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HOW TO MODEL HONEYBEE POPULATION DYNAMICS: STAGE STRUCTURE
AND SEASONALITY

JUN CHEN, KOMI MESSAN, MARISABEL RODRIGUEZ MESSAN, GLORIA DEGRANDI-HOFFMAN,
DINGYONG BAI, AND YUN KANG

ABSTRACT. Western honeybees (Apis Mellifera) serve extremely important roles in our ecosystem
and economics as they are responsible for pollinating $ 215 billion dollars annually over the world.
Unfortunately, honeybee population and their colonies have been declined dramatically. The purpose
of this article is to explore how we should model honeybee population with age structure and validate
the model using empirical data so that we can identify different factors that lead to the survival and
healthy of the honeybee colony. Our theoretical study combined with simulations and data validation
suggests that the proper age structure incorporated in the model and seasonality are important for
modeling honeybee population. Specifically, our work implies that the model assuming that (1) the
adult bees are survived from the egg population rather than the brood population; and (2) seasonality
in the queen egg laying rate, give the better fit than other honeybee models. The related theoretical
and numerical analysis of the most fit model indicate that (a) the survival of honeybee colonies requires
a large queen egg-laying rate and smaller values of the other life history parameter values in addition
to proper initial condition; (b) both brood and adult bee populations are increasing with respect to
the increase in the egg-laying rate and the decreasing in other parameter values; and (c) seasonality
may promote/suppress the survival of the honeybee colony.

1. INTRODUCTION

Western honeybee (Apis Mellifera) is an eusocial insect that has an advanced level of social or-
ganization. In honeybee colony, the queen produces the offspring and non-reproductive individuals
cooperate in caring for the young ones, that forms complex colonies [45]. Honeybees play indispens-
able and important roles in human life, economy, and agriculture. For example, honeybees not only
produce valuable products, such as honey, royal jelly, bee wax and propolis in the market, but also are
responsible for pollinating crops such as blueberries, cherries, and almonds, that is worth $215 billion
annually worldwide [42]. If there is no honeybee, it likely leads to changes in human diets and a dis-
proportionate expansion of agricultural land in order to fill this shortfall in crop production by volume
[34]. Unfortunately, honeybee population has been decreasing globally [42]. In the United States, the
total number of honeybee colonies has been reduced approximate 40% to 50%, while in the rest of the
world the total number of colonies is reduced by 5% to 10% [31]. The important and critical causes for
honeybee colony mortalities include diseases, land-use change, pesticides, pathogens and parasites, and
poor beekeeping management [42, 8 32, 30, 9]. The purpose of this article is to explore how we could
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better model colony population dynamics to help us understand the honeybee colony mortalities.

Honeybee colony itself is a complex adaptive system with its own resilience to disturbances, whose
survival depends on its individual quality, its adaptive capacity and its threshold of resilience to pres-
sures [14]. On average, a colony has about 10,000 to 60,000 bees, that consists of a queen (fertile female)
who produces all offspring, a few hundred drones (males) and thousands of workers (sterile females).
Generally, a queen may lay approximate 1000-2000 eggs per day in the peak period [6]. Due to aging
or disability of the queen bee, beekeepers will replace the queen every 1-2 years [6]. Each honeybee
goes through four stages of development: egg, larva, pupa and adult [6]. For worker bees, they need
21 days to eclosion to adult bees [45, 15, 10], and drones need 24 days to mature [10]. Population size
at each stage and the related maturation time have huge influences on the colony development and its
population dynamics [14]. Needless to say, age is linked to division of labor in honeybees [37]. Young
workers In the colony, young workers prefer to perform nursing tasks, while older workers prefer foraging
activities. However, colonies can accelerate, delay, or even reverse their recruitment behavior as the
internal or external environment changes [17].

Not only the age structure will affect the honeybees colony, but the change of season, temperature,
weather, etc. also will influence the honeybees [19, 6, 10, 40]. Through experiments and observations,
honeybee population present periodic fluctuations due to different reasons. For instance, we observe
great foraging activity during spring, summer and fall but the highest activity during the summer [6].
During spring and summer, pollen and nectar from diverse floras are in great abundance, giving rise
to an increase honeybee population. Therefore, given that temperature is one of the main factors in
honeybee food availability and thus brood production, honeybee population size is smaller during the
winter [40, 10]. Thus, the peak of the population is achieved in late June until middle of summer as it
starts to decline [36]. The temperature in the colony also will influence honeybee, middle-age honey-
bees will respond to the heat stress in order to perform [19]. Thus, it is very important to include age
structure and the seasonality in studying of honeybee population dynamics and the factors that affect
healthy of honeybee colonies. Research has shown that the major problems threatening the survival of
honeybee colonies could link to: 1) environmental stressors, such as habitat destruction (urbanization,
deforestation, forest fires); 2) parasites and pathogens, such varroosis and virus; 3) genetic variation
and vitality, like limited importation [32, 30, 42]. In order to quantify the problems and consider the
difficulty of directly observing the dynamics of bee populations, mathematical models can be a powerful
tool to help us understand how the bee population change and predict the fate of the colony.

Mathematical models indeed have been developed to study bee populations dynamics and the re-
lated stressors, particularly the effects of pathogens, parasites and nutrient stress factors [38, 24, 23,
22, 32, 2, 5, 21, 11, 1, 42]. DeGrandi-Hoffman [10] proposed a first simulation model for honeybee
colony dynamics that includes many important factors such weather, egg-laying rate, the age of queen,
foraging and brood life cycles. There are some previous work focusing on how the death rate of foragers
impacts colony viability [23, 22]. Khoury [23] published a compartmental model based on these circum-
stances. The model includes three states, brood, hive and foragers, and incorporates the recruitment
process to study the forager death rate. There is a work [38] that investigated seasonal food availability
and transition of hive to foragers. The most recent recent works [28, 35] consider the seasonality in
the queen egg-laying rate. Messan et al [28] applied seasonality effects into the pollen collection rate
that has annual periodicity by the first order harmonic. Ratti et al [35] also agrees that seasonality



HONEYBEE POPULATION DYNAMICS 93

affects dynamics of honeybee and its parasitic virus. This article [35] incorporated seasonality in var-
roa treatment control as the treatment is applied with four seasons: spring, summer, fall, and winter [35].

Motivated by the previous work on honeybee population models with age structure [23, 22, 21] and
seasonality [38, 28, 35|, we propose and study honeybee population models with different delay terms
to include age structure. We use data to validate our models and explore which model would be more
appreciated and the importance of incorporating seasonality in the honeybee population model. More
specifically, the objective of our paper is to develop a proper honeybee population dynamical model
with age structure to understand important factors for colony survival, and to explore how seasonality
may affect the colony dynamics and its survival.

The remaining of the article is shown as follows: In Section 2, we derive two honeybee colony dy-
namics models that incorporate varied delay terms. In Section 3, we perform rigorous mathematical
analysis for those two models and compare their dynamics. In Section 4, we validate our two mod-
els with real honeybee data. Our study shows the importance of seasonality and suggests that one of
those two proposed models would be more appropriated for studying honeybee population dynamics. In
Section 5, we conclude our study. In the last section, we provide detailed proofs of our theoretical results.

2. MODEL DERIVATIONS

In this section, we focus on modeling of honeybee colony dynamics with age structure. For conve-
nience, we divide the population of honeybee colony into brood and adult bees. Let B(t), H(t) be the
population of brood and adult bees in a given hive at time ¢, respectively. We assume that:

A1: The daily egg laying rate of honeybee queen is r with the survival rate of H?/(K + H? + aB)
where the parameter K is the population of adult bee needed for half of the maximum brood
survival rate and « represents the regulation effects from brood population B. The term
H?/(K + H? +aB) reflects (1) the cooperative brood care from adult bees that perform nursing
and collecting food for brood; and (2) the queen and workers that regulate the actual egg lay-
ing/survival rate based on the current available brood population B, which has been supported
by the literature work [28, 39, 20, 12].

A2: We assume that both brood and adult bees have constant mortality, d; and dj respectively.
The maturation time from brood B to adult bee H is denoted by 7 (7 = 16 for queen, 7 = 21
for workers, and 7 = 24 for drones [6, 22]), thus the maturation rate is termed as follows:

— rH2(t — 1)
~—~— K+ H2?(t—7)4+aB({t—71)

survival rate of brood during time 7

new brood at t — 7

The two assumptions above lead to the following non-linear delayed differential equations of honey-
bee population dynamics (Model (2.1)):

dB _ rH2(t) A B e rH2(t — 1)
dt K+ H2(t)+aB " K+H2t—7)+aB(t—7) 1)
dH g rH(t—7)2 A H

dt K+ H2(t—7)+aB(t—7)
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where we assume that the initial function for H(t) is a nonnegative continuous function defined in
t € [-7,0] and
0 2 dys
rH=(s)e
B(0) = ds. 2.2
O =] %+ taBm® (22)
The biological meaning of each parameter of the proposed model (2.1) is listed in Table 1. In the case
a = 0, the model (2.1) reduces to the following Model (2.3)

dB rH(t) . TH t—T)

= BT

dt K+ H?(t) K+ H?*(t—71) (2.3)

dH H2(t — ’
_ _—dyT r ( T) —th(t)

da - ¢ K+ HAt—1)
Notes: Our proposed model (2.3) (when e = 0 in the model (2.1)) is a single specie model with brood
B and adult H stage where these two stages seem to be decoupled. Thus, we could study the dynamics
of Model (2.3) by exploring the dynamics of H first, then the dynamics of B is totally determined by
H. We would see the analytical results in the next section.

TABLE 1. Biological meanings and references of parameters of models (2.1 & 2.4) with
and without seasonality.

Parameter | Description Estimate/Units Reference

r Daily egg-laying rate of Queen [500 10,000] bees/day Estimated

el the regulation effects of brood [0 20] Estimated
dy Death rate of the brood [0, 0.3] day~! Estimated
dy, Death rate of the adult bees [0, 0.3] day~* Estimated

o The length of seasonality [170, 365] days Estimated
VK Colony size at which brood survival rate is half maximum | for K 150,000, 1,500,000](model 2.4) Estimated

[1%(107),1 % (10%)](model 2.1) bees/day

T Time spent in brood 21 days Khoury 2013
P the time of the maximum laying rate 12 days Harris 1980

In literature (e.g, see [44]), researchers have been using the compartmental models through ODEs to
model population dynamics with age and/or stage structure. Motivated by this, we have the following
delay model

dB  rH2(t) o

dH

5 =
where the term e~%7 B(t — 7) describes the maturation entry rate coming from the juvenile stage with
a survival rate e~%7 during the juvenile period 7.

e WTB(t—71) —dpH()

More specifically, the model (2.4) above assumes that the adult H(t) matures from the survived
brood population at time ¢t — 7. In the following two sessions, we will compare population dynamics of
Model (2.4) and the proposed model (2.1) to address the importances of deriving proper delay popula-
tion models due to the outcomes of dynamics and model validations.
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3. MATHEMATICAL ANALYSIS

The state space of the proposed model (2.1) is X = C([-7,0],R;) x C([—7,0],Ry). We first show
that the proposed model (2.1) is positive invariant and bounded in X as the following theorem:

Theorem 3.1. Assume that the initial functions for B(t) and H(t) are continuous and nonnegative
function in t € [—7,0] with (2.2), then the proposed model (2.1) is positive invariant and bounded in X.

Notes: The detailed proof of Theorem 3.1 is in the last section. Theorem 3.1 implies that our proposed
model is biologically well defined. The model (2.1) always has the extinction equilibrium E. = (0,0)
which would be locally or globally stable as stated in the next theorem:

Theorem 3.2. [Stability of Extinction Equilibrium/ The extinction equilibrium E. of Model (2.1) is
always locally asymptotically stable. If the inequality dy > re_de/Q\/E holds, the extinction equilibrium
FE. is globally stable.

Notes: The detailed proof of Theorem 3.2 is in the last section. Theorem 3.2 indicates that the large
maturation time 7 or the mortality at different stages dj,,d, can lead to the collapsing of the colony.

Now we focus on the condition of the colony survival. Let (B, H) be an interior equilibrium of Model
(2.1). Then it satisfies that the following equations:

rH(t)?

rH(t)? [1—e bT|rH?

0 —dyB — e 7 =dB="—"— """ (31
Kvae2+aBn  *P kv mer+asn YT krm e GV
_ rH(t)? e~ T2
0 = e @7 —dpH(t) = dpH = o 3.2
Ry EM faBE WO = A = s (32)
which gives
dple®™ —1
B = dple™” —1] (3.3)
dp
and
—dpT Hd
0 = T — dy. (3.4)

dy(K + H?) + adh(edlﬂ' - 1)H

Solving the equation (3.4) gives

et <db7’ —adie®™ [ebT — 1] — \/(dbr — ad2edvT [edsT — 1])% — 4d%d%K€2db7—)
HY =
! 2dydp,

and

e T (dbr —adie®™ [ehT — 1] + \/(dbr — ad2ed [edT — 1])° — 4d§d%K€2de)
Hj =

2dydy,
with Hy < H5. Now we have the following proposition:
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Proposition 3.1. [Existence of Interior Equilibria] If

dpr — d2e® e — 1]

> 1, 3.5
thdbed‘ﬂ'\/]? ( )
then Model (2.1) has two interior equilibria F;,i = 1,2:
* * dh [ede - 1] * *
E; = (Bf,H;) = (db H;, H;

where HY is an increasing function of o, K, dp and dj,, and Hj is a decreasing function of a, K, d; and
dp; whereas, H{ is a decreasing function of r, and H3 is an increasing function of ». When
dpr — d2e®7[ed™ — 1]
thdbede\/ K
The two equilibria E; and F5 merge into a unique interior equilibrium for Model (2.1):
e~ (dbr — adie®™ [ed” - 1])
2dpdy, '

:]_7

dp, [ed” - ].]
dy

E*(B*,H*)( H*,H*> with H* =
Notes: Proposition 3.1 implies that one of the necessary conditions for the honeybee colony survival is
(3.5) which requires large values of the queen egg laying rate r, and the smaller values of the maturation
time 7 and the brood regulation effect . In addition, Proposition 3.1 indicates that at the interior
equilibrium, the ratio of brood B to adult population H is determined by their mortality and maturation
time through the equation dj, [ed” - 1] /dy. Based on simulations and analytical results, the interior
equilibrium Hj is always locally stable if it exists while Hj is locally unstable. If (3.5) holds, then by
simple calculations, we have dég > 0 and d;i; < 0. This implies that the brood regulation coefficient a
has negative effects on brood and adult population sizes. In the case that o = 0, then (3.5) reduces to
dpr/ 2dp,dye®™7 /K > 1 under which the interior equilibria H,i = 1,2 have the following expressions:

2

e~ T <dbr - \/(dbr)2 - 4dl2]diK62de)
2dydp,

Hf =

e~ T <db7’ + \/(de)2 - 4dgd}2LK62de)

2dydy,
In order to study the stability of the interior equilibrium F; = (B}, H}), we need to find the charac-
teristic equation of E;. Let A = Hr/ (aB + H? + K)2 and

Hy =

CN)
—aH?r - db 2Hr(aB+K) 704H2re_db"2 72HTe_de(aB+2K)
— (aB+H?2+K)? (aB+H?2+K)? (aB+H?+K) (aB+H?+K) —AT _
det 0 i + o H2ro—dbT SHre— 7 (aB4K) * e AS
h (aB+H?>TK)? (aBYH2+K)?

—aAH —d, 2A(aB+ K) —aAHe ™™  —2A(aB + K)e %7 -
det ({ 0 —dp, + aAHe BT 2A(aB + K)e= %7 e aad

_ det( —AH(1+e Oty _ gy — X 24(aB + K)(1 — e~ (A +do)T)
- aAHe BT —dp, +2A(aB + K)e~(Atde)m _ )

= (—aAH(1 + e~ OFd)™y _ gy — \)(=dj, + 24(aB + K)e~ AT _ ))
—2A(aB + K)(1 — e~ Fd)T) g AHe %7
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evaluated at F; = (B;, H;). We can see the characteristic equation (3.6) of the interior equilibrium
E; = (B}, H}) is very complicated and difficult to analysis. Thus, for convenience, we start with the
simpler case by setting o = 0 which is our model (2.3).

Theorem 3.3. [Stability of Interior Equilibria] If r/2dne® VK > 1, then Model (2.3) has two interior
equilibria F; where Fy is always unstable and Es is always locally asymptotically stable.

Notes: Theorem 3.3 indicates that the value of the maturation time 7 has no effects on the stabil-
ity of its interior equilibria E;,i = 1,2 for Model (2.3). In the case that r/2dhed”\/? =1, ie.,
dp, = re~%7 /2¢/K, then Model (2.3) has an unique interior £ = (B*, H*) = (r [1—e 7] /2dy, \/E)

The following theorem provides results on the interior equilibrium stability of this critical case:

Theorem 3.4. [Unique Interior Equilibrium] If d, = re=%7 /2v/K, Model (2.3) has a unique interior
equilibrium E = (B*, H*) = (r (1—e=b7) /2dy, \/R) which is always locally asymptotically stable for
any delay 7 > 0.

Notes: The detailed proof of Theorem 3.4 uses normal form theory in [13], and is provided in the last
section. Both Theorem 3.3 and Theorem 3.4 implies that when « = 0, i.e., Model (2.3), the colony can
survive at By = (B3, H3) if r/2d,e®™v/K > 1 and initial conditions are in a proper range.

What if a > 0?7 Our simulations suggest that F; is still unstable and FEs is locally stable. Based on
our analytical results and simulations, we summarize the general dynamics of Model (2.1) as follows:

(1) The extinction equilibrium E. of Model (2.3) always exists and is always locally asymptotically
stable.

(2) If r/dp < 2e%7/K, Model (2.1) has its global stability at the extinction equilibrium E,.

(3) If (3.5) holds, Model (2.1) has two locally asymptotically stable equilibria: the extinction equi-
librium E,. and the interior equilibrium Es = (B3, Hy).

Figure 1 shows bifurcation diagrams of Model (2.1) regarding (a) the queen egg-laying rate (r) (see
Figure la&1b); (b) the brood regulation effects on reproduction « (see Figure lc&1d); (c) the half-
saturation coefficient K (see Figure le&1d) (d) the mortality of brood d; (see Figure 1g&1h); and (e)
the mortality of adult dj (see Figure 1i&1j). Those bifurcation diagrams indicates that (1) the colony
survival requires the large value of the queen egg-laying rate (r) which leads to the increased brood
and adult population as it increases; (2) the large values of «, the half-saturation coefficient K, or any
mortality rate d or dj can lead to the colony collapsing, and both brood and adult population are
decreasing with respect to these parameter values; and (3) increasing the value of the adult population
mortality can lead to the dramatic decreasing of the adult population.

The another modeling approach with age structure for the honeybee colony: In our model
derivation section, we proposed the model (2.4) below assuming that the adult H(¢) matures from the
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FIGURE 1. Bifurcation diagrams of Model (2.1) with the interior equilibrium E; =

(BT, HY) in black and Fy = (B3, H3) in green where the solid curve indicates stable,
and the dash curve indicates saddle.

survived brood population at time ¢t — 7.

dB rH?(t) —d

= 2N g B—e ®TB(t —
@~ krma PP (t=7)
dH

o= e BBt — 1) — dp H(t)

The model above is motivated from the compartmental ODE model in the literature [44]. We aim to
compare the dynamics of Model (2.4) to the model (2.1) to address the importance of deriving a proper
biological model with age structure.
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First, we notice that the extinction equilibrium E. = (0,0) always exists as for the model (2.1).
However, E. can go through stability switching that leads to an oscillatory solution around E. for
Model (2.4)

Theorem 3.5. [Extinction equilibria dynamics] Model (2.4) always has the extinction equilibrium E, =
(0,0).
(1) If dp > @, then E. = (0,0) is asymptotically stable for all T > 0.
(2) If0 < dp < g, then E. = (0,0) is asymptotically stable for T € (0,79) or T > 11, while unstable
for T € (10, 71), where 7, = Ltf”, k=0,1, § =7 — arctan (dﬂb) and w = (e72®7 — @2)1/2,
Notes: Theorem 3.5 suggests that the smaller value of the brood mortality can destablize the colony
dynamics. In addition, it implies that Model (2.4) is not positive invariant as the extinction equilibrium

E. = (0,0) could have stability switches that lead to oscillatory solution around E.. See Figure 2 when
Model (2.4) exists a limit cycle of population around E. = (0,0).

Honeybee Population

40
I

20
I

Adult

-20
I

-40
L

Brood

FI1GURE 2. Phase plane of honeybee brood and adult population of with » = 1000, K =
1%10% dy = 0.1,d;, = 0.17,7 = 18 when Model (2.4) has an unstable E. (the black
dot).

Let (B, H) be an interior equilibrium of Model (2.4), then it satisfies that the following two equations:

rH?
= ——— —dB—e "B
0= Kyim o MPoe
0 = e B—d,H

which gives the brood population at the equilibrium B* = dpe®™ H* and by solving #Iip — dydpe®T —
dp, = 0 we could solve

rd+a/r2 —4K (dbdhede + dh)2
H! = ,i=1,2.
2 (dbdhed”T + dh)

Now define the characteristic equation of the interior equilibrium (B*, H*) of Model (2.4) as follows:



100 J. CHEN, K. MESSAN, M. MESSAN, G. DEGRANDI-HOFFMAN, D. BAI, AND Y. KANG

Cdr WKH* 4 nre

CA\T) = (=dn — N)(—dp — e T —\) — me (do+2) (3.7)
2 2rKH* —(Atdy)T

=X +(db+dh))\+()\+dh_m)e OHAT 4 dpdy =0 (3.8)

Theorem 3.6. [Interior Equilibrium Dynamics] Let r > 2dp /K (14-dy) and 7% = d%, In (Lle (2d e~ 1))
h
If 7 € [0,7*), Model (2.4) has two positive interior equilibrium
E; = (B:’ Hz*) = (dhedeHz?ka:)vi =1,2

which HY < Hy. And Ey = (B, HY) is always unstable in [0,7*), Ey = (B3, H3) is always stable or
occurs stability switching by following cases:
Case 1. Ifd, > 1 or0<d,<1,d?+d} >1 and
2dp VE (1 + dy)?

(1 +dp)? —4d?’

then Es is locally asymptotically stable for all T € [0,7F).
Case 2. If0<dy <1, dg—l—d,% >1 and

20, VK(1+dy) <1 <

2dp VK (1 4 dy)?
(1+dy)? —4d?’
then the stability of B switches just once from stable to unstable as T increases in [0, 7).
Case 3. If d; +d3 <1 and

2dp VE (1 + dy)?
(1+dy)2 —4d?’

the stability of Eo can change a finite number of times at most as 7 is increased 7 € [0,7*), and

2 VK(1 4 dy) <1 <

eventually it becomes unstable.
Case 4. Ifd +d3 <1 and
N 2dpVE (1 + dy)?
(1+dp)? —4d}’
the stability of Eo switches at least once in [0,7*) from stable to unstable.

Notes: Theorem 3.6 indicates that: (1) The large value of mortality in brood and/or adult bees with
the intermediate value of the egg laying rate r can have the simple equilibrium dynamics; and (2) The
relative small values of mortality in brood and/or adult bees with the large value of the egg laying rate
r can destabilize the colony dynamics that lead to stability switching in the interior equilibrium Fj.
For example, Figure 3 provides an example when Model (2.4) can have stability switches at its interior
attractor Fy as 7 changes: Model (2.4) has local stability when 7 = 21 while its has oscillatory solution
when 7 = 16. Figure 4 also indicates the importances of initial condition that may lead to the survival
or collapsing of the colony.

Comparisons between Model (2.1) and Model (2.4): Both models can have up to three equilibria
with always the existence of the extinction equilibrium F.. However, the maturation time 7 has no
effects on the stability of the equilibrium of Model (2.1) while it could lead to stability switches for
Model (2.4). The consequence is that Model (2.4) is not positive invariant and could have a oscillatory
solution around the extinction equilibrium FE. and the interior equilibrium Fs.
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FIGURE 3. Time series of the brood (solid) and adult (dot dashed) bee when r =
3000; dj, = 0.178;dp = 0.1; K = 5,000, 000; B(8) = 2400; H (0) = 4500, € [, 0].

To continue exploring how we should model population dynamics of honeybee with the proper age
structure so that we could have a better understanding of important factors contributing the colony
survival, we perform bifurcation diagrams on both Model (2.1) and Model (2.4). Figure 1 shows bifur-
cation diagrams of Model (2.1) regarding (a) the queen egg-laying rate (r) (see Figure la & 1b); (b) the
brood regulation effects on reproduction o (see Figure 1c & 1d); (c¢) the half-saturation coefficient K
(see Figure le & 1f) (d) the mortality of brood dj, (see Figure 1g & 1h); and (e) the mortality of adult
dp, (see Figure 1i & 1j).

Figure 5 shows bifurcation diagrams of Model (2.4) regarding (a) the queen egg-laying rate (r) (see
Figure 5a & 5d); (b) the half-saturation coefficient K (see Figure 5e & 5h) (c) the mortality of brood dj
(see Figure 5i & 5j); and (d) the mortality of adult dj, (see Figure 5k & 51). The biggest differences of
those bifurcation diagrams between Model (2.1) and Model (2.4) are: (1) The survival equilibrium (FE5)
can become destabilized if we decrease the value of the brood mortality d; and/or increase the adult
mortality; (2) the brood population may have its maximum point when the mortality of the brood d,
is in a proper range: In Figure 5i, it shows that the interesting pattern on how the brood population
changes with its mortality rate; and (3) Model (2.1) has only equilibrium dynamics either at the extinc-
tion FE. or the interior equilibrium F,. Honeybee population data shown in Figure 6 seems to exhibit
seasonality. By comparing dynamics of Model (2.1) with Model (2.4), we know that only Model (2.4)
has oscillatory solutions. Does it mean that Model (2.4) is better than Model (2.1) as it has oscillatory
solutions?
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4. DATA AND SEASONALITY

In this section, we use the honeybee population data collected by James Harris (1980) [15] to do
parameter estimations and model validations. The honeybee population data of two colonies: May 5,
1975 to Oct 22, 1975 and May 3, 1976 to Dec 5, 1976, is shown in Figure 6 in the left (1975) and
right (1976) side, respectively: The brood B (the sum of egg, larvae, and pupa) population is shown
by triangle dots while the adult H population is represented by point dots. Based on Figure 6, the
initial population of brood is By = 6125 and adult Hy = 5362 for 1975 while By = 5982 and Hy = 5362
for 1976. Figure 6 shows seasonality. Mathematical analysis provided in our previous section indicates
that Model (2.4) can have oscillatory solutions under certain conditions while Model (2.1) only exhibits
simple equilibrium dynamics.

The questions are: (1) Is Model (2.4) better than Model (2.1) because it shows oscillatory solutions?
Or (2) Is seasonality showed in honeybee population data (see Figure 6) caused by the external factors
such as resource?

To address the questions above, we first assume that the queen lays egg is seasonal due to resource
constraints. The literature work suggests that food, temperature, weather and oviposition place would
affect the queen [3, 23, 10], thence her egg-laying rate is not constant, and assumed tohave the following
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expression:

r(t) = ro*(1+cos(27r(t’yw)

) (4.1)

rit—7) = ro*(l—i-cos(w

))- (4.2)
where 7y indicates the length of seasonality; 7 indicates the time length of the juvenile period; ¥ indicates
the time of the maximum laying rate; and rg indicates the baseline egg-laying rate. The literature work
suggests that climate/temperature may affect the winter mortality indirectly, but the location, eleva-
tions and humidity are more likely direct affecting factors, especially the link between temperature and
mortality is not particularly prominent [43]. Therefore, our model only considers the egg-laying rate be-
ing seasonal as it has more direct impacts from external internal factors such as temperature/resource,
and it is reasonable to set the mortality rates of brood and adult being constant. But it would be
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interesting to explore how may seasonal mortality of brood and adult affect dynamics in the future
work.

Then we perform parameter estimations and model validations based on data shown in Figure 6: We
implement the Monte Carlo parameter sweep method as our fitting method to the honeybee population
data to attain parameter estimates [7]. Essentially, we randomly sample hypotheses for the parameters
following negative binomial regression with appropriate ranges (see Table.1). For each observed value,
we defined the negative binomial probability density function. The mean () is set by the corresponding
predictive value, and variance is p + o * 2, which is o = k~!. k indicates dispersion parameter, which
we set range [0.5,2] [33, 27]. Then we calculate the likelihood for negative binomial regression model to
get better estimate for parameters [26, 18]. Afterwards, we performed data fitting on the above model
(model number) and compare the results.

We first assume that the egg laying rate r is constant. All fittings are set by constant history
functions with B(#) = 6125 and H(#) = 5362 for 1975, and B(#) = 5982 and H(¢) = 5362 for 1976, for
all 0 € [—7,0].

(1) Fitting Model (2.1): the best fit is shown in Figure (7a & 7b). If we use the estimated parame-
ters: r = 1237;dp, = 0.033;d, = 0.001; K = 20, 574,000; o = 16.9, then Ey = (25299, 36124.5) in
1975; and r = 1149;dp, = 0.03;dp = 0.001; K = 10,653, 000; o = 4, then F5 = (23693.5,37215.3)
in 1976. Model (2.1) approaches to its plateau under those two fittings.

Fitting Model (2.3): the best fit is shown in Figure (7c & 7d). If we use the estimated param-
eters: r = 1573;dp, = 0.04; d, = 0.0001; K = 15,716,000, then F2 = (32658.1, 38837.8) in 1975;
and r = 1065;d, = 0.03;d, = 0.0001; K = 19,600,000, then E; = (21987,34863.3) in 1976.
Model (2.3) approaches to its plateau under those two fittings.

Fitting Model (2.4): the best fit is shown in Figure (7e & 7f). If we use the estimated param-
eters: r = 5333;d;, = 0.12;d, = 0.11; K = 867,000, then Fy = (25435.1,21039.3) in 1975; and
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r = 5333;d;, = 0.12;d, = 0.11; K = 1,088,000, then F; = (25422.3,21028.8) in 1976. Model
(2.4) approaches to its steady state through damping oscillations.
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FIGURE 7. Data fitting without seasonality for Harris honeybees data in 1975 (a, c,
e) and 1976 (b, d, f) with 7 = 21. Black dots indicate Harris data, and black curve
indicates our model.

The fittings shown in Figure 7 suggest that the assumption of the queen egg laying being constant
is not realistic enough. Thus we assume that the egg laying rate is a periodic function r(t) = rg * (1 +
COS(M)). All fittings are set by constant history functions, i.e., B(6) = 6125 and H(#) = 5362 for
1975, and B(6) = 5982 and H (0) = 5362 for 1976, for all 6 € [—7,0]

(1) Fitting Model (2.1): the best fit is shown in Figure (8a & 8b). If we use the estimated param-
eters: 1o = 1193;d, = 0.03;d, = 0.02; K = 56,963,000; « = 4;v = 273;¢ = 12 in 1975; and
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ro = 1319;dj, = 0.023;dy = 0.02; K = 84,933,000; a = 3.2;7 = 338;% = 12 in 1976. Both data
fittings of Model (2.1) have periodic solutions.

(2) Fitting Model (2.3): the best fit is shown in Figure (8c & 8d). If we use the estimated pa-
rameters: ro = 1644;d, = 0.03;d, = 0.02; K = 139,137,000;y = 277;¢ = 12 in 1975; and
ro = 1477;dp, = 0.04; dp = 0.02; K = 81,048,000; v = 261;¢ = 12 in 1976. Both data fittings of
Model (2.3) have periodic solutions.

(3) Fitting Model (2.4): the best fit is shown in Figure (8e & 8f). If we use the estimated parameters:
ro = 5333:dy = 0.12:dy = 0.11; K = 867,000;~ = 350:¢ = 12 in 1975; and 7o = 9171:d) =
0.19;d, = 0.12; K = 20,000;y = 261;¢ = 12 in 1976. Both data fittings of Model (2.4) have
periodic solutions that would lead to negative solutions as Model (2.4) is not positively invariant.

The data fittings assuming that r(¢) = ro % (1 + COS(M)) have better outcomes than the previ-
ous ones (Figure 7) by assuming r being constant. By comparison through the negative log likelihood
method [18], we could deduce that Model (2.1) has the best fittings in both scenarios: r being constant in
Figure (7) and r being periodic in Figure 8. Thus, based on both theoretical work and model validation,
we could conclude that even though Model (2.4) could have oscillations in its solution, Model (2.1) with
the egg laying rate r being periodic (supported by the best fitting based on data, see Figure 8) should

be a better model for us to explore the important factors contributing to the healthy of honeybee colones.

Effects of seasonality: Here we perform two scenarios that seasonality may promote (see Figure 9) or
suppress (see Figure 10) the survival of honeybee colony, respectively. Figure 9a & 9b are simulations
without seasonality by taking r = 1200, K = 5.4 * 10,d, = 0.01,d;, = 0.05,a = 10 with a constant

history function B(#) = 300; H(6) = 200 for all § € [—7, 0], which show that honeybee colony collapses.
Figure 9¢ & 9d has seasonality by taking r = rq * (1 4+ cos(w

show that honeybee colony survives.

)) whose average is ro = 1200, which

On the other hand, Figure 10 shows that seasonability can make honeybee colony collapse. Figures
10a & 10b has no seasonality by taking r = 1200, K = 1% 10%,d, = 0.06,d;, = 0.11,« = 10 with a

constant history function B(#) = 6125; H(0) = 5362 for all § € [—7,0], which shows that honeybee
27 (t—45)

565 )

with 7o = 1200. In this case, we can see that seasonality may suppress the survival of honeybee colony.

colony could survive. While Figure 10c & 10d has seasonality by taking r = rg % (1 4 cos(

5. CONCLUSIONS

Honeybees have dramatical decreased population over the long-term and each year [42]. As a result,
great economic losses and the increase in the price of bee products have adversely affected the market
[42, 29]. The causes of the decline in the number of honeybees have been the great interests, whether
they may directly link to human, environmental or disease [32, 30, 42]. Some previous work always
focus on foragers or recruitment, other works investigated external causes [23, 22, 38, 32, 21, 1]. In this
study, we focus on modeling proper honeybee population age structure model with model validation
using empirical data to obtain better biological understanding of the critical factors that could maintain
healthy of honeybee colonies.

We propose two different models with age structure to explore the importance of proper modeling.
The first model (2.1) has an assumption that the adult bees are surviving from eggs while the second
model (2.4) assumes that adult bees are survived from brood stage rather than the egg stage. Our
theoretical work (see Theorem 3.2, 3.3, 3.5 & 3.6 ) implies that Model (2.1) and Model (2.4) have
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(E) Model (2.4) (1975), ro = 4024;d), = 0.13;dy = (F) Model (2.4) (1976), ro = 9171;d, = 0.19;dp =
0.12; K = 89,000;~ = 350;¢) = 12. 0.12; K = 20,000;~ = 261;¢ = 12.

FIGURE 8. Data fitting with the seasonality equation in r for Harris honeybees data
in 1975 (a, ¢, e) and 1976 (b, d, f) with 7 = 21. Black dots indicate Harris data, and
black curve indicates our model.

huge differences in their dynamics. Specifically, Model (2.1) has only equilibrium dynamics and the
maturation time doesn’t affect its dynamics (see Theorem 3.3 ) while Model (2.4) can be destabilized
by the maturation time along with its life history parameter values (see Theorem 3.6) and Model (2.4)
is not positively invariant. Also our bifurcation diagrams (see Figure 1 & 5) confirmed such different
dynamical outcomes. Both theoretical and bifurcation results indicates that the different assumptions
can lead to different age structure models with dramatic dynamical outcomes. So which model would
be more appealing and biological relevant? Can we say the second model (2.4) be better as it has
oscillatory dynamics that could be supported by seasonality observed in data?
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Given that the queen reproduction depends on seasonality [36, 3, 23], this suggests that it is para-
mount to include seasonality when modeling honeybee population dynamics. To address whether the
seasonal pattern observed from data is due to the internal factor such as the maturation time and/or
other life history parameters (for example, Model (2.4) could be a better model for generating seasonal
patterns from the internal factors) or the external factor such as the queen egg laying rate that is reg-
ulated by the temperature and the resource [10, 3, 6]. We use data to validate Model (2.1), and Model
(2.4) by assuming that the queen egg laying rate is constant and seasonal. Our validations on models
without seasonality did not have a good fit by comparing to the corresponding models with seasonality.
Among all models with seasonality, Model (2.1) has the best fit (see Figure 8). Our model validations
with data suggest that the seasonal pattern observed from data is very likely due to the external factor
such the temperature or available resources that may generate periodic dynamics in the queen egg lay-
ing rate while the internal factor such as the maturation time doesn’t seem to be responsible seasonal
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pattern observed from data.

Both theoretical and numerical results including model validations suggest that Model (2.1) with
seasonality in the queen egg laying rate seems to be the most fit model for studying honeybee popula-
tion dynamics with age structure. Theoretical results (Theorem 3.3 ) and bifurcation diagrams (Figure
1) imply that (1) the survival of honeybee colonies requires a large value of the queen egg-laying rate
(r) and smaller values of the other life history parameter values in addition to the proper initial condi-
tion; (2) both brood and adult bee population is increasing with respect to the egg-laying rate r and is
decreasing with respect to the regulation effects of brood «, the square of half maximum of colony size
at which brood survival rate K, and the mortality rates d;, dp,; and (3) seasonality may promote the
survival of the honeybee colony (see Figure 9) but also may lead to the colony collapsing (see Figure
10c&10d). In summary, our work suggests that Model (2.1) with seasonality could be used for our
future model that includes more external factors, such as diseases, parasite, food and human activities
[32, 30, 42, 22]. Our ongoing work has extended the current model (2.1) to include parasites.

6. PROOFS

Proof of Theorem 3.1.

Proof. First, we look at the following equation that describes the population of adult bees:

@ _ efde TH(t - 7)2
dt K+H(t—-71)2+aB(t—T)

— dpH. (6.1)

Since H(t) is a nonnegative continuous function during the time ¢t € [—7,0], the equation (6.1) implies

that

dH
— > —dp,H for time t € [0,7] = H(t) > H(0)e~ %! > 0 for time t € [0, 7].

By deduction on intervals [(n — 1)7,n7],n > 1], we could show that H(t) > 0.

By integration, we could set

¢ rH(s)?
B(t) = ~h =9 gs — B(0)e~ P! 2
0= [ |asiosranee 5= B(0)e ", (6.2)
which gives
dB _ rH (t)? B e rH(t —7)?
dt ~ K+H{t)2+aB(t) K+H({t—7)2+aB(t—7)
and
0 H2 dys
B(0) = rH (s)e ds.

). K+ H2%(s) + aB(s)
Thus, the equation (6.2) provides an explicit mathematical expression of B(t) which is nonnegative for
all time ¢ > 0. Thus, the state space X of the proposed model (2.1) is positive invariant.

To show the boundedness of the model, define V"= B + H, then we have
AV _dB dH ___ ri?
dt dt dt K+ H?+aB

<r—min{dy, dp}(B+ H) =7 —d;

—dyB —dpnH
|4

n
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with d )i, = min{dy, ds}. Consequently, we have
limsup V (¢) = limsup(B(t) + H(t)) < —

t—o00 t—o0 dmm

which implies that Model (2.1) is bounded in X.

Proof of Theorem 3.2.
Proof. We linearize the Model 2.1:

(2]

For extinction equilibrium, the matrix (6.3) gives:

—_aH’ g _2Hr(aB+K)
_ (aB+H2+K)® ~ “°  (aBtHZ1K)?

(B*,H*) 0 —dp,

aH2re= T 72Hrefde(aB+K)
" (aB+H2+K)? (aB+H2+K)?
_aH2re~ %7 2Hre~ %7 (aB+K)
(aB+H2+K)? (aB+H2+K)?

B(t) —~dy 0 B(t) 0 0

H(t) 0,0) 0 —dy H(t) 00
and from this we obtain the following eigenvalues:
)\1:*db<0, Ay = —dj, < 0.

Thus, we can conclude that F, is always locally asymptotically stable.

B(t)
H(t)

(6.3)
B(t—1T)
Hit—7) |

Now we show its global stability as follows. Let (B(t), H(t)) be a solution of Model (2.1), then
(B(t), H(t)) is bounded and positive for all ¢ > 0 by Theorem 3.1. Define limsup,_, . H(t) = H*. By

Lemma B in A, there exists sequence {t,,} 1 oo such that lim,_, . H(t,) = H>,

and lim,, ., H'(t,) = 0,

and same for B(t). For any € > 0, there exists N such that for n > N, H(t, — 7) < H* + € holds.

Thus, according to Model (2.1), for n > N we have

H'(tn) = eideK T H(t:Ii(?)L2+T(iZB(tn 1) dnH (tn)
< dwm —dyH(t,).
Let n — oo, we get
0< ed”m — dpH™.

It follows by the arbitrariness of e that
H>® (—dp(H™)? + e ®"rH>® — dy K) > 0.
Then dj, > re~%7/2\/K, we know that for all 2,y € R, —dpz? + e~ ®7rz

H® =0, and hence from the positivity of solution we have lim;_,, H(t) = 0.

the following limiting equation

E = _de(t)7

— dpK < 0. Therefore,
Furthermore, we obtain



HONEYBEE POPULATION DYNAMICS 111

which implies that lim;_, o, B(t) = 0. Therefore, E. = (0,0) is globally asymptotically stable.

Proof of Theorem 3.3.

Proof. Let (B*, H*) be an equilibrium of Model (2.1). Then the linearization of the proposed model
(2.1) at the equilibrium (B*, H*) is shown as follows:
In the case of the interior equilibrium (B*, H*) = E;, from Equation (3.2), we have

2rKH* rH* 2K 2K dje®™

(K + (H*)?)? (K4 (H*)?*) (K+(H*)?) (K4 (H)?)

The characteristic equation (3.6) evaluated at the positive interior equilibrium (B*, H*) when oo =0
gives the following expression:

—d % 0 _%6_‘1”
CA) = det (RS + (K+(H*) ) xe N _\I
L 0 —dp, (S TR
_ 20K H —(A+dp)T
= det —dp = A m(}fe (At+dy) )
| 0 —dp, + mﬂfwef(”db” Y

2rKH*
— (—d _ _ oAt = (A Hdy)T
(—=dp — A) < dp + K+ (H*)2)26 )\)

_ Zthede —(A+dy)T
= (—=dp — N <_dh+K+(H*)26 - A

,r.efde <1 + \/1 o <2d,L:de)2K>

2dy,

This implies that the stability of the interior equilibrium (B*, H*) is determined by the eigenvalues of
the following equation evaluated at H* since A = —d, < 0

2K dy oKdy
A LS S | IR (S ML NS
h+K+(H*)26 = h+K+(H*)26

where

H* =

Let A = —dj, and B(H) = 2d;,K/[K + H?], then we have B(H) > 0 > A. At the mean time, we
have

0< Hf <Hj and HH} = K = (H})? < K and (H})? > K.
Therefore, we can obtain the following inequalities

2th 2th
—_— d A+ B(H)=—d e .
K+(Hf)2>0an + B(H3) h+ <0

A+ B(HY)=—dn+ K + (H;)?
2

By applying Theorem 4.7 from Hal Smith [41], we can conclude that the interior equilibrium Ej is
always unstable and FEs is always locally asymptotically stable for any delay 7 > 0.
a
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Proof of Theorem 3.4.

Proof. According to Proposition 3.1, we know that Model (2.1) has a unique interior E = (B*, H*) =
(r (1—e 7)) /2dy, \/E) when dj, = re~%7 /2¢/K. In order to study its stability, we define the follow-

ing matrices:

—dy 0 —d
v=| " WK | ad V= " (6.4)
0 —dp, 0 dy

Let L()\) to be represented as follows
L) =X +dj, —dpe™ (6.5)

which has A = 0 as one of its eigenvalues. By applying Lemma A in A to (6.5), except for the root A = 0,
all roots of (6.5) has negative real parts for all 0 < 7 < co. Since (6.5) has a simple zero eigenvalue,
we need to use the center manifold and normal form theory in [13] to obtain the local stability of

E=(r(1-e®) j2d,, VE).
Let B=B—r (1 — e‘d”) /2dp, H = H — VK, and still denote B = B, H = H, then the system
(2.1) becomes
dB

— = —dB() + ﬁH(t) — dyH(t —7) = S H*(t) + VK H?(t = 7) + O(3), 66)
% = —dpH(t) + dpH(t — ) — dy VKH*(t — 7) + O(3).

Let A = {0}. From normal form theory in [13], there exists a one-dimension ordinary differential
equation which has the same dynamical property as (6.6) near 0. Rewriting (6.6) as

2(t) = Uzt) + F(2) (6.7)

where
z(0) = 2(t +0) € € := ([-7,0],RY),
C is the phase space with the norm |¢| = max_,r<p<o|$(#)|, and
U(¢) = Ug(0) + Vo(-7),
where U and V are given in (6.4), and
Py = | RAOH dnVKd3(=7) +0(3)
—dnVE@3(—7) + 0(3)

Take u(0) =U§(0) — V(0 + 7), where

Then we have follows
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By the adjoint theory of FDE, the phase space C can be decomposed as € = P & @, where P =

span{®(0)}, ®(0) = (1,8)T, B = dp/[r/2V'K — d}]. Taking the base ¥ of adjoint space P* of P satisfies
(¥, ®) =1, where (-, ) is a bilinear function defined in €* x € by

0 s
.0) = 00000) = [ [ 00 = s)dn(s)o(0)an.
By a direct computation, we have

U(s) = (0, (B(1 +7dp))71) .

Consider the following expand space
BC = {¢| ¢ : [—71,0] = C, ¢ is continuous in [—7,0) and gin(l) @(0) exists} ,
—

then the abstract ODE in BC associated with FDE (6.7) can be written as the form

d
= Au+ XoF(u), (6.8)
where
Ap = ¢+ Xo(l(¢) — $(0)), ¢ € C*([-7,0],R%),

and

I, 6=0,

X, =
0, 0¢€l-1,0).

The projection mapping 7 : BC — P:
(¢ + Xoa) = ®((¥, @) + ¥(0)a),

leads to the decomposition BC = P @ Kerm. Decomposing u in Equation (6.8) in the form of u = ®x+y
where z € R and y € Q' := Kerr N D(A) = Q@ N C'. Then (6.8) is equivalent to the system

i = U(0)F(®x + y),

with

—dy VK

V(0)F(Px +y) = B(1+ rdy)

(B +y2(=1))* + O(3).
Thus, the local invariable manifold of (6.6) at 0 with the tangency with the space P satisfies y(6) = 0,
the flow on this manifold is given by the following one-dimension ODE

. _/8th 2

t) = ———2°(t) + O(3). 6.9

(1) = a0 +03) (69)
This implies that the zero solution of (6.9) is stable. Therefore, the interior equilibrium F = (B*, H*)
is locally asymptotically stable for all 7 > 0. The proof is complete.
(|
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Proof of Theorem 3.5.

Proof. We linearize the equations of Model 2.4:

ol BO _| * & || BO | e o B | (6.10)
H(t) (B*,H*) 0 —dp, H(t) e~ % 0 H(t—71)

The matrix (6.10) evaluated at the extinction equilibrium FE, gives the characteristic equation

_db QTKI;I* _e—db'r 0
C(\,7) = det (KHHDD* | xe N AT
| 0 —d, et 0
[ —dpT ,— AT 2rKH*
e[| TR SN wme
I efdb‘ref)\‘r *dh Y

2rKH*
—(—=dr — N (—=dr — e DBTe=2T _\y— 2 (N7
(=dp = A)(=dp —e™"7e ) (K+(H*)2)26
At (0,0), C(\, 7) = (=dp, — A)(—dp —e~%Te=*" — \). Clearly, one characteristic root is A\ = —d;, < 0,
others are the roots of the following equation

A dy 4+ e ®TeAT = . (6.11)

When there is no delay, i.e., 7 = 0, (6.11) has only a negative characteristic root A == —d;, Model
2.4 is asymptotically stable at (0,0). Moreover, for every 7 > 0, (6.11) has no nonnegative real root.
We assume A = iw, w > 0, is a root of (6.11) for some 7 > 0. Then, we have

cos(wr) = —dpe™™,  sin(wr) = we™7, (6.12)
which gives
w? = e 20T _ g2, (6.13)
It is clear that (6.13) has a positive real root
w= (27 — )3, (6.14)

if and only if e~ %" > d, i.e., T < T 1= dib In <dib), and 0 < dp < 1.
Notice that cos(w7) < 0,sin(wr) > 0, there is a unique 6, 5 < 6 < 7, such that wr = 6 makes both
equation of (6.12) hold. Then, if e=%7 > dj, we get a set of values of 7 for which there are imaginary

roots:
0+k
oo kT g (6.15)
w
where w is given by (6.14) and
0 = w — arctan (:) . (6.16)
From (6.11), we have
d\
(1-— Te*(d”)‘)T)— =+ db)e*(d”/\)T, and \+d, = —e (BT,

dr
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Thus,
(%) ~5iow
dr Ady  (dp+ N2’
and
s s (100)] e fre(2) ]
- A=iw
= sign {—ReA 1 ;R +1A)2 }M_w
= sign{—7d; — d; + w*(rd, — 1)}
= sign{—2d? + (1 — 7dp)e 2®7}
= sign{¢(7)}.
Here,
O(1) = —2d7 + (1 — 7dp)e 27, (6.17)
Clearly,
¢ (1) = e 27 dy(27dy — 3). (6.18)

In order to get the stability of the equilibrium (0,0), we first claim:
e For all 7 > max{0,7*}, (0,0) is asymptotically stable.

In fact, we rewrite (6.11) as the form A\ = A + Be " with A = —d;, B = —e~%". For any 7 > 7%,
B> —e ®™ = —d, = A. Thus, by applying Theorem 4.7 from Hal Smith, (0, 0) is local asymptotically
stable.

Now, we consider the following two cases.

Case 1. dy > g

This case is divided into two subcases: (i) d, > 1 and (ii) ? <dp <1

(i) dp>1.

In this subcase, the above claim implies that (0,0) is asymptotically stable for all 7 > 0. This also
can be proved as follows. For all 7 > 0, e™2d7 — d% < 0 holds, and hence the equation (6.13) has
no positive real root. This implies that the equilibrium (0,0) has no stability switch as 7 increases in
[0,00). Since (0,0) is asymptotically stable at 7 = 0, then it remains asymptotically stable for all 7 > 0.

(i) L <d, <1

Assume 7 € (0,7*). Then e=2%7 — g2 > 0 and (6.13) has unique positive real root (6.14). In such

case, Tdp < 1 since 7dp < 7*d, = In (é) <Ilnv2<1,¢(r) < —2d§ + (1 —7dp) < —7dp, < 0. It follows
that S(r) = —1 for 7 € (0,7%), i.e., possible stability switches from unstable to stable may occur. Since
(0,0) is asymptotically stable at 7 = 0, then it remains asymptotically stable for all 7 € (0,7*).

When 7 > 7*, our claim shows that (0,0) is asymptotically stable. Therefore, (0,0) is asymptotically
stable for all 7 > 0.

Case 2. 0< dp < g

This case is also divided into two subcases: (i) 1 < d, < @ and (ii) dp < 1.

() L<d, <2

For 7 > 7*, we know that (0, 0) is asymptotically stable. Now, we assume 7 € (0, 7*), then (6.13) has
unique positive real root (6.14). In such case, ¢(0) = 1—2d? > 0 and ¢(7*) = —2d3 +(1—7*dp)e 20" =
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—2d2 + (1 —r*dy)d2 < 0, and, from (6.18), ¢'(7) < 0 since 7dy < 7*dy = In (i) < 1. Thus, there exists

unique 7, € (0,7*) such that

: (a) For7 e (0,7.), ¢(7) > 0 and hence S(7) = 1. In this case, possible stability switches from stable
to unstable may occur as 7 increases in (0, 7¢).

: (b) At 7 =7, ¢(7) =0 and hence S(7) = 0;

: (¢) For 7 € (76, 7%), ¢(7) < 0 and hence S(7) = —1. In this case, possible stability switches from
unstable to stable may occur as 7 increases in (7., 7).

Therefore, by the stability of (0,0) at 7 = 0 and 7 > 7*, we can conclude that (0,0) is asymptotically
stable for 7 € (0,79) or 7 > 71, while unstable for 7 € (9,71 ), where 79, 7 are given by (6.15).
(i) dp < 2.

Since di > e, then di <TF = di In (di) Thus, we has the following two scenarios:
b b b b

: () 7€ (dib, T*). Since 7dp > 1, we have ¢(7) < 0 and hence S(7) = —1, which implies that possible
stability switches from unstable to stable may occur as 7 increases in (d%,’ T*).

:(2) 1€ (0, d%) In such case, $(0) =1—2d? > 0 and ¢ (d%,) = —2d? <0, and ¢'(7) < 0. Thus, there

1
) dy

: (a) For 7€ (0,7.), ¢(r) > 0 and hence S(7) = 1. .
: (b) At 7 =17, ¢(7) =0 and hence S(7) = 0;
: (¢) Forre (Tc, dib), (1) < 0 and hence S(7) = —1. .

exists unique 7. € (0

Therefore, by the stability of (0,0) at 7 = 0 and 7 > 7*, we can conclude that (0,0) is asymptotically

stable for 7 € (0,79) or 7 > 71, while unstable for 7 € (79, 71).
]

Proof of Theorem 3.6.

Proof. Consider the positive equilibria of Model 2.4. (B*, H*) is a positive equilibrium if and only if
B* = dpe®™™H* and H* is a positive root of

rH dyr
m — dh(dbe + 1), (619)
or, equivalently,
dn(dpe™™ + 1)H? — rH + Kdp(dpe™™ +1) = 0. (6.20)

Clearly, if r < 2v/Kdj,(dye™T + 1), there is no positive equilibrium; if » > 2v/Kdj,(dpe®™™ + 1), or,
equivalently,

1 r
T << dil) ln ((W — 1) /db) y and r> th\/E(l + db)7 (621)

Model 2.4 has two positive equilibria Ey = (By, Hy) and Es = (B3, H3) (Hy < H}), where

rE+a/r2 —4K (dbdhede + dh)2

H' = , =1, 2.
i 2 (dydne® + dp) T
Let
1 T
7" =—1In —1)/dy ), subjectto r>2dpVK(l+dy). 6.22
i ((m 1) /). s WE(L+dy) (6:22)
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The characteristic equation at (B, H) is
CA7) =N+ (dy + dn) A + dpdp, + (A + dp — D(H*)(1))e”®Te T =0, (6.23)

where

2rKH*

IO ey

(6.24)

and H* = H{ or H;, depending on 7.

Let
P(A7) = A+ PiT)A+ Po(7), QA7) = Q1(T)A + Qol(7), (6.25)
where
Pi(1) =dy +dp, Po(T) = dpdp, (6.26)
Qur)=e""T,  Qo(r) = (d — ®(H")(r))e"". (6.27)
Then the characteristic equation (6.28) can be rewritten as follows
C(\,7) =P\ 1)+ Q(\T)e ™ =0. (6.28)

First, we prove that A = 0 cannot be a root of (6.28), i.e., P(0,7) + Q(0,7) # 0, for any 7 € [0,7*).
In fact,

O(Oa T) = P(O7T) + Q(Oa T) = PO(T) + QO(T)
= dpd;, + (dh — cI)(I‘I*)(T))e_db"—

— =7 (djy(dpe™™ + 1) — B(H*)(7)) (6.29)
= eide (Klg-]*)z - (KZT(I}(:]I;IFV)

= e~ BTH(H)(7)((H)? — K.

Here, (6.19) is used in the third equation. Since Hf H; = K and Hf < Hj, we know that (H7)? < K <
(H3)?. Thus, C(0,7) <0 at By = (B}, Hy), and C(0,7) > 0 at Ey = (B3, H}). It follows that for all
T € [0,7%), A =0 cannot be a root of (6.28) at both Fy and Es.

Now, we consider the stability of F; and E; when 7 = 0. At 7 = 0, the characteristic equation (6.28)
becomes P(0,7) + Q(0,7) =0, i.e.,

A2+ (P(0) + Q1(0)A + Py(0) + Qo(0) = 0. (6.30)

At Ey = (B7, Hy), since Py(1) + Qo(r) < 0 for all 7 € [0,7*), we have Py(0) + Qo(0) < 0. At
E, = (B3, Hy), we have Py(0) + Qo(0) > 0 since Py(7) + Qo(7) > 0 for all 7 € [0,7*). Thus, we can
conclude that at 7 = 0, E; is unstable and FEs is locally asymptotically stable.

In order to determine the local stability of the interior equilibrium E;,i = 1,2 when 7 € (0,7%), we
proceed as follows Kuang’s book Chapter 3 [25].

Let A = iw(7),w(r) > 0, be the root of (6.28), then we have

P(iw,7) = —w? + iwPy (1) + Py(7), Qliw, 7) = iwQ1(T) + Qo(7),
Pr(iw, 7) = Py(1) — w?, Qr(iw, 7) = Qo(7), (6.31)
Pi(iw, ) = wPy (1), Qi(iw, 7) = wQ1 (7).
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By Theorem 4.1 in Kuang’s book [25], we look for the positive roots w(7) > 0 of

F(w,7) = |P(iw,7)[* = |Q(iw,7)]* =0, 7¢€[0,7%). (6.32)

Since
F(w, ) = w? + w*(=2Py () + P}(1) = Q3 (7)) + P (1) — Q5(7) (6.33)
= w* + b(r)w? + ¢(7), (6.34)

where
b(r) = —2Py(7) + PE(7) — QI(7), «o(r) = Pi(r) — Q3(7), (6.35)

equation (6.33) may have no positive root, one positive root w4 (7) or w_(7), or two positive roots
w4 (1) and w_(7), depending on b(7) and ¢(7). w4 (7) can be represent as follows:

1

2

1

() = | 5(-07) V) 30|

In order to determine the occurrence of stability switches, we need to determine the sign of % or
1 .
Re (22) . From Theorem 3.1 and its proof of Kuang[25], we have

dr
S(r): =sign {(18M)}  —sign{Re ()"}

= sign{P{(r) — 2P (7) — Qi (7) + 2w?} (6.36)

= sign{+/b%(7) — 4c(7)}.
First, we consider the local stability of the interior equilibrium F; when 7 € [0,7*). Since for all
7 € [0,7%), Po(1) + Qo(7) < 0, and Py(7) = dpdy, > 0, we have Qo(7) = (d), — ®(H*)(7))e %7 < 0.
Thus, Py(1) — Qo(7) >0, 7 € [0,7*). It follows that
o(1) = Pi(r) = Q5(7) = [Po(7) + Qo(7)][Po(7) = Qo(7)] <0, 7€ [0,77).
Therefore, (6.33) has unique positive root w (7). From (6.36), S(7) = 1. Since E; is unstable at 7 = 0,
no stability switch occur as 7 increases in [0,7*), and Ej is unstable for all 7 € [0, 7).

Now, we consider the local stability of the interior equilibrium E5 when 7 € [0,7*). We have know
that for all 7 € [0,7*), Po(7) + Qo(7) > 0 and ¢(7) = [Po(7) + Qo (7)][Po(7) — Qo(7)]. Thus, we consider
the sign of Py(7) — Qo(7). By a careful computation, we get

Py(r) = Qo(7) = dpe™ " p(7), (6.37)

where

y_ \/1 AKd (dyeT + 1)

p(7) = (dhe™ +1) =

—2. (6.38)

It is clear that o(7) is strictly increasing with respect to 7 € [0,7*), f(7*) = 2dpe®™™", and

[ AK 2 (dy + 1)2
Qwﬂ

©(0) = (dp + 1)

Now, we consider the following two cases.

Case 1. dy > 1. Then clearly ¢(0) > 0 and hence ¢(7) > 0 for all 7 € [0,7*). Thus, ¢(7) > 0. In
addition, b(7) = d? + d2 — e=2%7 > 0. Therefore, for all 7 € [0,7*), F(w,7) # 0. This implies that
in such case no stability switch occur with 7 increasing in [0, 7*). Since Es is is locally asymptotically
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stable at 7 = 0, we can conclude that Fs is is locally asymptotically stable for all 7 € [0,7*) if d, > 1.

Case 2. 0 < dj, < 1. Then, (1 +d})? — 4d} > 0. When r > 2d,vVK (1 + dp), we have

4K d2? (dp+1)2
P(0)>0 & (/1 - TGRS < 2d 629
o< 2dh\/?(1+db)2’ ’
1/(1+db)274dg
Thus, when
2dp VK (14 dy)?

th\/E(l +dp) <r<

(1+dy)? —4d}’

©(0) > 0 and hence for all T € [0,7*), ¢(7) > 0.
This case is also divided into two subcases: (i) di + dz > 1, (ii) d + d3 < 1.

(i) d? +d2 > 1. It follows b(7) = d2 4+ d? — e~2%7 > 0. Thus, in such case, F(w,7) # 0 holds for all
7 € [0,7*). This implies that in such case no stability switch occur with 7 increasing in [0,7*). Since
FE5 is locally asymptotically stable at 7 = 0, we can conclude that Fs is is locally asymptotically stable
for all 7 € [0,7%) if

< 2dp VK (1 4 dy)?

20, VK (14 dy) < .
wV (Lt dy) 1+ dy)? — 4d2

If
S 2dp VK (1 4 dy)?
(1+dy)? —4dZ’

then ¢(0) < 0 and there exists unique 7, € (0,7*) such that ¢(7) < 0 for 7 € (0,7.) and ¢(7) > 0 for
T € (1, 7). Thus, if 7 € (7¢,7*), then F(w, ) = 0 has no positive root; if 7 € (0,7.), then F(w,7) =0
has a unique positive root w4 and S(7) = 1. Since Fjs is stable at 7 = 0, from Theorem 3.1 of Kuang
[25], we know that the stability of Ey switches just once in [0, 7¢.) from stable to unstable.

(ii) d? + d2 < 1. We divide this subcase into the following two scenarios:

2
db

(a)
(1+dy)2 1
\/ (1+dp)2 —4d?

> < di +di <1, which implies that

& (1+dy)?
2dp, VK [ 1+ <2dpvK .
' ( @ d2> AT &) A

This scenario is further divided into following three cases:

/ (1+ds)?
(1) 2dh\/> (1“" d2+d2> <r < 2dh\/>\/l+d77b24d§

Since 2d, VK (1 + ”d2+d2> > 2dpVE (1 + dy), from (6.39), ©(0) > 0 and hence for all 7 € [0,7%),
e(r) > 0.

When 27}15 In <ﬁ) <7 < 7% b(r) > 0. Thus, for all 7 € [0,7%), F(w,T) # 0.
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When 0 < 7 < g5-In (ﬁ), we have b(7) < 0. Thus, we consider b?(7) — 4c(7). By a simple
b h
computation, we have

V(1) —de(r) = (PE(r) = Q1(n))(P{(7) — QI(T) — 4Py (7)) +4QF(7)
= ¢(7) +4Q3(7).
Here, ¢(1) = ((dp + dp)? — e72%7) ((dp + dp)? — e 2%7 — Adydy,). 1t is clear that

o) 20e < s (gan) o T2 (Gay).

Thus, if 5% In (W) <t <l (ﬁ) then ¢(7) < 0. If0 < 7 < 54 In (m) then
¢(t) > 0 and hence b*(7) — 4c(r) > 0, which implies that F(w,7) = 0 have two positive roots
0 < w_ < wy. Thus, from Theorem 3.1 of Kuang[25], the stability of E5 can change a finite number of
times at most as 7 is increased 7 € [0,7*), and eventually it becomes unstable.

(2) 2dp,VE(1+dy) <7 <2dpVK (1 + 4 /(&)
From (6.39), »(0) > 0 and hence for all 7 € [0,7*), ¢(7) > 0. In this case,

1 r 1 1
= — 1) /dy ) < —1 — .
T T n<<2dth >/ b) = 2dy n<d§+di>

It follows b(7) = d2 + d? — e 2% < 0 for all 7 € (0,7*). Note that

.1 r 1 1 dy
T = dbln<(m_1> /db> < Q—dbln <(db+dh)2) (:WSth\/E(derdh +1>.
Thus,
e when 2d, VK (1 +dy) < 7 < 2dp,VK (dy/(dy + dp,) + 1), ¢(7) > 0 and hence b>(7) — 4¢(1) > 0
for all 7 € [0, 7*). It yields that F(w,7) = 0 have two positive roots 0 < w_ < w,. Thus, from

Theorem 3.1 of Kuang [25], the stability of Ey can change a finite number of times at most as
7 is increased in [0,7*), and eventually it becomes unstable.

o when 2d,VE (dy/(dy + dp) + 1) < r < 2dy VK (1 + B+ d,%)), we have
> s (1/(dy + dp)?). If 5-In (1/(dyp + dp)?) < 7 < 7%, then ¢(7) < 0. If 0 < 7 <
i In (m), #(7) > 0 and hence b*(7) — 4c(7) > 0. Thus, in such case, from Theorem 3.1
of Kuang [25] the stability of F5 can change a finite number of times at most as 7 is increased
in [0,7%).

(3) 7> 2dp VK +dy)?/\/(1+dy)? — 4d2.

In this case, p(0) < 0 and there exists unique 7. € (0,7*) such that ¢(7) < 0 for 7 € (0,7.) and
e(r) > 0 for 7 € (7.,7*). Thus, if 7 € (0,7.), then F(w,7) = 0 has a unique positive root ws and
S(7) = 1. Since Es is stable at 7 = 0, from Theorem 3.1 of Kuang [25], we know that the stability of
E, switches once in [0, 7.) from stable to unstable.

(b) & +d2 < i >, which implies that

(+dp)? 4
\/ (1+dy)2 —ad?

d? 2
20, VK [ 1+ 2 | > 2diVK Utd)”
db + dh (1 + db)2 — 4d%

This scenario is again divided into following two cases:
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(1) 2dpVK(1+dy) <7< Jard A&

From (6.39), »(0) > 0 and hence for all 7 € [0,7*), ¢(r) > 0. In this case, we also have 7* <

o I (kg ) Tt follows b(r) = d2 + d2 — =47 < 0 for all 7 € (0, 7°).

2
If 2d,vVK (dbi’ibdh + 1) < %, similar to the arguments above, we get that no matter

d d (1+dp)?
20pVE(1 +dy) < 1 < 2a0VE (7% +1) or 2apV/E (g2 +1) <1 < 203 VE 0 the

stability of Ey can change a finite number of times at most as 7 is increased in [0, 7).

2d, VK (1+dy,)? d 2d;, VK (1+dy)?
If \/Wiz—:dg < 2dh\/§ (ﬁ + 1), then when 2dh\/§(l +db) <r S \/;(Ll-i-Tf—;dgv (T) 2 0 for

all [0,7*) and hence b?(7) — 4e(7) > 0 for all 7 € [0,7*). It yields that F(w,7) = 0 have two positive
roots 0 < w_ < w4. Thus, from Theorem 3.1 of Kuang [25], the stability of F2 can change a finite

number of times at most as 7 is increased in [0, 7*), and eventually it becomes unstable.
2) r> 2dp VK (1+dp)*

V(+dp)2—4d?”

Similar to the arguments above, ¢(0) < 0 and there exists unique 7. € (0, 7*) such that the stability
of E5 switches once in [0, 7.) from stable to unstable.
The proof is completed.

|
APPENDIX A. SOME IMPORTANT LEMMAS
Consider the characteristic equation of the form
p(z) +e *Tq(z) =0 (A1)

where p and ¢ are polynomials with real coefficients and 7 > 0 is the delay. The following result was
given by Brauer [4].

Lemma A. Suppose that p(z) and ¢(z) are analytic in some open set containing z > 0, and satisfying
the following conditions:

(i) p(z) #0, Rez >0,

(i) - p(—iy) = p(iy), a(—iy) = q(iy),0 <y < oo,

(iii) - p(0) +¢(0) =0,

(i) lg(iy)| < |p(iy)] for 0 <y < oo,

(V) limyz|oye0,re2>0 |q(2) /p(2)] = 0.

Then except for the roots z = 0, all roots of (A.1) are in Rez < 0 for all 0 < 7 < oo.

We need the fluctuation lemma due to Hirsh, Hanisch, and Gabriel[16].

Lemma B (Fluctuation Lemma). Let f : Ry — R be a differentiable function. If liminf, .. f(t) <
limsup,_, . f(t), then there are sequences {t,,} 1 co and {s,,} 1 co such that

f(tm) = limsup, o, f(t), f'(tm)—0 as m— oo,
f(sm) = liminfe oo f(£), f'(sSm) =0 as m — oco.
Proof of Proposition 3.1.

Proof. Let m = dyr, n = d2e®7(e®™ — 1), and ¢ = 4d2d? Ke*®7 | then:

—de
% €

H = 2
L7 2dyd),

(m—an—+/(m—an)?—c),
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and
e—de
H; = S (m—an++/(m—an)? —c).
So, function g = m — an — y/(m — an)? — ¢ and function f = m — an + /(m — an)? — ¢ will decide

two equilibrium functions are increasing or decreasing functions of «. After that,

m— no
g'(e@) =n(-1+ ,
(m —na)? —c
and
no —m

(m—na)2—c"

Since Hf > 0, m > na and m — na > /(m — an)? — ¢, therefore ¢'(a) > 0 and f/'(«) < 0, i.e. Hf is
monotonically increasing, and H3 is monotonically decreasing.

Next, we consider parameter r. Then

dpr — na
"(r) =dp(1 — <0,
g(r) ol (dbr—na)z—c)

and p
(1) = dy(1 + ——— ) > 0.
Jr) ol (dbr—na)2—c)

Therefore, Hy is monotonically decreasing by r, and H3 is monotonically increasing by r.

Afterwards, if K increases, only ¢ will increase. Then /(m — na)? — ¢ will decrease. Therefore, Hy
is monotonically increasing by K, and Hj is monotonically decreasing by K.

When we consider dp, and dp,, we can simplified the model to Model (2.3), i.e. a = 0. Then we let

H7} be the function
e T (r —\/r?— 4d%K62db7)

b= 2, )
and H3 be the function
e (7’ +4/r? — 4d}21K62de)
= 2y, '
So,
—dyT T
/ re=% (\/W — 1)
dy) = > 0,
and

—dyr ( v
re- ( \/r2—4d? Ke2dbT 1)
q'(dn) = :
242
Therefore, Hy is monotonically increasing by dp,, and HJ is monotonically decreasing by dj,.

< 0.

Finally, let us see dp. Then

—dpT r _
= >7
P(ds) 2d,
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and
—dpT T
» re % (_ ey 1) T .
q ( b) th <0
Therefore, Hf is monotonically increasing by dp, and HJ is monotonically decreasing by dp. O
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