Ip =
〈g| (Φ− Φx)/L |g〉 or Ip = 〈e| (Φ− Φx)/L |e〉. If the temper-
ature is much less than the small oscillation frequency (i.e.,
the plasma frequency) at the bottom of the double-well poten-
tial the superconducting flux qubit can be described by a 2× 2

effective Hamiltonian matrix [25, 31],

Ĥq = −1
2
(ε0σz +Δσx), (3)

where σx , σz are Pauli matrices and ε0 is the detuning energy
that is proportional to dc flux bias, ε0 = 2|Ip|δΦx where δΦx =
Φx − Φ0/2 is the flux detuning. Equation is obtained using the
two logic states of the qubit, |g〉 = (1 0)T and |e〉 = (0 1)T ,

as the bases, with energy separation of E = ±
√
ε20 +Δ2/2.

These two states are coupled through the tunneling strengthΔ,
which is given by the energy separation of two eigenstates of
H0 at ε0 which are (|g〉 − |e〉)/

√
2 and (|g〉+ |e〉)/

√
2. Both

|Ip| and Δ are controlled in situ by ΦCJJ
x . Note that Ip is a

decreasing function of ΦCJJ
x , while Δ increases from zero to

the plasma frequencyasΦCJJ
x approaches±Φ0/2. ForΦ

CJJ
x = 0

one expects Δ→ 0. When the qubit becomes localized in |g〉
or |e〉, Ip generates a magnetic flux that can be resolved by an
inductively coupled dc SQUID [29].

The time-dependent Hamiltonian describing the flux qubit
[32, 33] is,

Ĥ = Ĥq + Ĥint, (4)

where, the interaction between the microwave and the flux
qubit is described by longitudinal coupling,

Ĥint = −1
2
E(t)σz, (5)

where E(t) represent the interaction of the qubit with a time-
dependent magnetic flux. In this work we investigate a flux
qubit driven by a bichromaticmicrowave (Mw) fields with fre-
quencies ω1 and ω2 and magnetic flux amplitudes Φ1 and Φ2.
The corresponding qubit-microwave interaction is described
by,

E(t) =
2∑
i=1

Ai cos(ωit + ϕi), (6)

where Ai = IpΦi and Ip is the persistent current of the flux
qubit. For simplicity, we set ϕi = 0. The effects of the tunnel
splitting and the microwave amplitudes on the transition
spectrum are evaluated in the appendix A. For the presented
results ε0/2π is set to 8.8356 GHz, the tunnel splitting
Δ = 8× 10−3ε0 and A1 = A2 = 8× 10−2ε0. The qubit transi-

tion frequency is ωq =
√
ε20 +Δ2 	 ε0. Due to such detuning

capability of potential energy, the inversion symmetry for these
superconductingqubits can be broken and the parity restriction
is lifted. Therefore, the selection rules do not apply.As a result,
(even- and odd-) multiphoton and single-photon processes can
coexist in such artificial systems [34–36]. The Hamiltonian for
longitudinal qubit-field coupling, ĤL, can be obtained from
the transverse form, ĤT, under unitary transformation: ĤL =

U−1ĤTU, whereU = 1/
√
2

(
1 −1
1 1

)
. This implies that both

of these schemes can be used to achieve odd-valued multi-
photon processes between two adjacent energy levels. The
even-valuedmultiphoton transitions, however, is obtained only
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Figure 1. (a) The energy level and microwave drive diagrams
represent the three-photon transition in a two-level system. (b) The
calculated three-photon transition spectrum. The color map (z-axis)
shows the transition probability from |g〉 to |e〉. The frequency
conversion along the white-dashed circle will be discussed in
figure 2(a). The number of photons involved in each transition is
labeled accordingly.

when the inversion symmetry of the potential energy of the
superconducting qubit is broken, due to longitudinal coupling.

The relaxation terms are not included for the calculations
presented in this work, this approximation is valid for the
system with high T1 time.

As presented in figure 1(b), the detuning of Mw1 and Mw2
from the qubit resonance frequency are δ1 = 3ω1 − ωq and
δ2 = 3ω2 − ωq, respectively. The diagram in figure 1(a) shows
the case of δ1 > 0 and δ2 < 0. Since we scan a large range of
detuning frequencies near and far away from the qubit reso-
nance, ω1 + ω2 is not necessarily time periodic. Therefore we
apply the incommensurate frequencies condition in our cal-
culations. This requires the implementation of the two-mode
Floquet method [21, 37]. This methodology is introduced in
appendix A.

Figure 1(b) contains the calculated three-photon absorp-
tion spectrum. The number of photons involved in each
transition is labeled on this contour plot. The transition prob-
ability along the white-dashed circle of radius 15 MHz, is
presented in figure 2(a). The angle θ on this circle is related
to the driven frequencies as ω1 = ω(0)

1 + r cos(θ), and ω2 =

ω(0)
2 + r sin(θ), where r = 15MHz is the radius of the scanned

spectrum. We set ω(0)
1 = ω(0)

2 = 2.945 GHz. Along this circle,
the first transition peak occurs near θ = 64.4◦ where the set
of the microwave frequencies is (ω1,ω2) = (2.9511, 2.9570)
GHz. Since ωq = 8.8356 GHz, these frequencies fulfill the
three-photon transition condition when (photon number from
Mw1, photon number from Mw2) = (+6,−3). The plus and
minus signs imply that the energy of six intake photons from
Mw1 at 2.9511 GHz equals the qubit excitation energy, giving
away three photons to Mw2 at 2.9570 GHz. Frequency con-
version at higher photon numbers are also detectable when
the two frequencies are tunned closer to the qubit reso-
nance frequency. These higher multiphoton FC’s produce the
fine structure in the middle of the absorption spectrum. One
can easily identify various single- and multiphoton pump-
ing possibilities, within the three-photon transition regime,
i.e. mω1 + nω2 = ωq with n+ m = 3. As we see, the FC
occurs when m (or n) < 0, which implies that |m (or n)|
number of photons is pumped from Mw1 to Mw2 (or vice-
versa).

Figure 2. (a) Transition probability along the white-dashed circle
(from figure 1(b)), between 60◦ < θ < 210◦ . This angle is related to
the driven frequencies as ω1 = ω(0)

1 + r cos(θ), and
ω2 = ω(0)

2 + r sin(θ), where r = 15 MHz is the radius of the
scanned spectrum. We set ω(0)

1 = ω(0)
2 = 2.945 GHz. (b) The

calculated peaks demonstrate the FC in three-photon regime for the
transition manifold (4,−1), away from the qubit resonance
frequency. Each peak represent the transition probability
corresponding to a (4,−1) conversion at the given frequencies. The
up- and down-conversions are labeled by ‘+’ and ‘−’ signs on the
blue and red plots, respectively. The numbers indicate the
conversion magnitude, Ω1,2 = ω2 − ω1. The full width at half
maximum (FWHM) of the individual peaks are 0.36, 0.89, 0.66, 0.3,
0.2, 0.16, 0.12 MHz for the conversion magnitudes of −1.5, −1.0,
−0.5, +0.5, +1.0, +1.5, +2.0 GHz, respectively.

The next FC signal, in figure 2(a), is observed at θ =
69.7◦. The set (ω1,ω2) = (2.9498, 2.9567) GHz at this point
corresponds to photon numbers (5,−2), indicating a two-
photon pumping process from Mw1 to Mw2. The next line in
this spectrum is single photon pumping at θ = 78.2◦, where
(ω1,ω2) = (2.9476, 2.9548) GHz. Here, three photons from
Mw1 contributes to the qubit excitation, and one photon is
pumped toMw2 at 2.9548GHz, i.e.(4,−1). The transition line
at θ = 93.5◦ represents the three-photon excitation by Mw1
only, i.e. (3, 0), at ω1 = 2.9471 GHz. The broad feature at θ =
119◦ gives the contribution of two photons fromMw1 and one
photon from Mw2, i.e. (2, 1), at (ω1,ω2) = (2.9368, 2.9620)
GHz. By symmetry, the other transition peaks in this plot can
be labeled properly to determine the single-and multi-photon
FC’s from Mw2 to Mw1 (see the labels in figures 1(b) and
2(a)).

We would like to point out that FC occurs not only for small
frequency differences from the qubit transition frequency (as
discussed above), but also when the microwave driving fre-
quencies are tuned far away from the qubit transition fre-
quency. For demonstration, the up- and down-conversions at
far detuning regime are presented in figure 2(b). For each con-
version case, the transition probability plot is shown in blue,
and red, for up- and down-conversions, respectively. The sys-
tem is driven within the (4,−1) manifold, when three Mw1
photons are absorbed by the qubit and one is pumped to Mw2.
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The up- and down-conversions are labeled by ‘+’ and ‘−’
signs on this plot, while the numbers indicate the conversion
magnitude, Ω1,2 = ω2 − ω1. Since in these calculations we
keep the qubit frequency fixed, the conversion frequency is
the output property that we control. For instance, in order to
achieve+1 GHz up-conversion, i.e. Ω1,2 = +1 GHz, one may
tune the input frequency at ω1 = 3.2785 GHz. In this case,
within the (4,−1) manifold, the qubit acts as a frequency up-
converter and provides the output frequency to ω2 = 4.2785
GHz. Similarly, to achieve a −1 GHz down-conversion, i.e.
Ω1,2 = −1 GHz, the Mw1 frequency is tuned to ω1 = 2.6119
GHz. Now, within the same (4,−1) manifold, the qubit acts as
a frequency down-converter and delivers the output frequency
atω2 = 1.6119GHz. As presented in figure 2(b), this qubit cir-
cuit can carry out a wide range of real values for both up- and
-down conversion case scenarios. The FWHM of each peak
is given in the caption of figure 2(b). Each peak broadening
is correlated with the difference between the lower and upper
states at the avoided crossings in the quasienergy plot. This
non-linearity in the dressed states picture is formulated in the
denominator of equation (9) where the 4ω1 − ω2 term appears
in E[4,−1,g] = −ωq

2 + 4ω1 − ω2.
To better elucidate the photon pumping physics, we intro-

duce an effective Hamiltonian that models each particular
transition manifold. As detailed derivation in appendix B sug-
gests, such (2× 2) matrices can be extracted from the orig-
inal Floquet Hamiltonian by an adiabatic elimination of the
intermediate dressed states [3],

Ĥ(3,0)
F =

[
E[3,0,g] g(3,0)eff

g(3,0)eff E[0,0,e]

]
, (7)

g(3,0)eff = − 4A3
1Δ

E3
[3,0,g]

.

Ĥ(2,1)
F =

[
E[2,1,g] g(2,1)eff

g(2,1)eff E[0,0,e]

]
, (8)

g(2,1)eff = −10A2
1A2Δ

E3
[2,1,g]

.

Ĥ(4,−1)
F =

[
E[4,−1,g] g(4,−1)

eff

g(4,−1)
eff E[0,0,e]

]
, (9)

g(4,−1)
eff = −20A4

1A2Δ

E5
[4,−1,g]

,

where E[3,0,g] = −ωq
2 + 3ω1, and E[0,0,e] =

ωq
2 , E[2,1,g] =

−ωq
2 + 2ω1 + ω2, and E[4,−1,g] = −ωq

2 + 4ω1 − ω2.
As illustrated in figure 3(a), a graph theoretic representation

is helpful for understanding themultiphoton process. The three
manifolds discussed in this figure are (4,−1), (3, 0) and (2, 1).
The red path in figure 3(a) indicates the (4,−1) transition; the
green and blue paths correspond to the (3, 0) and (2, 1) tran-
sitions, respectively. As can be seen in equations (7)–(9), for
each case, the diagonal entries of the corresponding (2× 2)
Hamiltonian are the energies of the initial and final states
of each graph path; and the off-diagonal coupling elements
are proportional to the product of the weights of the edges

Figure 3. (a) Graph-theoretical illustration of the two-dimensional
Floquet space. The three manifolds, namely (4,−1), (3, 0), and
(2, 1), are indicated as the red, green and blue paths on the graph,
respectively. The parameter space of this driven system,
{Δ,A1,A2}, is indicated as the weights of the graph edges. The
transition spectrum corresponding to these paths, obtained from
equations (7)–(9), are presented in (b). The full-Floquet result is
given as black-dashed line for comparison purpose. (c) Comparison
of the Floquet and analytical, equation (10), values for the shift
observed in the (3, 0) peak position as a function of (A2). The Mw1
power is kept constant at A1 = 0.8 GHz. The (3, 0) peak is originally
expected to be seen at ωq/3 = 2.9452 GHz (i.e. when A2 = 0).

involved in each path. These weights construct the param-
eter space of the driven system, {Δ,A1,A2}. The transition
probabilities presented in figure 3(b) are obtained by solving
the eigenvalue problem in equations (7)–(9). The prominent
peaks in the full Floquet spectrum are reproduced, but shifted,
with the reduced graph-theoretic Hamiltonian approach. The
spectral peaks deviate from the bare states due to photon
dressing [38]. Within the rotating-wave approximation, such
resonance shift can be expressed analytically in the form
[21, 37],

ξN =
A2
1

2(ω1 − ω2)
(
1
N

+
(A1/A2)2

N + 1
), (10)

where N indicates the number of photons involved in the
transition, N = n+ m. This effect is presented in figure 3(c)
for the shift observed in the position of the (3, 0) transition
peak.

For each manifold, the peak broadening can be explained
quantitatively within the provided effective Hamiltonian
approximation, equations (7)–(9). The width of the peaks,
can be determined by the frequency-dependent effective cou-
pling strengths, geff . The FWHM of the individual peaks in
figure 3(b) are 8.3 MHz, 2.2 MHz, and 0.27 MHz for (2, 1),

4
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Figure 4. (a) The closer view of the central region of the
interference patterns from the calculated absorption spectrum.
Frequency detuning step size is 40 kHz. The arrow indicates the
position of the three-photon suppression in the (n1 = 0, n2 = 3)
manifold, where n1,2 are the number of photons absorbed or emitted
in the two microwaves. (b) Three-photon transition suppression
(solid blue line) within a small range of frequency tunning. The
population trapping in the |0, 1, g > state is given as the solid red
line. This result is obtained from the reduced Floquet matrix
calculations, when only up to three-photon absorption and emission
processes are allowed for each microwave modes. The Mw1
frequency on x-axis is reported as the detuning around the
suppression point, (ωsup

1 = 2.9456 GHz). For the results in (b) we
set the peak intensities of the microwaves as A1 = 0.24 MHz, and
A2 = 0.024 MHz. The black and white map in (a) shows the
transition probability from |g〉 to |e〉. The inset in (b) shows the
anti-crossing in the eigenenergy spectrum at the suppression point.
The energy gap of Δg = 10 kHz gives a trapping time 2π/Δg ∼
100 μs.

(3, 0) and (4,−1) peaks, respectively, which is in accordance
with the following hierarchy, g(2,1)eff > g(3,0)eff > g(4,−1)

eff .
Another interesting feature in the presented absorption

spectrum is the appearance of transition suppressions at spe-
cific frequencies. We address the origin of this effect in
figure 4. The arrow in figure 4(a) indicates the transition sup-
pression in the (0, 3) manifold. The effect is also observed in
the other three-photonmanifolds, e.g. (−1, 4), (−2, 5), (−3, 6),
etc. The transmission blockade of more than two photons has
been previously reported [39, 40]. The suppression of the tran-
sition probability can also be due to the coherent superposition
of high-order Fourier harmonics closing the dynamical gap
between the Floquet states [41].

To explain the mechanism of such suppression for the (0, 3)
manifold, we reduced the size of the original Floquet matrix,
equation (A10), by allowing only the absorption and emis-
sion processes up to three photons for each microwave mode.
The Fourier index set for each mode is now reduced to mi =
0,±1,±2,±3. The bare state is denoted by index 0, and the
dresses states are given by photon number ±1,±2,±3. The

truncatedmatrix has now the size of 2× 7× 7 = 98. Since we
have removed all of the higher multiphoton contributions from
the Floquet matrix, the only available paths on the reduced
two-dimensional Floquet space involve only four states, see
figure B1.

As presented in the inset in figure 4(b), the suppression
effect can be achieved by tuning the driving frequencies in the
vicinity of a crossing between the Floquet states. The three-
photon resonance suppression can be explained by population
trapping on the graph vertices connecting the |0, 3, g > state to
the |0, 0, e > state. As the solid red curve in figure 4(b) indi-
cates, such population trapping occurs in the |0, 1, g > state.
The occurrence of a maximum in the |0, 1, g > population
manifests itself as the suppression of the (0, 3) transition prob-
ability (solid blue line). This suppression and population trap-
ping occurs at the point of closest avoided crossing between
the two states, which gives the trapping time of 2π/Δg ∼ 100
μs � T1.

In this work, nonlinear multiphoton up/down frequency
conversion in a superconducting flux circuit is demonstrated
with a full Floquet technique. Multiphoton spectra over a
wide microwave range, show photon pumping from one
microwave field to another. To reveal the underlying physics
in the single- andmultiphoton pumpingmechanisms, effective
Hamiltonians are derived with a graph-theoretic approach,
to model the transitions. The suppression of pumping at par-
ticular resonant frequencies are shown to be due to coherent
population trapping in dressed states of the qubit, due to sharp
avoided crossing between qubit states, much the same as the
Mach–Zander interfrometry was proposed with supercon-
ducting qubits [32]. Further work will attempt to include the
relaxation channels, and the effect of the higher states on the
absorption spectrum and the frequency conversion scheme.
Implementation of the proposed scheme with on-chip
microwave transmission line resonators may provide a way
to measure the quantum efficiency of the prospective circuit
quantum electrodynamics designs. The proposed design and
theoretical approach maybe of interest in quantum transducer
design and fabrication for future quantum networks, and to
maintain the inter-connectivity of remote superconducting
quantum machines.
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Appendix A. Two-mode Floquet formalism

In our theoretical formalism, we consider the interaction of the
qubit (modeled as a two-level system) with two microwaves,
equations (4)–(6). The relaxation terms have not been included
in the interaction Hamiltonian. At high T1 values, this approx-
imation does not affect the observation of the multiphoton
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pumping qualitatively. The assignment of Mw1 and Mw2 for
the two microwave fields are arbitrary. Within the two-mode
semiclassical Floquet approach the system will be treated
quantummechanically whereas the fields classically. The time
evolution of the wave function is determined by the time-
dependent Schrödinger equations (in atomic units, � = me =
e = 1),

i
∂ψ

∂t
= Ĥψ. (A1)

According to the generalized Floquet theory, The Hamilto-
nian of the driven two-level system, with bare eigenstates
(|g >, |e >) and eigenvalues (Eg,Ee), has a solution that can
be written as

Ψ(t) = exp(−iqt)φ(t), (A2)

where Φ(t) is periodic in time and q is called the quasienergy.
Substituting equation (A2) into equation (A1), we obtain an
eigenvalue equation for the quasienergy,[

Ĥ(t)− i
∂

∂t

]
Φ(t) = qΦ(t). (A3)

Since we are scanning a wide range of the two microwave
frequencies, we consider the case of incommensurate fre-
quencies, where the combined ω1 and ω2 frequencies is
not necessarily periodic in time. According to the many-
mode Floquet theorem, one can transfer this time-dependent
problem into an equivalent time-independent infinite dimen-
sional Floquet matrix eigenvalue problem, so that the tem-
poral part of the Hamiltonian H(t) and the quasienergy
eigenfunction Φ(t) can be expanded with the double-Fourier
components of any arbitrary set of the fundamental frequencies
(ω1, ω2),

Φ(t) =
∑
m1,m2

Φ[m1,m2] exp[−i(m1ω1t + m2ω2t)], (A4)

Ĥ(t) =
∑
m1,m2

H[m1,m2] exp[−i(m1ω1t + m2ω2t)], (A5)

where the time-independent coefficients Φ[m1,m2] and H[m1,m2]

are spanned by any orthonormal basis set. We employ the
Floquet-state nomenclature,

|α, {m1,m2} >∼= |α > ⊗|{m1,m2} >, α = g, e (A6)

where g and e are system indices, representing the ground and
excited states of the two-level system, respectively. m1 and
m2 are the Fourier indices that run from −∞ to +∞. Sub-
stituting equation (A4), (A5) into equation (A3) and employ-
ing equation (A6), gives the following time-independent
two-mode Floquet matrix eigenvalue equation,

∑
e

∑
{k}

< g; {m1,m2}|ĤF|e; {k} >< e; {k}|qμ;{n} >

= qμ;{n} < g; {m1,m2}|qμ;{n} >, (A7)

where qμν is the quasienergy eigenvalue and |qμν > is the cor-
responding eigenvector. The time-independent two-mode Flo-
quet matrix, ĤF, is defined in terms of equation (A6). More
explicitly, ĤF can be written, in matrix form as,

< g; {mi}|ĤF|e; {k} >

= Ĥ[m−k]
ge +

∑
i

miωiδgeδ{mi};{k}, i = 1, 2 (A8)

where δ{i,j} is the Kronecker delta function. For the effective
Hamiltonian of the superconducting flux qubit,

Ĥ = −1
2

[
ε0 + E(t) Δ

Δ −ε0 + E(t)

]
, (A9)

the structure of the Floquet matrix, which is Hermitian, is
illustrated below (assuming ωq 	 ε0),

ĤF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
A− 2ω2I B 0 0 0

B A− ω2I B 0 0
0 B A B 0
0 0 B A+ ω2I B
0 0 0 B A+ 2ω2I

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A10)
where,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
C − 2ω1I X 0 0 0

X C − ω1I X 0 0
0 X C X 0
0 0 X C + ω1I X
0 0 0 X C + 2ω1I

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(A11)

B =

⎡
⎢⎢⎢⎢⎣
Y 0 0 0 0
0 Y 0 0 0
0 0 Y 0 0
0 0 0 Y 0
0 0 0 0 Y

⎤
⎥⎥⎥⎥⎦ , (A12)

C = −1
2

[
ωq Δ
Δ −ωq

]
, (A13)

X = −1
4

[
A1 0
0 −A1

]
, (A14)

Y = −1
4

[
A2 0
0 −A2

]
. (A15)

The multiply periodic structure of HF holds the follow-
ing important periodic relationships for its eigenvalues, and
eigenvectors,

qμ;{n+k} = qμ;{n} +
∑
i

kiωi, i = 1, 2 (A16)
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and

< g; {mi + k}|qμ;{n+k} >=< g; {mi}|qμ;{n} > . (A17)

Eigenvalues of the Floquet matrix in equation (A10) are
numerically solved by truncating the number of Floquet
blocks. The converged results presented in this paper are gen-
erated by the inclusion of 21 blocks (adsorption and emission
up to 10 photons for each mode). After solving the eigen-
value problem of the Floquet matrix, the time-averaged tran-
sition probability between |g > and |e > can be computed
as,

Pg→e =
∑
μ

∑
{n}

∑
{m}

| < e; {m}|qμ;{n} > . < qμ;{n}|g; {0} > |2.

(A18)
Extending Shirley’s expression, [42], for the case of

a two-level system in a monochromatic field, equation
equation (A18) can be cast into an alternative form,

Pg→e =
1
2

[
1− 4

(
∂qg00
∂ωq

)2
]
, (A19)

which shows that Pg→e � 1
2 .

Equation (A18) is corresponding to the probability of find-
ing the qubit system in the excited state in the experiment. The
transition probability plots presented in this work are obtained
by applying this equation. There has been no approximation
made in equation (A18) to solve the time-dependent Hamil-
tonian of equation (4). Therefore this matrix can be applied
for all parameter regimes. Indeed, all the theoretical results
presented in figures 1(b) and 4(a) are obtained by solving
the eigenvalue problem of this two-mode Floquet matrix, and
calculating the time-averaged transition probabilities between
|g > and |e > using equation (A18).

The effects of the microwave amplitudes and the tunnel
splitting on the transition spectrum are evaluated in figure A1.
Besides the broadening effect, the shift in the position of the
(0, 3) line is also indicated by a black arrow to demonstrate
the pronounced effect of increasing the tunnel splitting in
figure A1(b), compared to the Stark shift in figure A1(a).

Appendix B. Effective Hamiltonian in multiphoton
region

Although truncated, the size of the Floquet matrix,
equation (A10), that one needs to solve to get each data
points in a contour plot, like the one presented in figure 1(b),
can increase dramatically for the higher-order processes. In
this study, to obtain convergence in the three-photon transition
regime, we truncated the matrix at 2× 21× 21 = 882, which
includes all the transition channels for the qubit with ±10
photons processes. Here, we introduce an effective Hamilto-
nian approach that models each particular transition manifold.
We show that such (2× 2) matrices can be extracted from the
original Floquet Hamiltonian, equation (A10) and reproduce
the main features of the solution of the full Floquet matrix.

Figure B2 shows the four possible paths from |3, 0, g > to
|0, 0, e >, which are responsible for the (3, 0) peak reported

Figure A1. (a) The effect of the microwave peak intensity, A/ε0, on
the transition probability along the white dashed line in figure 1(b).
Here, the tunnel splitting is kept constant at Δ = 8× 10−3ε0.
(b) The effect of the tunnel splitting, Δ/ε0, is considered at constant
microwave peak intensity A = 4× 10−2ε0. For these calculations
we set A = A1 = A2. Besides the broadening effect, the shift in the
position of the (0, 3) line is also indicated by a black arrow to
demonstrate the pronounced effect of increasing the tunnel splitting
in (b), compared to the Stark shift in (a).

in figure 1(b). The truncated Floquet Hamiltonian for this
manifold can be written as,

ĤF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ωq
2

+ 3ω1 Δ 0 0 0

Δ
ωq
2

+ 3ω1 A1 0 0

0 A1
ωq
2

+ 2ω1 A1 0

0 0 A1
ωq
2

+ ω1 A1

0 0 0 A1
ωq
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B1)
For any of these paths, one canwrite the set of five Schrödinger
equations for the evolution of the dressed states involved,
with their corresponding amplitudes, (c1–c5). For instance, the
path presented in the top-left panel in figure B2, would be
formulated as,

iċ1 = (−ωq
2

+ 3ω1)c1 +Δc2,

iċ2 = (
ωq
2

+ 3ω1)c2 + A1c3,

iċ3 = (
ωq
2

+ 2ω1)c3 + A1c4,

iċ4 = (
ωq
2

+ ω1)c4 + A1c5,

iċ5 = (
ωq
2
)c5.

(B2)
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Figure B1. Graph-theoretical illustration of the fours possible paths
on the one-dimensional Floquet subspace, representing the (3, 0)
transition manifold. The weight of all the horizontal edges is the
peak amplitude of Mw1, A1. The weight of all the vertical edges is
the tunnel splitting,Δ.

Figure B2. Graph-theoretical illustration of the ten possible
paths on the two-dimensional Floquet subspace, representing
the (2, 1) transition manifold. The weight of the edges are
given as the Mw1 power, A1, Mw2 power, A2, and the tunnel
splitting, Δ.

Under adiabatic approximation, we can assume that the
population of the three intermediate states, do not change
significantly, i.e. ċ2 = ċ3 = ċ4 = 0. This gives,

c2 = − A1c3
ωq
2 + 3ω1

,

c3 = − A1c4
ωq
2 + 2ω1

,

c4 = − A1c5
ωq
2 + ω1

.

(B3)

The effective coupling rate between the initial,|3, 0, g > and
final, |0, 0, e >, states, through this particular path, can be then
obtained by plugging in these coefficients into the c1 and c5
rate equations in equation (B2),

gpath(1)eff = − A3
1Δ

E[3,0,e]E[2,0,e]E[1,0,e]
, (B4)

where E[3,0,e] =
ωq
2 + 3ω1, E[2,0,e] =

ωq
2 + 2ω1, and E[1,0,e] =

ωq
2 + ω1. To obtain the total effective coupling rate, one should
sum over the coupling strengths through other three possible
pathways; meaning that,

gtotaleff = gpath(1)eff + gpath(2)eff + gpath(3)eff + gpath(4)eff , (B5)

where,

gpath(2)eff = − A3
1Δ

E[2,0,g]E[2,0,e]E[1,0,e]
,

gpath(3)eff = − A3
1Δ

E[2,0,g]E[1,0,g]E[1,0,e]
,

gpath(2)eff = − A3
1Δ

E[2,0,g]E[1,0,g]E[0,0,g]
.

(B6)

with E[2,0,g] = −ωq
2 + 2ω1, E[1,0,g] = −ωq

2 + ω1, and E[0,0,g] =
−ωq

2 .
Equation (B6) can be simplified by writing all the energies

in terms of E[3,0,g] as (see figure B2)

E[3,0,e] = E[3,0,g] +Δ,

E[2,0,e] = E[3,0,g] +Δ− A1,

E[1,0,e] = E[3,0,g] +Δ− 2A1,

E[2,0,g] = E[3,0,g] − A1,

E[1,0,g] = E[3,0,g] − 2A1.

(B7)

By doing some algebra and keeping only the leading terms
in E[3,0,g], the (2 × 2) effective Hamiltonian can be approxi-
mated as,

Ĥ(3,0)
F =

[
E[3,0,g] g(3,0)eff

g(3,0)eff E[0,0,e]

]
, g(3,0)eff = − 4A3

1Δ

E3
[3,0,g]

, (B8)

where E[3,0,g] = −ωq
2 + 3ω1, and E[0,0,e] =

ωq
2 . It is worth not-

ing that in equations (B4)–(B6) all the four paths share
the same nominator, which remains the same in equation
(B8).

The same approach can be used to obtain the (2 × 2) effec-
tive Hamiltonian for the (2, 1) transition manifold. As can be
seen in figure B1, there are ten possible paths that connect the
|2, 1, g > vertex to |0, 0, e > vertex. The only task here would
be to count for the weighted edges for one of these paths. It
should be mentioned again that the nominator of the effec-
tive coupling in all these ten paths are the same as it appears
in equation (B9). Within the same approximation discussed
above, one could simply write,

Ĥ(2,1)
F =

[
E[2,1,g] g(2,1)eff

g(2,1)eff E[0,0,e]

]
, g(2,1)eff = −10A2

1A2Δ

E3
[2,1,g]

(B9)

where E[2,1,g] = −ωq
2 + 2ω1 + ω2.

The (2 × 2) effective Hamiltonian for (4,−1) is obtained
similarly, considering the fact that there will be 20 possible
pathways connecting E[4,−1,g] and E[0,0,e].

Ĥ(4,−1)
F =

[
E[4,−1,g] g(4,−1)

eff

g(4,−1)
eff E[0,0,e]

]
, g(4,−1)

eff = −20A4
1A2Δ

E5
[4,−1,g]

,

(B10)
where E[4,−1,g] = −ωq

2 + 4ω1 − ω2.
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