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Abstract. Western honeybees (Apis Mellifera) serve extremely important roles in our ecosystem

and economics as they are responsible for pollinating $ 215 billion dollars annually over the world.

Unfortunately, honeybee population and their colonies have been declined dramatically. The purpose

of this article is to explore how we should model honeybee population with age structure and validate

the model using empirical data so that we can identify different factors that lead to the survival and

healthy of the honeybee colony. Our theoretical study combined with simulations and data validation

suggests that the proper age structure incorporated in the model and seasonality are important for

modeling honeybee population. Specifically, our work implies that the model assuming that (1) the

adult bees are survived from the egg population rather than the brood population; and (2) seasonality

in the queen egg laying rate, give the better fit than other honeybee models. The related theoretical

and numerical analysis of the most fit model indicate that (a) the survival of honeybee colonies requires

a large queen egg-laying rate and smaller values of the other life history parameter values in addition

to proper initial condition; (b) both brood and adult bee populations are increasing with respect to

the increase in the egg-laying rate and the decreasing in other parameter values; and (c) seasonality

may promote/suppress the survival of the honeybee colony.

1. Introduction

Western honeybee (Apis Mellifera) is an eusocial insect that has an advanced level of social or-

ganization. In honeybee colony, the queen produces the offspring and non-reproductive individuals

cooperate in caring for the young ones, that forms complex colonies [45]. Honeybees play indispens-

able and important roles in human life, economy, and agriculture. For example, honeybees not only

produce valuable products, such as honey, royal jelly, bee wax and propolis in the market, but also are

responsible for pollinating crops such as blueberries, cherries, and almonds, that is worth $215 billion

annually worldwide [42]. If there is no honeybee, it likely leads to changes in human diets and a dis-

proportionate expansion of agricultural land in order to fill this shortfall in crop production by volume

[34]. Unfortunately, honeybee population has been decreasing globally [42]. In the United States, the

total number of honeybee colonies has been reduced approximate 40% to 50%, while in the rest of the

world the total number of colonies is reduced by 5% to 10% [31]. The important and critical causes for

honeybee colony mortalities include diseases, land-use change, pesticides, pathogens and parasites, and

poor beekeeping management [42, 8, 32, 30, 9]. The purpose of this article is to explore how we could
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better model colony population dynamics to help us understand the honeybee colony mortalities.

Honeybee colony itself is a complex adaptive system with its own resilience to disturbances, whose

survival depends on its individual quality, its adaptive capacity and its threshold of resilience to pres-

sures [14]. On average, a colony has about 10,000 to 60,000 bees, that consists of a queen (fertile female)

who produces all offspring, a few hundred drones (males) and thousands of workers (sterile females).

Generally, a queen may lay approximate 1000-2000 eggs per day in the peak period [6]. Due to aging

or disability of the queen bee, beekeepers will replace the queen every 1-2 years [6]. Each honeybee

goes through four stages of development: egg, larva, pupa and adult [6]. For worker bees, they need

21 days to eclosion to adult bees [45, 15, 10], and drones need 24 days to mature [10]. Population size

at each stage and the related maturation time have huge influences on the colony development and its

population dynamics [14]. Needless to say, age is linked to division of labor in honeybees [37]. Young

workers In the colony, young workers prefer to perform nursing tasks, while older workers prefer foraging

activities. However, colonies can accelerate, delay, or even reverse their recruitment behavior as the

internal or external environment changes [17].

Not only the age structure will affect the honeybees colony, but the change of season, temperature,

weather, etc. also will influence the honeybees [19, 6, 10, 40]. Through experiments and observations,

honeybee population present periodic fluctuations due to different reasons. For instance, we observe

great foraging activity during spring, summer and fall but the highest activity during the summer [6].

During spring and summer, pollen and nectar from diverse floras are in great abundance, giving rise

to an increase honeybee population. Therefore, given that temperature is one of the main factors in

honeybee food availability and thus brood production, honeybee population size is smaller during the

winter [40, 10]. Thus, the peak of the population is achieved in late June until middle of summer as it

starts to decline [36]. The temperature in the colony also will influence honeybee, middle-age honey-

bees will respond to the heat stress in order to perform [19]. Thus, it is very important to include age

structure and the seasonality in studying of honeybee population dynamics and the factors that affect

healthy of honeybee colonies. Research has shown that the major problems threatening the survival of

honeybee colonies could link to: 1) environmental stressors, such as habitat destruction (urbanization,

deforestation, forest fires); 2) parasites and pathogens, such varroosis and virus; 3) genetic variation

and vitality, like limited importation [32, 30, 42]. In order to quantify the problems and consider the

difficulty of directly observing the dynamics of bee populations, mathematical models can be a powerful

tool to help us understand how the bee population change and predict the fate of the colony.

Mathematical models indeed have been developed to study bee populations dynamics and the re-

lated stressors, particularly the effects of pathogens, parasites and nutrient stress factors [38, 24, 23,

22, 32, 2, 5, 21, 11, 1, 42]. DeGrandi-Hoffman [10] proposed a first simulation model for honeybee

colony dynamics that includes many important factors such weather, egg-laying rate, the age of queen,

foraging and brood life cycles. There are some previous work focusing on how the death rate of foragers

impacts colony viability [23, 22]. Khoury [23] published a compartmental model based on these circum-

stances. The model includes three states, brood, hive and foragers, and incorporates the recruitment

process to study the forager death rate. There is a work [38] that investigated seasonal food availability

and transition of hive to foragers. The most recent recent works [28, 35] consider the seasonality in

the queen egg-laying rate. Messan et al [28] applied seasonality effects into the pollen collection rate

that has annual periodicity by the first order harmonic. Ratti et al [35] also agrees that seasonality
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affects dynamics of honeybee and its parasitic virus. This article [35] incorporated seasonality in var-

roa treatment control as the treatment is applied with four seasons: spring, summer, fall, and winter [35].

Motivated by the previous work on honeybee population models with age structure [23, 22, 21] and

seasonality [38, 28, 35], we propose and study honeybee population models with different delay terms

to include age structure. We use data to validate our models and explore which model would be more

appreciated and the importance of incorporating seasonality in the honeybee population model. More

specifically, the objective of our paper is to develop a proper honeybee population dynamical model

with age structure to understand important factors for colony survival, and to explore how seasonality

may affect the colony dynamics and its survival.

The remaining of the article is shown as follows: In Section 2, we derive two honeybee colony dy-

namics models that incorporate varied delay terms. In Section 3, we perform rigorous mathematical

analysis for those two models and compare their dynamics. In Section 4, we validate our two mod-

els with real honeybee data. Our study shows the importance of seasonality and suggests that one of

those two proposed models would be more appropriated for studying honeybee population dynamics. In

Section 5, we conclude our study. In the last section, we provide detailed proofs of our theoretical results.

2. Model Derivations

In this section, we focus on modeling of honeybee colony dynamics with age structure. For conve-

nience, we divide the population of honeybee colony into brood and adult bees. Let B(t), H(t) be the

population of brood and adult bees in a given hive at time t, respectively. We assume that:

A1: The daily egg laying rate of honeybee queen is r with the survival rate of H2/(K +H2 + αB)

where the parameter K is the population of adult bee needed for half of the maximum brood

survival rate and α represents the regulation effects from brood population B. The term

H2/(K+H2+αB) reflects (1) the cooperative brood care from adult bees that perform nursing

and collecting food for brood; and (2) the queen and workers that regulate the actual egg lay-

ing/survival rate based on the current available brood population B, which has been supported

by the literature work [28, 39, 20, 12].

A2: We assume that both brood and adult bees have constant mortality, db and dh respectively.

The maturation time from brood B to adult bee H is denoted by τ (τ = 16 for queen, τ = 21

for workers, and τ = 24 for drones [6, 22]), thus the maturation rate is termed as follows:

e−dbτ︸ ︷︷ ︸
survival rate of brood during time τ

rH2(t− τ)

K +H2(t− τ) + αB(t− τ)︸ ︷︷ ︸
new brood at t− τ

The two assumptions above lead to the following non-linear delayed differential equations of honey-

bee population dynamics (Model (2.1)):


dB

dt
=

rH2(t)

K +H2(t) + αB
− dbB − e−dbτ

rH2(t− τ)

K +H2(t− τ) + αB(t− τ)

dH

dt
= e−dbτ

rH(t− τ)2

K +H2(t− τ) + αB(t− τ)
− dhH

(2.1)
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where we assume that the initial function for H(t) is a nonnegative continuous function defined in

t ∈ [−τ, 0] and

B(0) =

∫ 0

−τ

rH2(s)edbs

K +H2(s) + αB(s)
ds. (2.2)

The biological meaning of each parameter of the proposed model (2.1) is listed in Table 1. In the case

α = 0, the model (2.1) reduces to the following Model (2.3)
dB

dt
=

rH2(t)

K +H2(t)
− dbB − e−dbτ

rH2(t− τ)

K +H2(t− τ)

dH

dt
= e−dbτ

rH2(t− τ)

K +H2(t− τ)
− dhH(t)

(2.3)

Notes: Our proposed model (2.3) (when α = 0 in the model (2.1)) is a single specie model with brood

B and adult H stage where these two stages seem to be decoupled. Thus, we could study the dynamics

of Model (2.3) by exploring the dynamics of H first, then the dynamics of B is totally determined by

H. We would see the analytical results in the next section.

Table 1. Biological meanings and references of parameters of models (2.1 & 2.4) with

and without seasonality.

Parameter Description Estimate/Units Reference

r Daily egg-laying rate of Queen [500 10,000] bees/day Estimated

α the regulation effects of brood [0 20] Estimated

db Death rate of the brood [0, 0.3] day−1 Estimated

dh Death rate of the adult bees [0, 0.3] day−1 Estimated

γ The length of seasonality [170, 365] days Estimated

√
K Colony size at which brood survival rate is half maximum for K

[50,000, 1,300,000](model 2.4)

[1 ∗ (107), 1 ∗ (108)](model 2.1) bees/day
Estimated

τ Time spent in brood 21 days Khoury 2013

ψ the time of the maximum laying rate 12 days Harris 1980

In literature (e.g, see [44]), researchers have been using the compartmental models through ODEs to

model population dynamics with age and/or stage structure. Motivated by this, we have the following

delay model 
dB

dt
=

rH2(t)

K +H2(t)
− dbB − e−dbτB(t− τ)

dH

dt
= e−dbτB(t− τ)− dhH(t)

(2.4)

where the term e−dbτB(t− τ) describes the maturation entry rate coming from the juvenile stage with

a survival rate e−dbτ during the juvenile period τ .

More specifically, the model (2.4) above assumes that the adult H(t) matures from the survived

brood population at time t− τ . In the following two sessions, we will compare population dynamics of

Model (2.4) and the proposed model (2.1) to address the importances of deriving proper delay popula-

tion models due to the outcomes of dynamics and model validations.
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3. Mathematical Analysis

The state space of the proposed model (2.1) is X = C([−τ, 0],R+) × C([−τ, 0],R+). We first show

that the proposed model (2.1) is positive invariant and bounded in X as the following theorem:

Theorem 3.1. Assume that the initial functions for B(t) and H(t) are continuous and nonnegative

function in t ∈ [−τ, 0] with (2.2), then the proposed model (2.1) is positive invariant and bounded in X.

Notes: The detailed proof of Theorem 3.1 is in the last section. Theorem 3.1 implies that our proposed

model is biologically well defined. The model (2.1) always has the extinction equilibrium Ee = (0, 0)

which would be locally or globally stable as stated in the next theorem:

Theorem 3.2. [Stability of Extinction Equilibrium] The extinction equilibrium Ee of Model (2.1) is

always locally asymptotically stable. If the inequality dh > re−dbτ/2
√
K holds, the extinction equilibrium

Ee is globally stable.

Notes: The detailed proof of Theorem 3.2 is in the last section. Theorem 3.2 indicates that the large

maturation time τ or the mortality at different stages dh, db can lead to the collapsing of the colony.

Now we focus on the condition of the colony survival. Let (B,H) be an interior equilibrium of Model

(2.1). Then it satisfies that the following equations:

0 =
rH(t)2

K +H(t)2 + αB(t)
− dbB − e−dbτ

rH(t)2

K +H(t)2 + αB(t)
⇒ dbB =

[1− e−dbτ ]rH2

K +H2 + αB
(3.1)

0 = e−dbτ
rH(t)2

K +H(t)2 + αB(t)
− dhH(t)⇒ dhH =

e−dbτrH2

K +H2 + αB
(3.2)

which gives

B =
dh[edbτ − 1]

db
(3.3)

and

0 =
e−dbτrHdb

db(K +H2) + αdh(edbτ − 1)H
− dh. (3.4)

Solving the equation (3.4) gives

H∗1 =

e−dbτ
(
dbr − αd2hedbτ

[
edbτ − 1

]
−
√

(dbr − αd2hedbτ [edbτ − 1])
2 − 4d2bd

2
hKe

2dbτ

)
2dbdh

and

H∗2 =

e−dbτ
(
dbr − αd2hedbτ

[
edbτ − 1

]
+

√
(dbr − αd2hedbτ [edbτ − 1])

2 − 4d2bd
2
hKe

2dbτ

)
2dbdh

with H∗1 ≤ H∗2 . Now we have the following proposition:
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Proposition 3.1. [Existence of Interior Equilibria] If

dbr − d2hedbτ [edbτ − 1]α

2dhdbedbτ
√
K

> 1, (3.5)

then Model (2.1) has two interior equilibria Ei, i = 1, 2:

Ei = (B∗i , H
∗
i ) =

(
dh[edbτ − 1]

db
H∗i , H

∗
i

)
where H∗1 is an increasing function of α, K, db and dh, and H∗2 is a decreasing function of α, K, db and

dh; whereas, H∗1 is a decreasing function of r, and H∗2 is an increasing function of r. When

dbr − d2hedbτ [edbτ − 1]α

2dhdbedbτ
√
K

= 1,

The two equilibria E1 and E2 merge into a unique interior equilibrium for Model (2.1):

E∗ = (B∗, H∗) =

(
dh[edbτ − 1]

db
H∗, H∗

)
with H∗ =

e−dbτ
(
dbr − αd2hedbτ

[
edbτ − 1

])
2dbdh

.

Notes: Proposition 3.1 implies that one of the necessary conditions for the honeybee colony survival is

(3.5) which requires large values of the queen egg laying rate r, and the smaller values of the maturation

time τ and the brood regulation effect α. In addition, Proposition 3.1 indicates that at the interior

equilibrium, the ratio of brood B to adult population H is determined by their mortality and maturation

time through the equation dh
[
edbτ − 1

]
/db. Based on simulations and analytical results, the interior

equilibrium H∗2 is always locally stable if it exists while H∗1 is locally unstable. If (3.5) holds, then by

simple calculations, we have
dH∗

1

dα > 0 and
dH∗

2

dα < 0. This implies that the brood regulation coefficient α

has negative effects on brood and adult population sizes. In the case that α = 0, then (3.5) reduces to

dbr/2dhdbe
dbτ
√
K > 1 under which the interior equilibria H∗i , i = 1, 2 have the following expressions:

H∗1 =

e−dbτ
(
dbr −

√
(dbr)

2 − 4d2bd
2
hKe

2dbτ

)
2dbdh

H∗2 =

e−dbτ
(
dbr +

√
(dbr)

2 − 4d2bd
2
hKe

2dbτ

)
2dbdh

In order to study the stability of the interior equilibrium Ei = (B∗i , H
∗
i ), we need to find the charac-

teristic equation of Ei. Let A = Hr/
(
αB +H2 +K

)2
and

C(λ)

= det

[ −αH2r
(αB+H2+K)2

− db 2Hr(αB+K)

(αB+H2+K)2

0 −dh

]
+

 −αH2re−dbτ

(αB+H2+K)2
− 2Hre−dbτ (αB+K)

(αB+H2+K)2

αH2re−dbτ

(αB+H2+K)2
2Hre−dbτ (αB+K)

(αB+H2+K)2

 ∗ e−λτ − λI


= det

([
−αAH − db 2A(αB +K)

0 −dh

]
+

[
−αAHe−dbτ −2A(αB +K)e−dbτ

αAHe−dbτ 2A(αB +K)e−dbτ

]
∗ e−λτ − λI

)
= det(

[
−αAH(1 + e−(λ+db)τ )− db − λ 2A(αB +K)(1− e−(λ+db)τ )

αAHe−dbτ −dh + 2A(αB +K)e−(λ+db)τ − λ

]
= (−αAH(1 + e−(λ+db)τ )− db − λ)(−dh + 2A(αB +K)e−(λ+db)τ − λ)

− 2A(αB +K)(1− e−(λ+db)τ )αAHe−dbτ

(3.6)
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evaluated at Ei = (Bi, Hi). We can see the characteristic equation (3.6) of the interior equilibrium

Ei = (B∗i , H
∗
i ) is very complicated and difficult to analysis. Thus, for convenience, we start with the

simpler case by setting α = 0 which is our model (2.3).

Theorem 3.3. [Stability of Interior Equilibria] If r/2dhe
dbτ
√
K > 1, then Model (2.3) has two interior

equilibria Ei where E1 is always unstable and E2 is always locally asymptotically stable.

Notes: Theorem 3.3 indicates that the value of the maturation time τ has no effects on the stabil-

ity of its interior equilibria Ei, i = 1, 2 for Model (2.3). In the case that r/2dhe
dbτ
√
K = 1, i.e.,

dh = re−dbτ/2
√
K, then Model (2.3) has an unique interior E = (B∗, H∗) =

(
r
[
1− e−dbτ

]
/2db,

√
K
)

.

The following theorem provides results on the interior equilibrium stability of this critical case:

Theorem 3.4. [Unique Interior Equilibrium] If dh = re−dbτ/2
√
K, Model (2.3) has a unique interior

equilibrium E = (B∗, H∗) =
(
r
(
1− e−dbτ

)
/2db,

√
K
)

which is always locally asymptotically stable for

any delay τ > 0.

Notes: The detailed proof of Theorem 3.4 uses normal form theory in [13], and is provided in the last

section. Both Theorem 3.3 and Theorem 3.4 implies that when α = 0, i.e., Model (2.3), the colony can

survive at E2 = (B∗2 , H
∗
2 ) if r/2dhe

dbτ
√
K ≥ 1 and initial conditions are in a proper range.

What if α > 0? Our simulations suggest that E1 is still unstable and E2 is locally stable. Based on

our analytical results and simulations, we summarize the general dynamics of Model (2.1) as follows:

(1) The extinction equilibrium Ee of Model (2.3) always exists and is always locally asymptotically

stable.

(2) If r/dh < 2edbτ
√
K, Model (2.1) has its global stability at the extinction equilibrium Ee.

(3) If (3.5) holds, Model (2.1) has two locally asymptotically stable equilibria: the extinction equi-

librium Ee and the interior equilibrium E2 = (B∗2 , H
∗
2 ).

Figure 1 shows bifurcation diagrams of Model (2.1) regarding (a) the queen egg-laying rate (r) (see

Figure 1a&1b); (b) the brood regulation effects on reproduction α (see Figure 1c&1d); (c) the half-

saturation coefficient K (see Figure 1e&1d) (d) the mortality of brood db (see Figure 1g&1h); and (e)

the mortality of adult dh (see Figure 1i&1j). Those bifurcation diagrams indicates that (1) the colony

survival requires the large value of the queen egg-laying rate (r) which leads to the increased brood

and adult population as it increases; (2) the large values of α, the half-saturation coefficient K, or any

mortality rate db or dh can lead to the colony collapsing, and both brood and adult population are

decreasing with respect to these parameter values; and (3) increasing the value of the adult population

mortality can lead to the dramatic decreasing of the adult population.

The another modeling approach with age structure for the honeybee colony: In our model

derivation section, we proposed the model (2.4) below assuming that the adult H(t) matures from the
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(a) Brood population and

the queen egg-laying rate r

when K = 105, α = 3, db =

0.1, dh = 0.17, τ = 21.
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(b) Adult population and

the queen egg-laying rate r

when K = 105, α = 3, db =

0.1, dh = 0.17, τ = 21.
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(c) Brood population and

the brood regulation effect

α when K = 106, r =

1400, db = 0.09, dh =

0.1, τ = 21.
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(d) Adult population and

the brood regulation effect

α when K = 106, r =

1400, db = 0.09, dh =

0.1, τ = 21.
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(e) Brood population and

the square of half max of

colony size K when r =

1400, db = 0.03, dh =

0.04, α = 3, τ = 21 .
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1400, db = 0.03, dh =

0.04, α = 3, τ = 21 .
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(g) Brood population and

the death rate of the brood

db when K = 105, r =

3000, α = 3, dh = 0.05, τ =

21
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(h) Adult population and

the death rate of the brood

db when K = 105, r =

3000, α = 3, dh = 0.05, τ =

21
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(i) Brood population and

the death rate of the adult

dh when K = 1 ∗ 104, r =

1400, db = 0.01, α = 3, τ =

21.
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(j) Adult population and

the death rate of the adult

dh when K = 1 ∗ 104, r =

1400, db = 0.01, α = 3, τ =

21.

Figure 1. Bifurcation diagrams of Model (2.1) with the interior equilibrium E1 =

(B∗1 , H
∗
1 ) in black and E2 = (B∗2 , H

∗
2 ) in green where the solid curve indicates stable,

and the dash curve indicates saddle.

survived brood population at time t− τ .
dB

dt
=

rH2(t)

K +H2(t)
− dbB − e−dbτB(t− τ)

dH

dt
= e−dbτB(t− τ)− dhH(t)

The model above is motivated from the compartmental ODE model in the literature [44]. We aim to

compare the dynamics of Model (2.4) to the model (2.1) to address the importance of deriving a proper

biological model with age structure.
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First, we notice that the extinction equilibrium Ee = (0, 0) always exists as for the model (2.1).

However, Ee can go through stability switching that leads to an oscillatory solution around Ee for

Model (2.4)

Theorem 3.5. [Extinction equilibria dynamics] Model (2.4) always has the extinction equilibrium Ee =

(0, 0).

(1) If db ≥
√
2
2 , then Ee = (0, 0) is asymptotically stable for all τ ≥ 0.

(2) If 0 < db <
√
2
2 , then Ee = (0, 0) is asymptotically stable for τ ∈ (0, τ0) or τ ≥ τ1, while unstable

for τ ∈ (τ0, τ1), where τk = θ+kπ
w , k = 0, 1, θ = π − arctan

(
w
db

)
and w = (e−2dbτ − d2b)1/2.

Notes: Theorem 3.5 suggests that the smaller value of the brood mortality can destablize the colony

dynamics. In addition, it implies that Model (2.4) is not positive invariant as the extinction equilibrium

Ee = (0, 0) could have stability switches that lead to oscillatory solution around Ee. See Figure 2 when

Model (2.4) exists a limit cycle of population around Ee = (0, 0).

−40 −20 0 20 40 60

−
4
0

−
2
0

0
2
0

4
0

6
0

Honeybee Population

−40 −20 0 20 40 60

−
4
0

−
2
0

0
2
0

4
0

6
0

Brood

A
d

u
lt

Figure 2. Phase plane of honeybee brood and adult population of with r = 1000,K =

1 ∗ 106, db = 0.1, dh = 0.17, τ = 18 when Model (2.4) has an unstable Ee (the black

dot).

Let (B,H) be an interior equilibrium of Model (2.4), then it satisfies that the following two equations:

0 =
rH2

K +H2
− dbB − e−dbτB

0 = e−dbτB − dhH

which gives the brood population at the equilibrium B∗ = dhe
dbτH∗ and by solving rH

K+H2 −dbdhedbτ −
dh = 0 we could solve

H∗i =
r ±

√
r2 − 4K (dbdhedbτ + dh)

2

2 (dbdhedbτ + dh)
, i = 1, 2.

Now define the characteristic equation of the interior equilibrium (B∗, H∗) of Model (2.4) as follows:
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C(λ, τ) = (−dh − λ)(−db − e−dbτeλτ − λ)− 2rKH∗

(K + (H∗)2)2
e−(db+λ)τ (3.7)

= λ2 + (db + dh)λ+ (λ+ dh −
2rKH∗

(K + (H∗)2)2
)e−(λ+db)τ + dhdb = 0 (3.8)

Theorem 3.6. [Interior Equilibrium Dynamics] Let r > 2dh
√
K(1+db) and τ∗ = 1

db
ln
(

1
db

(
r

2dh
√
K
− 1
))

.

If τ ∈ [0, τ∗), Model (2.4) has two positive interior equilibrium

Ei = (B∗i , H
∗
i ) = (dhe

dbτH∗i , H
∗
i ), i = 1, 2

which H∗1 < H∗2 . And E1 = (B∗1 , H
∗
1 ) is always unstable in [0, τ∗), E2 = (B∗2 , H

∗
2 ) is always stable or

occurs stability switching by following cases:

Case 1. If db ≥ 1 or 0 < db < 1, d2b + d2h ≥ 1 and

2dh
√
K(1 + db) < r ≤ 2dh

√
K(1 + db)

2√
(1 + db)2 − 4d2b

,

then E2 is locally asymptotically stable for all τ ∈ [0, τ∗).

Case 2. If 0 < db < 1, d2b + d2h ≥ 1 and

r >
2dh
√
K(1 + db)

2√
(1 + db)2 − 4d2b

,

then the stability of E2 switches just once from stable to unstable as τ increases in [0, τ∗).

Case 3. If d2b + d2h < 1 and

2dh
√
K(1 + db) < r ≤ 2dh

√
K(1 + db)

2√
(1 + db)2 − 4d2b

,

the stability of E2 can change a finite number of times at most as τ is increased τ ∈ [0, τ∗), and

eventually it becomes unstable.

Case 4. If d2b + d2h < 1 and

r >
2dh
√
K(1 + db)

2√
(1 + db)2 − 4d2b

,

the stability of E2 switches at least once in [0, τ∗) from stable to unstable.

Notes: Theorem 3.6 indicates that: (1) The large value of mortality in brood and/or adult bees with

the intermediate value of the egg laying rate r can have the simple equilibrium dynamics; and (2) The

relative small values of mortality in brood and/or adult bees with the large value of the egg laying rate

r can destabilize the colony dynamics that lead to stability switching in the interior equilibrium E2.

For example, Figure 3 provides an example when Model (2.4) can have stability switches at its interior

attractor E2 as τ changes: Model (2.4) has local stability when τ = 21 while its has oscillatory solution

when τ = 16. Figure 4 also indicates the importances of initial condition that may lead to the survival

or collapsing of the colony.

Comparisons between Model (2.1) and Model (2.4): Both models can have up to three equilibria

with always the existence of the extinction equilibrium Ee. However, the maturation time τ has no

effects on the stability of the equilibrium of Model (2.1) while it could lead to stability switches for

Model (2.4). The consequence is that Model (2.4) is not positive invariant and could have a oscillatory

solution around the extinction equilibrium Ee and the interior equilibrium E2.
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(a) Brood population in τ = 16 (b) Adult population in τ = 16

(c) Brood population in τ = 21 (d) Adult population in τ = 21

Figure 3. Time series of the brood (solid) and adult (dot dashed) bee when r =

3000; dh = 0.178; db = 0.1;K = 5, 000, 000; B(θ) = 2400;H(θ) = 4500, θ ∈ [−τ, 0].

To continue exploring how we should model population dynamics of honeybee with the proper age

structure so that we could have a better understanding of important factors contributing the colony

survival, we perform bifurcation diagrams on both Model (2.1) and Model (2.4). Figure 1 shows bifur-

cation diagrams of Model (2.1) regarding (a) the queen egg-laying rate (r) (see Figure 1a & 1b); (b) the

brood regulation effects on reproduction α (see Figure 1c & 1d); (c) the half-saturation coefficient K

(see Figure 1e & 1f) (d) the mortality of brood db (see Figure 1g & 1h); and (e) the mortality of adult

dh (see Figure 1i & 1j).

Figure 5 shows bifurcation diagrams of Model (2.4) regarding (a) the queen egg-laying rate (r) (see

Figure 5a & 5d); (b) the half-saturation coefficient K (see Figure 5e & 5h) (c) the mortality of brood db
(see Figure 5i & 5j); and (d) the mortality of adult dh (see Figure 5k & 5l). The biggest differences of

those bifurcation diagrams between Model (2.1) and Model (2.4) are: (1) The survival equilibrium (E2)

can become destabilized if we decrease the value of the brood mortality db and/or increase the adult

mortality; (2) the brood population may have its maximum point when the mortality of the brood db
is in a proper range: In Figure 5i, it shows that the interesting pattern on how the brood population

changes with its mortality rate; and (3) Model (2.1) has only equilibrium dynamics either at the extinc-

tion Ee or the interior equilibrium E2. Honeybee population data shown in Figure 6 seems to exhibit

seasonality. By comparing dynamics of Model (2.1) with Model (2.4), we know that only Model (2.4)

has oscillatory solutions. Does it mean that Model (2.4) is better than Model (2.1) as it has oscillatory

solutions?
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(a) Brood population for B(0) =

2500;H(0) = 6000

(b) Adult population for B(0) =

2500;H(0) = 6000

(c) Brood population for B(0) =

5000;H(0) = 7, 000

(d) Adult population for B(0) =

5000;H(0) = 7, 000

Figure 4. Time series of the brood (solid) and adult (dot dashed) bee using r =

1500; dh = 0.178; db = 0.1;K = 5, 000, 000; τ = 21.; B(θ) = B(0) and H(θ) = H(0),

θ ∈ [−τ, 0].

4. Data and Seasonality

In this section, we use the honeybee population data collected by James Harris (1980) [15] to do

parameter estimations and model validations. The honeybee population data of two colonies: May 5,

1975 to Oct 22, 1975 and May 3, 1976 to Dec 5, 1976, is shown in Figure 6 in the left (1975) and

right (1976) side, respectively: The brood B (the sum of egg, larvae, and pupa) population is shown

by triangle dots while the adult H population is represented by point dots. Based on Figure 6, the

initial population of brood is B0 = 6125 and adult H0 = 5362 for 1975 while B0 = 5982 and H0 = 5362

for 1976. Figure 6 shows seasonality. Mathematical analysis provided in our previous section indicates

that Model (2.4) can have oscillatory solutions under certain conditions while Model (2.1) only exhibits

simple equilibrium dynamics.

The questions are: (1) Is Model (2.4) better than Model (2.1) because it shows oscillatory solutions?

Or (2) Is seasonality showed in honeybee population data (see Figure 6) caused by the external factors

such as resource?

To address the questions above, we first assume that the queen lays egg is seasonal due to resource

constraints. The literature work suggests that food, temperature, weather and oviposition place would

affect the queen [3, 23, 10], thence her egg-laying rate is not constant, and assumed tohave the following
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(a) Brood population and

the egg-laying rate r when

K = 9 ∗ 106, db =

0.07, dh = 0.1, τ = 21.
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(b) Adult population and

the egg-laying rate r when

K = 9 ∗ 106, db =

0.07, dh = 0.1, τ = 21.
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(c) Brood population and

the egg-laying rate r when

K = 106, db = 0.1, dh =

0.17, τ = 21.
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(d) Adult population and

the egg-laying rate r when

K = 106, db = 0.1, dh =

0.17, τ = 21.
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(e) Brood population and

the square of half max of

colony size K when r =

2000, db = 0.07, dh =

0.1, τ = 21.
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(f) Adult population and

the square of half max of

colony size K when r =

2000, db = 0.07, dh =

0.1, τ = 21.
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(g) Brood population and

the square of half max

of colony size K when

r = 2000, db = 0.1, dh =

0.11, τ = 21.
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(h) Adult population and

the square of half max

of colony size K when

r = 2000, db = 0.1, dh =

0.11, τ = 21.
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(i) Brood population and

the death rate of the brood

db when K = 106, r =

1500, dh = 0.13, τ = 21.
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(j) Adult population and

the death rate of the brood

db when K = 106, r =

1500, dh = 0.13, τ = 21.
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(k) Brood population and

the death rate of the adult

dh when K = 104, r =

3000, db = 0.2, τ = 21.
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(l) Adult population and

the death rate of the adult

dh when K = 104, r =

3000, db = 0.2, τ = 21.

Figure 5. Bifurcation diagrams of interior equilibrium E1 = (B∗1 , H
∗
1 ) (black) and

E2 = (B∗2 , H
∗
2 ) (green) for Model (2.4): solid curve indicates stable, and dash curve

indicates unstable

expression:

r(t) = r0 ∗ (1 + cos(
2π(t− ψ)

γ
)); (4.1)

r(t− τ) = r0 ∗ (1 + cos(
2π(t− τ − ψ)

γ
)). (4.2)

where γ indicates the length of seasonality; τ indicates the time length of the juvenile period; ψ indicates

the time of the maximum laying rate; and r0 indicates the baseline egg-laying rate. The literature work

suggests that climate/temperature may affect the winter mortality indirectly, but the location, eleva-

tions and humidity are more likely direct affecting factors, especially the link between temperature and

mortality is not particularly prominent [43]. Therefore, our model only considers the egg-laying rate be-

ing seasonal as it has more direct impacts from external internal factors such as temperature/resource,

and it is reasonable to set the mortality rates of brood and adult being constant. But it would be



104 J. CHEN, K. MESSAN, M. MESSAN, G. DEGRANDI-HOFFMAN, D. BAI, AND Y. KANG

May Jun Jul Aug Sep Oct

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

Honeybee Populations 1975 May − Oct

Date

H
o
n
e
y
b
e
e
 p

o
p
u
la

ti
o
n
s

Brood

Adult

(a) Honeybee population in 1975
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(b) Honeybee population in 1976

Figure 6. The observed population data for honeybee colony in 1975 (left) and 1976

(right), respectively. The triangle line corresponds to brood population (eggs, larva

and pupa), while the circle line corresponds to adults.

interesting to explore how may seasonal mortality of brood and adult affect dynamics in the future

work.

Then we perform parameter estimations and model validations based on data shown in Figure 6: We

implement the Monte Carlo parameter sweep method as our fitting method to the honeybee population

data to attain parameter estimates [7]. Essentially, we randomly sample hypotheses for the parameters

following negative binomial regression with appropriate ranges (see Table.1). For each observed value,

we defined the negative binomial probability density function. The mean (µ) is set by the corresponding

predictive value, and variance is µ+ α ∗ µ2, which is α = k−1. k indicates dispersion parameter, which

we set range [0.5,2] [33, 27]. Then we calculate the likelihood for negative binomial regression model to

get better estimate for parameters [26, 18]. Afterwards, we performed data fitting on the above model

(model number) and compare the results.

We first assume that the egg laying rate r is constant. All fittings are set by constant history

functions with B(θ) = 6125 and H(θ) = 5362 for 1975, and B(θ) = 5982 and H(θ) = 5362 for 1976, for

all θ ∈ [−τ, 0].

(1) Fitting Model (2.1): the best fit is shown in Figure (7a & 7b). If we use the estimated parame-

ters: r = 1237; dh = 0.033; db = 0.001;K = 20, 574, 000;α = 16.9, then E2 = (25299, 36124.5) in

1975; and r = 1149; dh = 0.03; db = 0.001;K = 10, 653, 000;α = 4, then E2 = (23693.5, 37215.3)

in 1976. Model (2.1) approaches to its plateau under those two fittings.

(2) Fitting Model (2.3): the best fit is shown in Figure (7c & 7d). If we use the estimated param-

eters: r = 1573; dh = 0.04; db = 0.0001;K = 15, 716, 000, then E2 = (32658.1, 38837.8) in 1975;

and r = 1065; dh = 0.03; db = 0.0001;K = 19, 600, 000, then E2 = (21987, 34863.3) in 1976.

Model (2.3) approaches to its plateau under those two fittings.

(3) Fitting Model (2.4): the best fit is shown in Figure (7e & 7f). If we use the estimated param-

eters: r = 5333; dh = 0.12; db = 0.11;K = 867, 000, then E2 = (25435.1, 21039.3) in 1975; and
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r = 5333; dh = 0.12; db = 0.11;K = 1, 088, 000, then E2 = (25422.3, 21028.8) in 1976. Model

(2.4) approaches to its steady state through damping oscillations.

(a) Model (2.1) (1975), r = 1237; dh = 0.033; db =

0.001;K = 20, 574, 000;α = 16.9.

(b) Model (2.1) (1976), r = 1149; dh = 0.03; db =

0.001;K = 10, 653, 000;α = 4.

(c) Model (2.3) (1975), r = 1573; dh = 0.04; db =

0.0001;K = 15, 716, 000.

(d) Model (2.3) (1976), r = 1065; dh = 0.03; db =

0.0001;K = 19, 600, 000.

(e) Model (2.4) (1975), r = 5333; dh = 0.12; db =

0.11;K = 867, 000.

(f) Model (2.4) (1976), r = 5333; dh = 0.12; db =

0.11;K = 1, 088, 000.

Figure 7. Data fitting without seasonality for Harris honeybees data in 1975 (a, c,

e) and 1976 (b, d, f) with τ = 21. Black dots indicate Harris data, and black curve

indicates our model.

The fittings shown in Figure 7 suggest that the assumption of the queen egg laying being constant

is not realistic enough. Thus we assume that the egg laying rate is a periodic function r(t) = r0 ∗ (1 +

cos( 2π(t−ψ)
γ )). All fittings are set by constant history functions, i.e., B(θ) = 6125 and H(θ) = 5362 for

1975, and B(θ) = 5982 and H(θ) = 5362 for 1976, for all θ ∈ [−τ, 0]

(1) Fitting Model (2.1): the best fit is shown in Figure (8a & 8b). If we use the estimated param-

eters: r0 = 1193; dh = 0.03; db = 0.02;K = 56, 963, 000;α = 4; γ = 273;ψ = 12 in 1975; and
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r0 = 1319; dh = 0.023; db = 0.02;K = 84, 933, 000;α = 3.2; γ = 338;ψ = 12 in 1976. Both data

fittings of Model (2.1) have periodic solutions.

(2) Fitting Model (2.3): the best fit is shown in Figure (8c & 8d). If we use the estimated pa-

rameters: r0 = 1644; dh = 0.03; db = 0.02;K = 139, 137, 000; γ = 277;ψ = 12 in 1975; and

r0 = 1477; dh = 0.04; db = 0.02;K = 81, 048, 000; γ = 261;ψ = 12 in 1976. Both data fittings of

Model (2.3) have periodic solutions.

(3) Fitting Model (2.4): the best fit is shown in Figure (8e & 8f). If we use the estimated parameters:

r0 = 5333; dh = 0.12; db = 0.11;K = 867, 000; γ = 350;ψ = 12 in 1975; and r0 = 9171; dh =

0.19; db = 0.12;K = 20, 000; γ = 261;ψ = 12 in 1976. Both data fittings of Model (2.4) have

periodic solutions that would lead to negative solutions as Model (2.4) is not positively invariant.

The data fittings assuming that r(t) = r0 ∗ (1 + cos( 2π(t−ψ)
γ )) have better outcomes than the previ-

ous ones (Figure 7) by assuming r being constant. By comparison through the negative log likelihood

method [18], we could deduce that Model (2.1) has the best fittings in both scenarios: r being constant in

Figure (7) and r being periodic in Figure 8. Thus, based on both theoretical work and model validation,

we could conclude that even though Model (2.4) could have oscillations in its solution, Model (2.1) with

the egg laying rate r being periodic (supported by the best fitting based on data, see Figure 8) should

be a better model for us to explore the important factors contributing to the healthy of honeybee colones.

Effects of seasonality: Here we perform two scenarios that seasonality may promote (see Figure 9) or

suppress (see Figure 10) the survival of honeybee colony, respectively. Figure 9a & 9b are simulations

without seasonality by taking r = 1200,K = 5.4 ∗ 106, db = 0.01, dh = 0.05, α = 10 with a constant

history function B(θ) = 300;H(θ) = 200 for all θ ∈ [−τ, 0], which show that honeybee colony collapses.

Figure 9c & 9d has seasonality by taking r = r0 ∗ (1 + cos( 2π(t−45)
365 )) whose average is r0 = 1200, which

show that honeybee colony survives.

On the other hand, Figure 10 shows that seasonability can make honeybee colony collapse. Figures

10a & 10b has no seasonality by taking r = 1200,K = 1 ∗ 106, db = 0.06, dh = 0.11, α = 10 with a

constant history function B(θ) = 6125;H(θ) = 5362 for all θ ∈ [−τ, 0], which shows that honeybee

colony could survive. While Figure 10c & 10d has seasonality by taking r = r0 ∗ (1 + cos( 2π(t−45)
365 ))

with r0 = 1200. In this case, we can see that seasonality may suppress the survival of honeybee colony.

5. Conclusions

Honeybees have dramatical decreased population over the long-term and each year [42]. As a result,

great economic losses and the increase in the price of bee products have adversely affected the market

[42, 29]. The causes of the decline in the number of honeybees have been the great interests, whether

they may directly link to human, environmental or disease [32, 30, 42]. Some previous work always

focus on foragers or recruitment, other works investigated external causes [23, 22, 38, 32, 21, 1]. In this

study, we focus on modeling proper honeybee population age structure model with model validation

using empirical data to obtain better biological understanding of the critical factors that could maintain

healthy of honeybee colonies.

We propose two different models with age structure to explore the importance of proper modeling.

The first model (2.1) has an assumption that the adult bees are surviving from eggs while the second

model (2.4) assumes that adult bees are survived from brood stage rather than the egg stage. Our

theoretical work (see Theorem 3.2, 3.3, 3.5 & 3.6 ) implies that Model (2.1) and Model (2.4) have
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(a) Model (2.1) (1975), r0 = 1193; dh = 0.03; db =

0.02;K = 56, 963, 000;α = 4; γ = 273;ψ = 12.

(b) Model (2.1) (1976), r0 = 1319; dh =

0.023; db = 0.02;K = 84, 933, 000;α = 3.2; γ =

338;ψ = 12.

(c) Model 2.3 (1975), r0 = 1644; dh = 0.03; db =

0.02;K = 139, 137, 000; γ = 277;ψ = 12.

(d) Model (2.3) (1976), r0 = 1477; dh = 0.04; db =

0.02;K = 81, 048, 000; γ = 261;ψ = 12.

(e) Model (2.4) (1975), r0 = 4024; dh = 0.13; db =

0.12;K = 89, 000; γ = 350;ψ = 12.

(f) Model (2.4) (1976), r0 = 9171; dh = 0.19; db =

0.12;K = 20, 000; γ = 261;ψ = 12.

Figure 8. Data fitting with the seasonality equation in r for Harris honeybees data

in 1975 (a, c, e) and 1976 (b, d, f) with τ = 21. Black dots indicate Harris data, and

black curve indicates our model.

huge differences in their dynamics. Specifically, Model (2.1) has only equilibrium dynamics and the

maturation time doesn’t affect its dynamics (see Theorem 3.3 ) while Model (2.4) can be destabilized

by the maturation time along with its life history parameter values (see Theorem 3.6) and Model (2.4)

is not positively invariant. Also our bifurcation diagrams (see Figure 1 & 5) confirmed such different

dynamical outcomes. Both theoretical and bifurcation results indicates that the different assumptions

can lead to different age structure models with dramatic dynamical outcomes. So which model would

be more appealing and biological relevant? Can we say the second model (2.4) be better as it has

oscillatory dynamics that could be supported by seasonality observed in data?
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Model (2.1) without sea-

sonality

0 500 1000 1500

0
5
0

1
0
0

1
5
0

2
0
0

0 500 1000 1500

0
5
0

1
0
0

1
5
0

2
0
0

Time (days)

A
d

u
lt

 P
o

p
u

la
ti

o
n

(b) Adult population of

Model (2.1) without sea-
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(c) Brood population of

Model (2.1) with seasonal-
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(d) Adult population of

Model (2.1) with seasonal-

ity

Figure 9. Colony dynamic of simulation for Model (2.1) collapses without seasonality

while survives with seasonality: r = 1200,K = 5.4 ∗ 106, db = 0.01, dh = 0.05, α =

10, γ = 365, ψ = 45; B(θ) = 300 and H(θ) = 200, θ ∈ [−τ, 0] .
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(d) Adult population of

Model (2.1) with seasonal-

ity

Figure 10. Simulations for Model (2.1) survives without seasonality while collapes

with seasonality: r = 1200,K = 1 ∗ 106, db = 0.06, dh = 0.11, α = 10, γ = 365, ψ = 45;

B(θ) = 300 and H(θ) = 200, θ ∈ [−τ, 0] .

Given that the queen reproduction depends on seasonality [36, 3, 23], this suggests that it is para-

mount to include seasonality when modeling honeybee population dynamics. To address whether the

seasonal pattern observed from data is due to the internal factor such as the maturation time and/or

other life history parameters (for example, Model (2.4) could be a better model for generating seasonal

patterns from the internal factors) or the external factor such as the queen egg laying rate that is reg-

ulated by the temperature and the resource [10, 3, 6]. We use data to validate Model (2.1), and Model

(2.4) by assuming that the queen egg laying rate is constant and seasonal. Our validations on models

without seasonality did not have a good fit by comparing to the corresponding models with seasonality.

Among all models with seasonality, Model (2.1) has the best fit (see Figure 8). Our model validations

with data suggest that the seasonal pattern observed from data is very likely due to the external factor

such the temperature or available resources that may generate periodic dynamics in the queen egg lay-

ing rate while the internal factor such as the maturation time doesn’t seem to be responsible seasonal
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pattern observed from data.

Both theoretical and numerical results including model validations suggest that Model (2.1) with

seasonality in the queen egg laying rate seems to be the most fit model for studying honeybee popula-

tion dynamics with age structure. Theoretical results (Theorem 3.3 ) and bifurcation diagrams (Figure

1) imply that (1) the survival of honeybee colonies requires a large value of the queen egg-laying rate

(r) and smaller values of the other life history parameter values in addition to the proper initial condi-

tion; (2) both brood and adult bee population is increasing with respect to the egg-laying rate r and is

decreasing with respect to the regulation effects of brood α, the square of half maximum of colony size

at which brood survival rate K, and the mortality rates db, dh; and (3) seasonality may promote the

survival of the honeybee colony (see Figure 9) but also may lead to the colony collapsing (see Figure

10c&10d). In summary, our work suggests that Model (2.1) with seasonality could be used for our

future model that includes more external factors, such as diseases, parasite, food and human activities

[32, 30, 42, 22]. Our ongoing work has extended the current model (2.1) to include parasites.

6. Proofs

Proof of Theorem 3.1.

Proof. First, we look at the following equation that describes the population of adult bees:

dH

dt
= e−dbτ

rH(t− τ)2

K +H(t− τ)2 + αB(t− τ)
− dhH. (6.1)

Since H(t) is a nonnegative continuous function during the time t ∈ [−τ, 0], the equation (6.1) implies

that
dH

dt
≥ −dhH for time t ∈ [0, τ ]⇒ H(t) ≥ H(0)e−dht ≥ 0 for time t ∈ [0, τ ].

By deduction on intervals [(n− 1)τ, nτ ], n ≥ 1], we could show that H(t) ≥ 0.

By integration, we could set

B(t) =

∫ t

t−τ

[
rH(s)2

K +H(s)2 + αB(s)
e−db(t−s)

]
ds−B(0)e−dbt, (6.2)

which gives

dB

dt
=

rH(t)2

K +H(t)2 + αB(t)
− dbB − e−dbτ

rH(t− τ)2

K +H(t− τ)2 + αB(t− τ)

and

B(0) =

∫ 0

−τ

rH2(s)edbs

K +H2(s) + αB(s)
ds.

Thus, the equation (6.2) provides an explicit mathematical expression of B(t) which is nonnegative for

all time t ≥ 0. Thus, the state space X of the proposed model (2.1) is positive invariant.

To show the boundedness of the model, define V = B +H, then we have

dV

dt
=
dB

dt
+
dH

dt
=

rH2

K +H2 + αB
− dbB − dhH

≤ r −min{db, dh}(B +H) = r − dminV
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with dmin = min{db, dh}. Consequently, we have

lim sup
t→∞

V (t) = lim sup
t→∞

(B(t) +H(t)) ≤ r

dmin

which implies that Model (2.1) is bounded in X.

�

Proof of Theorem 3.2.

Proof. We linearize the Model 2.1:

D


 Ḃ(t)

Ḣ(t)


∣∣∣∣∣

(B∗,H∗)

=

 − αH2r

(αB+H2+K)2
− db

2Hr(αB+K)

(αB+H2+K)2

0 −dh


 B(t)

H(t)



+


αH2re−dbτ

(αB+H2+K)2
− 2Hre−dbτ (αB+K)

(αB+H2+K)2

− αH2re−dbτ

(αB+H2+K)2
2Hre−dbτ (αB+K)

(αB+H2+K)2


 B(t− τ)

H(t− τ)

 .
(6.3)

For extinction equilibrium, the matrix (6.3) gives:

D

 Ḃ(t)

Ḣ(t)

∣∣∣∣∣
(0,0)

=

 −db 0

0 −dh

 B(t)

H(t)

+

 0 0

0 0

 B(t− τ)

H(t− τ)


and from this we obtain the following eigenvalues:

λ1 = −db < 0, λ2 = −dh < 0.

Thus, we can conclude that Ee is always locally asymptotically stable.

Now we show its global stability as follows. Let (B(t), H(t)) be a solution of Model (2.1), then

(B(t), H(t)) is bounded and positive for all t > 0 by Theorem 3.1. Define lim supt→∞H(t) = H∞. By

Lemma B in A, there exists sequence {tn} ↑ ∞ such that limn→∞H(tn) = H∞, and limn→∞H ′(tn) = 0,

and same for B(t). For any ε > 0, there exists N such that for n > N , H(tn − τ) ≤ H∞ + ε holds.

Thus, according to Model (2.1), for n > N we have

H ′(tn) = e−dbτ
rH(tn − τ)2

K +H(tn − τ)2 + αB(tn − τ)
− dhH(tn)

≤ e−dbτ rH(tn − τ)2

K +H(tn − τ)2
− dhH(tn)

≤ e−dbτ r(H∞ + ε)2

K + (H∞ + ε)2
− dhH(tn).

Let n→∞, we get

0 ≤ e−dbτ r(H∞ + ε)2

K + (H∞ + ε)2
− dhH∞.

It follows by the arbitrariness of ε that

H∞
(
−dh(H∞)2 + e−dbτrH∞ − dhK

)
≥ 0.

Then dh > re−dbτ/2
√
K, we know that for all x, y ∈ R, −dhx2 + e−dbτrx − dhK < 0. Therefore,

H∞ = 0, and hence from the positivity of solution we have limt→∞H(t) = 0. Furthermore, we obtain

the following limiting equation

dB

dt
= −dbB(t),
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which implies that limt→∞B(t) = 0. Therefore, Ee = (0, 0) is globally asymptotically stable.

�

Proof of Theorem 3.3.

Proof. Let (B∗, H∗) be an equilibrium of Model (2.1). Then the linearization of the proposed model

(2.1) at the equilibrium (B∗, H∗) is shown as follows:

In the case of the interior equilibrium (B∗, H∗) = Ei, from Equation (3.2), we have

2rKH∗

(K + (H∗)2)2
=

rH∗

(K + (H∗)2)

2K

(K + (H∗)2)
=

2Kdhe
dbτ

(K + (H∗)2)
.

The characteristic equation (3.6) evaluated at the positive interior equilibrium (B∗, H∗) when α = 0

gives the following expression:

C(λ) = det

 −db 2rKH∗

(K+(H∗)2)2

0 −dh

+

 0 − 2rKH∗

(K+(H∗)2)2 e
−dbτ

0 2rKH∗

(K+(H∗)2)2 e
−dbτ

 ∗ e−λτ − λI


= det

 −db − λ 2rKH∗

(K+(H∗)2)2 (1− e−(λ+db)τ )

0 −dh + 2rKH∗

(K+(H∗)2)2 e
−(λ+db)τ − λ


= (−db − λ)

(
−dh +

2rKH∗

(K + (H∗)2)2
e−(λ+db)τ − λ

)
= (−db − λ)

(
−dh +

2Kdhe
dbτ

K + (H∗)2
e−(λ+db)τ − λ

)
where

H∗ =

re−dbτ

(
1±

√
1−

(
2dhe

dbτ

r

)2
K

)
2dh

.

This implies that the stability of the interior equilibrium (B∗, H∗) is determined by the eigenvalues of

the following equation evaluated at H∗ since λ = −db < 0

−dh +
2Kdh

K + (H∗)2
e−λτ − λ = 0⇔ λ = −dh +

2Kdh
K + (H∗)2

e−λτ .

Let A = −dh and B(H) = 2dhK/[K + H2], then we have B(H) > 0 > A. At the mean time, we

have

0 < H∗1 < H∗2 and H∗1H
∗
2 = K ⇒ (H∗1 )2 < K and (H∗2 )2 > K.

Therefore, we can obtain the following inequalities

A+B(H∗1 ) = −dh +
2Kdh

K + (H∗1 )2
> 0 and A+B(H∗2 ) = −dh +

2Kdh
K + (H∗2 )2

< 0.

By applying Theorem 4.7 from Hal Smith [41], we can conclude that the interior equilibrium E1 is

always unstable and E2 is always locally asymptotically stable for any delay τ > 0.

�
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Proof of Theorem 3.4.

Proof. According to Proposition 3.1, we know that Model (2.1) has a unique interior E = (B∗, H∗) =(
r
(
1− e−dbτ

)
/2db,

√
K
)

when dh = re−dbτ/2
√
K. In order to study its stability, we define the follow-

ing matrices:

U =

 −db r
2
√
K

0 −dh

 and V =

 0 −dh

0 dh

 . (6.4)

Let L(λ) to be represented as follows

L(λ) = λ+ dh − dhe−λτ (6.5)

which has λ = 0 as one of its eigenvalues. By applying Lemma A in A to (6.5), except for the root λ = 0,

all roots of (6.5) has negative real parts for all 0 ≤ τ < ∞. Since (6.5) has a simple zero eigenvalue,

we need to use the center manifold and normal form theory in [13] to obtain the local stability of

E =
(
r
(
1− e−dbτ

)
/2db,

√
K
)

.

Let B̃ = B − r
(
1− e−dbτ

)
/2db, H̃ = H −

√
K, and still denote B̃ = B, H̃ = H, then the system

(2.1) becomes
dB

dt
= −dbB(t) +

r

2
√
K
H(t)− dhH(t− τ)− r

2K
H2(t) + dh

√
KH2(t− τ) +O(3),

dH

dt
= −dhH(t) + dhH(t− τ)− dh

√
KH2(t− τ) +O(3).

(6.6)

Let Λ = {0}. From normal form theory in [13], there exists a one-dimension ordinary differential

equation which has the same dynamical property as (6.6) near 0. Rewriting (6.6) as

ż(t) = l(zt) + F (zt) (6.7)

where

zt(θ) = z(t+ θ) ∈ C := ([−τ, 0],R2
+),

C is the phase space with the norm |φ| = max−τ≤θ≤0 |φ(θ)|, and

l(φ) = Uφ(0) + V φ(−τ),

where U and V are given in (6.4), and

F (φ) =

 − r
2Kφ

2
2(0) + dh

√
Kφ22(−τ) +O(3)

−dh
√
Kφ22(−τ) +O(3)

 .
Take µ(θ) = Uδ(θ)− V δ(θ + τ), where

δ(θ) =

 1, θ = 0,

0, θ 6= 0.

Then we have follows

l(φ) =

∫ 0

−τ
dµ(θ)φ(θ).
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By the adjoint theory of FDE, the phase space C can be decomposed as C = P ⊕ Q, where P =

span{Φ(θ)},Φ(θ) = (1, β)T , β = db/[r/2
√
K−dh]. Taking the base Ψ of adjoint space P ∗ of P satisfies

〈Ψ,Φ〉 = 1, where 〈·, ·〉 is a bilinear function defined in C∗ × C by

〈ψ, φ〉 = ψ(0)φ(0)−
∫ 0

−τ

∫ s

0

ψ(θ − s)dµ(s)φ(θ)dθ.

By a direct computation, we have

Ψ(s) =
(
0, (β(1 + τdh))−1

)
.

Consider the following expand space

BC =

{
φ| φ : [−τ, 0]→ C, φ is continuous in [−τ, 0) and lim

θ→0
φ(θ) exists

}
,

then the abstract ODE in BC associated with FDE (6.7) can be written as the form

d

dt
u = Au+X0F (u), (6.8)

where

Aφ = φ̇+X0(l(φ)− φ̇(0)), φ ∈ C1([−τ, 0],R2
+),

and

X0 =

 I, θ = 0,

0, θ ∈ [−τ, 0).

The projection mapping π : BC→ P :

π(φ+X0α) = Φ(〈Ψ, φ〉+ Ψ(0)α),

leads to the decomposition BC = P ⊕Kerπ. Decomposing u in Equation (6.8) in the form of u = Φx+y

where x ∈ R and y ∈ Q1 := Kerπ ∩D(A) = Q ∩ C1. Then (6.8) is equivalent to the system ẋ = Ψ(0)F (Φx+ y),

ẏ = AQ1y + (I − π)X0F (Φx+ y).

with

Ψ(0)F (Φx+ y) =
−dh
√
K

β(1 + τdh)
(βx+ y2(−τ))2 +O(3).

Thus, the local invariable manifold of (6.6) at 0 with the tangency with the space P satisfies y(θ) = 0,

the flow on this manifold is given by the following one-dimension ODE

ẋ(t) =
−βdh

√
K

1 + τdh
x2(t) +O(3). (6.9)

This implies that the zero solution of (6.9) is stable. Therefore, the interior equilibrium E = (B∗, H∗)

is locally asymptotically stable for all τ > 0. The proof is complete.

�
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Proof of Theorem 3.5.

Proof. We linearize the equations of Model 2.4:

D


 Ḃ(t)

Ḣ(t)


∣∣∣∣∣

(B∗,H∗)

=

 −db 2rKH∗

(K+(H∗)2)2

0 −dh


 B(t)

H(t)

+

 −e−dbτ 0

e−dbτ 0


 B(t− τ)

H(t− τ)

 . (6.10)

The matrix (6.10) evaluated at the extinction equilibrium Ee gives the characteristic equation

C(λ, τ) = det

 −db 2rKH∗

(K+(H∗)2)2

0 −dh

+

 −e−dbτ 0

e−dbτ 0

 ∗ e−λτ − λI


= det

 −db − e−dbτe−λτ − λ 2rKH∗

(K+(H∗)2)2

e−dbτe−λτ −dh − λ


= (−dh − λ)(−db − e−dbτe−λτ − λ)− 2rKH∗

(K + (H∗)2)2
e−(db+λ)τ

At (0, 0), C(λ, τ) = (−dh−λ)(−db−e−dbτe−λτ −λ). Clearly, one characteristic root is λ = −dh < 0,

others are the roots of the following equation

λ+ db + e−dbτe−λτ = 0. (6.11)

When there is no delay, i.e., τ = 0, (6.11) has only a negative characteristic root λ == −db, Model

2.4 is asymptotically stable at (0, 0). Moreover, for every τ ≥ 0, (6.11) has no nonnegative real root.

We assume λ = iw, w > 0, is a root of (6.11) for some τ > 0. Then, we have

cos(wτ) = −dbedbτ , sin(wτ) = wedbτ , (6.12)

which gives

w2 = e−2dbτ − d2b . (6.13)

It is clear that (6.13) has a positive real root

w = (e−2dbτ − d2b)
1
2 . (6.14)

if and only if e−dbτ > db, i.e., τ < τ∗ := 1
db

ln
(

1
db

)
, and 0 < db < 1.

Notice that cos(wτ) < 0, sin(wτ) > 0, there is a unique θ, π2 < θ < π, such that wτ = θ makes both

equation of (6.12) hold. Then, if e−dbτ > db, we get a set of values of τ for which there are imaginary

roots:

τk =
θ + kπ

w
, k = 0, 1, 2, · · · , (6.15)

where w is given by (6.14) and

θ = π − arctan

(
w

db

)
. (6.16)

From (6.11), we have

(1− τe−(db+λ)τ )
dλ

dτ
= (λ+ db)e

−(db+λ)τ , and λ+ db = −e−(db+λ)τ .
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Thus, (
dλ

dτ

)−1
= − τ

λ+ db
− 1

(db + λ)2
,

and

S(τ) : = sign

{(
d(Reλ)

dτ

)}
λ=iw

= sign

{
Re

(
dλ

dτ

)−1}
λ=iw

= sign

{
−Re

τ

λ+ b
− Re

1

(b+ λ)2

}
λ=iw

= sign{−τd3b − d2b + w2(τdb − 1)}

= sign{−2d2b + (1− τdb)e−2dbτ}
= sign{φ(τ)}.

Here,

φ(τ) = −2d2b + (1− τdb)e−2dbτ . (6.17)

Clearly,

φ′(τ) = e−2dbτdb(2τdb − 3). (6.18)

In order to get the stability of the equilibrium (0, 0), we first claim:

• For all τ ≥ max{0, τ∗}, (0, 0) is asymptotically stable.

In fact, we rewrite (6.11) as the form λ = A + Be−λτ with A = −db, B = −e−dbτ . For any τ ≥ τ∗,

B ≥ −e−dbτ∗
= −db = A. Thus, by applying Theorem 4.7 from Hal Smith, (0, 0) is local asymptotically

stable.

Now, we consider the following two cases.

Case 1. db ≥
√
2
2 .

This case is divided into two subcases: (i) db ≥ 1 and (ii)
√
2
2 ≤ db < 1.

(i) db ≥ 1.

In this subcase, the above claim implies that (0, 0) is asymptotically stable for all τ ≥ 0. This also

can be proved as follows. For all τ ≥ 0, e−2dbτ − d2b < 0 holds, and hence the equation (6.13) has

no positive real root. This implies that the equilibrium (0, 0) has no stability switch as τ increases in

[0,∞). Since (0, 0) is asymptotically stable at τ = 0, then it remains asymptotically stable for all τ ≥ 0.

(ii)
√
2
2 ≤ db < 1.

Assume τ ∈ (0, τ∗). Then e−2dbτ − d2b > 0 and (6.13) has unique positive real root (6.14). In such

case, τdb < 1 since τdb < τ∗db = ln
(

1
db

)
≤ ln

√
2 < 1, φ(τ) < −2d2b + (1− τdb) ≤ −τdb < 0. It follows

that S(τ) = −1 for τ ∈ (0, τ∗), i.e., possible stability switches from unstable to stable may occur. Since

(0, 0) is asymptotically stable at τ = 0, then it remains asymptotically stable for all τ ∈ (0, τ∗).

When τ ≥ τ∗, our claim shows that (0, 0) is asymptotically stable. Therefore, (0, 0) is asymptotically

stable for all τ ≥ 0.

Case 2. 0 < db <
√
2
2 .

This case is also divided into two subcases: (i) 1
e ≤ db <

√
2
2 and (ii) db <

1
e .

(i) 1
e ≤ db <

√
2
2 .

For τ ≥ τ∗, we know that (0, 0) is asymptotically stable. Now, we assume τ ∈ (0, τ∗), then (6.13) has

unique positive real root (6.14). In such case, φ(0) = 1−2d2b > 0 and φ(τ∗) = −2d2b+(1−τ∗db)e−2dbτ
∗

=
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−2d2b +(1− τ∗db)d2b < 0, and, from (6.18), φ′(τ) < 0 since τdb < τ∗db = ln
(

1
db

)
≤ 1. Thus, there exists

unique τc ∈ (0, τ∗) such that

: (a) For τ ∈ (0, τc), φ(τ) > 0 and hence S(τ) = 1. In this case, possible stability switches from stable

to unstable may occur as τ increases in (0, τc).

: (b) At τ = τc, φ(τ) = 0 and hence S(τ) = 0;

: (c) For τ ∈ (τc, τ
∗), φ(τ) < 0 and hence S(τ) = −1. In this case, possible stability switches from

unstable to stable may occur as τ increases in (τc, τ
∗).

Therefore, by the stability of (0, 0) at τ = 0 and τ ≥ τ∗, we can conclude that (0, 0) is asymptotically

stable for τ ∈ (0, τ0) or τ ≥ τ1, while unstable for τ ∈ (τ0, τ1), where τ0, τ1 are given by (6.15).

(ii) db <
1
e .

Since 1
db
> e, then 1

db
< τ∗ = 1

db
ln
(

1
db

)
. Thus, we has the following two scenarios:

: (1) τ ∈
(

1
db
, τ∗
)

. Since τdb ≥ 1, we have φ(τ) < 0 and hence S(τ) = −1, which implies that possible

stability switches from unstable to stable may occur as τ increases in
(

1
db
, τ∗
)

.

: (2) τ ∈
(

0, 1
db

)
. In such case, φ(0) = 1− 2d2b > 0 and φ

(
1
db

)
= −2d2b < 0, and φ′(τ) < 0. Thus, there

exists unique τc ∈
(

0, 1
db

)
: (a) For τ ∈ (0, τc), φ(τ) > 0 and hence S(τ) = 1. .

: (b) At τ = τc, φ(τ) = 0 and hence S(τ) = 0;

: (c) For τ ∈
(
τc,

1
db

)
, φ(τ) < 0 and hence S(τ) = −1. .

Therefore, by the stability of (0, 0) at τ = 0 and τ ≥ τ∗, we can conclude that (0, 0) is asymptotically

stable for τ ∈ (0, τ0) or τ ≥ τ1, while unstable for τ ∈ (τ0, τ1).

�

Proof of Theorem 3.6.

Proof. Consider the positive equilibria of Model 2.4. (B∗, H∗) is a positive equilibrium if and only if

B∗ = dhe
dbτH∗ and H∗ is a positive root of

rH

K +H2
= dh(dbe

dbτ + 1), (6.19)

or, equivalently,

dh(dbe
dbτ + 1)H2 − rH +Kdh(dbe

dbτ + 1) = 0. (6.20)

Clearly, if r < 2
√
Kdh(dbe

dbτ + 1), there is no positive equilibrium; if r > 2
√
Kdh(dbe

dbτ + 1), or,

equivalently,

τ <
1

db
ln

((
r

2dh
√
K
− 1

)
/db

)
, and r > 2dh

√
K(1 + db), (6.21)

Model 2.4 has two positive equilibria E1 = (B∗1 , H
∗
1 ) and E2 = (B∗2 , H

∗
2 ) (H∗1 < H∗2 ), where

H∗i =
r ±

√
r2 − 4K (dbdhedbτ + dh)

2

2 (dbdhedbτ + dh)
, i = 1, 2.

Let

τ∗ =
1

db
ln

((
r

2dh
√
K
− 1

)
/db

)
, subject to r > 2dh

√
K(1 + db). (6.22)
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The characteristic equation at (B∗i , H
∗
i ) is

C(λ, τ) = λ2 + (db + dh)λ+ dbdh + (λ+ dh − Φ(H∗)(τ))e−dbτe−λτ = 0, (6.23)

where

Φ(H∗)(τ) =
2rKH∗

(K + (H∗)2)2
(6.24)

and H∗ = H∗1 or H∗2 , depending on τ .

Let

P (λ, τ) = λ2 + P1(τ)λ+ P0(τ), Q(λ, τ) = Q1(τ)λ+Q0(τ), (6.25)

where

P1(τ) = db + dh, P0(τ) = dbdh, (6.26)

Q1(τ) = e−dbτ , Q0(τ) = (dh − Φ(H∗)(τ))e−dbτ . (6.27)

Then the characteristic equation (6.28) can be rewritten as follows

C(λ, τ) = P (λ, τ) +Q(λ, τ)e−λτ = 0. (6.28)

First, we prove that λ = 0 cannot be a root of (6.28), i.e., P (0, τ) +Q(0, τ) 6= 0, for any τ ∈ [0, τ∗).

In fact,

C(0, τ) = P (0, τ) +Q(0, τ) = P0(τ) +Q0(τ)

= dbdh + (dh − Φ(H∗)(τ))e−dbτ

= e−dbτ (dh(dbe
dbτ + 1)− Φ(H∗)(τ))

= e−dbτ
(

rH∗

K+(H∗)2 −
2rKH∗

(K+(H∗)2)2

)
= e−dbτΦ(H∗)(τ)((H∗)2 −K).

(6.29)

Here, (6.19) is used in the third equation. Since H∗1H
∗
2 = K and H∗1 < H∗2 , we know that (H∗1 )2 < K <

(H∗2 )2. Thus, C(0, τ) < 0 at E1 = (B∗1 , H
∗
1 ), and C(0, τ) > 0 at E2 = (B∗2 , H

∗
2 ). It follows that for all

τ ∈ [0, τ∗), λ = 0 cannot be a root of (6.28) at both E1 and E2.

Now, we consider the stability of E1 and E2 when τ = 0. At τ = 0, the characteristic equation (6.28)

becomes P (0, τ) +Q(0, τ) = 0, i.e.,

λ2 + (P1(0) +Q1(0))λ+ P0(0) +Q0(0) = 0. (6.30)

At E1 = (B∗1 , H
∗
1 ), since P0(τ) + Q0(τ) < 0 for all τ ∈ [0, τ∗), we have P0(0) + Q0(0) < 0. At

E2 = (B∗2 , H
∗
2 ), we have P0(0) + Q0(0) > 0 since P0(τ) + Q0(τ) > 0 for all τ ∈ [0, τ∗). Thus, we can

conclude that at τ = 0, E1 is unstable and E2 is locally asymptotically stable.

In order to determine the local stability of the interior equilibrium Ei, i = 1, 2 when τ ∈ (0, τ∗), we

proceed as follows Kuang’s book Chapter 3 [25].

Let λ = iw(τ), w(τ) > 0, be the root of (6.28), then we have

P (iw, τ) = −w2 + iwP1(τ) + P0(τ), Q(iw, τ) = iwQ1(τ) +Q0(τ),

PR(iw, τ) = P0(τ)− w2, QR(iw, τ) = Q0(τ),

PI(iw, τ) = wP1(τ), QI(iw, τ) = wQ1(τ).

(6.31)
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By Theorem 4.1 in Kuang’s book [25], we look for the positive roots w(τ) > 0 of

F (w, τ) = |P (iw, τ)|2 − |Q(iw, τ)|2 = 0, τ ∈ [0, τ∗). (6.32)

Since

F (w, τ) = w2 + w2(−2P0(τ) + P 2
1 (τ)−Q2

1(τ)) + P 2
0 (τ)−Q2

0(τ) (6.33)

= w4 + b(τ)w2 + c(τ), (6.34)

where

b(τ) = −2P0(τ) + P 2
1 (τ)−Q2

1(τ), c(τ) = P 2
0 (τ)−Q2

0(τ), (6.35)

equation (6.33) may have no positive root, one positive root w+(τ) or w−(τ), or two positive roots

w+(τ) and w−(τ), depending on b(τ) and c(τ). w±(τ) can be represent as follows:

w±(τ) =

[
1

2
(−b(τ)±

√
b2(τ)− 4c(τ))

] 1
2

.

In order to determine the occurrence of stability switches, we need to determine the sign of dReλ
dτ or

Re
(
dλ
dτ

)−1
. From Theorem 3.1 and its proof of Kuang[25], we have

S(τ) : = sign
{(

d(Reλ)
dτ

)}
λ=iw

= sign
{

Re
(
dλ
dτ

)−1}
λ=iw

= sign{P 2
1 (τ)− 2P0(τ)−Q2

1(τ) + 2w2}

= sign{±
√
b2(τ)− 4c(τ)}.

(6.36)

First, we consider the local stability of the interior equilibrium E1 when τ ∈ [0, τ∗). Since for all

τ ∈ [0, τ∗), P0(τ) + Q0(τ) < 0, and P0(τ) = dbdh > 0, we have Q0(τ) = (dh − Φ(H∗)(τ))e−dbτ < 0.

Thus, P0(τ)−Q0(τ) > 0, τ ∈ [0, τ∗). It follows that

c(τ) = P 2
0 (τ)−Q2

0(τ) = [P0(τ) +Q0(τ)][P0(τ)−Q0(τ)] < 0, τ ∈ [0, τ∗).

Therefore, (6.33) has unique positive root w+(τ). From (6.36), S(τ) = 1. Since E1 is unstable at τ = 0,

no stability switch occur as τ increases in [0, τ∗), and E1 is unstable for all τ ∈ [0, τ∗).

Now, we consider the local stability of the interior equilibrium E2 when τ ∈ [0, τ∗). We have know

that for all τ ∈ [0, τ∗), P0(τ) +Q0(τ) > 0 and c(τ) = [P0(τ) +Q0(τ)][P0(τ)−Q0(τ)]. Thus, we consider

the sign of P0(τ)−Q0(τ). By a careful computation, we get

P0(τ)−Q0(τ) = dhe
−dbτϕ(τ), (6.37)

where

ϕ(τ) = (dbe
dbτ + 1)

[
2−

√
1−

4Kd2h(dbedbτ + 1)2

r2

]
− 2. (6.38)

It is clear that ϕ(τ) is strictly increasing with respect to τ ∈ [0, τ∗), f(τ∗) = 2dbe
dbτ

∗
, and

ϕ(0) = (db + 1)

[
2−

√
1−

4Kd2h(db + 1)2

r2

]
− 2.

Now, we consider the following two cases.

Case 1. db ≥ 1. Then clearly ϕ(0) > 0 and hence ϕ(τ) > 0 for all τ ∈ [0, τ∗). Thus, c(τ) > 0. In

addition, b(τ) = d2b + d2h − e−2dbτ > 0. Therefore, for all τ ∈ [0, τ∗), F (w, τ) 6= 0. This implies that

in such case no stability switch occur with τ increasing in [0, τ∗). Since E2 is is locally asymptotically
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stable at τ = 0, we can conclude that E2 is is locally asymptotically stable for all τ ∈ [0, τ∗) if db ≥ 1.

Case 2. 0 < db < 1. Then, (1 + db)
2 − 4d2b > 0. When r > 2dh

√
K(1 + db), we have

ϕ(0) > 0 ⇔
√

1− 4Kd2h(db+1)2

r2 < 2db
1+db

⇔ r < 2dh
√
K(1+db)

2√
(1+db)2−4d2b

.
(6.39)

Thus, when

2dh
√
K(1 + db) < r <

2dh
√
K(1 + db)

2√
(1 + db)2 − 4d2b

,

ϕ(0) > 0 and hence for all τ ∈ [0, τ∗), c(τ) > 0.

This case is also divided into two subcases: (i) d2b + d2h ≥ 1, (ii) d2b + d2h < 1.

(i) d2b + d2h ≥ 1. It follows b(τ) = d2b + d2h − e−2dbτ > 0. Thus, in such case, F (w, τ) 6= 0 holds for all

τ ∈ [0, τ∗). This implies that in such case no stability switch occur with τ increasing in [0, τ∗). Since

E2 is locally asymptotically stable at τ = 0, we can conclude that E2 is is locally asymptotically stable

for all τ ∈ [0, τ∗) if

2dh
√
K(1 + db) < r ≤ 2dh

√
K(1 + db)

2√
(1 + db)2 − 4d2b

.

If

r >
2dh
√
K(1 + db)

2√
(1 + db)2 − 4d2b

,

then ϕ(0) < 0 and there exists unique τc ∈ (0, τ∗) such that c(τ) < 0 for τ ∈ (0, τc) and c(τ) > 0 for

τ ∈ (τc, τ
∗). Thus, if τ ∈ (τc, τ

∗), then F (w, τ) = 0 has no positive root; if τ ∈ (0, τc), then F (w, τ) = 0

has a unique positive root w+ and S(τ) = 1. Since E2 is stable at τ = 0, from Theorem 3.1 of Kuang

[25], we know that the stability of E2 switches just once in [0, τc) from stable to unstable.

(ii) d2b + d2h < 1. We divide this subcase into the following two scenarios:

(a)
d2b(

(1+db)
2√

(1+db)
2−4d2

b

−1
)2 < d2b + d2h < 1, which implies that

2dh
√
K

(
1 +

√
d2b

d2b + d2h

)
< 2dh

√
K

(1 + db)
2√

(1 + db)2 − 4d2b
.

This scenario is further divided into following three cases:

(1) 2dh
√
K

(
1 +

√
d2b

d2b+d
2
h

)
< r ≤ 2dh

√
K (1+db)

2√
(1+db)2−4d2b

.

Since 2dh
√
K

(
1 +

√
d2b

d2b+d
2
h

)
> 2dh

√
K(1 + db), from (6.39), ϕ(0) ≥ 0 and hence for all τ ∈ [0, τ∗),

c(τ) ≥ 0.

When 1
2db

ln
(

1
d2b+d

2
h

)
≤ τ < τ∗, b(τ) ≥ 0. Thus, for all τ ∈ [0, τ∗), F (w, τ) 6= 0.
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When 0 < τ < 1
2db

ln
(

1
d2b+d

2
h

)
, we have b(τ) < 0. Thus, we consider b2(τ) − 4c(τ). By a simple

computation, we have

b2(τ)− 4c(τ) = (P 2
1 (τ)−Q2

1(τ))(P 2
1 (τ)−Q2

1(τ)− 4P0(τ)) + 4Q2
0(τ)

= φ(τ) + 4Q2
0(τ).

Here, φ(τ) =
(
(db + dh)2 − e−2dbτ

) (
(db + dh)2 − e−2dbτ − 4dbdh

)
. It is clear that

φ(τ) ≥ 0⇔ τ ≤ 1
2db

ln
(

1
(db+dh)2

)
or τ ≥ 1

2db
ln
(

1
(db−dh)2

)
.

Thus, if 1
2db

ln
(

1
(db+dh)2

)
< τ < 1

2db
ln
(

1
d2b+d

2
h

)
, then φ(τ) < 0. If 0 < τ ≤ 1

2db
ln
(

1
(db+dh)2

)
, then

φ(τ) ≥ 0 and hence b2(τ) − 4c(τ) > 0, which implies that F (w, τ) = 0 have two positive roots

0 < w− < w+. Thus, from Theorem 3.1 of Kuang[25], the stability of E2 can change a finite number of

times at most as τ is increased τ ∈ [0, τ∗), and eventually it becomes unstable.

(2) 2dh
√
K(1 + db) < r ≤ 2dh

√
K

(
1 +

√
d2b

d2b+d
2
h

)
.

From (6.39), ϕ(0) > 0 and hence for all τ ∈ [0, τ∗), c(τ) > 0. In this case,

τ∗ =
1

db
ln

((
r

2dh
√
K
− 1

)
/db

)
≤ 1

2db
ln

(
1

d2b + d2h

)
.

It follows b(τ) = d2b + d2h − e−2dbτ < 0 for all τ ∈ (0, τ∗). Note that

τ∗ =
1

db
ln

((
r

2dh
√
K
− 1

)
/db

)
≤ 1

2db
ln

(
1

(db + dh)2

)
⇔ r ≤ 2dh

√
K

(
db

db + dh
+ 1

)
.

Thus,

• when 2dh
√
K(1 + db) < r ≤ 2dh

√
K (db/(db + dh) + 1), φ(τ) ≥ 0 and hence b2(τ) − 4c(τ) > 0

for all τ ∈ [0, τ∗). It yields that F (w, τ) = 0 have two positive roots 0 < w− < w+. Thus, from

Theorem 3.1 of Kuang [25], the stability of E2 can change a finite number of times at most as

τ is increased in [0, τ∗), and eventually it becomes unstable.

• when 2dh
√
K (db/(db + dh) + 1) < r ≤ 2dh

√
K
(

1 +
√
d2b/(d

2
b + d2h)

)
, we have

τ∗ > 1
2db

ln
(
1/(db + dh)2

)
. If 1

2db
ln
(
1/(db + dh)2

)
< τ < τ∗, then φ(τ) < 0. If 0 < τ ≤

1
2db

ln
(

1
(db+dh)2

)
, φ(τ) ≥ 0 and hence b2(τ)− 4c(τ) > 0. Thus, in such case, from Theorem 3.1

of Kuang [25] the stability of E2 can change a finite number of times at most as τ is increased

in [0, τ∗).

(3) r > 2dh
√
K(1 + db)

2/
√

(1 + db)2 − 4d2b .

In this case, ϕ(0) < 0 and there exists unique τc ∈ (0, τ∗) such that c(τ) < 0 for τ ∈ (0, τc) and

c(τ) > 0 for τ ∈ (τc, τ
∗). Thus, if τ ∈ (0, τc), then F (w, τ) = 0 has a unique positive root w+ and

S(τ) = 1. Since E2 is stable at τ = 0, from Theorem 3.1 of Kuang [25], we know that the stability of

E2 switches once in [0, τc) from stable to unstable.

(b) d2b + d2h ≤
d2b(

(1+db)
2√

(1+db)
2−4d2

b

−1
)2 , which implies that

2dh
√
K

(
1 +

√
d2b

d2b + d2h

)
≥ 2dh

√
K

(1 + db)
2√

(1 + db)2 − 4d2b
.

This scenario is again divided into following two cases:
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(1) 2dh
√
K(1 + db) < r ≤ 2dh

√
K(1+db)

2√
(1+db)2−4d2b

.

From (6.39), ϕ(0) > 0 and hence for all τ ∈ [0, τ∗), c(τ) > 0. In this case, we also have τ∗ ≤
1

2db
ln
(

1
d2b+d

2
h

)
. It follows b(τ) = d2b + d2h − e−2dbτ < 0 for all τ ∈ (0, τ∗).

If 2dh
√
K
(

db
db+dh

+ 1
)
< 2dh

√
K(1+db)

2√
(1+db)2−4d2b

, similar to the arguments above, we get that no matter

2dh
√
K(1 + db) < r ≤ 2dh

√
K
(

db
db+dh

+ 1
)

or 2dh
√
K
(

db
db+dh

+ 1
)
< r ≤ 2dh

√
K (1+db)

2√
(1+db)2−4d2b

the

stability of E2 can change a finite number of times at most as τ is increased in [0, τ∗).

If 2dh
√
K(1+db)

2√
(1+db)2−4d2b

< 2dh
√
K
(

db
db+dh

+ 1
)

, then when 2dh
√
K(1 + db) < r ≤ 2dh

√
K(1+db)

2√
(1+db)2−4d2b

, φ(τ) ≥ 0 for

all [0, τ∗) and hence b2(τ) − 4c(τ) > 0 for all τ ∈ [0, τ∗). It yields that F (w, τ) = 0 have two positive

roots 0 < w− < w+. Thus, from Theorem 3.1 of Kuang [25], the stability of E2 can change a finite

number of times at most as τ is increased in [0, τ∗), and eventually it becomes unstable.

(2) r > 2dh
√
K(1+db)

2√
(1+db)2−4d2b

.

Similar to the arguments above, ϕ(0) < 0 and there exists unique τc ∈ (0, τ∗) such that the stability

of E2 switches once in [0, τc) from stable to unstable.

The proof is completed.

�

Appendix A. Some Important Lemmas

Consider the characteristic equation of the form

p(z) + e−zτq(z) = 0 (A.1)

where p and q are polynomials with real coefficients and τ > 0 is the delay. The following result was

given by Brauer [4].

Lemma A. Suppose that p(z) and q(z) are analytic in some open set containing z ≥ 0, and satisfying

the following conditions:

(i) p(z) 6= 0, Rez ≥ 0,

(ii) p(−iy) = p(iy), q(−iy) = q(iy), 0 ≤ y <∞,

(iii) p(0) + q(0) = 0,

(iv) |q(iy)| < |p(iy)| for 0 < y <∞,

(v) lim|z|→∞,Rez≥0 |q(z)/p(z)| = 0.

Then except for the roots z = 0, all roots of (A.1) are in Rez < 0 for all 0 ≤ τ <∞.

We need the fluctuation lemma due to Hirsh, Hanisch, and Gabriel[16].

Lemma B (Fluctuation Lemma). Let f : R+ → R be a differentiable function. If lim inft→∞ f(t) <

lim supt→∞ f(t), then there are sequences {tm} ↑ ∞ and {sm} ↑ ∞ such that

f(tm)→ lim supt→∞ f(t), f ′(tm)→ 0 as m→∞,

f(sm)→ lim inft→∞ f(t), f ′(sm)→ 0 as m→∞.

Proof of Proposition 3.1.

Proof. Let m = dbr, n = d2he
dbτ (edbτ − 1), and c = 4d2bd

2
hKe

2dbτ , then:

H∗1 =
e−dbτ

2dbdh
(m− αn−

√
(m− αn)2 − c),
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and

H∗2 =
e−dbτ

2dbdh
(m− αn+

√
(m− αn)2 − c).

So, function g = m − αn −
√

(m− αn)2 − c and function f = m − αn +
√

(m− αn)2 − c will decide

two equilibrium functions are increasing or decreasing functions of α. After that,

g′(α) = n(−1 +
m− nα√

(m− nα)2 − c
),

and

f ′(α) = n(−1 +
nα−m√

(m− nα)2 − c
).

Since H∗1 > 0, m > nα and m − nα >
√

(m− αn)2 − c, therefore g′(α) > 0 and f ′(α) < 0, i.e. H∗1 is

monotonically increasing, and H∗2 is monotonically decreasing.

Next, we consider parameter r. Then

g′(r) = db(1−
dbr − nα√

(dbr − nα)2 − c
) < 0,

and

f ′(r) = db(1 +
dbr − nα√

(dbr − nα)2 − c
) > 0.

Therefore, H∗1 is monotonically decreasing by r, and H∗2 is monotonically increasing by r.

Afterwards, if K increases, only c will increase. Then
√

(m− nα)2 − c will decrease. Therefore, H∗1
is monotonically increasing by K, and H∗2 is monotonically decreasing by K.

When we consider db and dh, we can simplified the model to Model (2.3), i.e. α = 0. Then we let

H∗1 be the function

p =
e−dbτ

(
r −

√
r2 − 4d2hKe

2dbτ
)

2dh
,

and H∗2 be the function

q =
e−dbτ

(
r +

√
r2 − 4d2hKe

2dbτ
)

2dh
.

So,

p′(dh) =

re−dbτ
(

r√
r2−4d2hKe

2dbτ
− 1

)
2d2h

> 0,

and

q′(dh) =

re−dbτ
(
− r√

r2−4d2hKe
2dbτ
− 1

)
2d2h

< 0.

Therefore, H∗1 is monotonically increasing by dh, and H∗2 is monotonically decreasing by dh.

Finally, let us see db. Then

p′(db) =

re−dbτ
(

r√
r2−4d2hKe

2dbτ
− 1

)
τ

2dh
> 0,
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and

q′(db) =

re−dbτ
(
− r√

r2−4d2hKe
2dbτ
− 1

)
τ

2dh
< 0.

Therefore, H∗1 is monotonically increasing by db, and H∗2 is monotonically decreasing by db. �
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