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Abstract. In this paper, we study the spatiotemporal dynamics of a diffusive

predator-prey model with generalist predator subject to homogeneous Neu-
mann boundary condition. Some basic dynamics including the dissipation,

persistence and non-persistence(i.e., one species goes extinct), the local and

global stability of non-negative constant steady states of the model are investi-
gated. The conditions of Turing instability due to diffusion at positive constant

steady states are presented. A critical value ρ of the ratio d2
d1

of diffusions of

predator to prey is obtained, such that if d2
d1

> ρ, then along with other suitable

conditions Turing bifurcation will emerge at a positive steady state, in particu-

lar so it is with the large diffusion rate of predator or the small diffusion rate of

prey; while if d2
d1

< ρ, both the reaction-diffusion system and its corresponding

ODE system are stable at the positive steady state. In addition, we provide

some results on the existence and non-existence of positive non-constant steady

states. These existence results indicate that the occurrence of Turing bifurca-
tion, along with other suitable conditions, implies the existence of non-constant

positive steady states bifurcating from the constant solution. At last, by nu-

merical simulations, we demonstrate Turing pattern formation on the effect of

the varied diffusive ratio d2
d1

. As d2
d1

increases, Turing patterns change from

spots pattern, stripes pattern into spots-stripes pattern. It indicates that the

pattern formation of the model is rich and complex.

1. Introduction. Recently, Kang and Fewell [18] studied a host-parasite coevolu-
tionary model, in which the relationship between host(prey) and parasite(predator)
is described by the following ecological model with Holling Type II functional re-
sponse 

du
dt = u

[
r1

(
1− u

K1

)
− av

1+hau

]
,

dv
dt = v

[
r2

(
1− v

K2

)
− d+ eau

1+hau

]
,

(1)
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where u and v represent the population densities of prey and predator at time t,
respectively, ri,Ki(i = 1, 2), a, e, h, d are positive constants with specific ecological
interpretations : r1 and r2 denote the intrinsic growth rate of species u and v, re-
spectively, in the absence of other species; K1 and K2 are the carrying capacities of
species u and v individuals, respectively; d stands for the dead rate of predator in-
dividuals due to hunting or attacking all potential prey resources; a is the capturing
efficiency of a predator and h is the predator handling time. In [18], the ecolog-
ical dynamics for model (1), including the boundedness, permanence, stability of
boundary and interior equilibria, and extinction of one species, were performed.

In system (1), both species u and v follow Logistic growth in the absence of
other species, which indicates that species v has alternative food resources and
could persist in the absence of prey u, i.e., predator species v is generalist. In
natural, many predators are in fact generalist, and their prey consists of different
species(see, for example, [30, 34, 33, 2]). In the last couple of decades, the study
on prey-predator work involving generalist predators has attracted more and more
attentions, and provided additional biological insights on dynamical outcomes for
models with predator being generalist versus specialist. For example, the study
of Symondson et al [35] shows that generalist predators could be effective control
agents and have some unique biocontrol functions that are denied to specialists. The
work of Kang et.al. [18, 19] indicates that models with generalist predator could
exhibit more complicate dynamics and more likely to have “top down” regulation
by comparing to the similar models with specialist predator. We also refer to
[14, 13, 31, 9, 24, 29, 6] for some references on the study of predator-prey models
with generalist predators.

The interactions between predator and prey generally occur over a wide range
of spatial and temporal scales and the spatial diffusions of generalist predator and
its preys play important roles in shaping ecological communities. The parabolic
and elliptic predator-prey models with generalist predators also have been widely
studied. Blat and Brown [1] studied the non-negative steady-state solutions of a
reaction-diffusion system with generalist predator under Dirichlet boundary con-
dition. Treating prey and predator birth-rates as bifurcation parameters in [1],
the ranges of parameters were given for which there exist non-trivial steady-state
solutions. In spatially heterogeneous environment, the reaction-diffusion systems
with generalist predators were studied in [7, 28], and some results on the existence,
non-existence and multiplicity of positive steady states and global bifurcation were
obtained. In [8, 15], the reaction-diffusion models with generalist predators and pro-
tection zones for preys were studied. We also refer to [17, 36] for the study on the
positive steady-state solutions of coupled reaction-diffusion Lotka-Volterra systems,
and [23] for the study of the travelling wave solutions of a reaction-diffusion system
with generalist predator. In this paper, we study the spatiotemporal dynamics of
the reaction-diffusion predator-prey model corresponding to ODE model (1)

∂u
∂t − d1∆u = u

[
r1

(
1− u

K1

)
− av

1+hau

]
, x ∈ Ω, t > 0,

∂v
∂t − d2∆v = v

[
r2

(
1− v

K2

)
− d+ eau

1+hau

]
, x ∈ Ω, t > 0,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(2)

where, Ω is a bounded domain of RN (N ≥ 1) with smooth boundary ∂Ω, ∂
∂ν is

the outward directional derivative normal to ∂Ω, u0, v0 ∈ C(Ω̄) stand for the initial



SPATIOTEMPORAL DYNAMICS OF A DIFFUSIVE PREDATOR-PREY MODEL 2951

conditions, d1 and d2 are positive constants and stand for the random diffusive rates
of the prey and predator, respectively.

When r2 > d and Ω is a two-dimensional bounded connected square domain,
by changing r2 − d and r2

K2
into r2 and m, respectively, (2) becomes the model

studied by Chakraborty [5]. In [5], the condition of Turing bifurcation at positive
constant steady state due to diffusion was given, and different pattern formations
and spatiotemporal chaos were presented by numerical simulation. In this paper,
we discuss the dissipation, persistence and non-persistence(i.e., one species goes
extinct), the local and global stability of non-negative constant steady states of (2).
The conditions of Turing bifurcation at positive constant steady state of (2) are
presented. A critical value ρ of d2

d1
is obtained such that if d2

d1
> ρ, then along with

other suitable conditions Turing bifurcation emerges at a positive steady state, in
particular so it is with the large diffusion rate d2 of predator or the small diffusion
rate d1 of prey; while if d2

d1
< ρ, (2) has the same stability to ODE system (1).

We refer reader to [12, 37, 4, 38, 32, 20] for some references on the recent study of
Turing bifurcation and spatiotemporal pattern formation of some ecological models.

In order to study the stationary pattern induced by diffusions, we also consider
the existence and non-existence of positive non-constant solutions of the steady
state of (2), i.e., the following semi-linear elliptic system

−d1∆u = u
[
r1

(
1− u

K1

)
− av

1+hau

]
, x ∈ Ω,

−d2∆v = v
[
r2

(
1− v

K2

)
− d+ eau

1+hau

]
, x ∈ Ω,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω.

(3)

In [27], the non-existence of non-constant positive steady state solutions of the
following reaction-diffusion predator-prey model with Holling type-II functional re-
sponse and generalist predator was studied

−d1∆u = u(α− u)− muv
1+u , x ∈ Ω,

−d2∆v = v(β − v) + muv
1+u , x ∈ Ω,

∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω,

(4)

where the constant β may be non-positive. It was proved under N ≤ 3 in [27] that
for any given d1, d2, α, β,Ω, there exists a positive constant M , which depends on
d1, d2, α, β,Ω, such that if m ≥ M , then (4) has no non-constant positive solution
when β ≤ 0 and has no positive solution when β > 0. For model (3), we are
interested in the effect of diffusion rates d1 and d2 on the stationary pattern. It

is proved that if r2 < d < r2 + eaK1

1+haK1
and d2 >

1
µ1

(
r2 − d+ eaK1

1+ahK1

)
, where µ1

is the smallest positive eigenvalue of −∆ on Ω with zero-flux boundary conditions,
(3) has no non-constant positive steady state solution for sufficiently large d1. In
addition, some existence results of at least one non-constant positive steady state
solution of (3) are obtained by the index formula given by Pang and Wang[26] and
Leray-Schauder topological degree theory. These existence results indicate that
the occurrence of Turing instability at a positive constant steady state of reaction-
diffusion system, along with other suitable conditions, implies the existence of non-
constant positive steady state bifurcating from the constant solution.

The remaining sections of this paper is organized as follows. In Section 2, we
show the results on the dissipation, permanence, non-persistence, and the local and
global stability of non-negative constant steady states of model (2), as well as Turing
instability at positive constant solutions of (2). In Section 3, we first give a priori
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upper and lower bounds for the positive solutions of (3) in order to calculate the
topological degree, then present the non-existence and existence of positive non-
constant solutions of (3). In Section 4, we perform a series of numerical simulation
to show the occurrence of Turing patterns caused by diffusions. It is found that the
model dynamics exhibit spatiotemporal Turing complexity of pattern formation,
including spots, strips and spots-stripes Turing patterns. At last, we end the paper
with a brief discussion in Section 5.

2. Permanence, stability, Turing instability. In this section, we study the
dissipation, persistence and non-persistence, the local and global stability of non-
negative constant steady states of model (2). Also, Turing instability at the positive
constant solution is studied.

2.1. Permanence. First, we show the dissipation and permanence of (2). Define

Mv = K2

r2

[
r2 − d+ eaK1

1+haK1

]
, mu = K1

r1
(r1 − aMv),

mv = K2

r2

[
r2 − d+ eamu

1+hamu

]
.

Theorem 2.1. (Dissipation) The non-negative solution (u(x, t), v(x, t)) of system
(2) satisfies

lim sup
t→∞

max
Ω̄

u(x, t) ≤ K1, lim sup
t→∞

max
Ω̄

v(x, t) ≤ max{0,Mv}.

Proof. Since u
[
r1

(
1− u

K1

)
− av

1+hau

]
≤ r1u

(
1− u

K1

)
in Ω×[0,∞), we can directly

get the first assertion from the comparison argument for parabolic problems [11].
Thus, there exists T > 0 such that u(x, t) ≤ K1 +ε for (x, t) ∈ Ω× [T,∞). It follows
that v(x, t) satisfies

∂v
∂t − d2∆v ≤ v

[
r2

(
1− v

K2

)
− d+ ea(K1+ε)

1+ha(K1+ε)

]
, x ∈ Ω, t > T,

∂v
∂ν = 0, x ∈ ∂Ω, t > T,

v(x, T ) > 0, x ∈ Ω.

If d ≤ r2 + eaK1

1+haK1
, let z(t) be a solution of the ODE z′(t) = z

[
r2

(
1− z

K2

)
− d+ ea(K1+ε)

1+ha(K1+ε)

]
, t > T,

z(T ) = max
x∈Ω̄

v(x, T ) > 0.

Then

lim
t→∞

z(t) =
K2

r2

(
r2 − d+

ea(K1 + ε)

1 + ha(K1 + ε)

)
.

It follows from the comparison argument [11] that v(x, t) ≤ z(t), and hence

lim sup
t→∞

max
Ω̄

v(x, t) ≤ K2

r2

(
r2 − d+

eaK1

1 + haK1

)
.

by the arbitrariness of ε. If d > r2 + eaK1

1+haK1
, we have the differential inequality

∂v

∂t
− d2∆v ≤ −r2v

K2
,

and the same argument above yields lim sup
t→∞

max
x∈Ω̄

v(x, t) ≤ 0. In either case, the

second assertion holds. This completes the proof.
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The following result gives the sufficient conditions for the permanence of (2).

Theorem 2.2. (Permanence) If either
(i) r2 > d and r1

a > Mv; or
(ii) r2 ≤ d and r1

a > Mv > mv > 0,
then any positive solution (u(x, t), v(x, t)) of system (2) satisfies

lim inf
t→∞

min
x∈Ω̄

u(x, t) ≥ mu, lim inf
t→∞

min
x∈Ω̄

v(x, t) ≥ mv.

Proof. We only show the proof for the case r2 ≤ d. Choose any ε : 0 < ε < mu

sufficiently small, such that r1 − a(Mv + ε) > 0 and r2 − d + ea(mu−ε)
1+ha(mu−ε) > 0. In

view of Theorem 2.1, there exists T > 0 such that v(x, t) ≤ Mv + ε in Ω × [T,∞).
Thus, we have that u(x, t) is an upper solution of

∂z
∂t − d1∆z = z

[
r1

(
1− z

K1

)
− a(Mv + ε)

]
, x ∈ Ω, t > T,

∂z
∂ν = 0, x ∈ ∂Ω, t > T,

z(x, T ) = u(x, T ) > 0, x ∈ Ω.

(5)

Let w(t) be the unique positive solution of the following problem
dw
dt = w

[
r1

(
1− w

K1

)
− a(Mv + ε)

]
, t > T,

w(T ) = min
Ω̄
u(x, T ) > 0.

Then w(t) is a lower solution of (5) and lim
t→∞

w(t) = K1

r1
(r1 − aMv) = mu by the

arbitrariness of ε. It follows from the comparison principle [11] that the desired
first assertion holds. Hence, there exists T0 > T such that u(x, t) ≥ mu − ε in
Ω× [T0,∞). Thus, we have that v(x, t) is an upper solution of

∂z
∂t − d2∆z = z

[
r2

(
1− z

K2

)
− d+ ea(mu−ε)

1+ha(mu−ε)

]
, x ∈ Ω, t > T0,

∂z
∂ν = 0, x ∈ ∂Ω, t > T0,

z(x, T0) = v(x, T0) > 0, x ∈ Ω,

Again, using the comparison principle [11], we can get the second assertion. The
proof is completed.

2.2. Non-persistence. It is known from [18] that system (2) has two semi-trivial

constant steady states E10 = (K1, 0) and E01 =
(

0, (1− d
r2

)K2

)
if r2 > d. In this

subsection, we discuss the global stability of the constant steady states E10 and
E01, which implies that one species goes extinct and system (2) has no positive
non-constant steady state regardless of the diffusion coefficients.

Theorem 2.3. (Non-persistence) 1. If d > r2+ eaK1

1+haK1
, then any positive solution

(u(x, t), v(x, t)) of (2) satisfies

lim
t→∞

(u(x, t), v(x, t)) = (K1, 0) uniformly on Ω̄.

Thus E10 = (K1, 0) is globally uniformly asymptotically stable in R2
+.

2. If d < r2 and one of the following conditions is satisfies
(i) ahK1 ≤ 1 and r1

a < m̃v, or
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(ii) ahK1 > 1 and r1(1+ahK1)2

4a2hK1
< m̃v,

where, m̃v = K2

r2
(r2 − d), then any positive solution (u(x, t), v(x, t)) of (2) satisfies

lim
t→∞

(u(x, t), v(x, t)) =

(
0,

(
1− d

r2

)
K2

)
uniformly on Ω̄.

Thus E01 =
(

0,
(

1− d
r2

)
K2

)
is globally uniformly asymptotically stable in R2

+.

Proof. 1. From the proof of Theorem 2.1, there exists a positive function z(t)
satisfying lim

t→∞
z(t) = 0 such that max

x∈Ω̄
v(x, t) ≤ z(t). Thus, v → 0 uniformly on Ω̄

as t→∞.
For any ε, 0 < ε � 1, there exists T, 0 < T < ∞, such that v(x, t) ≤ ε, ∀x ∈

Ω̄, t ≥ T . Therefore,
∂u
∂t − d1∆u ≥ u

[
r1

(
1− u

K1

)
− aε

]
, x ∈ Ω, t ≥ T,

∂u
∂ν = 0, x ∈ ∂Ω, t ≥ T,

u(x, T ) > 0, x ∈ Ω̄,

Applying the comparison principle [11], we have that

lim inf
t→∞

min
x∈Ω̄

u(x, t) ≥ K1

r1
(r1 − aε).

The arbitrariness of ε then implies that lim inf
t→∞

min
x∈Ω̄

u(x, t) ≥ K1. This, along with

the result of Theorem 2.1, implies that u→ K1 uniformly on Ω̄ as t→∞.
2. By the second equation of (2), we have

∂v
∂t − d2∆v ≥ v

[
r2

(
1− v

K2

)
− d
]
, x ∈ Ω, t > 0,

∂v
∂ν = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x) ≥ 0, x ∈ Ω.

Since r2 > d, it follows from a comparison argument that

lim inf
t→∞

min
x∈Ω̄

v(x, t) ≥ K2

r2
(r2 − d) = m̃v. (6)

This implies that for any ε, 0 < ε � 1, there exists T, 0 < T < ∞, such that
v(x, t) ≥ m̃v − ε,∀x ∈ Ω̄, t ≥ T . Therefore,

∂u
∂t
− d1∆u ≤ u

1+ahu

[
(r1 − a(m̃v − ε)) + r1(ahK1−1)

K1
u− r1ah

K1
u2

]
, x ∈ Ω, t ≥ T,

∂u
∂ν

= 0, x ∈ ∂Ω, t ≥ T,

u(x, T ) > 0, x ∈ Ω̄.

Let w(t) be the solution of the ODE w′(t) = w
1+ahw

[
(r1 − a(m̃v − ε)) + r1

K1
(ahK1 − 1)w − r1ah

K1
w2
]
, t ≥ T,

w(T ) = max
x∈Ω̄

u(x, T ) > 0.

An application of the comparison principle gives max
x∈Ω̄

u(x, t) ≤ w(t).

If ahK1 ≤ 1 and r1
a < m̃v, we have lim

t→∞
w(t) = 0.
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If ahK1 > 1 and r1(1+ahK1)2

4a2hK1
< m̃v, then[

r1

K1
(ahK1 − 1)

]2

+ 4(r1 − a(mv − ε))
r1ah

K1
< 0,

which also implies that lim
t→∞

w(t) = 0. Thus, u → 0 uniformly on Ω̄ as t → ∞. It

follows that there exists T1 > T such that u(x, t) ≤ ε,∀x ∈ Ω̄, t ≥ T1. Therefore,
∂v
∂t − d2∆v ≤ v

[
r2

(
1− v

K2

)
− d+ eaε

]
, x ∈ Ω, t > T1,

∂v
∂ν = 0, x ∈ ∂Ω, t > T1,

v(x, T1) > 0, x ∈ Ω̄.

Again by a comparison argument, we have

lim sup
t→∞

max
x∈Ω̄

v(x, t) ≤ K2

r2
(r2 − d+ eaε).

The arbitrariness of ε then implies that lim sup
t→∞

max
x∈Ω̄

v(x, t) ≤ K2

r2
(r2 − d). This,

along with (6), implies that v → K2

r2
(r2 − d) uniformly on Ω̄ as t → ∞. The proof

is completed.

2.3. Local stability and Turing bifurcation. Except the two semi-trivial con-

stant steady states E10 = (K1, 0) and E01 =
(

0, (1− d
r2

)K2

)
(r2 > d), system (2)

has a trivial constant steady state E00 = (0, 0), and at most three positive constant
steady states E∗ = (u∗, v∗)(see [18]). The interior equilibrium E∗(u∗, v∗) of system
(1) satisfies the following two equations

r1

(
1− u

K1

)
− av

1+hau = 0⇔ v = r1(K1−u)(1+ahu)
aK1

,

r2

(
1− v

K2

)
− d+ eau

1+hau = 0⇔ v = K2

r2

[
eau

1+ahu + r2 − d
]
.

In this subsection, we analyze the local stability of these constant steady states.
Also, Turing instability of the positive constant steady state E∗ = (u∗, v∗) is studied.

Assume that 0 = µ0 < µ1 < · · · are the eigenvalues of the operator −∆ on Ω
with the homogeneous Neumann boundary condition. Set Sp = {µ0, µ1, µ2, · · · }
and E(µi) the eigenspace corresponding to µi in C1(Ω̄). Let

X = {w ∈ [C1(Ω̄)]2| ∂νw = 0 on ∂Ω}, (7)

{φij |j = 1, · · · ,dimE(µi)} be an orthonormal basis of E(µi), Xij = {cφij |c ∈ R2},
then

X =

∞⊕
i=1

Xi, where Xi =

dimE(µi)⊕
j=1

Xij .

For the sake of simplicity, we rewrite system (2) in a compact form
wt = D∆w + F (w), x ∈ Ω, t > 0,
∂w
∂ν = 0, x ∈ ∂Ω, t > 0,
w(x, 0) = (u0(x), v0(x))T , x ∈ Ω,

(8)

where w = (u(x, t), v(x, t))T , D = diag(d1, d2) and

F (w) =

 r1u
(

1− u
K1

)
− auv

1+ahu

r2v
(

1− v
K2

)
− dv + eauv

1+ahu

 .
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For convenience, set

j11 = − r1u
∗

K1
· 2ahu∗−(ahK1−1)

1+ahu∗ , j12 = − au∗

1+ahu∗ ,

j21 = eav∗

(1+ahu∗)2 , j22 = − r2v
∗

K2
,

(9)

and

H(d1, d2, µ) := d1d2µ
2 − (d1j22 + d2j11)µ+ (j11j22 − j12j21). (10)

Denote the discriminant of H(d1, d2, µ) = 0 as follows

Q := Q(d1, d2) = (d1j22 + d2j11)2 − 4d1d2(j11j22 − j12j21). (11)

If Q(d1, d2) > 0, then H(d1, d2, µ) = 0 has two real roots, denoted by

µ±(d1, d2) :=
1

2d1d2
(d1j22 + d2j11 ±

√
Q). (12)

Define

B := B(d1, d2) = {µ : µ ≥ 0, µ−(d1, d2) < µ < µ+(d1, d2)}. (13)

Now, we give the main results on the local stability of the non-negative constant
steady states of system (2). For this, we make the following assumptions{

r1r2
K1K2

(2ahu∗ − ahK1 + 1) + ea2

(1+ahu∗)2 > 0,

K1 > 2u∗ + 1
ah .

(H)

We also take the following notations

N1(u∗) = u∗

1+ahu∗

[
ea+ r1

K1
(2ahu∗ − ahK1 + 1)

]
,

N2(u∗) = u∗

1+ahu∗

[
d2r1
d1K1

(2ahu∗ − ahK1 + 1) + ea
]
,

N3(u∗) = 2
[
d2
d1
· r1(K1−u∗)u∗

aK1

(
r1r2
K1K2

(2ahu∗ − ahK1 + 1) + ea2

(1+ahu∗)2

)] 1
2

.

Theorem 2.4. (Local stability and Turing instability)

1. For the positive constant steady state E∗ = (u∗, v∗) of system (2),
(i) if K1 ≤ 2u∗ + 1

ah , it is locally uniformly asymptotically stable;
(ii) under Condition (H), it is locally uniformly asymptotically stable if

0 < d < r2 + min{N1(u∗), N2(u∗)}; (14)

(iii) under Condition (H), it is locally uniformly asymptotically stable if

max{r2 +N2(u∗), 0} < d < r2 + min{N1(u∗), N2(u∗) +N3(u∗)}; (15)

(iv) under Condition (H) and

max{r2 +N2(u∗) +N3(u∗), 0} < d < r2 +N1(u∗), (16)

it is locally uniformly asymptotically stable if B(d1, d2) ∩ Sp = ∅; while it is
Turing instability if B(d1, d2) ∩ Sp 6= ∅.

2. The semi-trivial constant steady state E10 = (K1, 0) of system (2) is locally
uniformly asymptotically stable if d > r2 + eaK1

1+ahK1
.

3. The semi-trivial constant steady state E01 = (0, (1 − d
r2

)K2) of system (2) is

locally uniformly asymptotically stable if r1
aK2

< 1− d
r2

.

4. The trivial constant steady state E00 = (0, 0) of system (2) is always unstable.
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Proof. The linearization of system (8) can be expressed by wt = L(w) ≡ D∆w +
J |Ew, where

J |E =

(
r1 − 2r1u

K1
− av

(1+ahu)2 − au
1+ahu

eav
(1+ahu)2 r2 − 2r2v

K2
− d+ eau

1+ahu

)
.

1. Consider the positive constant steady state E∗ = (u∗, v∗) of (2). The lin-
earization of (8) at E∗ = (u∗, v∗) can be expressed by wt = L(w) ≡ D∆w+J |E∗w,
where J |E∗ = (jmn)2×2 with jmn(m,n = 1, 2) is given in (9).

Note that for each i ≥ 0, Xi is invariant under the operator L. λ is an eigenvalue
of L if and only if λ is an eigenvalue of the matrix Ai = −µiD + J |E∗ for some
i ≥ 0. The characteristic polynomial Det(λI −Ai) is given by

ψi(λ) = λ2 − Tr(Ai)λ+ Det(Ai), i = 0, 1, · · · , (17)

where

Tr(Ai) = −µi(d1 + d2) + Tr(J |E∗),
Det(Ai) = H(d1, d2, µi) = d1d2µ

2
i − (d1j22 + d2j11)µi + Det(J |E∗),

and

Tr(J |E∗) = j11 + j22

= − r1u
∗

K1
· 2ahu∗−(ahK1−1)

1+ahu∗ − r2v
∗

K2

= − u∗

1+ahu∗

(
r1
K1

(2ahu∗ − ahK1 + 1) + ea
)
− r2 + d,

d1j22 + d2j11 = −d2r1u
∗

K1
· 2ahu∗−(ahK1−1)

1+ahu∗ − d1r2v
∗

K2

= − d1u
∗

1+ahu∗

(
d2r1
d1K1

(2ahu∗ − ahK1 + 1) + ea
)
− d1(r2 − d),

Det(J |E∗) = j11j22 − j12j21

= u∗v∗

1+ahu∗

(
r1r2
K1K2

(2ahu∗ − ahK1 + 1) + ea2

(1+ahu∗)2

)
.

(i) If K1 ≤ 2u∗+ 1
ah , it is easy to see that Tr(Ai) < 0,Det(Ai) > 0 for all i ≥ 0.

Therefore, for each i ≥ 0, the two roots λi1 and λi2 of ψi(λ) = 0 both have negative
real parts. By a standard argument(see, for example, [10, 3]), one can prove that
there exists an η > 0 such that

Re{λi1} ≤ −η, Re{λi2} ≤ −η.

Therefore, the spectrum of L, which consists of eigenvalues, lies in { Reλ ≤ −η}.
In the sense of [16], E∗ = (u∗, v∗) is uniformly asymptotically stable.

In the following proofs for (ii)-(iv), we assume that Condition (H) holds. Then

Det(J |E∗) > 0.

(ii) By (14), one can check that d1j22 + d2j11 < 0 and Tr(J |E∗) < 0. It follows
that Tr(Ai) < 0,Det(Ai) > 0 for all i ≥ 0. Therefore, for each i ≥ 0, the two roots
λi1 and λi2 of ψi(λ) = 0 both have negative real parts. Similar to the arguments of
case (i), E∗ = (u∗, v∗) is uniformly asymptotically stable.

(iii) From (15), it is easy to check that d1j22 + d2j11 > 0 by d > r2 + N2(u∗),
and

Q = (d1j22 + d2j11)2 − 4d1d2Det(J |E∗) < 0

by d < r2 + N2(u∗) + N3(u∗). Thus, combining with Det(J |E∗) > 0, we have that
Det(Ai) > 0 for all i ≥ 0. Again, from (15), we have Tr(J |E∗) < 0 by d < r2+N1(u∗)
and hence Tr(Ai) < 0 for all i ≥ 0. Therefore, for each i ≥ 0, the two roots λi1
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and λi2 of ψi(λ) = 0 both have negative real parts and E∗ = (u∗, v∗) is uniformly
asymptotically stable.

(iv) From (16), it is easy to verify that d1j22 + d2j11 > 0 and Q > 0 by
d > r2 +N2(u∗) +N3(u∗) > r2 +N2(u∗). Thus, the equation H(d1, d2, µ) = 0 has
two positive real roots

0 < µ−(d1, d2) < µ+(d1, d2).

Therefore, if the set B(d1, d2) defined by (13) satisfies B(d1, d2)∩Sp = ∅, then for all
i ≥ 0, Det(Ai) > 0. On the other hand, Tr(Ai) < 0 for all i ≥ 0 by d < r2 +N1(u∗).
So, for each i ≥ 0, the two roots λi1 and λi2 of ψi(λ) = 0 both have negative real
parts and E∗ = (u∗, v∗) is uniformly asymptotically stable.

If B(d1, d2) ∩ Sp 6= ∅, then there exists i0 ≥ 1 such that

µi0 ∈ (µ−(d1, d2), µ+(d1, d2)),

which implies that Det(Ai0) < 0. Thus, the equation ψi0(λ) = 0 has a positive real
root. On the other hand, according to the arguments above, one can easily obtain
that ODE system (1) is locally asymptotically stable at the positive equilibrium
E∗ = (u∗, v∗) if Condition (H) holds and 0 < d < r2 + N1(u∗). Therefore, the
positive constant steady state E∗ = (u∗, v∗) of system (2) is Turing instability.

2. Consider the semi-trivial constant steady state E10 = (K1, 0). Clearly,

J |E10 =

(
−r1 − aK1

1+ahK1

0 r2 − d+ eaK1

1+ahK1

)
.

Since d > r2 + eaK1

1+ahK1
, we have Tr(J |E10

) < 0 and Det(J |E10
) > 0. The remaining

arguments are rather similar as above. Therefore, E10 is uniformly asymptotically
stable.

3. Consider the semi-trivial constant steady state E01 = (0, (1− d
r2

)K2)(r2 > d).
Clearly,

J |E01 =

r1 − aK2

(
1− d

r2

)
0

eaK2

(
1− d

r2

)
d− r2

 .

Since r1
aK2

< 1 − d
r2

, we have Tr(J |E01) < 0 and Det(J |E01) > 0. Therefore, E01 is
uniformly asymptotically stable.

4. Consider the trivial constant steady state E00 = (0, 0). It is easy to see that

J |E00
=

(
r1 0

0 r2 − d

)
.

Since J |E00 has a positive eigenvalue r1, E00 = (0, 0) is unstable. The proof is
completed.

Notation. Theorem 2.4 and its proof indicates the follows.
1. The reaction-diffusion system (2) has the same local stabilities at E00, E10 and
E01 with ODE system (1)(see Kang and Fewell [18]). Therefore, the diffusions of
prey and predator don’t influence the stability of E00, E10 and E01;
2. If d2 ≤ d1, then N2(u∗) ≥ N1(u∗), and (15) and (16) fail while (14) holds.
This implies that the reaction-diffusion system (2) has the same local stability at
E∗ with ODE system (1), and the spatial diffusions of species can’t produce Turing
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bifurcation. However, if d2 > d1 then the diffusions of species may drive Turing
instability to occur when (16) and B(d1, d2) ∩ Sp 6= ∅ hold.

The sufficient condition of Turing instability given in Theorem 2.4 doesn’t ex-
plicitly show the effect of diffusion rates on the occurrence of Turing bifurcation.
In the following result, a critical value ρ of d2

d1
is obtained such that if d2

d1
> ρ, then

along with other suitable conditions Turing bifurcation emerges at a positive steady
state; while if d2

d1
< ρ, (2) has the same stability to ODE system (1). Comparing to

Theorem 2.4, the conditions given below is more easy to be checked.

Theorem 2.5. (Turing bifurcation) Assume that (H) holds and 0 < d < r2 +
N1(u∗). Let

ρ =
1

(j11)2

(√
Det(J |E∗) +

√
−j12j21

)2

. (18)

Then ρ > − j22j11 > 1 and

(1) if d2
d1
∈ (0, ρ), the positive constant steady state E∗ = (u∗, v∗) of (2) is locally

uniformly asymptotically stable;
(2) if d2

d1
∈ (ρ,∞), E∗ = (u∗, v∗) of (2) is locally uniformly asymptotically sta-

ble provided that B(d1, d2) ∩ Sp = ∅; while it is Turing instability provided that
B(d1, d2) ∩ Sp 6= ∅.

Proof. First, we prove that − j22j11 > 1. Note v∗ = K2

r2

(
eau∗

1+ahu∗ + r2 − d
)
, we have

−j22

j11
=
K1

r1

eau∗ + (r2 − d)(1 + ahu∗)

u∗(ahK1 − 2ahu∗ − 1)
.

Then, by ahK1 − 2ahu∗ − 1 > 0 and 0 < d < r2 +N1(u∗), we get

−j22

j11
>

K1

r1

eau∗ −N1(u∗)(1 + ahu∗)

u∗(ahK1 − 2ahu∗ − 1)

=
K1

r1

eau∗ − u∗
(
ea+ r1

K1
(2ahu∗ − ahK1 + 1)

)
u∗(ahK1 − 2ahu∗ − 1)

= 1.

The first inequality of Condition (H) is equivalent to H(d1, d2, 0) = j11j22 −
j12j21 > 0. 0 < d < r2 + N1(u∗) implies that Tr(J |E∗) < 0, and hence for all
i ≥ 0, Tr(Ai) < 0. Therefore, ODE system (1) is locally asymptotically stable at
E∗ = (u∗, v∗).

If d1j22 + d2j11 > 0 and the discriminant (11) of H(d1, d2, µ) = 0 satisfies
Q(d1, d2) > 0, then H(d1, d2, µ) = 0 has two positive roots 0 < µ− < µ+. Clearly,

if d2
d1
> − j22j11 , which is equivalent to d1j22 + d2j11 > 0 since j11 > 0 and j22 < 0,

then Q(d1, d2) > 0 is equivalent to d1j22 + d2j11 > 2
√
d1d2Det(J |E∗), i.e.,

j11

(√
d2

d1

)2

− 2
√

Det(J |E∗)

√
d2

d1
+ j22 > 0.

Set
√

d2
d1

= z and consider

φ(z) = j11z
2 − 2

√
Det(J |E∗)z + j22, z > 0,
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which is a degree two polynomial, opening up since j11 > 0 by 2ahu∗−ahK1+1 < 0,
satisfying φ(0) = j22 < 0. Therefore, φ(z) has a unique root z∗ in (0,∞) such that
φ(z) < 0 for 0 < z < z∗ and φ(z) > 0 for z > z∗. Clearly,

z∗ = 1
j11

(√
Det(J |E∗) +

√
Det(J |E∗)− j11j22

)
= 1

j11

√
Det(J |E∗) +

√
1

(j11)2 Det(J |E∗)− j22
j11

>
√
− j22j11 > 1.

It is easy to see that z∗ also can be rewritten as

z∗ =
1

j11

(√
Det(J |E∗) +

√
−j12j21

)
.

Set ρ = (z∗)2. Thus, if d2
d1
> ρ, then Q(d1, d2) > 0. It follows that H(d1, d2, µ) = 0

has two positive roots 0 < µ− < µ+. In this case, if [µ−, µ+] ∩ Sp = ∅, then for all
i ≥ 0, Det(Ai) = H(d1, d2, µi) > 0, and hence all roots of ψi(λ) = 0 have negative
real parts. Consequently, system (2) is locally asymptotically stable at E∗. While if
(µ−, µ+) ∩ Sp 6= ∅, then there exists i0 > 0 such that µi0 ∈ (µ−, µ+), which implies
that Det(Ai0) < 0, and hence ψi0(λ) = 0 have one positive real root. Thus, E∗ is
Turing instability.

If d2
d1
∈
(
− j22j11 , ρ

)
, then d1j22 + d2j11 > 0 and Q(d1, d2) < 0. It follows that for

all µ ≥ 0, H(d1, d2, µ) > 0. If d2
d1
≤ − j22j11 , we also have that H(d1, d2, µ) > 0 holds

for all µ ≥ 0. Thus, for each i ≥ 0, the roots of ψi(λ) = 0 have negative real parts.
As a consequence, system (2) is locally uniformly asymptotically stable at E∗. The
proof is finished.

The following corollary is a direct application of Theorem 2.5. It indicates that
the large diffusion rate d2 of predator or the small diffusion rate d1 of prey will
lead to the occurrence of Turing instability at the positive constant steady state
E∗ = (u∗, v∗) of (2).

Corollary 1. Assume that (H) holds and 0 < d < r2 +N1(u∗).
1. There exists d∗2 > 0 such that for d2 > d∗2, the positive constant steady state

E∗ = (u∗, v∗) of (2) is locally uniformly asymptotically stable if j11
d1

< µ1; while it

is Turing instability if j11
d1

> µ1.
2. There exists d∗1 > 0 such that for d1 < d∗1, the positive constant steady state
E∗ = (u∗, v∗) of (2) is Turing instability.

Proof. 1. If d2 is large enough then d1j22 + d2j11 > 0, Q(d1, d2) > 0, and 0 <
µ− < µ+. Furthermore,

µ−(d1, d2)→ 0, µ+(d1, d2)→ j11

d1
as d2 →∞.

Thus, there exists d∗2 > 0 such that for d2 > d∗2, 0 < µ− < µ1.

If j11
d1

< µ1, then [µ−, µ+] ∩ Sp = ∅, which implies that for all i ≥ 0, Det(Ai) =

H(d1, d2, µi) > 0, and hence all roots of ψi(λ) = 0 have negative real parts. Conse-
quently, system (2) is locally uniformly asymptotically stable at E∗.

If j11
d1

> µ1, then µ1 ∈ (µ−, µ+), which implies that for i = 1, Det(A1) =

H(d1, d2, µ1) < 0, and hence ψ1(λ) = 0 have one positive real root. Thus, E∗ is
Turing instability.
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2. If d1 is sufficiently small then d1j22+d2j11 > 0, Q(d1, d2) > 0, and 0 < µ− < µ+.
Furthermore,

µ−(d1, d2)→ Det(J |E∗)

j11d2
, µ+(d1, d2)→∞ as d1 → 0.

Thus, for sufficiently small d1, (µ−, µ+)∩Sp 6= ∅, and hence E∗ is Turing instability.

2.4. Global stability at positive constant steady states. In this subsection,
we establish the global asymptotic stability of the positive constant steady state
of system (2), which implies the non-existence of non-constant steady state of (2)
regardless of the diffusion coefficients.

Theorem 2.6. (Global stability) The positive constant steady state E∗ = (u∗, v∗)
of system (2) is globally uniformly asymptotically stable if K1 < u∗ + 1

ah .

Proof. Let (u(x, t), v(x, t)) be the solution of (2). Take the Lyapunov function

E(t) =

∫
Ω

W (u(x, t), v(x, t))dx,

where

W (u, v) =

∫
u− u∗

u
du+ γ

∫
v − v∗

v
dv,

and γ = 1
e (1 + ahu∗). By simple computations, we have

dE
dt =

∫
Ω

[
Wu

∂u
∂t +Wv

∂v
∂t

]
dx

= −
∫

Ω

[
d1

u∗

u2 |∇u|2 + γd2
v∗

v2 |∇v|
2
]
dx− γr2

K2

∫
Ω

(v − v∗)2dx

−
∫

Ω

[
r1
K1
− a2hv∗

(1+ahu∗)(1+ahu)

]
(u− u∗)2dx.

Since K1 < u∗ + 1
ah and v∗ = r1(K1−u∗)(1+ahu∗)

aK1
, we have that for x ∈ Ω̄ and t > 0,

r1

K1
− a2hv∗

(1 + ahu∗)(1 + ahu)
≥ r1

K1
− a2hv∗

1 + ahu∗
> 0.

Thus, applying some standard arguments, together with Theorem 2.1 and Theorem
2.2, we have (u(x, t), v(x, t)) → (u∗, v∗) in [L∞(Ω)]2, which implies that (u∗, v∗)
attracts all solution of (2). It follows from Theorem 2.4 that the positive constant
steady state E∗ = (u∗, v∗) of system (2) is globally asymptotically stable. The proof
is completed.

3. Non-constant positive steady-states. In order to study the stationary pat-
tern of (2) induced by diffusions, in this section we discuss the existence and non-
existence of non-constant positive solutions of system (3).

3.1. Bounds for positive steady state. In this subsection we give a priori upper
and lower bounds for the positive solutions of (3). To this aim, we recall the following
maximum principle [22] and Harnack Inequality [21].

Lemma 3.1. ((Maximum principle[22]) Let Ω be a bounded Lipschitz domain in
RN and g ∈ C(Ω̄× R).
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1. Assume that w ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

∆w(x) + g(x,w(x)) ≥ 0 in Ω,
∂w

∂ν
≤ 0 on ∂Ω.

If w(x0) = max
x∈Ω̄

w(x), then g(x0, w(x0) ≥ 0.

2. Assume that w ∈ C2(Ω) ∩ C1(Ω̄) and satisfies

∆w(x) + g(x,w(x)) ≤ 0 in Ω,
∂w

∂ν
≥ 0 on ∂Ω.

If w(x0) = min
x∈Ω̄

w(x), then g(x0, w(x0) ≤ 0.

Lemma 3.2. (Harnack Inequality[21]) Let w ∈ C2(Ω) ∩ C1(Ω̄) be a positive so-
lution to ∆w(x) + c(x)w(x) = 0, where c ∈ C(Ω̄), satisfying zero-flux boundary
conditions on Ω̄. Then there exists a positive constant C = C(||c||∞, N,Ω), such
that max

x∈Ω̄
w(x) ≤ C min

x∈Ω̄
w(x).

For convenience, set Λ = (r1, r2,K1,K2, a, e, h, d). The results of bounds for
positive solutions of (3) can be stated as follows.

Theorem 3.3. (The bounds of the solutions) Assume that r2 < d < r2 + eaK1

1+ahK1
.

For any positive solution (u(x), v(x)) of system (3),

1. u(x) ≤ K1, v(x) ≤ K2

r2

(
r2 − d+ eaK1

1+ahK1

)
.

2. for arbitrary fixed positive number d̃, there exists a positive constant C =
C(N,Ω, d̃,Λ) such that if d1, d2 ≥ d̃, u(x), v(x) ≥ C.

Proof. Let x0, x1 ∈ Ω̄ such that u(x0) = max
x∈Ω̄

u(x) and v(x1) = max
x∈Ω̄

v(x). By

Lemma 3.1, we have from the first equation of (3) that

r1

(
1− u(x0)

K1

)
− av(x0)

1 + ahu(x0)
≥ 0,

which implies u(x0) = max
x∈Ω̄

u(x) ≤ K1. It follows from the second equation of (3)

that

∆v +
v

d2

[
r2

(
1− v

K2

)
− d+

eaK1

1 + haK1

]
≥ 0.

Then, again by Lemma 3.1, we have

r2

(
1− v(x1)

K2

)
− d+

eaK1

1 + haK1
≥ 0,

which implies that v(x1) ≤ K2

r2

(
r2 − d+ eaK1

1+ahK1

)
since r2 − d+ eaK1

1+ahK1
> 0. The

first assertion is proved.
Let

c1(x) =
1

d1

[
r1

(
1− u

K1

)
− av

1 + ahu

]
,

c2(x) =
1

d2

[
r2

(
1− v

K2

)
− d+

eau

1 + ahu

]
.

Clearly,

||c1(x)||∞ ≤
r1

d̃
, ||c2(x)||∞ ≤

1

d̃

(
r2 − d+

eaK1

1 + ahK1

)
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provided that d1, d2 ≥ d̃. Take

C̃ = max

{
r1

d̃
,

1

d̃

(
r2 − d+

eaK1

1 + ahK1

)}
.

Then ||c1(x)||∞ ≤ C̃, ||c2(x)||∞ ≤ C̃, where C̃ depends on N,Ω, d̃,Λ. Thus, in view

of Lemma 3.2, there exists a positive constant C∗ = C∗(N,Ω, d̃,Λ) such that the
Harnack inequality

max
x∈Ω̄

u(x) ≤ C∗min
x∈Ω̄

u(x), max
x∈Ω̄

v(x) ≤ C∗min
x∈Ω̄

v(x). (19)

holds provided d1, d2 ≥ d̃.
Now, we verify the lower bounds of u(x) and v(x). On the contrary, suppose that

the conclusion is not true, then there exist sequences {d1i} and {d2i} with d1i, d2i ≥
d̃ and the positive solution (ui(x), vi(x)) of (3) corresponding to (d1, d2) = (d1i, d2i),
such that

max
x∈Ω̄

ui(x)→ 0, or max
x∈Ω̄

vi(x)→ 0 as i→∞ (20)

by (19). Note that (ui(x), vi(x)) satisfies
−d1i∆ui = ui

[
r1

(
1− ui

K1

)
− avi

1+haui

]
, x ∈ Ω,

−d2i∆vi = vi

[
r2

(
1− vi

K2

)
− d+ eaui

1+haui

]
, x ∈ Ω,

∂ui

∂ν = ∂vi
∂ν = 0, x ∈ ∂Ω.

Integrating by parts, we have that, for i = 1, 2, · · · ,
∫

Ω

[
r1

(
1− ui

K1

)
− avi

1+ahui

]
uidx = 0,∫

Ω

[
r2

(
1− vi

K2

)
− d+ eaui

1+ahui

]
vidx = 0.

(21)

By the regularity theory for elliptic equations [11], there exists a subsequence of
{(ui, vi)}∞i=1, which we shall still denote by {(ui, vi)}∞i=1, and two non-negative
functions ũ, ṽ ∈ C2(Ω), such that (ui, vi) → (ũ, ṽ) in [C2(Ω)]2 as i → ∞. By (20),
we know that ũ ≡ 0 or ṽ ≡ 0. Also, ũ ≤ K1. Furthermore, since ui, vi satisfy (19),
so do ũ, ṽ.

Let i→∞ in (21), we obtain that
∫

Ω

[
r1

(
1− ũ

K1

)
− aṽ

1+ahũ

]
ũdx = 0,∫

Ω

[
r2

(
1− ṽ

K2

)
− d+ eaũ

1+ahũ

]
ṽdx = 0.

(22)

Now, we distinguish three cases to finish the proof.

Case 1. ũ ≡ 0 and ṽ 6≡ 0. From the second inequality of (19), ṽ > 0 on Ω̄. Then

we have
∫

Ω

[
r2

(
1− ṽ

K2

)
− d
]
ṽdx < 0 since r2 < d, which contradicts the second

equation of (22).

Case 2. ṽ ≡ 0 and ũ 6≡ 0. From the first inequality of (19), 0 < ũ ≤ K1 on Ω̃. It

follows from the first equation of (22) that ũ ≡ K1 on Ω̃. By the second equation

of (21), there exists x∗i ∈ Ω̃, assuming x∗i → x∗0 ∈ Ω̃ as i→∞, such that

r2

(
1− vi(x

∗
i )

K2

)
− d+

eaui(x
∗
i )

1 + ahui(x∗i )
= 0. (23)



2964 DINGYONG BAI, JIANSHE YU AND YUN KANG

Let i→∞ in (23), we have r2− d+ eaK1

1+ahK1
= 0, which contradicts the assumption

that d < r2 + eaK1

1+ahK1
.

Case 3. ṽ ≡ 0 and ũ ≡ 0. Similar to the arguments above, there exists x∗i ∈ Ω̃,

assuming x∗i → x∗0 ∈ Ω̃ as i → ∞, such that (23) holds. Let i → ∞ in (23),
we have r2 − d = 0, which contradicts the assumption that r2 < d. The proof is
completed.

3.2. Non-existence of non-constant positive steady states. From Theorem
2.3, we know that if either d < r2 along with other suitable conditions or d > r2 +
eaK1

1+haK1
, (3) has no non-constant positive solution regardless of diffusion coefficients.

In this subsection, we consider the case r2 < d < r2 + eaK1

1+haK1
and establish the

non-existence result for suitable ranges of diffusive rates d1 and d2.

Theorem 3.4. (Non-existence of non-constant steady states) Let µ1 be the smallest
positive eigenvalue of the operator −∆ on Ω with zero-flux boundary condition.

Assume that r2 < d < r2 + eaK1

1+ahK1
and d2 >

1
µ1

(
r2 − d+ eaK1

1+ahK1

)
. Then there

exists a positive constants D1 = D1(N,Ω,Λ) such that (3) has no positive non-
constant steady-state provided that d1 ≥ D1.

Proof. Let (u(x), v(x)) be any positive solution of (3) and denote ḡ = |Ω|−1
∫

Ω
gdx.

By multiplying the first equation of (3) by (u− ū) and integrating over Ω, we have
from Theorem 3.3 that

d1

∫
Ω
|∇(u− ū)|2dx =

∫
Ω

(u− ū)u
[
r1 − r1

K1
u− av

1+ahu

]
dx

=
∫

Ω
(u− ū)2

[
r1 − r1

K1
(u+ ū)− av

(1+ahū)(1+ahu)

]
dx

− aū
1+ahū

∫
Ω

(u− ū)(v − v̄)dx

≤ r1

∫
Ω

(u− ū)2dx+ L̃1

∫
Ω
|u− ū||v − v̄|dx,

where L̃1 is a positive constant depending on N,Ω,Λ. Similarly, multiplying the
second equation of (3) by (v − v̄) and integrating over Ω, we have from Theorem
3.3 that

d2

∫
Ω
|∇(v − v̄)|2dx =

∫
Ω

(v − v̄)v
[
r2 − r2

K2
v − d+ eau

1+ahu

]
dx

=
∫

Ω
(v − v̄)2

[
r2 − r2

K2
(v + v̄)− d+ eaū

1+ahū

]
dx

+
∫

Ω
eav

(1+ahū)(1+ahu) (u− ū)(v − v̄)dx

≤
(
r2 − d+ eaK1

1+ahK1

) ∫
Ω

(v − v̄)2dx+ L̃2

∫
Ω
|u− ū||v − v̄|dx,

where the positive constant L̃2 depending on N,Ω,Λ. Thus, we obtain

d1

∫
Ω
|∇(u− ū)|2dx+ d2

∫
Ω
|∇(v − v̄)|2dx

≤
∫

Ω

[
r1(u− ū)2 +

(
r2 − d+ eaK1

1+ahK1

)
(v − v̄)2

]
dx+ 2L

∫
Ω
|u− ū||v − v̄|dx,

where L = L̃1+L̃2

2 . Applying the well-known ε-Young Inequality, we obtain

d1

∫
Ω
|∇(u− ū)|2dx+ d2

∫
Ω
|∇(v − v̄)|2dx

≤
∫

Ω

(
r1 + L

ε

)
(u− ū)2dx+

∫
Ω

(
r2 − d+ eaK1

1+ahK1
+ εL

)
(v − v̄)2dx,
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where ε is an arbitrary positive constant. It follows from the well-known Poincaré
inequality that

d1

∫
Ω
|∇(u− ū)|2dx+ d2

∫
Ω
|∇(v − v̄)|2dx

≤ 1
µ1

((
r1 + L

ε

) ∫
Ω
|∇(u− ū)|2dx+

(
r2 − d+ eaK1

1+ahK1
+ εL

) ∫
Ω
|∇(v − v̄)|2dx

)
.

By the assumption d2µ1 > r2 − d+ eaK1

1+ahK1
, we can choose ε > 0 small sufficiently

such that d2µ1 ≥ r2 − d + eaK1

1+ahK1
+ εL. Taking D1 >

1
µ1

(
r1 + L

ε

)
, then one can

conclude that u ≡ ū, v ≡ v̄ if d1 ≥ D1. The proof is completed.

3.3. Existence of non-constant positive steady states. In this subsection, we
show the existence of non-constant positive solutions of system (3). From Theorem
2.5, we know that the large ratio of d2 to d1 along with other suitable conditions will
lead to the occurrence of Turing instability at a constant positive steady state of
(2). The existence results of this subsection indicate that the occurrence of Turing
instability at a positive constant steady state of (2) would imply the existence of
non-constant positive steady state bifurcating from the constant solution.

Let X be the space defined in (7). Define

X+ = {(u, v) ∈ X|u > 0, v > 0 on Ω̄}.

System (3) can be written as follows{
−D∆w = F (w), w ∈ X+,
∂νw = 0, on ∂Ω,

(24)

where D = diag(d1, d2) and

F (w) =

(
r1u (1− uK1)− auv

1+ahu

r2v (1− vK2)− dv + eauv
1+ahu

)
.

It is easy to see that w is a positive solution of (24) if and only if w satisfies

G(w) := w − (I−∆)−1(D−1F (w) + w) = 0, w ∈ X+,

where (I−∆)−1 is the inverse of I−∆ subject to the zero-flux boundary condition,
D−1 is the inverse of D and G(·) is a compact perturbation of the identity operator.

Denote w∗ = E∗(u∗, v∗), which is the constant positive steady state of (24). We
shall calculate the index of index(G(·),w∗) by the similar arguments in [26, 3].

Notice that

Gw(w∗) = I− (I−∆)−1(D−1Fw(w∗) + I),

where Fw(w∗) = (jmn)2×2 and jmn(m,n = 1, 2) is given in (9). We investigate the
eigenvalues of the problem

Gw(w∗)Ψ + λΨ = 0, Ψ 6= 0, (25)

where Ψ = (Ψ1,Ψ2)T . Clearly, (25) can be rewritten as
∆Ψ + 1

λ+1 (D−1Fw(w∗)− λI)Ψ = 0, x ∈ Ω,

∂nΨ = 0, x ∈ ∂Ω,
Ψ 6= 0.

(26)

Thus, by a simple calculation, we know that λ is an eigenvalue of (25) if and only if
λ is an eigenvalue of the matrix (µi + 1)−1(D−1Fw(w∗)−µiI) for i ≥ 0. Therefore,
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Gw(w∗) is invertible if and only if the matrixMi := µiI−D−1Fw(w∗) is invertible
for i ≥ 0. Note

Mi = µiI−D−1Fw(w∗) =

(
µi − 1

d1
j11 − 1

d1
j12

− 1
d2
j21 µi − 1

d2
j22

)
.

A straightforward computation yields

Det(Mi) = 1
d1d2

(d1d2µ
2
i − (d1j22 + d2j11)µi + j11j22 − j12j21)

:= 1
d1d2

H(d1, d2, µi).
(27)

If Q(d1, d2) = (d1j22 + d2j11)2 − 4d1d2(j11j22 − j12j21) > 0, then the equation
H(d1, d2, µ) = 0 has two real roots µ± given by (12), i.e.,

µ±(d1, d2) =
1

2d1d2

(
d1j22 + d2j11 ±

√
∆
)
.

Recall

B := B(d1, d2) = {µ : µ ≥ 0, µ−(d1, d2) < µ < µ+(d1, d2)},
Sp = {µ0, µ1, µ2, · · · }.

Denote that m(µi) is the multiplicity of µi. In order to compute index(G(·),w∗),
we introduce the following conclusion by Pang and Wang[26]:

Lemma 3.5. Suppose H(d1, d2, µi) 6= 0 for all µi ∈ Sp. Then index(G(·),w∗) =
(−1)σ, where σ =

∑
µi∈B∩Sp

m(µi) if B ∩ Sp 6= ∅ and σ = 0 if B ∩ Sp = ∅. In

particular, if H(d1, d2, µ) > 0 for all µ ≥ 0, then σ = 0.

In order to state our main results of this subsection, we make the following
assumption

r1r2
K1K2

(2ahu∗ − ahK1 + 1) + ea2

(1+ahu∗)2 > 0,

ahK1 > 1, r2 < d < r2 +
ea(K1− 1

ah )
2+ah(K1− 1

ah )
− r1r2(1+ahK1)2

4a2hK1K2
.

(H∗)

Theorem 3.6. (Existence of non-constant steady state) Assume that (H∗) holds
and ρ is defined in (18). Then for d2

d1
∈ (ρ,+∞), if µ− ∈ (µi, µi+1) and µ+ ∈

(µj , µj+1) for some 0 ≤ i < j, and
j∑

k=i+1

m(µk) is odd, system (3) has at least one

non-constant positive solution.

Proof. First, by the inequalities of the second line of Condition (H∗), we know
that system (3) has a unique positive constant steady state w∗ = (u∗, v∗) with
u∗ < 1

2

(
K1 − 1

ah

)
. In fact, (u∗, v∗) is a positive constant steady state of (3) if and

only if u∗ is a positive positive intercept of f(u) and g(u), where

f(u) =
r1(K1 − u)(1 + ahu)

aK1
, g(u) =

K2

r2

[
eau

1 + ahu
+ r2 − d

]
.

Clearly, f(u) is a degree two polynomial, opening down, with symmetry axis u =

ũ = 1
2 (K1− 1

ah ) and two roots − 1
ah and K1, and f(0) = r1

a > 0, f(ũ) = r1(1+ahK1)2

4a2hK1
;

g(u) is an increasing function with a unique root u0 = d−r2
a[e−h(d−r2)] , and g(0) =
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K2(r2−d)
r2

, lim
u→− 1

ah
+
g(u) = −∞, lim

u→∞
g(u) = K2

r2

(
e
h + r2 − d

)
. If 0 < u0 < ũ and

f(ũ) < g(ũ), which is equivalent to

ahK1 > 1, r2 < d < r2 +
ea(K1 − 1

ah )

2 + ah(K1 − 1
ah )
− r1r2(1 + ahK1)2

4a2hK1K2
,

then f(u) and g(u) have a unique positive intercept u∗. Hence, (3) has a unique pos-
itive constant steady state w∗ = (u∗, v∗), v∗ = f(u∗). Clearly, u∗ < 1

2

(
K1 − 1

ah

)
.

The first inequality of Condition (H∗) is equivalent to H(d1, d2, 0) = DetFw(w∗)
= j11j22− j12j21 > 0. From the proof of Theorem 2.5, we know that if d2d1 > ρ, then
d1j22 + d2j11 > 0 and the discriminant

Q(d1, d2) = (d1j22 + d2j11)2 − 4d1d2(j11j22 − j12j21) > 0.

Therefore, H(d1, d2, µ) = 0 has two positive roots 0 < µ− < µ+. By our assump-
tions, µ− ∈ (µi, µi+1) and µ+ ∈ (µj , µj+1) for some 0 ≤ i < j .

Now, on the contrary, we suppose that system (3) has no non-constant positive
solution. Then Theorem 3.4 implies that we can choose d∗1 and d∗2 satisfying d∗1 >
d1, d

∗
2 > d2 such that

(i) system (3) with the pare of diffusive coefficient (d∗1, d
∗
2) has no non-constant

solutions;
(ii) H(d∗1, d

∗
2, µ) > 0 for all µ ≥ 0.

For τ ∈ [0, 1], we define

D(τ) =

(
τd1 + (1− τ)d∗1 0

0 τd2 + (1− τ)d∗2

)
and consider the problem{

−∆w = D−1(τ)F (w), x ∈ Ω,
∂nw = 0, x ∈ ∂Ω,

(28)

Clearly, w∗ = (u∗, v∗) is the unique positive constant solution of (28). For any
τ ∈ [0, 1], w is a non-constant positive solution of (28) if and only if w satisfies

G∗(w; τ) := w − (I−∆)−1(D−1(τ)F (w) + w) = 0, w ∈ X+.

By Theorem 3.3, there exists C = C(d1, d2, d
∗
1, d
∗
2, N,Ω,Λ) and C = C(Λ) such

that for all τ ∈ [0, 1] the positive solutions of (28) satisfy C < u(x), v(x) < C on Ω̄.
Set

B = {w ∈ X|C < u(x), v(x) < C on Ω̄}.
Then, G∗(w; τ) 6= 0, for all w ∈ ∂B and τ ∈ [0, 1], and the Leray-Schauder topo-
logical degree deg(G∗(·; τ),B, 0) is well defined since (I−∆)−1(D−1(τ)F (w) + w)
is compact. From the homotopy invariance of Leray-Schauder degree, we deduce

deg(G∗(·; 0),B, 0) = deg(G∗(·; 1),B, 0). (29)

When τ = 1, G∗(w; 1) = G(w), the equation G∗(w; 1) = 0 has no other positive
solutions in B except the constant one w∗. In view of µ− ∈ (µi, µi+1) and µ+ ∈
(µj , µj+1), we have B(d1, d2)∩Sp = {µi+1, µi+2, · · · , µj} and σ =

∑
µi∈B∩Sp

m(µi) is

odd. Thus, we have from Lemma 3.5 that

deg(G∗(·; 1),B, 0) = index(G(·),w∗) = (−1)σ = −1. (30)

When τ = 0, we know, from the choice of (d∗1, d
∗
2) and (i) above, that the equation

G∗(w; 0) = 0 has the unique positive solution w∗ in B. Also, (ii) above yields that
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B(d∗1, d
∗
2) ∩ Sp = ∅ which implies that σ = 0 in this case. Thus, we have from

Lemma 3.5 that

deg(G∗(·; 0),B, 0) = index(G∗(·; 0),w∗) = (−1)σ = 1. (31)

Thus, from (29)-(31), we get a contradiction. Therefore, system (3) has at least one
non-constant positive solution. The proof is completed.

From the proofs of Theorem 3.6 and 1, we have the following corollary.

Corollary 2. Assume that (H∗) holds.

1. If j11d1 ∈ (µj , µj+1) for some j ≥ 1, and
j∑
i=1

m(µi) is odd, then there exists d∗2 > 0

such that system (3) has at least one non-constant positive solution if d2 > d∗2.

2. If Det(J|E∗ )
j11d2

/∈ Sp, and all µi, i = 0, 1, 2, · · · , are simple, then there exists a

sequence of intervals{
(d−1 (j), d+

1 (j))
}∞
j=1

, with d+
1 (j + 1) < d−1 (j), d−1 (j)↘ 0+ as j →∞,

such that system (3) has at least one non-constant positive solution for every d1 ∈
(d−1 (j), d+

1 (j)).

4. Turing pattern formation. In Subsection 2.2, we obtain the conditions of
Turing instability of the solutions to model (2). In this section, we show the Turing
patterns caused by diffusion. Via numerical simulation, we find that the model
dynamics exhibits spatiotemporal Turing complexity of pattern formation, including
spots, strips and spots-stripes Turing patterns.

We take a discrete spatial domain of size 100 × 100 (the lattice size) with the
lattice constant 0.2. The numerical integration of model (2) is performed by using
a finite difference approximation for the spatial derivatives and an explicit Euler
method for the time integration with a time step size of 0.01. All our numerical
simulations employ the zero-flux boundary conditions. The initial condition is al-
ways a small amplitude random perturbation around the positive constant steady
state solution E∗ = (u∗, v∗) of model (2). In numerical simulation, it is observed
that the distributions of predator and prey are always of the same type. So, we
only show our results of pattern formation to the distribution of prey u. We have
taken some snapshots with red (blue) corresponding to the high (low) value of prey
u.

In the numerical simulations, the following parameters are fixed as

r1 = 2, r2 = 0.2,K1 = 8,K2 = 0.18, a = 2, d = 0.35, h = 0.5, e = 2. (32)

Then, model (1) has a unique positive equilibrium E∗ = (u∗, v∗) = (1.5934, 2.0768)
and Condition (H) holds. In fact,{

r1r2
K1K2

(2ahu∗ − ahK1 + 1) + ea2

(1+ahu∗)2 = 0.1302 > 0,

2ahu∗ − ahK1 + 1 = −3.8132 < 0.

Also, we have

N1(u∗) =
u∗

1 + ahu∗

[
ea+

r1

K1
(2ahu∗ − ahK1 + 1)

]
= 1.8719,
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and 0.35 = d < N1(u∗) + r2 = 2.0719. The critical value ρ of d2
d1

can be get by

ρ =
1

(j11)2

(√
Det(J |E∗) +

√
−j12j21

)2

= 7.8355.

Now, we consider the pattern formation on the effect of the varied d2
d1

. Setting
d1 = 0.028 fixed.

First, we take d2 = 0.226. Then d2
d1

= 8.0714 > ρ = 7.8355. From Theorem 2.5,

the positive constant steady state solution E∗ = (1.5934, 2.0768) of model (2) is
Turing instability if B(d1, d2) ∩ Sp 6= ∅, where B(d1, d2) = {µ : µ ≥ 0, µ−(d1, d2) <
µ < µ+(d1, d2)} and µ−, µ+ are the roots of the quadratic polynomial (10). For
(d1, d2) = (0.028, 0.226), we have

µ− = 3.8018, µ+ = 6.9054.

It is well known that the eigenvalue problem{
−∆ψ = λψ, (x, y) ∈ Ω = (0, lπ)× (0, kπ),
∂ψ
∂n = 0

has eigenvalues λn,m = n2

l2 + m2

k2 ,m, n = 0, 1, 2, · · · . From the choose of spatial
domain, it is clear that B(d1, d2) ∩ Sp 6= ∅. Thus, Theorem 2.5 implies that E∗ =
(1.5934, 2.0768) is Turing instability and we obtain the stationary spots pattern,
c.f., Fig.1.

In Fig.1, we show the time process of hot spots pattern formation of the prey
u at t = 0; 1000; 5000 for the parameters as (32) and (d1, d2) = (0.028, 0.226). It
indicates that the prey population are driven by predators to a very high level in
hot spots regions surrounded by areas of low prey densities.

Now, taking d2 = 0.27 and keeping other parameters unchange. In this case,
µ− = 2.1499, µ+ = 10.2213 and B(d1, d2) ∩ Sp 6= ∅. By Theorem 2.5, Turing
instability emerges. We obtain the stationary stripes pattern, c.f., Fig.2.

At last, we take d2 = 0.45 and keep other parameters unchange. In this case,
µ− = 0.8846, µ+ = 14.9053, system (2) present stationary spots-stripes pattern,
c.f., Fig.3.

5. Conclusions. In this paper, we study the spatiotemporal dynamics of the
reaction-diffusion predator-prey model with predator being generalist under the
homogeneous Neumann boundary condition. Some basic dynamics including per-
manence(c.f., Theorem 2.2), non-persistnce(c.f., Theorem 2.3), the local and global
stability of the nonnegative steady states of the model (2)(c.f., Theorem 2.4 and 2.6,
respectively) are investigated. The conditions of Turing instability at positive con-
stant steady states due to diffusion are given (c.f., Theorem 2.4, 2.5, and Corollary
1, respectively).

Under suitable conditions, we obtain a critical value ρ of Turing bifurcation such
that if d2

d1
> ρ, then Turing bifurcation would emerge at a positive steady state of

(2); while if d2
d1

< ρ, both reaction-diffusion system (2) and ODE system (1) are
stability at the positive steady state. In particular, the large diffusion rate d2 of
predator or the small diffusion rate d1 of prey will lead to the occurrence of Turing
instability at the positive constant steady state of (2).

From Theorem 2.3 and 3.4, we know that system (2) has no positive non-constant
steady state if one of cases
(1) d > r2 + eaK1

1+haK1
, in this case species v goes extinct regardless of the diffusion
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Figure 1. Stationary hot spots pattern in model (2). The parameter values
are taken as (32) and (d1, d2) = (0.028, 0.226). The zero-flux boundary condi-

tion is used and initial condition is small perturbation around the homogeneous
steady-state E∗ = (1.5934, 2.0768).
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Figure 2. Stationary stripes pattern in model (2). The parameter values are

taken as (32) and (d1, d2) = (0.028, 0.27). The zero-flux boundary condition
is used and initial condition is small perturbation around the homogeneous

steady-state E∗ = (1.5934, 2.0768).

Figure 3. Stationary spots-stripes pattern in model (2). The parameter
values are taken as (32) and (d1, d2) = (0.028, 0.45). The zero-flux bound-

ary condition is used and initial condition is small perturbation around the
homogeneous steady-state E∗ = (1.5934, 2.0768).

coefficients;
(2) d < r2 and either (i) ahK1 ≤ 1 and r1

a < K2

r2
(r2 − d), or (ii) ahK1 > 1

and r1(1+ahK1)2

4a2hK1
< K2

r2
(r2 − d), in this case species u goes extinct regardless of the

diffusion coefficients;

(3) r2 < d < r2 + eaK1

1+haK1
, d2 >

1
µ1

(
r2 − d+ eaK1

1+haK1

)
, and d1 is large enough,

which implies d2
d1

is small enough.
Thus, in order to guarantee the existence of positive non-constant steady state, it
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is necessary that r2 < d < r2 + eaK1

1+haK1
and d2

d1
is large enough. In Theorem 3.6 and

Corollary 2, this case is discussed under suitable conditions. These results indicate
that the occurrence of Turing instability at a positive constant steady state of (2),
along with other suitable conditions, implies the existence of non-constant positive
steady state bifurcating from the constant solution.

By the numerical method, model (2) takes on some different stationary Turing
patterns. For fixed d1 = 0.028, as d2 increases(i.e., as the ratio d2

d1
of diffusions

of predator to prey increases), Turing patterns of model (2) change from spots
pattern(i.e., Fig.1), stripes pattern(i.e., Fig.2) into spots-stripes pattern(i.e., Fig.3).
It indicates that the pattern formation of the model (2) is rich and complex.
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