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ABSTRACT ARTICLE HISTORY
In this paper, we use an adaptive modeling framework to model Received 9 December 2019
and study how nutritional status (measured by the protein to car- Accepted 12 June 2020

bohydrate ratio) may regulate population dynamics and foraging KEYWORDS

task allocation of social insect colonies. Mathematical analysis of our Social insects; foraging
model shows that both investment to brood rearing and brood nutri- activities; nutritional
tion are important for colony survival and dynamics. When division regulation; backward
of labour and/or nutrition are in an intermediate value range, the bifurcation; bistability
model undergoes a backward bifurcation and creates multiple attrac- dynamics; adaptive
tors due to bistability. This bistability implies that there is a threshold modeling
population size required for colony survival. When the investment

in brood is large enough or nutritional requirements are less strict,

the colony tends to survive, otherwise the colony faces collapse. Our

model suggests that the needs of colony survival are shaped by the

brood survival probability, which requires good nutritional status. As

a consequence, better nutritional status can lead to a better survival

rate of larvae and thus a larger worker population.

1. Introduction

In social insect colonies such as ants, bees and wasps, all members of the colony work
collectively to ensure colony survival. Colonies act as a single common organism capable
of making decisions and forming complex behavioural connections between its mem-
bers [17,18]. They exhibit a decentralized system with a sophisticated division of labour
resulting from interactions among members of the colony and the environment [1,3,18]. In
addition to the reproductive division of labour between the queen and the workers, work-
ers also have a division of labour between foragers which leave the nest to search for food
and non-foragers that carry out tasks within the nest [9]. In social insect societies, foraging
responsibilities are assigned to a subset of adult colony members [8]. Internal and external
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factors happening at both the individual and colony level shape the foragers” decision to
bring back a certain type of food [8].

Currently, there are few studies that have focused on the outcome of nutrient regula-
tion in social insects at the colony level [8] (but see [11,12,32]). Many of these studies lack
focus on the overall outcome of colony population dynamics, and how nutrient regula-
tion among foragers affects the number of reared brood, mortality of adult workers, and in
general colony survival. In this study, we focus on the mechanisms that regulate foraging
behaviour of eusocial workers and the outcomes of these mechanisms on colony perfor-
mance, including but not limited to the number of brood raised and worker mortality. The
collection of food resources by an individual forager is based not only on the colony’s cur-
rent nutritional status but also on the worker’s physical caste, age, and prior experience
[26,33]. The nutritional needs of the colony are shaped by the differing needs of larvae and
workers in the colony [8,10,26]. For instance, the growth of larvae relies heavily on protein,
while worker ants require primarily carbohydrates as a source of energy [4,5,10,13,24,34].
Many studies have shown that the ratio of protein to carbohydrates in the diet of a range of
insect species is crucial for performance [8,10,21,28,30], though, in general, carbohydrates
are often more attractive to foragers than protein [11,26]. However, the protein required
for growth may be in greater demand when a queen is laying eggs [26].

In order for social insect foragers to compensate for potential nutrient restrictions in the
food available to the colony [6,7,26,29], foragers adjust their collection in favour of food
sources containing limiting nutrients [7,11,26]. This guarantees that the colony meets its
longer term objectives and thus promotes colony growth and reproduction [26]. According
to Dussutour et al. [11], within a colony, workers recruit nestmates for food collection
at different rates depending upon food type [5,27], food concentration, and hunger level
[11,23]. At the individual level, when workers are starved, recruitment will be stronger to
carbohydrate-rich food sources than to sources high in protein [11]. At a collective level,
deployment of foragers to carbohydrate-rich or highly proteinaceous material increases
in the presence of larvae, resulting in an increase in the collection of carbohydrates and
protein [2,11,27].

There are several empirical studies that have studied how a colony is affected by the avail-
ability of required nutrients for colony growth and reproduction, and how workers regulate
collection of these nutrients to meet individual and collective demands [8,11-13,22,26].
However, currently there are no mathematical models to our knowledge that have
attempted to study these mechanisms dynamically. The main goal of this paper is to pro-
pose and study an adaptive modeling framework to further understand how nutritional
status may regulate population dynamics and foraging task allocation of social insect
colonies. The proposed model contains three compartments that allow us to analyse and
measure the impacts of nutritional status that can benefit colony growth and survival. Our
model assumes that (1) nutritional status is measured by the protein to carbohydrate ratio,
which reflects the ratio of workers foraging for protein to workers foraging for carbohy-
drates; (2) brood are able to survive if the protein to carbohydrate ratio falls into a certain
range; and (3) the colony recruits workers to forage for protein or carbohydrate in order
to maximize the brood survival rate. In addition, our proposed model includes division
of labour implicitly. Also, by considering the basic mechanisms affecting colony growth
such as cooperative effort for reproductive division of labour, successful brood matura-
tion/survival, and recruitment of workers to collect different nutrients based on specific
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colony nutritional demands, our model could help us understand how other life history
factors affect the performance (number of brood raised and mortality of workers) of the
colony.

The rest of this article is organized as follows: In Section 2, we describe the detailed
derivation of our proposed model. In Section 3, we provide the mathematical analysis of
our model including lemmas, propositions, and theorems, the proofs of which can be found
in Section 6. In Section 4, we provide numerical simulations illustrating the equilibrium
dynamics of the model to further obtain biological insights of some life history parameters
of the colony. Lastly, the conclusion of this paper is found in Section 5.

2. Derivation of the mathematical model

Let L(t) represent the brood population; A,(#) be the portion of foragers collecting pro-
teinaceous material, called the protein forager; A () be the portion of foragers collecting
carbohydrates, called the carbohydrate forager. The total forager population is denoted as
A(t) = Ap(t) + Ac(t). The following ecological assumptions determine the population of
L, Acand Ap:

1. Brood population L(#): The brood population L increases with the average egg-laying
rate of the queen(s) given by y, which is discounted by two factors:

(a) (a) The survival rate function of eggs is determined by the cooperative efforts
of workers A in the colony. We adopt the modeling approach from Kang et
al. [15,25], where the cooperative efforts that lead to the eggs’ survival is measured
by a Holling type-III function - A2 , where b is a half-saturation constant and a is
the portion of the division of labour invested towards the successful development
of the larvae.

(b) (b) The survival rate of larvae to workers is determined by the available nutri-
ents in the colony which is reflected through the protein to carbohydrate ratio of

worker collectors S;, ( ) Examples of Sy could be S (A ) —aq ‘A — O ‘ +

a2(0: — 0,) with o; € (0,1) i = 1,2 as a scaling factor of nutrient collection, 6,,
representing the optimal nutrient ratio, and 6, representing the maximal nutri-
ent ratio that brood can survive (see Figure 1(a)), or general functions such as the
normal biological performance curve (see Figure 1(b)). Notice that S;, < 1 can be
negative, thus we define Sy, = max{0, Sy} such that Sy ___ € [0, 1] is a survival
probability.

The brood population decreases by a maturation rate SL, which describes the rate at

which brood matures into the adult class A. Thus, we have following equation:

L S ad? BL
= )/ . L _— —
—= b+ aA? —_
nutrient effects ™ maturation rate

adult worker efforts

When :}— is less than 6,,, the brood survival rate increases, and decreases when 12 is
greater than 0. This phenomenon has been supported by the work of [8,12,20 21] in
which it is explained that worker survivability decreases as a probable side effect of an
excess ingestion of proteins and of carbohydrate limitation. Figure 1(a) shows a general
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Figure 1. Examples of a survival rate function: (a) A general case of S; (A—"> —a ’— - Gm’ +
C

a2(0c — 6m) with different @y = 0.3 and « = 0.15; (b) The normal biological performance curve

s (ji)

case of Sy, <%> = —a ‘ﬁ - Qm‘ + (6, — Op,) with different &1 and «,. The partial

Ap

derivative of S; = S, < ) reveals constant rates, showing a linear relation between
L'

the brood survival rate and nutritional status. In this study, we assume that when the

Ay
nutrition level hits or exceeds the critical value 6,, i.e. A— > 6, the nutrient becomes
toxic such that no brood can survive. Lastly, Figure 1(b) shows how the survival rate
grows with respect to the collection of nutrients until it reaches 6y,.

. . A .
In general, we expect the protein to carbohydrate ratio A_IZ of the colony to fall in a
. . . A
certain range in order for the colony to survive and grow, say, A_IZ € [6o, O], where
6o is the minimum nutrient ratio necessary for brood survival. This is supported by

[8,12]. Thus it is reasonable to assume that Sy,

max

<ﬁ—‘:) has the following simple form:

Ap
0 when 0 < — < 6y,
A
Ap Ap
A ar | — —6p when 6y < — < 6,
P\ _ Ac A
S — (1)
Limax A - A A
Cc
—a <A_I: - 95> when 6,, < A_[: <6,
0 when 0, < —,

[

subject to a; € (0,1),i = 1,2 and o1 (0, — 6p) + @20y — 6:) = 0and 0 < a1 (6, —
90) <1.
In particular, we have

S AehApes ApehAP>9
L = (] A, 0 WenAC< 'm> [ = —Q2 A . wenAc_ -
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Then we have

EN EN Ay\? A
—L:al; L:—al (_p) <0 whenA—P<9m,

812—1; 32—; Ac c
EN EN Ay\? A
6 —0ip; oL o “2) -0 when O < —r 0,. (2)
Bﬁ—p 3% Ac A
c P

In the symmetric case, i.e. «; = a3 = «, then we have

Ap Ap Ap
(7)) =3~ ‘ a6 when 7 < 60,6

with a€(0,1), 6=20,—6; and 6 €[020,+21]. Thus, S =
a(i}—f+ec—29m)if29m—ec<—c<9 andSL—oz(Q——c>1f9 <% 4.

In addition, we have the following:

EN EN Ay\? A
—L=oz; L _o22 when29m—965—p<9m,

A A
BA—P aA—C c Ac
BN 3S Ap\? A
2L —a; L —a(Z2) when Om < £ 6. (3)
3% aAC Ac Ac

c P

The special case of the symmetric scenario above is S;(0) =0, i.e. 6, = 20,
this case, we have S, (ﬁ ) ‘— — O ‘ ~+ a6, with 6,, € (0, ) in our proposed
model (4). In the following section, we will provide mathematical analy51s of the gen-
eral case of Sp (;}—i) shown in (1) and the related results can be applied to the
symmetric case and its special case directly.
. The total forager population A(#): The population A increases by the matura-
tion rate of brood and decreases with a density-dependent death rate dA. The
density-dependent mortality rate follows the approach of [15], thus we have following
equation:

A = BL — dA?

g =~

maturation from brood ~ average mortality rate

s . . A "
. The protein forager population A,(¢): The ratio A—Iz measures the nutritional sta-
tus of the colony. Assume that the brood can survive in a range of nutrient ratio, i.e.

A . . . .
A—i € (6o, 6.), and any ratio greater than 6, can be toxic to brood. In addition, there is

. .. . A .
an optimal nutritional ratio A—P, denoted by 6,,, such that brood could have the opti-
C
mum survival rate at this ratio. More specifically, the brood survival rate increases with

A A . . . .
respect to the value of —P when AP € (00,0m), and passing this optimal ratio 6,,, the
Ay
brood survival rate decreases w1th The survival rate of brood is zero when =% A <6

or > .. Thus,



6 (&) F.RAOETAL.

The portion of the successful brood developed into adults which enter into the

protein forager pool can be modeled by the term: SL - max {0, %} , where

Ac

max {0 jiﬁ } € [0, 1] represents the nutritional requirements of the colony mea-

sured by the ratio 22 i £ and a nutrient collection factor.

Based on the nutritional requirements of the colony and other related stimuli,
a protein forager can become a carbohydrate forager, and vice versa. This task
switching rate depends upon different factors such as the nutritional status of
the colony, presence of larvae, individual preference, food type, food concen-
tration and hunger level [5,7,11,23,26,27]. In this paper, we assume that the
task switching rate of protein foragers to carbohydrate foragers depends on the

brood population L, the nutritional requirement of the colony max 10, ;iﬁ },
4p
and the available carbohydrate forager A, = A — A, thus its switching rate is

dac

max {0 93 } ApL. Similarly, the switching rate of carbohydrate foragers to pro-
Ap

tein foragers is termed as max {0, ;’% } A_.L. This gives the net task switching rate
Ac
of the protein forager: (max {0 ; a }AC — max {0 Sy } AP) L. For instance,
Ap
if the ratio 7= is less than the optlmal nutrient ratio 9, (where the maximum

brood survwal rate occurs), then we expect 3§; > 0 and ;% < 0, thus this
9% Ap
indicates that carbohydrate foragers will switch tasks to forage for protein, i.e.

max {0 S }APL = 0. In a similar fashion, if the ratio 6,, < 2= . < 6., protein
v Ac

foragers will switch to forage for carbohydrates, that is, max {O L } AL =0.

The total forager population A = A, + A, decreases with a den51ty dependent
death rate dA%> = dA(A, + A,), then the protein forager population decreases
with the density-dependent mortality rate dAA,.

Considering the factors above, we derive the population dynamics of the protein
forager as follows:

portion of matured adults entering A,

8SL 8SL
+ [ max {0, — Ac—max 10, — ¢t Ay |L— dAAP
‘ P mortality rate

net task switching
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Table 1. Parameter description and interval values of Model (4).

Parameter Description Range Reference
a Portion of the division of labour invested on larvae (0, 0.25) [15]

b Half-saturation constant (0.001, 10) [15]

d Adult worker death rate (0.001, 1) [15]
o,ap,i=1,2 Scaling factor(s) of nutrient collection ©, 1)

B Maturation rate from larvae to adult worker o, N [71

y Average egg-laying rate of queen ©, 1 [11]

Om Optimal nutrient ratio 0, 6;)

Oc Maximal nutrient ratio that brood can survive (0, g + 9m)

Oo Minimal nutrient ratio for brood survival (0,0m)

Based on the ecological assumptions above, the population dynamics of a social insect
colony with nutrient regulating foraging activities is described as follows:

L = vSL Lﬂ _ ,BL,
maxb+ aAz
A = BL — dA?,
, 8SL 8SL 85L
Ap=/3L-maX O’T + | max O’T A, — max O’T Ap L—dAAp.
a2 oL 05
Ac Ac AP
(4)

The biological meaning of the parameters and the related values are listed in Table 1.

3. Mathematical analysis

The state space of the proposed ecological model (4) is R3 . All parametersa, b, d, o, B, ¥,
600, 9m, 0. are assumed to be strictly positive based on their biological meaning. We focus on

the proposed function Sg. (ﬁ—}c’) shown in Equation (1) and Figure 1(a). The related mathe-

matical results should be easily adopted to the symmetric case (3). Under such conditions,
we first show that Model (4) is biologically well-defined, i.e. it is positively invariant and
bounded in R3. in the following lemma:

Lemma 3.1: Model (4) is positively invariant and bounded in R3 = {(L,A,Ap) : L >0,
A >0, Ap = 0}. Inparticular, if L(0) > 0, A(0) > 0and Ay(0) > 0, then L(t) > 0, A(t) >
0 and Ap(t) > 0 for all t > 0.

The extinction equilibrium Ey = (0, 0,0) of Model (4) always exists. The local stability
of the trivial equilibrium Ej cannot be analysed directly for our model (4). However, from
the first two equations of Model (4), we have

aA? ya1(Om — Oo)a
L+A) =yS — A< | | A?
(L+4) VoLmas A2 _|: b+ aA?

- |:J/0l1(9mb— o)a d] A2
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Note that Model (4) is positively invariant and bounded from Lemma 3.1, thus we can
conclude that if w < d, then the inequality above implies that lim sup,_, . (L +
A) converges to a nonnegative constant. In addition, we have L'[4—¢1~0 = —BL < 0,
Allj—o = —dA* < 0 and Ap'|1=0,4>0 = —dApA < 0. Therefore, if w < d, then
for some initial conditions around Ey = (0,0,0), Model (4) converges to the extinction

equilibrium Ej in Ri. Thus, we have the following proposition:

Proposition 3.1: If w < d, then for some initial condition around the extinction
equilibrium point Ey = (0,0, 0), taken in R>., the trajectory of Model (4) converges to Ey.

Remark 3.1: Note that the inequality %b’”_e") < dimplies thata < ﬁ. Propo-
sition 3.1 implies that if a is not large enough (i.e. the investment to the brood growth is
small), or the death rate of adults is too large, then the brood population and the total for-
ager population approaches the extinction equilibrium point Ey. In the symmetric case, we

acy (Oc—6m)
b

have 6y = 26,, — 0, then the inequality becomes <dwitha; = o = a.

Assume that E* = (L*, A%, A;) is an interior equilibrium of Model (4) with the general

. dA .
case of S;. Then based on the equation of d_tp shown in (4), we can conclude that A; can

Ac Ac
colony survival requires the nutritional needs of brood being on the positive gradient of

exist only if ;% > 0 as it requires max {0, %} > 0. Biologically, this implies that the

A A
the brood survival probability St ... Thus, we have 2% = 5% € (60, 6n), and therefore
c P

SL (f;—i) = (i—’; - 90> and

2
*
98, 35S, AY
oA Ac=AL A=Ay = Q13 R =-al| ) < 0.
T Cc
Ac Ap | =A%,Ap=A%

To solve for (L*, A, A7), we set L' = A" = A}, = 0, which implies the following equations

I'=0— PN S BL =0
= o _— — =0,
WA, " bt aa2

/I _dZ

dApA

A=0— wBL+yAL—dA, A=0—L=—""|
» 18 14c p 0B T oA,

which gives

Therefore, A* of an interior equilibrium (L*, A*, A7) satisfies the following equation:
adB(1 — a;)A? — aafyA + Bl(1 — ay)(bd + a1y 6y) — aa%y] =0. (5)

Recall that &1 € (0,1). Depending on the exact values of a, b, d, a1, B, ¥, 60, Om> 0., the
Equation (5) can have zero, one, or two positive roots.
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Let
_ aafy—\/z _ aa%y—l-\/z
YT 2aBd0 — ) T 2aBd(1—ay)

where
A= a(ao/lly2 — 4d,32[(1 — ozl)z(bd + a1y 0y) — aa%y(l —ap))

be the possible positive roots of Equation (5). Let us denote a* as follows:

5 — 4bd? (1 — a1)?
aty? +4dp2eny (1 — ap)lon — Op(1 — )]
_ bd(1 — ay) 4dB*(1 — ay) - bd(1 — ay) ©)
ory(ar — (1 —e)bp) ey 4dB2(1 — o)  @Y(a1— (1 —o1)bh)

a;—(1—a1)6

which is an increasing function of 6.
In the symmetric case, we have 6y = 26,, — 6, then a* shown in (6) can be rewritten as

o 4bd* 2 (1 — a)? bd(1 — a)
< .
aty? +4dap?y (1 —a)la — (1 — )20, —0)]  ayla — (1 —a)(20, —6,)]
(7)
3y +aday f2(1— 3 .
Also note that aly;ﬁz(zfa(l)zal) = 4dﬁ2”f}ial)z + 125 > 105 Then the following

theorem provide conditions for existence of equilibrium solutions of Model (4):
Theorem 3.1 (Existence of Equilibria): For Model (4),
R Sy +4de B2 (1—a1)
L. If0<az<a*and<90<Oll)/4(#32‘?+m)20[1
Ey = (0,0,0) and no other positive equilibrium.
3 201
2. Ifa=a*and 6y < oy tadenp7(1-en)

4dp*(1—ar)?
collapse into one equilibrium E,

, then there is only one trivial equilibrium

, then Model (4) has two positive equilibria which

Ey = (Ly, A, Ap,) = <_A>2)<’ ary ’ a1BAs + a1 *)
B ¥ 2Bd(1—ay)’ B+ aiAs

in addition to Ey = (0,0, 0).
3. Ifa> —b4-a) __g,00, < 1ok then Model (4) has only one positive equilibrium

ary (a1—(1—a1)6p)
d a1 BA; + a A2
E, = (—AZ,AZ, M)
B B+ ai1A;

E,

in addition to E.
~ bd(1—a) \s ep .
4. Ifa* <a< m and 6y < 1=, then Model (4) has two positive equilibria

in the following form in addition to Ey:

d A A? d A A2
E = (_ A2, A,, M) and B — (_ A2, M)
B B+ a1A; B B+ a1A;

o
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Remark 3.2: The detailed proof of Theorem 3.1 is shown in the last section. The number
of equilibria of Model (4) is determined by the positive root(s) of Equation (5). Theorem 3.1
implies that the value of the division of labour invested on larvae a and the minimal protein
to carbohydrate ratio 6y determine the existence of the interior equilibrium (L;, A;, Api), i =
1,2.

Our simulations (see Section 4) suggest that Model (4) has simple dynamics: no limit
cycle and only equilibrium dynamics. At the stable equilibrium, the ratio describing the
nutritional level of the colony is

Ap _ (A" +p)
Ar T Bl —a)

Equation (8) suggests that the larger the total population of workers investing in nutrient
collection is, the higher the ratio of protein to carbohydrates will be, i.e. better nutrient
*

€ (6o, 0c). (8)

status of the colony. Notice that A* depends on 6, so % does as well.

Now we discuss stability of the interior equilibrium for Model (4). Let E* = (L*, A*, A;)
be an arbitrary positive interior equilibrium of Model (4). The Jacobian matrix associated
to Model (4) at equilibrium is:

—B Ji2 J13
Jlee = B —2dA* 0 |,
J31 J32 J33
acy A*[A5(bA* — aA* — 2bA5) — 2b(A* — A;)Zeo]
Ji2 = (A* — A;)Z(b + aA*2)2 >
fia = a1y A3 ,

(A" — A2 (b+ ad?)

Bi=oa(B+A"—A)) >0, Jp=oal* —dA;, Ji3=—(a1Ll" +dA%) <0. (9)
Then the characteristic equation of ]|+ is

fO) =2 +CA2+Cr+C =0, (10)

where
Ci =B +al*+3dA* >0,
Cy = JuJss + iJza + J22J33 — J21)12 — J31)13s
Cs = —det(lgr) = Jiha2J3s + JaiJ32J1s — Jathi2J3s — Jai)22)hs. (11)

The stability of the steady state E* = (L*, A*, A7) can be determined by the distribution of
the roots of Equation (10). That is, if all the roots of Equation (10) have negative real parts,
then E* is locally asymptotically stable; if at least one root of Equation (10) has positive real
parts, then E* is unstable; if any root has zero real part and other roots all have negative
real parts, then the stability of E* cannot be determined by the linearized system directly.

The following theorem provides a global result on dynamics of the proposed model (4)
regarding when a colony will collapse.
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Theorem 3.2 (Extinction of species): If 0 < a < a* and 0y < %

Model (4) has global stability at Ey = (0,0, 0).

, then

Biological implications: Theorem 3.2 has stronger result than results stated in Proposi-
tion 3.1 and indicates that the portion of the division of labour invested on larvae a and
the nutrient 6 are important factors determining whether larvae and adult worker ants can
survive. This theorem provides a sufficient condition leading to the collapse of the colony.

Theorem 3.3 (Stability Conditions): For Model (4),

1. Assume that a > bd(1—a1) and 6y < ﬁ—al, then Model (4) has a unique inte-

ary (ar—(1—a1)fp) ;
rior equilibrium Ey = (Ly, Az, Apy) = (gAg,Az, %) If it satisfies C1(E>)Cs
(E2) > C3(Ey) > 0, then E; is locally asymptotically stable.
bd(1-a1) and 6y < X, Model (4) has two inte-

ary (a1—(1—a1)6o) l—zal’
rior equilibria E; = (Li, Aj, Api) = (%A,Z,Ai, %) ,i=1,2, where E; < Ey, if
C1(E1)Cy(E1) — C3(E1) < 0 but C1(E2)Cy(Ey) > C3(Ez) > 0, then the interior equi-

librium E, is locally asymptotically stable while E, is unstable.

2. Assume that a* <a <

Biological Implications: The results in Lemma 3.1, Theorems 3.1 and 3.3, imply that
the division of labour invested on larvae a decreases past the critical point a* =

4bd’ 7 (1~ )* shown in (6) and the first dotted line in Figure 2. Model (4)
aty?+4da) B2y (1—ay) (@1 —(1—a1)60)

(a) 24 (b) 2+

A A 1
Le
0.5 1 0.5 N
N\ %
: %
: @
. 7
E E i
042 0-=2 7 L 7 7 e
0 0 0.05 0.10 0.15 0.20 0.25
a a

Figure 2. Backward bifurcation diagram of the division of labour invested on brood a v.s. the total
forager population A. Other parameters values are b = 0.1, d = 0.1, 1 = 0.3, 8 = 0.7, y = 0.9. The
solid line indicates that the equilibrium is locally asymptotically stable while the dashed line indicates
that the equilibrium is unstable. The first vertical dotted line is the critical point a* for saddle node bifur-
cation and the second dotted line is the transition point when the system has two interior equilibrium to
one interior equilibrium. The blue colour indicates E; which is always stable; the green colour indicates
E; which is always unstable; and the red colour is the extinction equilibrium Ey. (a) 6p = 0.1.(b) 6o = 0.2
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(b)

o |,h:;

T T T T T T
0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

Figure 3. Bifurcation diagrams of the ratio of " v.s. the division of labour invested on larvae a with:

(a) different values of nutrient threshold 6, and ( ) different values of optimal nutrient ratio 6, when
0. = 7.8. Other parameters valuesare b = 0.1, d = 0.1, o1 = 0.3, 8 = 0.7, y = 0.9. (a) Effects on 6.
(b) Effects on 0.

exhibits a backward bifurcation shown in Figure 2 where b = 0.1, d = 0.1, &1 = 0.3, 8 =
0.7, y = 0.9. In Figure 2(a), we set 6p = 0.1 and in Figure 2(b), we set 6y = 0.2. Based
on the expression of the critical value a* shown in (6), a* is an increasing function of
0o, which is reflected in the difference between Figure 2(a) and Figure 2(b). The value
of 0y measures the minimum ratio of protein to carbohydrates that can allow the sur-
vival of larvae. Simulations shown in Figure 2(a, b) and 3 suggest that the larger value
of 6y, the more likely the colony can survive with a larger population of workers A and

thus the higher nutrient ratio ﬁ In summary, our theoretical work combined with the
related simulations suggest that the division of labour invested on larvae a and the minimal
nutrient ratio 6y can affect colony survival, the distribution of the brood and the total for-
ager population affect the protein forager population. For instance, the larger 6, the more
division of labour invested on larvae is required to ensure survival of the colony. Also,
under this scenario, the population distribution of brood and workers is smaller. More-

over, Figure 3 shows the bifurcation diagrams of the ratio of ~= versus the division of labour
invested on larvae a with different values of 6, other parameters values are taken as those in
Figure 2.

All our theoretical results can apply to the symmetric case when o} = o = o and 6y =
20y, — 6.. Now we focus on the special case of the symmetric case ) = 0. For convenience,
let

. A 4bd*B?(1 — a)? bd(1 — «) 4dB%*(1 — «) bd(1 — «)
- a?yla?y +4dB2(1 — a)] - aly  [o?y +4dB2(1 — )] = aly

(12)
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Let A = a’a?y oy + 4dB*(1 — «)] — 4abd*B*(1 — «)? and
_ aazy—\/z . aazy—i—\/x
YT 2aBd(0— ) T 2aBd(1—a)
d o’y afA, +ozAﬁ>

_ [ Z 42
(Fer Ao Ap) = (ﬂA*’ 2Bd(1—a) B +aA,

Define ay, a; and M as follows:

b (azy +4dp*(1 — a) — ay/y (a?y + 8dp2(1 — a)))
2a%p%y

b (azy +4dp*(1 — a) + ay/y (a@?y + 8dp2(1 — a)))
2a%p%y

>

a) =

a); =

>

1 d (A
M= — (20dA® + (@ + 2d)BAr +36%) + — | 2 (@2 —b) +2b).  (13)
B aay \ Ap,

Theorem 3.4 (Dynamics of the Special Symmetric Case): Model (4) is positive invari-

ay&m] % |:0 \/da}’Qmi| %

ant in Ri and every trajectory attracts to a compact set C = [0, “B » g

/ 2
|:0, (W—gwm]. In addition,

1. Ifa < min {a*, a%m }, then Model (4) has global stability at Ey = (0,0, 0).

bd(1—a)
2. Ifa> W < a < ayand

A L A A2 — 2A
<—2<min al, +dA, [d(aA; b)+ Py bd 41 My
A al; +dAy, aoy Ay \aay

then Model (4) has a unique interior equilibrium E, = (L2, Az, Ap)) that is locally
asymptotically stable.
3. Ifa* <a< Mé+;m,a1 < a < ap, and

Ay

1 d (A
ywile P(zoszlz + (o 4+ 2d)BA; +38%) — — (—l(b —aA?) — 2b) ,
cl

aay \ Ap,
Ay

1 d (A
< —QadAy* + (o + 2d)BA; + 38%) + — (—Z(aAZ2 —b)+ zb) ,
An  B? acy

Ap,

. 2
then Model (4) has two interior equilibria E; = (L;, Aj, Ap,) = (%A%,Ai, %) ,
i = 1,2, where the interior equilibrium E, is locally asymptotically stable while E; is
unstable.
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bd(1—a)
4. Ifa> vl < a < ayand

B B+ aA
max 40, R
p—aA p(l—a)
A . [ aL+dA [d@A®>—b) 24, [ bd
< — < min 4+ —=(—=—+1)],
A, al +dA, aoy A \aay

>

M adAz—l—bd—l—aay},
aay

then Model (4) has a unique interior equilibrium E; which is globally stable.

Remark 3.3: Theoretical results and numerical simulations (see Section 4) confirm that
the special symmetric case of Model (4), i.e. 6y = 0 and 6. = 26,,, undergoes a backward
bifurcation as a decreases past the critical value a* defined in (12). Conditions shown in
Theorem 3.4 suggest the importance of the protein to carbohydrate ratio, i.e. ;\4_522 =1+
%, in determining the colony population dynamics.
c2

Summary of Dynamics: According to our analytical results shown in this section, we can
conclude that Model (4) undergoes a backward bifurcation as a decreases past a* (or a*
in the case of 6y = 0 and 6, = 20,,). More specifically, it exhibits the following global

dynamics:

afy+4da1/32(1—0(1)
4dp*(1—a1)?
efforts of division of labour invested on larvae and the minimum nutrient requirement

0o being too low.

1. f0 <a<a*and 6y < , then the colony collapses due to the lack of

bd(1—ay)

Ak
2. If0<a <4< ayle—-U—anby)’

population size.

bd(1—a;) .
3. Ifa> ay e —d—andn > then the colony persists.

the survival of the colony depends on its initial

. . A
Our theoretical results suggest that the survival rate of larva to worker Sz (A—fc’) plays

. . - . . A
critical roles in determining colony population dynamics. We assume that Sz (A—P) takes
the form of (1) based on relevant biological studies. Our analysis implies that the values of
. A . .
parameters  and 6y in St (A—P) have pronounced impacts on dynamical outcomes. In

the next section, we use bifurcation diagrams to explore detailed impacts.

4. Numerical simulations

In this section, we use numerical simulations to illustrate equilibrium dynamics of the pro-
posed model and obtain further biological insights on the dynamical outcomes of certain
life history parameters of the colony.

For the general case of Sg___ (g—’z), the dynamics of Model (4) depends on the divi-

sion of labour a, egg laying rate y, the scaling factor on the brood survival rate due to the
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nutritional status 1, the minimal nutrition ratio 8, the maturation rate 8, and the natural
mortality d. To explore the effects of a and 6, we perform bifurcation diagrams in Figures 2
and 3 by setting

b=0.1,d=01 o =03 p=07 y=09.

Figures 2 and 3 suggest that (1) small values of division of labour a can lead to colony
collapse; (2) intermediate values of a can make the system go through saddle node bifur-
cation; and (3) large values of a can insure colony survival. This implies that Model (4) goes
through backward bifurcation on a. We can see that the larger value of a can lead to the

larger population A (see Figure 2) and the larger nutrient ratio 12_}: (see Figure 3). Figures 2
and 3 also show the effects of the minimal nutrient requirement for brood survival 6y: The
larger value of 6y, (1) the larger critical threshold a* (2) the smaller population A; and (3)

the smaller nutrient status, i.e. the smaller value of

Next, we perform bifurcation diagrams of Model (4) regarding how the minimum nutri-
tional requirement 6y and the scaling factor of survival probability of brood «; affect
population dynamics of the colony in Figure 4. Figure 4(a) shows that Model (4) exhibits
reversed backward bifurcation on 6. Figure 4(b) suggests that the larger value of «;, the
larger population of worker A and the better probability of colony survival.

In the remaining of this section, we focus on the symmetric case of Sg___ (2—‘:) shown
in (3) where oy = ap = « and 6y = 26, — 6..
Special symmetric case 0, = 26y, (i.e. 6y = 0): Figure 5(a) provides an example of bifur-

cation diagram on division of labour invested on larvae a of Model (4) by choosing the
following parameters values:

b=01 d=01 «=03 f=07 y=09, 6.=8 0,=4

2+
5
A
1.54 44 Q/'%O
.y\)\
A 3+
11 4 A
2_
N
AN
o
0.5 >
\L 1-\%
N
@
0 0.1 02 03 0.4 0.5 0.5 1 15 2 25
e0 eO

Figure 4. (a) The bifurcation diagrams of L, A and A, v.s. the nutrient threshold 6y with ay = 0.3; and
(b) the bifurcation diagram of A v.s. the nutrient threshold 6y with different values of 1. Other param-
eters values are taken asa = 0.15, b = 0.1, d = 0.1, 8 = 0.7, y = 0.9. (a) Effects of 6y on population
dynamics. (b) Effects of 1 on A
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0.5 0.5

T T T T T
0 0.05 0.10 0.15 0.20 0.25 0 0.05
a a

Figure 5. Bifurcation diagrams of the division of labour invested on larvae a for Model (4). Back-

2 p2 2
ward bifurcation occurs at g* £ — 26480~ for the case of 20, =6, =8 (a); and at

a2yla?y+4dB2(1—a)l
at = 4bd?p(1—a)” for the case of 26, > 6, = 7.8 (b). Other parameters values
T aty?+adap?y (1—a) (@—(1—a) (20m—0c)) m c— " ) P
are takenas b=10.1,d=0.1, « =03, 8 = 0.7, y = 0.9, 6, = 4. The solid line indicates that the
equilibrium is locally asymptotically stable while the dotted line indicates that the equilibrium is unsta-
ble. The blue colour indicates E, which is always stable; the green colour indicates E7 which is always
unstable; and the red colour is the extinction equilibrium £y. (a) 26;, = 6. = 8.(b) 26, > 6. = 7.8

Figure 5(a) shows that Model (4) goes through backward bifurcation at g* =
4bd? B2 (1—a)? . bd(1—
azy[azyiéfdﬂfg_a)] = 0.054.Ifa < a*, then colony collapses; if 0.054 = a* < a < (ST;)
Model (4) has two positive interior equilibria E; = (L1, A1, Ap,) and E; = (L2, A2, Ap,)

with E, being locally stable; and if a > “44=%) then the colony survives.
o

>

Figure 6 provides two examples of population dynamics of Model (4) to show the
effects of a. The initial condition is (L(0),A(0),A,(0)) = (0.09,0.1,0.035) and other
parameters values are the same as in Figure 5(a). According to Theorem 3.4, Model (4)

has global stability at Ey = (0,0,0) (i.e. colony collapses) if a = 0.07 < min {a*, a%m }
(see Figure 6(a)) and Model (4) has two positive interior equilibria with E, =
(0.434,1.743, 1.045) being a locally asymptotically stable interior equilibrium ifa = 0.1 >
a* (see Figure 6(b)). It indicates that larvae L, worker ants A, and the ants collecting pro-
teinaceous material A, can coexist with proper initial conditions if a is in the intermediate

range.

Symmetrical case 6, < 26,, (i.e. 6y = 20, — 0. > 0): Figure 5(b) provides an example of
bifurcation diagram on division of labour invested on larvae (a) of Model (4) by taking
same parameter values in Figure 5(a) except that 6, = 7.8. Figure 5(b) shows that Model (4)

undergoes a bifurcation as the portion of the division of labour invested on larvae a
4bd* 2 (1—ar)?

ay +4dap?y (1—a) (@ —(1—a) (26,—00) "

has 6y = 26,, — 6. > 0. Thus, the comparisons between Figure 5(a) and Figure 5(b) can

provide insights on the effect of a and 6, (or 6y because we set 6, = 4 and 6y = 26,, — 6,):

decreasing past a* = Notice that the symmetrical case
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(a) (b)
T T T T L
— L —L
A
A 15
0.15 Ap Ap
1.0
0.10
0.05 4 05
0.00 1 0.0
0 5000 10000 15000 20000 0 200 400 600 800 1000

Time

Figure 6. The time series of Model (4) when 6, = 26, = 8 with an initial value (L(0), A(0),A,(0)) =
(0.09,0.1,0.035) and other parametric values being b =0.1,d=0.1, « =03, 8 =07, y = 0.9,
which is the same set of parameters values in Figure 5(a). Figure (a) is the case when a = 0.07 where
population goes extinct over time. Figure (b) is the case when a = 0.1 where the colony has a locally
asymptotically stable interior equilibrium E; = (0.434, 1.743, 1.045). (a) Time series of Model (4) when
6c = 26, when the portion of the division of labour invested on larvae is a = 0.07. (b) The time series
of Model (4) when 6, = 26, when the portion of the division of labour invested on larvaeis a = 0.1.

2_
] vy
1.5 1 Ce
] 2
A
0.5
@\0\6@\

Vo
+———¥——7———
3.90 3.95 4.00 4.05 4.10 4.15

0
m

Figure 7. Bifurcation diagram for Model (4) on the optimal nutrient ratio 6,,. An unstable interior equi-
3

librium (green dotted) bifurcates 6,5 = % <GC + 55 + ‘W;(fy—a)z - %).The solid line indicates that

the equilibrium is stable, while the dotted line indicates that the equilibrium is unstable. Parameters

values:a =0.15,6=0.1,d=0.1, ¢« =03, =07,y =09, 6. = 7.8.

(1) The smaller value of 6., the larger critical threshold a*; (2) The smaller value of 6.,
the smaller population A. The dynamical outcomes of symmetrical cases are similar to the
general case shown in Figures 2 and 3.
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To understand the effects of the optimal nutrient ratio 6, (or 6y = 26,, — 6, = 20, —
7.8), we perform a bifurcation diagram on 6,, shown in Figure 7 by setting

a=015 b=01 d=01, «=03 B=07 y=09 60 =78

Notice that 6y = 26,, — 6, > 0, thus the value of 6,, in Figure 7 starts with 6,, = 1/26, =
3.9. Figure 7 shows that Model (4) exhibits reversed backward bifurcation on 6,, (or 6p):
(1) small values of the optimal nutrient ratio 8,, can insecure the persistence of the colony;
(2) intermediate values of 8,, can go through saddle node bifurcation; and (3) large values
of 6, can lead to colony collapse.

5. Conclusion

Variation in nutrient consumption among individuals is considered a conserved mecha-
nism regulating castes and division of labour in social insects colonies. In eusocial insects,
foragers, who perform food collection tasks, need to satisfy their own nutrient require-
ments in addition to those of the non-foraging workers, as well as the larvae and queen(s),
which have significantly higher protein needs [14]. In this paper, we propose and study
a nonlinear differential equations system to explore how nutritional status may regulate
population dynamics and foraging task allocation of social insect colonies by applying
adaptive modeling framework. Our model assumes that foragers adjust their preferences
in favour of food sources containing limiting nutrients to maintain colony growth and
reproduction [7,11,26].

Our proposed model consists of a population of larvae L, foragers collecting carbohy-
drate A, and foragers collecting protein A,. We assume that the survival rate of larvae is
determined by the available nutrition in the colony, which is reflected through the ratio of

. . . A .
workers collecting protein to those collecting carbohydrates Sy, (A—‘Z>. Our formulation

max

of St (ﬁ—’:) is based on biological studies (see [11,26]) and embeds with an adap-

tive modeling approach adopted from [15,16,19]. Our theoretical results and bifurcation
analysis conclude that our proposed model exhibits backward bifurcations that generate
bistability (see examples in Figure 6). The bistability of the colony implies that initial
conditions are important for colony survival under certain ranges of life history param-
eters. More specifically, the dynamical features and the related biological implications of
Model (4) can be summarized as follows:

1. The nutrition status measured by 7% is an increasing function of the total population
c

of workers A, or vice versa. This result may stem from the assumption that larvae

(or brood in general) have higher nutritional needs to ensure survival. The biological

implications of this are that higher nutritional status ﬁ—}c’ can lead to a better survival
rate of larvae, thus the colony can grow with larger worker population A.
2. The survival probability of brood is an increasing function of the following important
life history parameters of colony:
(a) The division of labour invested on brood measured by a can have huge impacts
on dynamical outcomes of the colony. From Lemma 3.1, Theorems 3.1 and 3.3,

Model (4) exhibits a backward bifurcation (shown in Figure 2) as a decreasing
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past its critical point

B 4bd*B*(1 — a1)?
afy? + 4dey B2y (1 — 1) (g — (1 — a1)6p)

which is an increasing function of the maturation rate 8, the minimal nutrient
ratio 6p; and a decreasing function of queen(s) laying egg rate y. The larger the
value of g, the more likely it is that the colony survives and grows.

(b) Effects of nutrient thresholds 8y, 0, 6.: Figures 2, 3 and 7 suggest that Model (4)
exhibits reversed backward bifurcation on 6,, (or 6y): (1) small values of the opti-
mal nutrient ratio 8,, can insecure the persistence of the colony; (2) intermediate
values of 6,, can go through saddle node bifurcation that leads to bistability; and
(3) large values of 8,, can lead to colony collapsing.In addition, the larger value of
the optimal nutrient ratio 6,, (or 6y) leads to (1) larger critical threshold a*; (2)

smaller population A; and (3) smaller nutrient status, i.e. smaller value of

(c) Effects of the brood survival rate «;: Figure 4(a) shows that Model (4) exhlblts
reversed backward bifurcation on 6. Figure 4(b) suggests that the larger value of
a1, the larger the population of workers A will be, which increases the probability
of colony survival.

Our proposed model and study provide new insights into the strategies used by social
insects (such as harvesting ants) facing nutritional challenges, and our results deepen
our understanding of their nutritional ecology. Task allocation has been studied in social
insects, that is, how colonies change the allocation of tasks in response to changing colony
needs. One of future directions would be extending our current model to include more
tasks such as brood care, foraging, and study how different tasks are related to colony needs
including nutritional requirement. An another future direction is to extend our current
model to include an additional level such as food resource of the colony. For example, leaf-
cutter ants collect leaves as food resource to cultivate fungi and harvest the fruits of fungi
as their food. The nutrient requirement of the leaf-cutter ants colony has two levels: one is
the needs of the colony itself such as brood and the other one is the needs of the fungi. It
would be interesting to explore how nutrient needs of the colony and fungus garden affect
the foraging behaviour of leaf-cutter ants during its ontology.

6. Proofs
Proof of Lemma 3.1

Proof: For any L, A € Ri_, from Model (4), we obtain L'|19)=0 > 0 and A’|40)=0 > 0
for all £ > 0. Since A = A, + A, then A},|AP(0):O > 0 for all t > 0. Moreover, if L(0) =
0, A(0) = 0 and Ap(0) = 0, then (L(#), A(f), Ap(t)) = (0,0,0) for all £ > 0. If L(0) >
0, A(0) > 0 and A,(0) > 0, then by continuity arguments, it is impossible for either L(t)
or A(t) or Ap(t) to drop below 0. Hence, for any L(0) > 0, A(0) > 0 and A,(0) > 0, we
obtain L(f) > 0, A(t) > 0and A,(¢) > O forall t > 0.
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Now assume L(0) > 0, A(0) > 0 and A,(0) > 0, then since the function of Sy (ﬁ—‘z)

. . A . .
exists maximum when ﬁ € (max{0, 6}, 6.) and according to the expression of L', we have

, Ap aA?
U=ay (L=t ) g2 = BL < cay O — o) — L
c

for all +>0 when 6, > 6p. Thus, a standard comparison theorem shows that

limsup,_, o L(¢) < w. This indicates that for any € > 0, there exists T large
enough, such that
Om — 0
L(t) < W +¢€ forallt>T.

Therefore, from the expression of A’, we have

a1y (Om — 6o)

A/=ﬂL—dA255< 5

+E> —dA? forallt > T.

Since € can be arbitrarily small, thus limsup, , . A(t) < —W. Thus, we have
shown that the Model (4) is positively invariant and bounded in R2 . More specifically,

|:0’ aly(eén_HO)] X |:0 Vdalybgem_eo)

A = Ap + A and the boundedness of A(t), hence we can obtain A, is bounded for all
t>0.
Moreover, if L(0) > 0, A(0) > 0and A,(0) > 0, then we have follows:

the compact set :| attracts all points in R%. Due to

/ AP aA’ —pt
L' =y A——90 m—ﬂLE—ﬁLiL(ﬂEL(O)e > 0,
c

A(0)
1+dt

A= BL — dA?* > —dA? = A(Y) > > 0,

Al = anBL+ 1AL — dApA > —dA,A = Ay(t) = Ap(0)e @l A0 5 o,

Therefore, if L(0) > 0, A(0) > 0 and A,(0) > 0, then L(¥) > 0, A(t) > 0 and Ap(t) > 0
for all t > 0. u

Proof of Theorem 3.1

Proof: 1t is easy to see that Eg = (0,0,0) is always an equilibrium of Model (4). The
nullclines of (4) can be found as

I'=0— A g) BL =0
= o _— — =0,
Y a, ") bt aa?

r_ _d2
A —0=>L—EA,

dA,A

A=0—=qBL+ajAL—dAA=0—L= —F
» 18 14¢ p 0B+ oA,
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By solving oq/3+—1::A dA2 for A,, we have A, = % and substitute it to L’ = 0,
which results in the followmg equation:
adB(1 — a))A* —aaty A+ Bl(1 — ay)(bd + aa1y6p) — aaiy] = 0. (14)

The roots of (14) are given by

aaly \/_ A — aa%y—l—\/z

2aBd(1— o) 2 2aBd(l—ay)

where A = a(aa}y? — 4dB?[(1 — a1)*(bd + ac1y6) — aady (1 — ay)]).
Thus, we have the following three cases:

* _ _bd
Let 6 4dﬂ2(1 ) + 1 any

1=

N 4bd? B2 (1—a1)?
L 1860 > 0y and a > oy P =’

Eyp = (0,0, 0) and no other positive interior equilibrium.
% 4hd2,32(170l1)2 e 1o e
2. If6p =63 and a > Ty @y 4R (=) then Model (4) has two positive equilibria
which collapse into one equilibrium E, as
dA2 %)/ OllﬂA*-FOllA?k)
BT 2Bd(1 — 1)’ B+ ar1As

Orif0 < 6y < 1241 - aau/ and a > % then Model (4) has only one positive

then there is only one trivial equilibrium:

(L*>A>k) Ap*) = <

equilibrium
a1BA; + alA%>
B+ a1A; '

3. If max {0 @ _ _bd } <6y <6 and a > bd(alffy“l), then Model (4) has two posi-

> 1—ag aoyy i

d .,
(L2, Az, App) = EA Az,

tive equilibria in the following form:

d A A?
(Lo Ay Apy) = (L a2, 4, 2PA T A g
B B+ a1A;
d a1BA; +Ol1A2
(Lo, As, Apo) = (—AZ,AZ, AP THR).
B B+ a1A;

Proof of Theorem 3.2

Proof: From Proposition 3.1, we know that for some initial condition taken in R3 and if
a< —70y> the trajectory of Model (4) is converging to the origin Ey = (0,0,0). And

__bd
o1y (Om

o}y +4da B2 (1—a1)
4dp?(1-ay)?
one trivial equilibrium Ey = (0, 0, 0) and no other positive equilibrium. Therefore, we can

. . |- bd
conclude that Model (4) has global stability at (0, 0,0) when a < min {a*, T Ot } and

3 2
oy -+Hden B2(1-a1)
fo < 1dFE(1—a1)? u

according to Theorem 3.1, if 0 < a < a* and 6 < , then there is only
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Proof of Theorem 3.3

Proof: The local stability of equilibria is determined by computing the eigenvalues of the
Jacobian matrix about each equilibrium.

Let E* = (L*, A* ,A;) be an arbitrary positive equilibrium of Model (4). The Jacobian
matrix at this equilibrium is

—-B J12 J13
Jlee=| B —2d4* 0], (15)
J31 J32 J33
where
ayy A*[A%(bA* — aA™> — 2bA%) — 2b(A* — A%)26]
12 = (A* _ A;)Z(b + aA*Z)z ’
ac y A*3
Ji3 = L >

(A" — A2 (b +aA?)
Jsi=a1(B+A* — A;) >0, Jp=ol"— dA;, J33 = —(o1L* 4+ dA™) < 0.
Then we have the characteristic equation of J|p= is
fO) =23 +CA2+Cr+C =0, (16)
where

Ci=B+al*+3dA* >0,

Cy =itz + JinJoa + J22J33 — JarJ12 — J31)13

ac?y A*3(B + A* — Ap)

(A* — A)2(b+ aA™2)
ao, ﬁyA*[A;(bA* —aA* — 2bA5) — 2b(A* — A$)260]
(A" — A5)2(b + aA*2)?
Cs = —det(g) = Juh2Js + JaiJs2)is — JathaJs3 — Js)22)13
— _2dBA* (a1 L* + dA*)
a1y A*3[B(a L — dA} + 2dai A*) + 2dan A*(A* — A7)
+ (A* — A72(b + aA*?)

= 2dBA* + (B + 2dA*) (a1 L* + dA*) —

>

ac By A* (a1 L* + dA*) [A;(bA* — aA™® — 2bA% — 2b(A* — A;)Zeo)]

* (A% — A3)2(b + aA*2)?

This indicates the following two cases:

1. If Model (4) has a wunique interior equilibrium E; = (L3, A2, Ap) =

<4A§,A2, a1BAr+a1A3 ) bd

B BHarAz -

a1 ~ aay and a >

), then under the conditions 0 < 6y <
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MST;“‘) and Cj (E2)Cy(Ey) > C3(E,) > 0, thus, by applying the Routh-Hurwitz cri-
1
terion, we can obtain that the interior equilibrium E; of Model (4) is locally asymp-

totically stable.

. 2
2. If Model (4) has two interior equilibria E; = (Li, Aj, Apy) = (gAiZ,A,-, %) ,
i=1,2 where E; < E,, then under the conditions max {0, I(—X_:)l] — agfy} <6y <

4bd? B2 (1—a1)?
05 a > ey and CLENCy(E)) — C3(Er) < 0 but Ci(E)Cy(E2) >

C3(E2) > 0, we can obtain that the interior equilibrium E, is locally asymptotically
stable while E; is unstable.

Proof of Theorem 3.4
Proof: ForanyL, A, A, € R3, note that
Ap aA?
>
A—A,b+aA? =
A/|A=0 = IBL >0,
Ajla,=0 = apL + AL > 0,

LUlp—o = ay

>

thus according to Theorem A.4 (p. 423) of [31], we can conclude that the model (4) is
positive invariant in ]Ri. Now we can proceed to show the boundedness of the system.

First, assume L(0) > 0, A(0) > 0and A,(0) > 0, then since the function of Sy (3—‘:) exists

. A . . .
maximum when 0 < 3% < 6, and according to the expression of L', we have the following
c
inequalities due to the property of positive invariance:

— BL < ayb, — BL

which implies that

oy

limsup L(¢) <

t— 00

This suggests that there exists € > 0 such that the following inequalities hold as time ¢ is
large enough,

A'=BL—dA* < B (“’:89’” +e> — dA?

which indicates that

0
limsup A(¢) < &y =,

t— 00
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Then, we also have the following inequalities hold as time ¢ is large enough,

Om Om
Al = aL+ a(A — ApL — dAA, < o (a’;} —i—e) (,3+ xy +E>

d
layb
—d( OlVdm+€>Ap

which shows that

. aytm oybm
limsupA,(t) < o + .
t—)oop P ( d dﬂ )

Therefore, every trajectory starting from R>. converges to the compact set

_ oy, ayOy, ay6,  ayb,
(C—[O, 5 ]x|:0, 7 i|x|:0,a( y + T )]

Let E* = (L, A*, A}) be an interior equilibrium of Model (4). Then its stability is deter-

mined by the eigenvalues A;(E*), i = 1,2, 3 of its associated Jacobian matrix as follows:
4 aayA*A;(aA*3 — bA* 4 2bA%) aay A*?
]|E* _ (A* _ A;)Z(b + aA*2)2 (A* _ A;)Z(b + aA*Z)
B —2dA* 0 ’
a(f+A* — A;) al* — dA; —al* — dA*
. A* %2 *
since BL* = dA*?, BL* = (xyf‘—gm, and A—; = #;A?). Therefore, we have
P BPA (@A —b) s dA*?
i = wyky W mA
B —2dA* 0 ’
a(f+ A" — A;) al* — dA; —al* — dA*

and the characteristic equation of J|p= is
fO) =2 +ar’+ i+ =0,
where
a1 = —tr(Jlgr) = —(A1(E") + A2(E") + A3(E")) = B + 3dA*™ + aL” > 0,

dA*?
+ 2b> +2dBA* — P ,

= (B +2dA™)(al* + dA™) + T
[

Bd2A* [ A*(aA** — b)
aay Ap

c3 = —det(J|g) = —A1(EM)A2(EM)A3(EY)

2 A% * *2
- [’Bd AT AT@ATZD) L ) +2dﬁA*} (@L* + dA®)

aay Ap
ﬂdA*3 ZﬁdZA*3
pic c
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This indicates the following two cases:

1. If Model (4) has a unique interior equilibrium E; = (L2,42,4;)) =

A AZ .. —
(43,42 L2222, then under the condions a = B2

max {O,L}
B —aA;

A L, + dA, [d(aAy2—b) 24 bd
<A_2<min{a2+ 2[(a2 ) 4 p2< +1>},M},

,d] < a < ayand

2 aly +dAp, aay Ay \aay
where
b (0‘23/ + 4dB%(1 — a) — a/y (a?y + 8dB2(1 — a)))
= 2022y ’
b (azy + 4dp%(1 — a) + a/y (a?y + 8dp2(1 — a)))
2= 2022y ’

=—(20{dA2 + (@ +2d)BA; + 3,3 )+ i —(aA 2_ b) +2b (17)
B2 ay \ Ap,

we get ¢3 > 0, ¢c3 > 0. And we can verify that ¢jc; — c3 > 0. Thus, we can con-
clude that the interior equilibrium E is locally stable by applying the Routh-Hurwitz
criterion. R

2. IfModel (4) has two interior equilibria E; = (Li,Ai Ap)) = (dA2 Aj, %) , 1

1,2 where E; < E,, then under the conditions a* < a < bdélzy“), a; < a < ap,and

A1 d )
Acl 132 (20ldA1 + ((X + Zd)ﬁAl + 3}3 ) — _)/ (E(b —aA; ) — 2b>
—A2 (Zosz + (o +2d)BA; + 382 )+ d 2 (aA2 — by +2b ),
Ay ,32 2 2 oy Ap2

we obtain A; < \/g < Aj and ¢(E;) < 0 but c2(E;) > 0. We also can verify that
c1(E2)c2(Ez) — c3(Ez) > 0. Therefore, the interior equilibrium E; is locally asymp-
totically stable while E; is unstable. |
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